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ABSTRACT: Several applications, such as risk assessment
within REACH or drug discovery, require reliable methods for
the design of experiments and efficient testing strategies.
Keeping the number of experiments as low as possible is
important from both a financial and an ethical point of view, as
exhaustive testing of compounds requires significant financial
resources and animal lives. With a large initial set of
compounds, experimental design techniques can be used to
select a representative subset for testing. Once measured, these
compounds can be used to develop quantitative structure−activity relationship models to predict properties of the remaining
compounds. This reduces the required resources and time. D-Optimal design is frequently used to select an optimal set of
compounds by analyzing data variance. We developed a new sequential approach to apply a D-Optimal design to latent variables
derived from a partial least squares (PLS) model instead of principal components. The stepwise procedure selects a new set of
molecules to be measured after each previous measurement cycle. We show that application of the D-Optimal selection generates
models with a significantly improved performance on four different data sets with end points relevant for REACH. Compared to
those derived from principal components, PLS models derived from the selection on latent variables had a lower root-mean-
square error and a higher Q2 and R2. This improvement is statistically significant, especially for the small number of compounds
selected.

1. INTRODUCTION
The REACH legislation1 includes the requirement that every
chemical compound produced in or imported to the European
Union in an amount of more than one ton has to be registered
regarding a number of end points. Experimental determination
of these properties for all compounds would require high-
throughput testing. According to Rovida and Hartung, the
financial requirements for such testing are about €9.5 billion.2

For potentially hazardous, dangerous, or hardly degradable
substances, registration also requires information about their
bioaccumulation and toxicity. Apart from cost and time
efficiency, a sample, for example, bioconcentration, requires
around two months and can cost more than €200this also
leads to ethical problems, as experimental determination of end
points associated with toxicity and bioaccumulation is achieved
by animal tests.
The necessity to keep the overhead of (animal) testing as low

as possible is also important in many other research areas, for
example, the chemical or pharmaceutical industries. One
common strategy to address this problem is to use
structure−activity modeling3 and to predict the required
properties rather than performing experimental measurements.
This strategy entails testing only a small subset of all the
compounds of interest and constructing a predictive model
using the experimentally determined values. This basic task can

be reduced to the problem of drawing a representative
subsample of a larger set. This method is important in other
fields of research, e.g., quantitative structure−activity relation-
ship (QSAR) development,4 large-scale database scanning,5 in
silico drug design,6 and compound prioritization,7 as well as in
experimental design for risk assessment within REACH.8

There are several commonly accepted approaches9−13 for
choosing a representative subset of compounds to deliver the
most reliable model. These approaches select the subset
according to various criteria. Partition-based approaches, like
full or factorial design, attempt to select a sample that is
representative of the whole chemical space of interest,
separating the descriptor space into subspaces and finding a
representative compound for each of these subspaces.14 Other
approaches aim to find the subset that is most descriptive for
the remaining compounds by ranking the representativity of
compounds according to their pairwise distance in descriptor
space.15,16

D-Optimal design, which has been recommended as the
favorable alternative for linear models in several publica-
tions,17,18 selects the most representative combination of
compounds for linear models.19 In this method, each possible
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subset of a given size is evaluated to derive the information
matrix. The most distinct and thereby most optimal of all
possible subsets is the one with the maximum determinant of
the information matrix. This is equivalent to the set with the
maximum entropy.20 An advantage of the D-Optimal selection
criterion is that in our design problem, the training set is
selected from a limited candidate set. Pronzato21 has shown
that when the data space is limited, a sequential D-optimal
design, given that some conditions are met, is asymptotically
optimal.
All the aforementioned approaches select compounds using

descriptors only. Usually a principal component analysis (PCA)
is applied to these descriptors to extract the so-called principal
properties, which are used to select compounds. Although the
statistics literature also provides a large variety of sequential
approaches,22,23 their application in QSAR is very limited.
Moreover, we are not aware of any available implementations of
these approaches. Sequential approaches are arranged in a
stepwise manner and adapt to the gathered information about
the response. Including the target property with a sequential
design strategy might provide a better selection of compounds.
In this study, we investigate an adaptive, stepwise

experimental design strategy that is based on the D-Optimal
approach. The method combines D-Optimal design with partial
least squares (PLS) techniques to iteratively refine the
descriptor space for the compound selection. This refinement
is realized by using PLS latent variables instead of the principal
components. In contrast to the static principal components, the
PLS latent variables, which are correlated to the target property,
can be recalculated after each measurement cycle. As the
number of measurements increases from cycle to cycle, each
new model is an improvement of the previous one. Based on
these iteratively refined latent variables, an initially selected set
of compounds is extended in a stepwise manner. A similar idea
was proposed by Lundstedt and Thelin.24 The authors used a
two-step process consisting of a synthesis step and a
purification step in which they alternated between PCA and
PLS. However, their aim was to select the most important
variables for a model, while the aim of our method is to find the
most informative compounds for model development.
We evaluate the performance of the new approach on four

different data sets and compare it to the original D-optimal
design. D-optimal design based on latent variables can be
performed with or without higher order interaction terms.
Comparison of the suggested and the original approach was
made on experimental designs, with and without higher order
terms of the latent variables, since the performance of either
method is dependent on the characteristics of the data set.

2. MATERIAL AND METHODS
2.1. QSAR Data Sets. To validate the performance of the

stepwise method, four data sets with different end points were
collected from the literature. All of the selected end points are
relevant for REACH and risk assessment. To cover a broad
spectrum of possible applications and to better examine the
performance of the new method, the sets collected varied in
several criteria: size, modeling, and measurement complexities.
The selected end points included two toxicity end points,

namely the log-scaled lethal concentration for fathead minnow
(log LC50) and the inhibition growth concentration for
Tetrahymena pyriformis (−log IGC50), an adsorption coefficient
(log KOC), and the boiling point. The number of compounds in
these data sets ranged from 96 (−log IGC50) to 1198 (boiling

point). The log LC50 data set contained 535 compounds and
the log KOC data set 648 compounds.
To ensure consistency of the data sets and to avoid problems

resulting from different experimental methods, we applied
several filters to all collected measurements. As the measure-
ments for toxicity are sensitive to laboratory conditions and
experimental procedures, we limited the data points within one
data set to one source only. This means that the measurements
either had to be from only one lab or had to be taken from a
previously reviewed collection.
The Tetratox database25 and the EPA’s fathead minnow

acute toxicity database26 were selected for log IGC50 and log
LC50, respectively. The log KOC data set was based on the
reviewed collection of Meylan et al.27 As the precision and
consistency of boiling point measurements are higher, we did
not preselect any data for this end point and used the whole
EPI suite data.28 For all four sets we excluded inorganic
compounds, radicals, charged molecules, and salts. Further, we
removed compounds for which no exact values, rather an
interval or only minimum or maximum values, were given.
For the compounds in the log LC50 and log KOC data sets, no

structural filters were applied. Therefore, the data sets
contained a wide variety of different compound classes and
had wide structural diversity, and the resulting models can be
designated as “global.” For boiling points, a filter was applied to
the structures, limiting the compounds in the final data set to
halogenated ones, containing bromine, fluorine, and/or
chlorine. The initial −log IGC50 data set contained more
than 1000 compounds. However, to evaluate the performance
of the developed approach on a relatively small data set, a
subset of 96 compounds was randomly selected.
The descriptors for model development were ALogPS29

lipophilicity and solubility and E-state indices.30 The E-state
indices have been shown to provide a high accuracy of
predictions for similar end points in our previous publica-
tions.31,32 ALogPS descriptors were added to account for
physicochemical parameters, e.g., solubility and distribution,
which could be important for the considered end points. For
this study, all descriptors were normalized to [0,1] range. The
descriptors were calculated using the Online Chemical
(OCHEM) database,33 which is publicly accessible at http://
ochem.eu.

2.2. Methods. 2.2.1. D-Optimal Design. D-Optimal
design selects the most distinct subset of molecules of a
given size n from a larger initial set containing m compounds.
Figure 1a shows the result of a D-Optimal selection. The x- and
y-axes represent two first principal components, while each dot
represents a chemical compound. Dots marked red are the
compounds that were selected using the D-Optimal criterion.
The D-Optimal selection criterion was implemented as

suggested in the literature.34 Fedorov’s heuristic approach35 was
used to optimize the selection speed. Further, the implementa-
tion was extended by the option to add a fixed seed to the
selection. In all the following steps, the fixed seed is a set of
compounds for which the target property is considered to be
already measured. This additional feature enables us to perform
a compound selection that depends on a preselected set of
compounds. Newly selected compounds are therefore not only
most distinct to one another but also to the preselected
compounds. This enhancement was made by adding the
preselected compounds to the model matrix.
The application of the D-Optimal criterion to only linear

meta descriptors is particularly capable of problems with linear
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dependencies but reveals problems for dependencies of other
order. Therefore, the D-Optimal criterion was applied not only
to the principal components or PLS latent variables but also, in
an additional examination, to a set of meta descriptors.
These meta descriptors contain the normalized components

from PCA or PLS and their square and pairwise cross terms.36

For a set of v input variables, d1, d2, ..., dv, additionally the
square terms (d1)

2, (d2)
2, ..., (dv)

2 and the cross terms didj with i
= 1, 2, ..., v, j = 1, 2, ..., v and i ≠ j. This extension increases the
dimensionality of the search space by a quadratic factor from v
input variables to v * (1.5 + 0.5 * v) meta descriptors.
This contributes to the quality of the outcoming sample, as

the selected compounds are not located exclusively on the
periphery of the data cloud in the chemical space but also in the
center. Figure 1b shows the resulting selection on the same data
set as Figure 1a.
2.2.2. The Stepwise Approach. The stepwise approach has

two phases: First, the application of the extended D-Optimal
design, which takes preselected compounds into consideration,
and second, an implementation of PLS regression to calculate
the so-called latent variables for all compounds. The calculation
of these latent variables is based on a PLS model, which is built
on the preselected compounds.
Latent variables from PLS are comparable to the principal

components of a PCA. However, in contrast to PCA
components, which are selected to maximize the variance of
the data set (i.e., to cover as much of the data variability as
possible), the PLS latent variables are selected to maximize the

covariance (i.e., to provide maximum correlation) with the
target variable. Therefore, in addition to PCA components, the
latent variables contain information about the target variable. In
our approach, instead of the uncorrelated PCA components, we
use the PLS components as descriptors for the D-Optimal
design. With this modification, the representation of the
compounds of interest is adjusted to the considered end point
and no longer depends only on the uncorrelated structural
information.
In the first phase of the stepwise approach, a traditional D-

Optimal design is used to select an initial subset, containing a
fixed number of compounds. Therefore, a D-Optimal selection
is applied to a fixed number of principal components derived
from a PCA on a set of descriptors for all compounds within
the set of relevant compounds. For all further steps, the
compounds selected in the previous steps are considered to be
already tested, and a PLS model is built on them. The
developed PLS model is then used to calculate the latent
variables for all compounds, and the D-Optimal selection is
performed utilizing these latent variables instead of the
principal components. Further, this selection is taking the
fixed seed into consideration, and all preliminarily tested
compounds are members of the resulting set of the D-Optimal
design.
The most important differences between the stepwise

approach based on latent variables and the traditional D-
Optimal selection are shown in Figure 2. Whereas the

traditional method (left side of the figure, in pink) selects all
compounds at the same time, the stepwise approach (right side
of the figure, in blue) constantly increases the number of
compounds cyclically. Further, the chemical space to represent
the compounds is refined with each cycle.

2.2.3. Validation. To obtain a meaningful statistical basis to
compare the performance of the sequential approach with the
traditional D-Optimal approach, we generated 100 subsets

Figure 1. The results of the D-Optimal selection using (a) linear terms
only and (b) linear, cross, and square terms.

Figure 2. Comparison of the traditional workflow (left) and the
suggested stepwise selection (right).
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(design sets) from each data set. The compounds in the subsets
were chosen randomly, and the size of each subset was 75% of
the whole data set. The remaining 25% of compounds were
used as respective external validation sets.
Each of the design sets was used for the experimental design.

Both the classical and stepwise approach were used to select a
fixed number of compounds, which included 10, 20, 30, 40, 60,
80, 100, 130, and 160 compounds for the three large data sets
(log KOC, boiling point, and log LC50) and 6, 10, 14, 18, and 21
compounds for the small data set (−log IGC50).
In the case of the principal components, the number of

variables used to describe the search space was always fixed
(respectively, cross and square terms). The number of PLS
components used could be either fixed or automatically
optimized, minimizing the coefficient of determination in
cross-validation.
To obtain comparable information about the quality of the

compound selection, we used PLS to train a linear regression
model on the selected compounds. The number of latent
variables for the final model was determined in a five-fold cross-
validation on all selected compounds using the coefficient of
determination as criterion for the optimal number.37 The
reason why we chose PLS for evaluation of the final selection is
the robustness of the method. As it uses a projection of the
descriptors, it reliably finds linear correlations of the target
property in the descriptor space. Furthermore, by taking the
target property into account, PLS removes noise in the

descriptor space. The cross and square terms we used to span
the search space for the D-Optimal criterion were not used for
development of the PLS models.
Although this is unlikely, the use of PLS regression might

favor the PLS-based design, whereas PCA-based design might
provide better results for the PCA regression. To address this
question, we also developed PCA regression models for
compounds selected using principal components.
The performance of the developed model was then

calculated for two different splits of the data sets. The first
split was the external validation set, and the second split was the
selection set without the compounds that were suggested for
testing. The validation was performed on these two splits to
represent different targets or intentions for the compound
selection. The performance on the external validation set gives
a measurement of a global validity, as it contains only
compounds excluded from the selection. It is thus an
independent measurement that enables estimation of the
model quality for new compounds. Another point of relevance
is the performance of the model for compounds of interest that
were not selected for testing. In most cases, it is the
performance for precisely these compounds that is the
underlying motivation for the experimental design.
For both splits, root-mean-square error (RMSE) was

calculated as a measurement of error. The mean value of
RMSE for the 100 models calculated for each data set was then

Figure 3. The average error on the (a) log LC50, (b) log KOC, (c) −log IGC50, and (d) boiling point data sets using a linear search space. The
performance of the PLS-Optimal approach is shown in red (for six latent variables) and yellow (three latent variables), while the performance of the
traditional approach is shown in brown (six principal components) and green (three principal components). On the x-axis, the number of
compounds used to build the according 100 models is displayed. For the traditional D-optimal design (using principal components), all compounds
were selected simultaneously. For the stepwise approach (using latent variables), the preliminary selected compounds were extended with new ones
each cycle. The y-axis shows the average performance of RMSE.
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used to compare the quality of experimental designs for PLS-
Optimal and the traditional method.

3. RESULTS

3.1. Linear Search Space. To compare the methods, we
used three and six components alternatively for the three large
data sets and two and four components alternatively for the
−log IGC50 data set. The performance of the developed models
is shown in Figure 3a−d. The performance of the models built
with PCA regression was significantly worse than that of PLS
regression for all analyzed data sets. Therefore PCA regression
results are no further provided.
The selection of these numbers of components for

comparison is a reasonable one. The lower number of PLS
or PCA components (3 or 2) shows the performance for a low
dimensionality search space, which is particularly interesting
regarding runtime requirements. The higher number of PLS or
PCA components (6 or 4) adopts the Organization for
Economic Co-operation and Development (OECD) princi-
ples38 regarding the number of descriptors to be used for a
linear model.
There are several important observations: First, with an

increasing number of selected compounds, the model perform-
ance also improves. Second, with an increasing number of
latent variables (or principal components for the traditional
method), the performance of the resulting models also
increases. This observation is particularly clear for the stepwise
approach, with the exception of the log LC50 data set.

This is an expected result. A larger number of molecules
allows the development of better models, while higher
dimensionality in the search space provides a more diversified
representation of the compounds and thereby increases the
information content of the search space.
Let us take a closer look at the performance of the methods

on the external validation split. It is clear that for all data sets,
except for boiling point, error decreases faster with the stepwise
method. Further, using the stepwise approach, a point of
convergence, where the performance of the outcoming model
no longer changes, is reached with a lower number of
compounds. For the log LC50, the log KOC, and the −log
IGC50 (Figure 3a−c, respectively) data sets, the performance of
the stepwise approach is better than that of the traditional
approach using the same number of latent variables or principal
components and the same number of compounds selected.
This improvement is statistically significant with a p-value

<0.05 for 40 compounds and a p-value <0.001 for the range of
60−130 selected compounds for the log LC50 data set
according to the binomial test (the binomial distribution with
N = 100 trials corresponding to the number of models used in
our study). The sequential approach using 40 selected
compounds and 6 latent variables provides the same accuracy
of prediction as the traditional approach using 60 selected
compounds.
The results for the validation on the log KOC data set are

similar. The increase in performance derived with the
sequential approach using 6 components in the range of 40−
130 compounds selected is significant and on average is 0.037

Figure 4. Development of the average error on the (a) log LC50, (b) log KOC, (c) −log IGC50, and (d) boiling point data sets using a search space
extended by cross and square terms. For all end points, the bold red line represents the development of the stepwise approach; the development of
the traditional approach on six principal components is represented by a dark-red line and on three principal components by a red-brown line.
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log units. For the same range of compounds, the increase of
RMSE for three components is 0.079 log units.
For a search space of two dimensions, the performance of

PLS-Optimal on the −log IGC50 data set is better with
statistical significance (p < 0.001) for the whole range from 10
to 21 compounds (14−30%). The greatest difference in the
performance of the methods is found for 18 selected
compounds: in 90 of 100 cases, the models built with the
stepwise selection delivered a better result than those built on
the traditional selection.
Comparison of the performance of both approaches on the

boiling point data set (Figure 3d) reveals results that differ from
those of the other data sets. The performance of the traditional
approach using PCA components is better. In the case of 6
principal components used to define the search space, the
incline in the error is steep for the first 40 compounds selected.
Beyond that, until 100 selected compounds, there is almost no
improvement in performance.
The results for the compounds in the design set that was not

used to train the model were very similar and are therefore not
explicitly discussed in this or the following sections.
3.2. Square and Cross Terms. The same calculations as

for the linear search space were also performed for the search
space using square and cross terms of the PCA or PLS
components. For the traditional approach, the number of
principal components was fixed to the same values as for the
linear approach. The number of resulting meta descriptors was
thus also fixed to 27 and 9 for the three large data sets and to
14 and 5 for the small data set. In contrast, the number of PLS
latent variables for the stepwise approach was automatically
optimized for this calculation. The procedure for estimating the
optimal number was the same as for estimating the number of
components to evaluate the resulting mode. We also tried to
optimize the number of principal components in a similar way,
regarding the error on reconstruction.39,40 However, our
examinations indicated that the performance of the resulting
models improves with any further principal component.
The results for the validation on the square terms are shown

in Figure 4a−d. The axes are similar to Figure 3. Similar to the
linear search space, the performance of the resulting models
improves with an increasing number of compounds selected. A
further observance on all end points, except for the boiling
point (Figure 4d), is that the performance of the traditional
approach improves with the number of principal components
used. The selection performance on six principal components
(or four for −log IGC50) is better than the selection
performance on three (or two) principal components for the
whole examined range. Additionally, for six or four principal
components and the use of cross terms and square terms, the
development of the error describes a constant curve with a
continuously increasing incline, without the inconstancies
observed for the linear search space.
Although the performance for six or four principal

components converges with that of the stepwise approach,
the models built on the compounds selected by PLS-Optimal
are still better for most of the examined ranges on the log LC50,
the log KOC, and the −log IGC50 (Figure 4a−c, respectively)
data set. For log LC50, this improvement is significant from 40
to 130 compounds selected. The average error for 40 selected
compounds is 6% lower for the selection derived using the
stepwise approach. A model with better performance than that,
derived from 100 selected compounds using the traditional

approach, could be achieved with the 80 compounds selected
with the stepwise approach.
For log KOC, the development is similar. After an almost

similar performance on the first 40 compounds selected, the
stepwise approach performs significantly better in the range
from 60 to 160 compounds (12−33%). The average error
within that range is 0.022 log units (3.5%) lower than for the
traditional approach. The development on the −log IGC50 data
set is almost analogous. After a similar performance for the first
10 selected compounds, the average error of the stepwise
approach decreases more quickly than for the traditional
approach on four principal components. We also evaluated the
models built on the selected compounds on the 1000
compounds excluded from this data set for this study and
found the results to be similar.
For the cross and square-term usage, too, the development

on the boiling point data set differs from the other data sets.
Both the stepwise and the traditional approaches on six or three
latent variables derived from PLS gave almost the same
performance. The error for the PLS-Optimal approach
converges faster in the range from 20 to 40 selected
compounds; however, the performance of the traditional
approach is better in the range from 100 to 160 selected
compounds.

3.3. Comparison with a Small Number of Selected
Compounds. As the quality of the crossed traditional
approach seems to increase with any additional principal
component, it is interesting to take a look at the selection of
only very few compounds. As it is a requirement for the D-
Optimal criterion to work that the model matrix has more
observations than variables, the number of components to be
used is strictly limited. Therefore, on the three large data sets
another examination within the range from 5 to 35 selected
compounds was initiated. We used the meta descriptors
containing the normalized components and their square and
cross products. The number of PLS latent variables used in the
stepwise approach was automatically determined, whereas the
number of principal components used for the traditional
approach was fixed to the maximum that could be used,
respective of the number of compounds to select. This means 1
component for less than 6 selected compounds, 2 for less than
10, 3 for less than 15, 4 for less than 21, 5 for less than 28, and
6 components for less than 30 selected compounds.
The results in Figure 5a−c show that the stepwise approach

clearly achieves better performance for all three end points.
This improvement is significant (p < 0.001) for the whole range
from 10 to 35 selected compounds. In the case of the log KOC
data set (Figure 5b) and for the range from 13 to 24 selected
compounds, the stepwise approach performed better for more
than 90 out of 100 splits.
Regarding the boiling point (Figure 5c), the average RMSE

performance for 24 compounds selected by the traditional
approach could be achieved with only 13 compounds selected
in a stepwise procedure. Furthermore, in the range from 13 to
32 selected compounds, the improvement of the average RMSE
for the same number of selected compounds is better by at least
9 degrees. For log LC50 (Figure 5a), the average performance
with 24 compounds selected in a stepwise manner could not be
achieved with less than 32 compounds selected based on
principal components. In the case of the log KOC data set, the
stepwise approach delivers an average performance for 13
selected compounds that cannot be achieved with less than 24
compounds utilizing the traditional method. The RMSE for
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that data set was on average 21% less in the range from 10 to 35
selected compounds.
Finally, comparing the results of the stepwise approach

applied to a sequence of 10, 20, and 30 selected compounds
with the results of the stepwise approach applied to the
increased step size, the latter delivers better model quality for
the same number of compounds selected. The average RMSE
for 28 selected compounds using the smaller step size is 0.19
log units better for the log KOC data set and 0.03 log units
better for the log LC50 data set.

4. DISCUSSION
Our results, derived from examination of the PLS-Optimal
performance on the log LC50, log KOC, and −log IGC50 data
sets within a range of 5−35% of compounds selected, show that
the stepwise approach utilizing PLS latent variables can
significantly increase the quality of the resulting model and
thereby help to save resources. Compared to a model based on
selection of compounds by the traditional D-Optimal design
approach, the model derived from the same number of
compounds selected using the stepwise approach delivered a

decreased RMSE and an increased R2 and Q2 for both the linear
search space and a search space extended by cross and square
terms. The convergence of the error to a minimum was clearly
faster, and the improved performance can be observed in the
whole range from approximately 10−30% of compounds
selected.
The performance on the boiling point data set can be

explained by the depiction, shown in Figure 6, of the chemical

space using the principal components. The x-axis represents the
first principal component and the y-axis the third principal
component, and the color of the data points displays the end
point values. We can clearly see that not only the first principal
component but also the third is strongly correlated to the end
point. Furthermore, the principal components are not just
correlated with the end point; they are almost similar to the
PLS latent variables, derived on the whole data set. Table 1

shows this correlation for the first PLS and PCA component.
The correlation in the second and third dimension is
comparable. While the PLS-Optimal approach tries in a
stepwise manner to find a stable depiction and correlation,
the PCA used for the traditional approach provides them
exactly. As the boiling point is a very simple end point and
widely cleared up, this effect was a foreseeable one. Never-
theless, it is a good depiction of the limitations of the developed
approach, and we suggest using the stepwise approach
particularly for experimental designs for complex end points.
The models built on PLS-Optimal design deliver a more

stable performance regarding the error development for all four
examined end points. Whereas with the classic approach the
performance shows some variability and deviations with an
increasing number of selected compounds, the performance

Figure 5. Results of the error validation for cross and square terms
with a low number of compounds.

Figure 6. Compounds of the log LC50 data set in PCA space. The
color of the data points represents the measured value.

Table 1. Loadings and Rank of Five Descriptors for the First
PLS Latent Variable and the First Principal Component

descriptor PLS loading rank PLS PCA loading rank PCA

SeaC2C3aa 0.506 1 −0.33 1
SaaCH 0.471 2 −0.321 2
SeaC2C2aa 0.332 3 −0.272 3
SsF −0.273 4 0.167 8
Se1C3Cl1a 0.273 5 −0.249 4
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development of the PLS-Optimal design is much smoother and
approximates a hyperbolic function. This is observable even for
a search space of only three variables.
Whereas a principal component can be completely

uncorrelated to the target property and thereby lead to an
accumulation of noise, the PLS components contain only
correlated information. Furthermore, they are ranked by their
importance for the specific end point, whereas the principal
components are ranked solely by their variance. This leads to
an accumulation of irrelevant information in the principal
components. Therefore, the number of principal components
required to capture the same amount of information for an end
point is usually higher than the required number of PLS latent
variables. This is important, both in terms of stability and
efficiency, in order to keep the dimensionality of the search
space as low as possible.
The effect that PLS components are less prone to noise can

be observed for the selection of only a small number of
compounds, in particular when using cross terms. In the range
from 5 to 35 selected compounds, PLS-Optimal delivers
significantly improved performance compared to the traditional
D-optimal design.
We repeated the whole study with raw (non-normalized) and

standardized descriptors, which resulted in a worse perform-
ance of the resulting models. The average error performance
was worse, and the development of the error was less stable for
both analyzed approaches. We also compared the stepwise
approach with the traditional one on other descriptor sets, i.e.,
ISIDA fragments41 and QNPR descriptors.42 The results were
similar and did not influence our conclusions.

5. CONCLUSION
Our results show that the performance of D-optimal
experimental design in QSAR model development can be
significantly improved by taking the correlation between
descriptors and property into consideration. The PLS-optimal
design operates in the property-based space; therefore, the
selection of compounds is not only based on their structural
properties but also tuned for a specific end point. Similar
advantages of property-based space were demonstrated in
assessing the accuracy of predictions for quantitative and
qualitative models.31,43

The results presented in this study are limited to the
application of the D-Optimal criterion to PLS latent variables.
The concept of taking the correlation or covariance with the
target property into account could be realized with any other
selection criterion. Furthermore, the use of sequentially refined
latent variables is a powerful tool, but an integrative process of
descriptor selection, based on the preselected compounds,
could also realize the stepwise optimization of the chemical
space.
However, the concept of substituting the PCA representation

of the descriptor space with PLS latent variables is also relevant
in terms of efficiency. Although the performance of models
derived from the traditional selection converged with the
performance of compounds selected on PLS components, the
search space required a higher dimensionality. This carries
weight especially in terms of use of cross and square terms and
for large-scale scans on databases containing more than 100 000
compounds. The runtime requirements for such operations can
be reduced to a fraction with the approach presented here.
The sequential approach could, we suggest, also be extended

to a Bayesian one, simply by performing the initial selection on

the latent variables derived from a model, built on measure-
ments, collected by a literature search. The use of nonlinear
methods, e.g., kernel PLS, could be an interesting work to
further extend the method we have developed in this article.

6. SOFTWARE USED
PLS models to evaluate the performance of the analyzed
approaches were calculated using WEKA.44 The PLS latent
variables were calculated using PLS package45 in the statistical
language [R].46

7. IMPLEMENTATION AND ACCESSIBILITY OF DATA
An implementation that enables users to make use of the
stepwise approach for experimental design can be publically
accessed at http://qspr-thesaurus.eu. The web interface enables
users to apply the D-Optimal criterion to principal components
or latent variables and visually compare and explore the
selection.
The data sets used in this article and the models built on

them are available at http://ochem.eu/article/9423.
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