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Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale
genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and
ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with
age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241
individuals of European ancestry, we identified 20 genome-wide significant (p < 5 x 10~®) loci by using joint tests of the SNP main effect
and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the in-
teractions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age in-
teractions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but
nonnegligible (up to 1.58 mm Hg over 60 years). The EHBPILI locus was discovered through gene-age interactions only in whites
but had DBP main effects replicated (p = 8.3 X 10~%) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity.
A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select sam-
ples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects
identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.
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Introduction

Age is a major predictor of cardiovascular health' but its
impact on the genetic architecture of blood pressure (BP)
has been largely unexplored. A Norwegian study of
parent-offspring pairs, siblings, and twins reported that
60%-70% of the genetic variance of BP at ages 20 and 60
was attributable to genes active at both ages.” For the genes
that are active across the age spectrum, we do not know
whether the magnitude of the genetic effects are constant
or vary with age.” Family and population studies suggest
that age may modify the effects of some BP genes. Among

relative pairs that shared 50% of their genes on average,
the correlation of BP traits was higher in members of similar
ages” and BPs of parents and offspring measured around the
same age yielded correlations similar to that of sibpairs.*
Variance components models that explicitly incorporated
age-dependent genetic effects identified 26 loci that were
missed by linkage analyses that assumed constant effects
across ages.” Further strengthening the evidence for age-
dependent effects, candidate gene studies have identified
SNPs that interact with age to influence BP.*"'°

No large-scale BP studies have assessed the pervasive-
ness of gene-age interactions by using common variants
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Figure 1. Study Design for the Primary Analysis

from genome-wide association studies (GWASs). Most
aggregate studies have focused on the discovery of genetic
main effects, relying on the meta-analysis of GWASs that
included age as a continuous covariate in the study-
specific analyses.''™'° Not only do these studies fail to
provide any knowledge about the change in genetic ef-
fects over time, but they use age adjustments that do
not sufficiently control for the confounding by age® '’
and they meta-analyze studies with substantially different
age distributions (such as containing only the young or
the elderly), which may obscure genetic effects that are
age dependent. The primary aim of this investigation
was to identify both known and novel BP loci whose
magnitude of genetic effects differed by age. Identifying
such gene-age interactions can provide insight into the
biology and temporal regulation of known BP genes and
facilitate the discovery of BP genes obscured in a
main-effects-only analysis.

We employed age stratification and metaregression to
identify BP loci whose magnitude of genetic effects differ
by age (see Figure 1 for an overview of the design). This
nonstandard approach was borne out of a previous anal-
ysis in which we failed to identify any loci when gene-

age interaction analysis was performed within each study
and the results meta-analyzed. Realizing that the null re-
sults could be due to study design issues relating to the
way age was handled rather than a true lack of interactions,
we developed a more computationally intensive alterna-
tive. We stratified participants from each study into
10-year age bins and conducted a GWAS of each BP trait
(systolic BP [SBP], diastolic BP [DBP], mean arterial pressure
[MAP], and pulse pressure [PP]) within each subgroup (rep-
resenting a study and age bin). We then collected the SNP
effect estimates (the coefficients from the GWAS that indi-
cated the change in BP for each copy of the coded allele)
and standard errors from all subgroups. We identified sig-
nificant gene-age interactions through linear regression
of the SNP effect estimates onto the median age of each
subgroup; we referred to this as metaregression because
the SNP effect estimates and the median ages were sub-
group-level variables instead of measures on individuals
and we weighted the subgroup results according to their
precision (by the inverse variance of the SNP effects from
the GWAS).

We also conducted a secondary “within-age bins” anal-
ysis to interrogate the 30%-40% of genetic variance in
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BP that is generally attributed to age-specific genetic
effects” and the differential influence of genetic mecha-
nisms during different periods of life."” For the secondary
analysis, we meta-analyzed the genetic effects across all
studies within each age strata separately (e.g., a meta-anal-
ysis of 20- to 29-year-olds only). Overall, we show that
explicit modeling of the age dependency of genetic effects
can enhance our understanding of intraindividual varia-
tion in complex traits.

Subjects and Methods

Subjects

Participants from each study provided written informed consent
and all studies received approval from their respective institu-
tional review boards.

Stage 1 Samples

The stage 1 analysis (N = 55,796) included nine studies from the
Cohorts for Heart and Aging Research in Genome Epidemiology
(CHARGE) Consortium: Age, Gene/Environment Susceptibility-
Reykjavik (AGES; N = 3,128), Atherosclerosis Risk in Communities
(ARIC; N = 9,306), Coronary Artery Risk Development in Young
Adults (CARDIA; N = 1,713), Cardiovascular Health Study (CHS;
N = 2,902), Framingham Heart Study (FHS; N = 7,520), Multi-
Ethnic Study of Atherosclerosis (MESA; N = 2,339), Rotterdam
Study I (RS I; N = 4,389), Rotterdam Study II (RS II; N = 1,912),
and the Women’s Genome Health Study (WGHS; N = 22,587).
Participants aged <20 years or >80 years were excluded from
the stage 1 samples except for the 17- to 20-year-olds included
in the CARDIA Study; the latter was targeted to young adults,
and therefore all subjects in this sample ranged from 17 to 32 years
old. Detailed descriptions of the study designs and summary statis-
tics are provided in the Supplemental Data and Tables S1 and S2.
Stage 2 Samples

Stage 2 included 15 studies and 43,445 participants of European
ancestry, largely from the Global Blood Pressure Genetics Con-
sortium (Global BPgen) and the ICBP (International Consortium
for Blood Pressure). The stage 2 studies included the Busselton
Health (BHS; N = 1,135), Cohorte Lausannoise (CoLaus; N =
4,943), European Prospective Investigation of Cancer-Norfolk
(EPIC; N = 2,407), Fenland (N = 1,399), Kooperative Gesundheits-
forschung in der Region Augsburg Third Survey (KORA S3; N =
1,594), LifeLines Cohort (N = 8,088), Myocardial Infarction
Genetics Consortium (MIGen; N = 1,196), Netherlands Study of
Depression and Anxiety (NESDA; N = 1,547), Prevention of Renal
and Vascular End Stage Disease (PREVEND; N = 3,303), Precocious
Coronary Artery Disease (PROCARDIS; N = 7,050), SardiNIA (N =
1,248), Study of Health In Pomerania (SHIP; N = 4,058), Supple-
mentation en Vitamines et Mineraux Antioxydants (SUVIMAX;
N =1,673), Tracking Adolescent’s Individual Lives Survey (TRAILS;
N =1,556), and the Young Finns (YFS; N = 2,248) studies. Detailed
descriptions of the study designs and summary statistics are pro-
vided in the Supplemental Data and Tables S4 and S5. Individuals
aged 20-80 years old were included in the analysis, along with the
TRAILS clinical and population cohorts that included individuals
<20 years old.

Singapore Samples

The Singapore samples included four studies of Asians comprised of
8,682 Chinese, Indian, and Malay individuals from Singapore.
These studies were the Singapore Chinese Eye (N = 1,849),

Singapore Indian Eye (N = 2,476), Singapore Malay Eye (N =
2,502), and the Singapore Prospective Study Program (N = 1,855).
Detailed descriptions of the study designs and summary statistics
are provided in the Supplemental Data and Tables S6 and S7.

Phenotypes

Blood pressure (BP) measurements and covariates were selected
from a single visit that maximized the sample size or age range
of the study. Each study conducted phenotype harmonization
on systolic blood pressure (SBP) and diastolic blood pressure
(DBP). For individuals on antihypertensive medications at the
time of the chosen clinic visit, 10 and 5 mmHg were added to
the measured SBP and DBP, respectively.'® The addition of a con-
stant to the measured BP in treated participants has been shown
to increase statistical power and reduce shrinkage bias, compared
to no medication adjustment or the exclusion of treated individ-
uals.’” Mean arterial pressure (MAP) and pulse pressure (PP) were
calculated from the medication-adjusted SBP and DBP values as
MAP = SBP/3 + 2DBP/3 and PP = SBP — DBP. Outliers, defined
as those with BP values that were at least four standard deviations
away from the mean of their subgroup (defined by study and age
bin), were excluded from the analysis.

Genotypes

The genotyping platforms, SNP quality control filters, imputation
software, and reference human genome used varied by study and
are detailed in Tables S2, S5, and S7. Each study imputed the allele
dosages for ~2.5 million SNP genotypes.

Association Analyses within Each Study-Age Bin
Subgroup

Each stage 1 study stratified participants into six 10-year age bins
(20-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years,
and 70-79 years) for a total of 28 subgroups (defined by study
and age bin); the CARDIA study used one age bin from 17 to
32 years of age (the entire study sample). For age bins containing
more than 250 individuals, a genome-wide association analysis
(GWAS) of SNP main effects was conducted by regressing each
BP trait (SBP, DBP, MAP, and PP) onto the allele dosage (the
observed [genotyped data] or estimated [imputed data] number
of copies of the coded allele in an individual) while adjusting for
age, age-squared, body-mass-index, gender, and field center (if a
multicenter study). The adjustment for both age and age-squared
allowed age to have a nonlinear main effect on BP as suggested
by multiple longitudinal studies.”’** The estimated SNP effect
(the coefficient for the allele dosage) from the GWAS represented
the BP change associated with each copy of the coded allele in
that age bin. The GWAS analysis software used by each stage 1
study is detailed in Table S2. Genomic control was applied to the
GWAS results from each stage 1 subgroup to control for popula-
tion stratification (the genomic inflation factors, A, ranged from
0.977 to 1.057; see Table S3).

The stage 2 and Singapore studies adopted a similar strategy:
they stratified participants into 10-year age bins, combining adja-
cent age bins when necessary to achieve a sufficient sample size
(two studies used an age bin for 20- to 39-year-olds, one study
used an age bin for 60- to 79-year-olds, and another used age
bins for 35- to 49-year-olds and 50- to 64-year-olds). Because
many of the stage 2 and Singapore studies had smaller sample sizes
than did the stage 1 studies, the association analysis was per-
formed in all subgroups containing more than 124 individuals
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(see Tables S5 and S7 for analysis software). After stage 1 analysis,
the SNP with the smallest p value by the 2 df test, the “index” SNP,
was chosen to represent each locus for each trait. The stage 2 and
Singapore analyses were conducted only for these index SNPs, and
therefore no genomic control was applied to their analyses. In all
stages of this investigation, family-based studies maintained inde-
pendence between bins and applied analysis methods to account
for correlations between family members in the same bin.

Harmonization of Subgroup-Specific Association
Results

The association results were harmonized to ensure that the beta
coefficients from different subgroups represented the effect of
the same allele on the BP trait. Autosomal SNPs were aligned to
the positive strand of HapMap release 22 via NCBI Build 36. The
LiftOver utility mapped SNP coordinates between NCBI builds.
We supplemented the quality control performed by the individual
studies by excluding (1) genotyped SNPs called in fewer than 90%
of participants or with Hardy-Weinberg p < 10~° and (2) imputed
SNPs with ? < 0.3 (ratio of the empirically observed variance of
the allele dosage to the expected binomial variance). We further
excluded SNPs with fewer than 40 copies of the minor allele in
any stage 1 subgroup or fewer than 20 copies in the stage 2 or
Singapore subgroups.

Aggregate Analyses

Metaregression to Reveal SNP-Age Interactions

For each BP trait (SBP, DBP, MAP, and PP), we collected the esti-
mated SNP effects and standard errors (multiplied by the square
root of the genomic inflation factor) from the stage 1 subgroup
analyses. We performed a metaregression of the SNP association
coefficients onto an intercept and the median age of the subgroup
(using PROC MIXED in SAS 9.1, SAS Institute). We let o; be the SNP
main effect and age; be the median age of included individuals
from the GWAS of the subgroup indexed by i. We fit the regression
a; = Bo + Bi*age; + e;, where the errors, e;, were assumed to be
independent and normally distributed with zero means and vari-
ances equal to that of the SNP coefficients from the subgroup-
specific association analyses. The coefficient for the median age
(B1) represented the change in the SNP effect with each year of
age (the gene-age interaction) and the intercept (B,) represented
the hypothetical SNP effect at age O; the predicted SNP effect at
a particular age was the addition of the intercept and the product
of that age and the coefficient for age.

We performed a joint 2 degree of freedom (df) likelihood ratio
test that there was no SNP main effect or SNP-age interaction
(Bo = 0 and B; = 0). We also performed a 1 df test of the SNP-age
interaction (B; = 0), although this test was used to gauge whether
interaction was driving the 2 df test and whether the 1 df interac-
tion test could enhance gene discovery efforts. After metaregres-
sion, we applied genomic control to the joint 2 df tests (A varied
between 1.07 and 1.09) and 1 df interaction tests (A varied between
1.02 and 1.03); Figure S1 contains the quantile-quantile plots for
the raw p values.

We identified all suggestive (5 x 1078 < p < 107°) and signifi-
cant (p < 5 x 107®) results from the joint 2 df tests for each trait
and divided them into distinct loci based on regional plots that
extended up to one megabase in each direction from the most-
significantly associated SNP (* < 0.4 considered separate loci);
we selected one index SNP (the most-significantly associated
by the 2 df test) for each locus-trait combination and conducted

separate metaregressions with the stage 2 subgroups. We then
conducted a combined metaregression of all stage 1 and stage 2
subgroups for each index SNP-trait combination.
Main-Effects-Only Meta-analysis of Index SNPs

To determine whether the index SNP-trait associations would have
been detected in a main-effects-only analysis, we conducted an
inverse-variance weighted meta-analysis of SNP main effects by
using the stage 1 and combined stages 1 and 2 subgroups (with
SAS v.9.1). Genomic control was applied to the stage 1 meta-anal-
ysis results for each trait (A varied between 1.10 and 1.17; see
Figure S1) because the inflation factors were available. No genomic
control adjustment was applied to the main-effects-only meta-
analysis of stage 2 subgroups because we analyzed only the index
SNPs.

Evaluating Significant Stage 1 and Combined Stages 1 and 2 Results in
Singapore Subgroups

For each index SNP that achieved genome-wide significance in
either the stage 1 or the combined stages 1 and 2 metaregression
analyses, we conducted a joint 2 df test and a 1 df main-effects-
only test using all Singapore subgroups. We performed both
the main-effects-only and joint 2 df tests to evaluate potential
differences in aging and interactions across populations. The age
distributions in Singapore and stage 1 were similar (4.7% and
7.5% of participants were under 40 years of age, respectively,
versus 21.9% of participants in stage 2), so we followed up signif-
icant SNPs from stage 1 even if they were not significant in the
combined analysis with stage 2. Loci with main effects or linear
gene-age interactions limited to those more than 40 years of age
might be detected in the stage 1 and Singapore subgroups only.
To maintain a 0.05 level of significance, a Bonferroni adjustment
was applied for the two tests and the number of index SNPs chosen
for that trait.

Secondary Within-Age Bins Meta-Analysis

We conducted an inverse-variance weighted meta-analysis of the
SNP main effects separately within each age bin (i.e., meta-analysis
using all subgroups in the 20-29 years age bin). We used the
METAL software®® to perform the genome-wide meta-analysis in
each age bin that contained two or more stage 1 studies. The
30-39 years age bin contained only one study, so five meta-ana-
lyses were conducted for each BP trait. Genomic control was
applied after meta-analysis (A varied between 1.00 and 1.045; see
Table S17). Significant and suggestive associations from each
meta-analysis were separated into loci (regions that were sugges-
tive/significant were narrow and spanned <110 kilobases each).
The index SNP chosen to represent each locus-trait association
was followed up in a combined meta-analysis of all stage 1 and
stage 2 subgroups from the corresponding age bin, as well as the
Singapore subgroups. Because some replication bins used different
age ranges, the median of the replication bin determined age bin
membership. The TRAILS cohort was included in replication
analyses for the 20- to 29-year-olds.

Results

Table 1 displays the age distribution of the subjects in
each stage 1 and stage 2 study. The narrow age ranges in
CARDIA, CHS, and TRAILS demonstrate the utility of the
age bin approach; these studies would have contributed
little information to the meta-analysis if we incorporated
gene-age interactions into these study-level analysis even
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Table 1. Age Distribution of Each Stage 1 and Stage 2 Study
Number of Individuals in Each Age Bin

Study 20-29 30-39 40-49 50-59 60-69 70-79

Stage 1 Metaregression: 28 GWASs with N = 55,796

AGES 1,260 1,603 265

ARIC 2,392 4,772 2,142

CARDIA 1,713

CHS 1,230 1,672

FHS 533 1,926 2,608 1,916 537

MESA 342 708 726 563

RS1 910 2,060 1,419

RS 1II 740 851 321

WGHS 7,219 10,386 4,271 711

Total 2,246 1,926 13,821 21,035 12,082 4,686

Stage 2 Metaregression: 59 GWAS with N = 43,445

BHS 276 223 225 207 204

ColLaus 534 1,437 1,334 1,195 443

EPIC 442 775 819 371

Fenland 388 607 404

KORA S3 191 984 419

LifeLines 393 1,576 3,039 1,893 899 288

MIGen 124 527 391 154

NESDA 340 361 424 422

PREVEND 853 980 820 650

PROCARDIS 649 2,399 3,362 640

SardiNIA 287 232 268 257 204

SHIP 550 729 726 760 733 560

SUVIMAX 819 854

TRAILS CC 266

TRAILS Pop 1,290

YFS 1,562 686

Total 3,126 6,403 10,982 11,529 8,695 2,710

Age bins that encompassed more than one decade were assigned the bin con-
taining their median age.

though they provided information on undersampled age
groups. For the stage 1 meta-analysis of gene-age interac-
tions, we analyzed 28 GWASs (one for each study and
age bin subgroup) per trait representing 55,796 individuals
of European ancestry. We then followed up the significant
(p < 5 x 10%) and suggestive (5 x 1078 < p < 1079 lociin
a combined analysis of the stage 1 subgroups with 59 stage
2 subgroups comprised of 43,445 participants of European
ancestry. A Singapore sample, which included 19 sub-
groups containing 8,682 Chinese, Indian, and Malay indi-
viduals, was used to assess the interethnic generalizability

of significant findings. An overview of the primary results
is provided in Figure 2.

Metaregression of Blood Pressure onto Age:
Identifying Linear Gene-Age Interactions

In the metaregression of stage 1 subgroups, 13 loci attained
genome-wide significance and 17 loci exhibited suggestive
evidence for at least one BP trait by a 2 df joint test of the
SNP main effect and SNP-age interaction (see Tables S8, S9,
S10, S11, and S12). Ten of these 30 loci were not reported
in published GWAS results, including the Fer-1-like 5
(FERILS) locus that achieved genome-wide significance.
Eleven of the significant or suggestive loci demonstrated
nominal (p < 0.05) evidence of age dependency through
the 1 df test of SNP-age interaction. For each trait, we
selected an index SNP (most significantly associated by
the 2 df test) to represent each significant or suggestive
locus so that the stage 2 analyses could be conducted.
A total of 63 index SNP-trait combinations were followed
up across the 30 loci. A total of 20, 17, 22, and 4 SNPs
were followed up for SBP, DBP, MAP, and PP, respectively
(Figure S2 contains the regional association plots for the
stage 1 analyses, created with LocusZoom?*).

As shown in Table 2, 20 loci harbored index SNPs that
were significant in the combined metaregression of stage
1 and stage 2. The strongest statistical evidence for interac-
tion was provided by the EH domain binding protein 1-like
1 (EHBP1L1I) locus associated with MAP (p = 2.9 x 10~ for
the 1 df interaction test); this locus was discovered only
through the inclusion of the age interaction (Figure S2
contains the regional plot for this locus). Of the 20 loci
that achieved genome-wide significance, 9 exhibited at
least nominal (p < 0.05) evidence of gene-age interactions
(see Table 2). The index SNPs in CASZ1 (MIM 609895),
EHBP1L1, and GOSR2 (MIM 604027) exhibited the largest
modulation of BP effects by age (as shown by the magni-
tude of the interaction coefficients), with the coded alleles
increasing their respective BP traits in young individuals
but decreasing them in older individuals (see Figure 3).
For these three loci, the estimated difference in SNP effects
on the primary trait for 20-year-olds compared to 80-year-
olds ranged from 1.17 mmHg to 1.58 mmHg. The age at
which the variant changed direction of effect was ~27
years for GOSR2, 33 (SBP) to 36 (MAP) years for CASZ1,
and 41 (MAP) to 42 (DBP) years for EHBPIL]I.

As shown in Table S13, five loci (EHBP1L1, CASZ1, MAP4
[MIM 157132]-CDC25A [MIM 116947], CCDC71L-PIK3CG
[MIM 601232], GOSR2) would have been missed by the
two-stage main-effects-only meta-analysis but were
captured by the two-stage joint 2 df tests. Four of these
five loci (MAP4-CDC25A, CCDC71L-PIK3CG, EHBPILI,
GOSR2) lacked suggestive main effects in the stage 1
main-effects-only analysis and would not have been fol-
lowed up in stage 2, and the CASZ1 locus would have
been followed up but failed to achieve genome-wide signif-
icance in the combined stage 1 and stage 2 main-effects-
only analysis.
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COLLECTED SNP MAIN EFFECT ESTIMATES AND STANDARD ERRORS FROM ALL
AGE BINS ACROSS ALL STUDIES

META-REGRESSION OF STAGE 1

30 significant or suggestive loci (joint 2df test)

11 with nominal evidence of age-dependence (1df interaction test)

COMBINED META-REGRESSION OF STAGE 1 AND STAGE 2

20 genome-wide significant loci (joint 2df test)

9 with nominal evidence of age-dependence (1df interaction test)
Loci with the largest interaction effects: CASZ1, EHBP1L1, GOSR2

EVALUATE SIGNIFICANT LOCI IN SINGAPORE
3 loci associated with blood pressure: PRDMS8-FGF5, EHBP1L1, ATP2B1
All three driven by the SNP main effects only

Figure 2. Overview of Results from Each Stage of the Primary Analysis

In summary, the joint analysis of SNP main effects
and SNP-age interactions by metaregression identified 20
genome-wide significant loci, 9 of which exhibited nomi-
nal gene-age interactions. Five loci, including the EHBP1L1
locus with the strongest statistical evidence of interaction,
were missed when SNP-age interactions were excluded
from the model.

Generalizability of Genome-wide Significant
Associations to Singapore Subgroups

We examined the interethnic generalizability of the 47
index SNP-trait associations (from 22 loci) that achieved
genome-wide significance in the metaregression of stage
1 subgroups only (AGT [MIM 106150] and FERILS loci)
or in the metaregression of the combined stage 1 and stage
2 subgroups (the 20 loci in Table 2). We evaluated 13, 15,
17, and 2 SNPs for SBP, DBP, MAP, and PP, respectively;
however, two SNPs were not available in the Singapore
subgroups. Because of the potential differences in aging
and interactions across ethnic populations, we performed
the SNP main-effects-only test and the joint 2 df test in
the meta-analysis of Chinese, Indian, and Malay sub-

groups from Singapore. After a Bonferroni correction for
the planned number of SNPs tested per trait and the two
tests performed, 2, 1, 2, and O SNPs met the significance
threshold for SBP (p < 1.92 x 107%), DBP (p < 1.67 X
107%), MAP (p < 1.47 x 107%), and PP (p < 0.0125),
respectively, corresponding to three loci replicating an
association for at least one BP trait. The Singapore sub-
groups confirmed an association between EHBPILI and
DBP (main effects only p = 8.3 x 10~ %), as well as the asso-
ciations between SBP and MAP with the PRDMS8-FGF5
(MIM 165190) and ATP2B1 (MIM 108731) loci.

As shown in Table S13, the index SNPs in CASZI,
CCDC71L-PIK3CG, EHBPIL1, and GOSR2, which were
identified through the joint 2 df test in the primary anal-
ysis, had stronger evidence of main effects (p < 0.05)
than interactions (tested with the joint 2 df test) in
Singapore subgroups. The missense variant in FERILS
that was significantly associated with DBP in the stage 1
analysis demonstrated nominal (p = 0.03) evidence of a
main effect in the same direction in the meta-analysis of
Singapore subgroups. In addition, an intronic variant
(rs11741255) in CSorf56 that demonstrated suggestive
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Table 2. Significant Findings from the Combined Metaregression of Stage 1 and Stage 2 Subgroups

Metaregression Model with SNP Main Effect and Age Interaction (2 df)

p Value Main-
Position Primary Other Ref Ref Effects-Only p Value of p Value of
SNP ID Chr (in basepairs) Genomic Location Trait Trait(s) Ns N Freq All Model Bo se(Bo) B1 se(B1) Interaction 2 df Test

At Least Nominal Evidence (p < 0.05) of Interactions

15880315 1 10,719,453  intron CASZ1 SBP MAP 56 74,498 0.64 T 2.35x 1077 0.861  0.353 —0.026  0.007 1.52 x 1074 1.21 x 107%*
16797587 3 48,172,618  near 3’ CDC25A MAP DBP? 87 99,189 0.68 G 4.69 x 107''*  0.748  0.202 —0.008  0.004 0.04 4.36 x 1071
111099098 4 81,388,936  intergenic (PRDMS8-FGF5) SBP MAP 81 96,217 029 T 2.85x 107 —0.199  0.335 0.016  0.007 0.02 1.56 x 10713+
15198846 6 26,215,442  downstream HISTIHIT =~ DBP MAP? 87 99,207 0.84 G 1.78 x 1073  0.088  0.250 -0.011  0.005 0.03 1.48 x 10713+
1512705390 7 106,198,013  intergenic (CCDC71L- PP 87 99,094 0.78 G 1.08 x 107 0281  0.264 -0.014  0.005 0.006 2.42 x 10713+
PIK3CG)
157070797 10 63,221,779  intergenic (C100rf107-  MAP SBP, DBP* 87 99,189 0.84 G 6.31 x 107  0.014  0.282 0.012  0.006 0.02 5.62 x 10719
ARID5B)
154601790 11 65,110,482  intron EHBPILI MAP DBP 87 99,188 0.27 G  0.001 0.909  0.220 —0.022  0.004 2.90 x 1077 9.93 x 10~°*
1511072518 15 73,021,663  upstream COXS5A MAP SBP, DBP 87 99,189 0.36 T 3.91 x 1072'* 0973  0.192 -0.010  0.004 0.006 1.11 x 10721
1517608766 17 42,368,270  intron or UTR 3’ PP 86 97,437 0.84 T  5.62 x 107%* 0.524  0.322 -0.019  0.006 0.003 4.49 x 10710
of GOSR2
Joint Test Driven by Main Effects Only
157537765 1 11,809,890  intron CLCN6 MAP SBP?, DBP 87 99,181 0.16 G 1.66 x 107'* —-0.957  0.249 0.008  0.005 0.12 5.58 x 107 19*
16707357 2 164,722,539  intergenic (FIGN-GRB14) SBP 87 99,177 045 T 1.49 x 107'"* —0.634  0.268 0.004  0.005 0.50 1.03 x 10719+
1s7733138 5 157,807,971  intergenic (nearest MAP DBP? 87 99,189 039 T 6.01 x 107 3*  0.006 0.194 —0.007 0.004 0.05 8.75 x 10~ 13+
gene EBF1)
154841569 8 11,489,586  intergenic (BLK-GATA4) SBP MAP 82 97,928 0.57 G 556 x107'% 0140  0.311 0.008  0.006 0.21 2.03 x 10°°*
151813353 10 18,747,454  intron CACNB2 MAP SBP, DBP 87 99,189 0.68 T 1.29 x 107'7*  0.564  0.202 —0.003  0.004 0.52 1.13 x 10716+
1511191454 10 104,649,994  intron AS3MT SBP 84 97,234 0.08 G 6.50 x 107'>*  —0.320  0.484 —0.011  0.010 0.25 2.98 x 10711+
151801253 10 115,795,046  missense ADRBI MAP SBP?, DBP 82 97,928 0.27 G 7.71 x 107 0336  0.215 —-0.002  0.004 0.71 6.86 x 10713+
1s381815 11 16,858,844  intron PLEKHA7 MAP 87 99,189 0.25 T 3.31 x 107%* 0.028  0.217 0.006  0.004 0.16 9.26 x 107°*
152681472 12 88,533,090  intron ATP2B1 SBP DBP?, MAP 87 99,177 0.17 G 4.59 x 1072%* _0.483  0.348 -0.008  0.007 0.24 2.84 x 10722+
1s3184504 12 110,368,991  missense SH2B3 MAP SBP, DBP* 87 99,187 0.48 T 1.17 x 1072* 0325  0.186 0.003  0.004 0.47 1.09 x 1072%
15260014 20 57,192,854  upstream ZNF831 MAP SBPY, DBP 82 97,941 0.85 T 1.50 x 107'* —0302  0.284 —-0.004  0.006 0.49 1.02 x 10710+

Abbreviations are as follows: Chr., chromosome; Ns, number of study and age bin subgroups included in the analysis; N, number of participants represented by the analysis; Ref Freq, frequency of the coded allele; Ref All, the
coded allele; se, standard error; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; PP, pulse pressure. The primary trait had the minimum p value for the joint 2 df test of the index SNP in
that locus. The other traits column indicates nonprimary traits significantly associated with SNPs in this locus.

*The index SNP for this trait differed from the index SNP for the primary trait (see Tables S8, S9, S10, S11, and S12). The p value main effect test was derived from the model containing only the SNP main effect (i.e., test that the
interceptis zero). For the model containing the SNP main effect and age interaction, By is the theoretical SNP effect on blood pressure (in mmHg) at birth (age = 0) and B is the change in the SNP effect on blood pressure (in mmHg)
per 1 year increase in age; the estimated SNP effect at a particular age was the addition of the intercept and the product of that age and the coefficient for age. Asterisks (*) indicate values that achieve genome-wide significance.
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rs880315 (intron CASZ1)

Effect on Mean Arterial Pressure (in mmHg)
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Figure 3. CASZ1, EHBP1L1, GOSR2, the Three Loci Exhibiting the Largest SNP-Age Interactions during the Combined Metaregres-

sion of Stage 1 and Stage 2 Subgroups

The figures display the SNP effect as a function of age. Study- and age bin-specific genetic effects from stage 1 and stage 2 are represented
by red squares and blue circles, respectively, with the symbol size proportional to the inverse variance of the SNP main effect. The cor-
responding stage 1, stage 2, and combined consortia metaregressions are represented by red long-dashed, blue dashed-dotted, and green
solid lines, respectively. The coded alleles of all three index SNPs are associated with increased blood pressure in the young but reduced

blood pressure in the elderly.

evidence in the stage 1 analysis but that appeared to be
driven by main effects achieved nominal (p = 0.04) evi-
dence of a main effect in the same direction in the meta-
analysis of the Singapore subgroups. The C5o0rf56 index
SNP, only 6.1 kb away from interferon regulatory factor 1
(IRF1 [MIM 147575]), had a much larger effect size
(2.28 mmHg versus 0.35 mmHg) and smaller minor allele
frequency (0.02 versus 0.40) in Singapore subgroups than
in stage 1 subgroups. Variants near or in CS5o0rf56 have
been associated with biomarkers and diseases of inflamma-
tion such as for fibrinogen,”>*° C-reactive protein,”” and
Crohn disease.”®?’

In summary, the Singapore samples confirm associations
between BP and the EHBP1L1, PRDMS8-FGF5, and ATP2B1
loci. Many of the loci found through age interactions in
the populations of European descent exhibited stronger
evidence of main effects in Singapore samples, indicating
potential interethnic heterogeneity in age interactions.

Using the One Degree-of-Freedom Test to Detect
Interactions

In the primary analysis, we used the 1 df interaction test to
determine whether the associations identified by the joint
2 df test were driven by SNP main effects alone. To gauge
the role of the 1 df interaction test in finding interaction
loci, we repeated the two-stage metaregression analyses
with the 1 df interaction test instead of the joint 2 df
test. Only three loci exhibited significant (RAB31 [MIM
605694]) or suggestive (EHBP1L1 and PGBD4-KATNBL1)
associations by the 1 df interaction test in the stage 1 anal-
ysis (see Tables S14, S15, and S16); the coded allele of SNP
157233332 in an RAB31 intron was associated (p = 2.95 x
10~®) with a decrease in PP for individuals aged <49.5 years
and an increase in PP thereafter. However, this significant
association failed to replicate in the stage 2 or Singapore
subgroups. None of these suggestive or significant loci
achieved genome-wide significance for the 1 df interaction
test using the combined stage 1 and stage 2 analysis
(see Table S16). Thus, the 1 df interaction test failed to pro-

duce any novel or known replicated loci, underscoring the
importance of the joint 2 df test for identifying gene-age
interactions.

The Secondary Analysis: Exploring Age-Specific
Genetic Effects

As a secondary analysis, we explored age-specific genetic
effects by meta-analyzing the GWAS results (SNP main
effects) within each age bin separately (e.g., 20- to
29-year-old subgroup only). The second age bin (30- to
39-year-olds) contained only one study in stage 1; there-
fore, five age-bin-specific meta-analyses were conducted
per trait. A total of 22 distinct loci (31 SNP-trait combina-
tions) were significantly or suggestively associated with
BP traits in the stage 1 analyses, yielding, respectively, 9,
6, 12, and 4 loci for SBP, DBP, MAP, and PP (see Tables
S18, S§19, S20, S21, and S22). Each locus was significant
or suggestive in only one age bin; it is unlikely that a single
10-year age bin will isolate the age-dependent effect, and
therefore the lack of a supportive pattern in adjacent bins
may indicate a false positive or may be due to statistical
issues (such as the lack of data for a meta-analysis in the
adjacent 30- to 39-year age bin, differences in sample sizes
between bins, or differences in study composition between
age bins [such as the CARDIA study, which is present only
in the youngest age bin]). In total, we identified six loci
in the 20-29 years age bin (N = 2,200), five loci in the
40-49 years age bin (N = 13,800), six loci in the 50-59
years age bins (N = 21,000), four loci in the 60-69 years
age bin (N = 12,100), and one locus in the 70-79 years
age bin (N = 3,014). Thirteen of these loci (see Table 3),
including all six in the youngest age bin and the lone
finding in the oldest age bin, lacked strong evidence in
the literature and failed to achieve even suggestive associ-
ations in the main-effects-only meta-analyses and SNP-
age metaregressions using all age bins. This demonstrates
the importance and promise of meta-analysis across
cohorts within age bins. In the 20- to 29-year-olds, a SNP
(rs16833934) in a locus near microRNA 1263 (MIR1263)
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Table 3. Selected Significant and Suggestive Findings from the Within-Age-Bin Meta-analysis of Stage 1 Subgroups
Age rs Number Genomic Ref No. All B (in Direction
Bin (NCBI 36) Chr. Position Location Allele Trait Studies N Freq mmHg) se (B) A p Value of Effects
20-29 1516833934 3 165,219,944 intergenic G DBP 2 2,242 026 -1.63 029 1.00 1.39 x 107% --
near
MIR1263 MAP 2 2,241 026 -133 027 1.02 7.12x 1077 --
1512195230 6 97,606,768 intron G SBP 2 2,246 0.75 179 035 1.01 4.60x 1077 4+
KLHL32
1512195036 6 166,371,687 near T MAP 2 2,241 095 -3.11 061 1.02 504 x 1077 --
LINC00602
152702888 8 6,752,442 DEFBI- G PP 2 2,242 0.65 -1.36 027 1.00 3.87 x 1077 --
DEFA6
152196122 11 4,842,124 ORS51HIP- G SBP 2 2,246 0.84 191 038 1.01 7.20x 1077 4+
ORS51H2P
1510143078 14 69,951,242 intron C SBP 2 2,246 0.04 —-4.06 081 1.01 593x 1077 --
SYNJ2BP
40-49 15825937 2 4,785,902 near C PP 5 13,810 0.83 0.83 0.16 1.01 232X 1077 44+++
LINC01249
1511816631 10 99,552,562 SFRP5- G PP 3 9,946 0.06 1.99 039 1.01 2.95% 1077 4+
GOLGA7B
50-59 rs3118867 9 89,451,515 intron G DBP 7 21,033 0.47 -049 0.09 1.05 3.87 X107 -------
DAPK1
MAP 7 21,035 0.47 -0.55 011 1.04 412x107 -------
60-69 rs4638749 2 108,250,474 downstream G DBP 8 12,082 0.76 —0.81 0.16 1.03 6.13 X 1077 4-------
SULT1C3
14841895 9 136,563,863 RXRA- G MAP 8 12,082 0.65 0.81 016 1.02 7.62 X 1077 44+-+++++
COL5A1
15747685 17 721,801 intron NXN T MAP 8 12,082 0.86 1.50 030 1.02 632X 1077  44++++++
1s747687 17 722,084 intron NXN G DBP 8 12,082 0.86 1.37 0.26 1.03 1.50 X 1077 44+-+++++
70-79 15603788 10 78,881,268 intron G DBP 4 3,014 0.50 1.73 035 1.00 937 X 1077 +44++
KCNMA1I
MAP 4 3,014 0.50 2.08 042 1.01 884 %X 1077 +4++

Abbreviations are as follows: Chr, chromosome; Ref Allele, coded allele; N, number of participants meta-analyzed in the age bin; All Freq, coded allele frequency; B,
effect of each copy of the coded allele on blood pressure; se(B), standard error of the ; A, genomic inflation factor in that age bin. Age bins 1 through 6 comprised
individuals 20 to 29 years old and subsequently in 10 year increments. Asterisk (*) indicates value achieves the p < 5 x 102 threshold for significance.

was significantly (p = 1.39 x 107®) associated with a
1.63 mmHg reduction of DBP per copy of the G allele.

Although none of the index SNPs from the 13 loci listed
in Table 3 were significant in the combined stage 1 and
stage 2 analysis (see Table S22), the significant association
near the microRNA in the young is biological plausibile
because microRNAs can change gene expression during
aging.”® Four known loci (FIGN [MIM 605295]-GRB14
[MIM 601524], PRDMS-FGF5, AS3MT [MIM 611806],
POCI1B [MIM 614784]-ATP2B1) achieved genome-wide sig-
nificance during the stage 1 or combined stage 1 and stage
2 within-age bins analysis; these loci had decent stage 1
(N = 14,000 to 21,000) and stage 2 (N = 11,000) sample
sizes, were associated with BP in the 40-49 or 50-59 years
age strata, and were implicated in the main effects meta-
analyses with all age bins.

In summary, age-specific genetic effects can influence BP
and designing studies to leverage age specificity, particu-
larly in the young, may enhance gene-discovery efforts.

Discussion

Identifying gene-environment interactions that influence
common complex traits and diseases is an arduous task.
Linkage and candidate gene studies indicate the presence
of environment-dependent genetic effects, yet few have
been identified through published genome-wide interac-
tion studies.”’*° The complex genetic and environmental
architecture underlying blood pressure is no exception.
Even though previous epidemiological studies suggest
age-dependent effects, we identified 20 loci for BP in the
analysis of 99,241 participants of European descent (N =
55,796 in stage 1 and N = 43,445 in stage 2), 9 of which ex-
hibited nominal evidence of gene-age interactions. Index
SNPs in CASZ1, EHBP1L1, and GOSRZ2 exhibited the largest
gene-age interactions, with the coded alleles increasing
BP traits in the young and decreasing them in the old.
The effect of each of these SNPs on a BP trait may change
by as much as 1.58 mmHg over 60 years.
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The EHBPI1L1 locus demonstrated the most compelling
evidence for gene-age interactions: it exhibited no appre-
ciable main effects and its discovery depended on the
inclusion of gene-age interactions. A missense variant
(rs6591182) in EHBP1L1 was suggestively associated with
lobular inflammation in women with nonalcoholic fatty
liver disease;*° this variant was 4,150 basepairs from our
index SNP but was in low linkage disequilibrium (1* =
0.315). Our index SNP (rs4601790) was associated with
the expression of the small ubiquitin-like modifier-1
(SUMO1 [MIM 601912]; p = 4 x 10~°) in HapMap CEU
samples,*” which causes posttranslational modifications
in proteins influencing apoptosis, gene transcription, and
protein stability. SUMO-1 negatively regulates reactive ox-
ygen species production from NADPH oxidases in human
vascular smooth muscle cells;*® the overproduction of
reactive oxygen species has been implicated in cardiovas-
cular and age-related disease.*® Other potential BP effectors
near the EHBP1L1 index SNP include potassium channel
subfamily K member 7 (KCNK7 [MIM 603940]), mitogen-
activated protein kinase 11 (MAP3K11 [MIM 600050] is a
positive regulator of JNK signaling pathway), and micro-
RNA 4690 (MIR4690).

Several biological phenomena could contribute to gene-
age interactions. For example, intracellular levels of cyclic
adenosine monophosphate (cAMP) may connect aging
and the effect of the known CASZ1 locus on BP. Basal levels
of cAMP may vary by age®® and changes in intracellular
cAMP may alter CASZ1b and CASZ1a mRNA levels.”” These
CASZ1 isoforms encode zinc finger transcription factors
involved in cell survival and tumor suppression.’” After
tetracycline induction of CASZ1 in neuroblastoma cell
lines, 125 genes experienced expression level changes
>1.5-fold, including the potential BP effectors tyrosine
hydroxylase (MIM 191290; catalyzes the rate-limiting
step in the synthesis of catecholamines), dopamine beta-
hydroxylase (MIM 609312), angiotensin II receptor type
1 (MIM 106165), and endothelin receptor type A (MIM
131243).°! Thus, the dynamic nature of gene expression
and posttranslational protein modification could contri-
bute to gene-age interactions.®”* A lifetime of behavioral
and environmental exposures can trigger epigenetic mech-
anisms, such as DNA methylation, histone modification,
and microRNA expression, causing changes in gene expres-
sion during aging.”” Increased generation of reactive oxy-
gen species and oxidative damage with age may mediate
the accumulation of posttranslational modifications to
proteins, thereby causing aging and age-related diseases
like hypertension.>® Changes in the cardiovascular envi-
ronment, such as the increased vascular stiffness that
often accompanies aging, may result in enhanced or
muted genetic effects on BP. This is clinically relevant
because different treatment strategies might be warranted
at different ages if the mechanisms of BP regulation vary
across the age spectrum.

We gleaned several important lessons from this investi-
gation. First, the two loci that were significantly associated

with PP (CCDC71L-PIK3CG and GOSR2) lacked corrobora-
tion from any other trait, indicating that the PP asso-
ciation might be independent of SBP and DBP. Second,
careful sample selection might balance the need for
massive sample sizes. The <30-year-old age bin yielded
six significant or suggestive loci using = 2,240 individuals
from two studies; these loci were not detected in the meta-
regression or main effects meta-analysis using all age bins.
Young-onset hypertension is postulated to have a stronger
genetic basis than older-onset hypertension®* because the
latter may be modulated by the accumulation of behav-
ioral and lifetime exposures. We can reduce the sample
size by recruiting individuals at the age when the genetic
effect is the strongest™ or by analyzing longitudinal
(repeated-measures) data. The latter increases the probabil-
ity that participants are examined at the age of largest
genetic effect for the largest number of variants while
providing stronger evidence of causation® and further
insight into the landscape of hypertension genetics over
an individual’s lifespan. An alternate explanation for the
discovery of significant loci in the <30-year-olds, which
also supports careful sample selection, is a more accurate
phenotype due to less confounding by antihypertensive
medications; frequent use of antihypertensives may have
masked putative associations in the older age groups.
The third lesson we learned was that genetic replication
may depend on the age distribution of the replication sam-
ple if gene-age interactions are present. The utilization of
the main-effects and interaction tests may help remedy
the nonreplication of genetic findings across samples
and ethnicities.” Our EHBPILI1 locus, identified only
through gene-age interactions using individuals of Euro-
pean ancestry, replicated using main effects only in
Singapore subgroups. In addition, three of the four known
loci discovered only through gene-age interactions using
cohorts of European ancestry had stronger evidence of
main effects in Singapore subgroups, perhaps due to the
limited age range of the latter (three of the four Singapore
studies contained only individuals over 40 years old).
Gene-age interactions coupled with different age distri-
butions might contribute to the observed interethnic
heterogeneity of BP loci.

The age bin approach we used has some advantages
compared to the standard practice (meta-analysis of
study-specific GWASs that adjust for age only through sim-
ple covariate adjustments). We adjusted for body mass
index (BMI), gender, age, age-squared, and field center in
the GWAS conducted within each age bin; the possibility
of these coefficients varying across age bins contrasts
with traditional unstratified GWAS where the same adjust-
ment is applied for each covariate across all age bins.
Because the effect of BMI, gender, and the SNP may differ
by age, adjustments applied within each bin might pro-
duce more accurate estimates of all the covariate effects,
thus potentially amplifying the SNP effects. Furthermore,
the metaregression of the age-bin results made it possible to
include all studies for investigating gene-age interactions,
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even those like CARDIA with a narrow age range (17- to 32-
year-olds) that contribute little information otherwise
(when gene-age interactions are incorporated into the
study-specific analysis).

A drawback is that our age bin method required a larger
computational and data management burden than the
standard approach. The standard approach would have
required nine GWASs per trait in the stage 1 analysis,
whereas we analyzed 28 GWASs per trait. We also
managed an additional 78 files per trait for the stage 2
and the Singapore analyses, bringing our total data man-
agement burden to 106 files per trait (in total, we analyzed
424 files for the 4 BP traits instead of 120 if we did not use
the age bin approach, a 3.5-fold increase in the data man-
agement burden). Because many studies have unstratified
GWAS results available for common traits like SBP and
DBP, reanalysis using age bins may have deterred study
participation. Our sample size was also slightly reduced
compared to the standard approach. We omitted individ-
uals in age bins with insufficient sample sizes (<250 for
stage 1 samples and <124 for stage 2 samples) and, in or-
der to maintain independence across age bins, included
family members from only one age bin. This reduced
the sample size and hence reduced the power; this,
coupled with fitting an extra parameter to the model for
the interaction, may explain why we missed some of the
known BP-associated loci. Similarly, a few stage 2 studies
combined adjacent age bins to achieve the threshold
sample size for analysis. The estimated SNP effect at the
median age in these wide and sparse age bins may have
greater error, impacting our ability to detect gene-age
interactions in the metaregression and secondary meta-
analyses.

Our analysis was predicated on several assumptions. The
within-age-bin meta-analyses indicated that our assump-
tion of linear interactions and additive main effects may
not be valid. We may need to expand the toolbox of
methods and develop new statistical models to properly
capture complex gene-age interactions.”> We made the
implicit assumption of a strong correlation between bio-
logical and chronological age;® this correlation may differ
across individuals and populations, and age may be a very
different construct due to disparities in environment and
lifestyle. For example, an association identified in 30- to
40-year-olds in one population may manifest in 50- to
60-year-olds in another population. There may even be
heterogenity of aging within a population; conditions
such as metabolic syndrome may be associated with pre-
mature vascular stiffness and biological aging. We assumed
that the same covariates were important in all age strata.
Because BP levels are often modulated by various diseases
in the elderly, different covariate adjustments may en-
hance our ability to explain the genetic variability in the
older age groups. We decided a priori to use a fixed-effects
metaregression model that ignored any heterogeneity in
SNP effects not due to age. We ignored heterogeneity due
to other population attributes and assumed that there

was one true SNP effect at each age (the fixed effects model)
rather than a distribution of true SNP effects at each age
(the random effects model).

There were some additional limitations to our analysis.
The method we used to infer the underlying BP in treated
participants ignored the number, dose, and type of anti-
hypertensive medications taken and might not accurately
impute the blood pressure, particularly in resistant indi-
viduals or those on multiple medications. There were
also differences in genotyping and reference panels for
imputation across the studies and we restricted analysis
to the index SNPs in the Singapore studies. Given that
the allele frequencies and linkage disequilibrium patterns
may differ across populations, this might hinder our
ability to find these gene-age interactions in Singapore
samples. Although BP physiology may be different in
the female and male lifecourse due to hormonal regula-
tion and menopause, we ignored sex-specific gene-age in-
teractions.” Although important, stratifying by age bin
and sex would have resulted in GWASs of inadequate sam-
ple sizes for many of the studies included in this investi-
gation and lower statistical power. Two of the studies,
CARDIA (stage 1) and TRAILS (stage 2), were designed to
study young adults and adolescents, respectively, and
contributed individuals under age 20; the inclusion of
these young participants did not drive the significance
of loci identified by the 2 df test because these were still
significant for at least one trait when both studies were
omitted from the analysis. Lastly, and importantly, this
study was designed as a two-staged discovery; all prom-
ising gene-age interactions observed require replication
in additional large independent samples with a diverse
range of ages.

We report nine BP-associated loci whose effects might be
age dependent, including the EHBPIL1 locus, which ex-
hibited the strongest statistical evidence of interaction
and was discovered only through the inclusion of gene-
age interactions. Our results highlight the context-depen-
dent nature of genetic effects and demonstrate that
modeling age-dependent effects can enhance our under-
standing of the temporal regulation of known genes and
identify additional genes influencing intraindividual vari-
ation in complex traits like BP.
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