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a b s t r a c t

We consider the uptake of various carbon sources by microorganisms based on four fundamental
assumptions: (1) the uptake of nutrient follows a saturation characteristics (2) substrate processing
has a benefit but comes at costs of maintaining the process chain (3) substrate uptake is controlled
and (4) evolution optimized the control of substrate uptake. These assumptions result in relatively simple
mathematical models. In case of two substrates, our main finding is the following: Depending on the
overall topology of the metabolic pathway, three different behavioral patterns can be identified. (1) both
substrates are consumed at a time, (2) one substrate is preferred and represses the uptake of the other
(catabolite repression), or (3) a cell feeds exclusively on one or the other substrate, possibly leading to
a population that splits in two sub-populations, each of them specialized on one substrate only.

Batch-culture and retentostat data of toluene, benzoate, and acetate uptake by Geobacter metalliredu-
cens are used to demonstrate that the model structure is suited for a quantitative description of uptake
dynamics.

� 2014 Published by Elsevier Inc.
41

63
1. Introduction In contrast to these detailed, large simulation models, simple
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Substrate utilization is a vital task of microorganisms that is
tightly regulated. In batch culture, two substrates are often not
consumed in parallel by bacteria, but the microorganisms prefer
one over the other. Monod [28,15] observed this pattern the first
time in E. coli which preferred glucose over lactose. This phenom-
enon was called carbon catabolite repression. The molecular basis
of the corresponding regulatory pathway is well understood
[44,12], and modeled in detail [1,3,4,46,48] (see also the review
article of Santillán and Mackey [35] and references therein). These
models identify many of the key players, and formulate their inter-
play with the aim of a quantitative, detailed description. However,
in order to obtain data sets suited to identify the multitude of
parameters, high throughput experiments measuring many com-
ponents of the system are required. At the time being, this effort
can only be afforded for a few, central pathways. Furthermore,
details of many large models depend on the precise experimental
setup in that different environments are likely to influence
building blocks of the pathways in a way that is not straightfor-
ward to control.
84

85

86

87
conceptual models are developed to investigate the basic principle
of microbial growth and substrate uptake, e.g. in chemostat
[40,7,8], or for use in bioengineering [20,41,34]. For these two pur-
poses, often simple models with few parameters have the clear
advantage that theoretical and mathematical analysis is possible.
Furthermore, only few parameters have to be estimated, rendering
them attractive. As these parsimonious models formulate a proto-
typical structure, representing many different elements of a regu-
latory pathway in an averaging manner, they are likely to be
rather stable against changes in the environment. The crucial point
here is an appropriate specification of the model structure; results
of models that do not use an adequate formulation are difficult to
interpret. The selection of a feasible structure is only straight in
simple situations. E.g., in case of several substrates, simple models
often assume the parallel consumption [40,7], and disregard more
complex regulation for substrate uptake.

So far, the mentioned approaches to investigate substrate
uptake have been descriptive. Another approach is to analyse the
rational behind the design of regulatory pathways or at least to
take it into account. It is common believe that cells optimize their
regulatory pathways in order to maximize their growth efficiency
[43,38] and prevent to become out-competed by others. This gen-
eral paradigm of evolution theory is non-trivial to use, as ‘‘effi-
cient’’ is always to define with respect to a given environment
http://
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that is subject to change; Metz et al. [27] show that certain require-
ments, which are not always satisfied, are necessary for the exis-
tence of an optimum. However, even simple assumptions about
environment and optimality criteria can be helpful to comprehend
observed regulatory networks. In [17,6], the lac operon is analyzed
with respect to its efficiency in certain scenarios (constant lactose
concentration, and fluctuating environments). The authors con-
clude that this operon is optimized, indeed. Similar arguments
can be found e.g. in [11,32], also for the consumption of other sug-
ars. Another approach uses adaptive dynamics to decide about the
optimal allocation of different resources in ecological models
[36,45]. These ecological oriented papers do not focus on regula-
tory mechanisms but investigate phenomenological allocation
strategies.

The aim of the present article is to reverse the concept: instead
of starting off with existing regulatory pathways, describing them
and investigating their efficiency, we start off with few assump-
tions about the topology, costs, and benefits of a metabolic path-
way. The optimization principle then predicts relatively simple
models for microbial substrate uptake and growth. We claim that
this approach automatically leads to appropriate models. In that,
the present work is close to metabolic control theory due to Kascar
et al. [16] and cybernetic modeling of metabolic fluxes [20,41,34].

In the spirit of the simple models mentioned above, we use the
developed theory twofold: in a qualitative way, as a conceptual
model to comprehend the basic principles ruling the control of
substrate uptake, and in a quantitative way, as a tool for bioengi-
neering. We are on the one hand able to derive a classification of
certain interaction patterns, and relate them to biochemical princi-
ples. On the other hand we are able to model experiments for the
uptake of toluene, benzoate, and acetate by Geobacter metalliredu-
cens. This is an environmentally relevant anaerobic microorganism.
It is known to degrade aromatic pollutants in the groundwaters
including toluene and it is also able to use easily degradable sub-
strates present in the environment, e.g. acetate [23]. The results
of modeling indicate that the present approach is indeed suited
to be used in practical applications.
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Abbreviations and meaning for the conceptual model.

Name Unit Interpretation

u Mol Concentration of nutrient
2. Modeling of efficiency of metabolic pathways

Our starting point are four basic assumptions about microbial
metabolic pathways:

(1) the uptake of nutrient follows a saturation characteristics
(2) substrate processing has a benefit but comes at costs of

maintaining the process chain
(3) substrate uptake is controlled
(4) evolution optimized the control of substrate uptake.

These four fairly general statements are substantiated below by
means of mathematical equations. The aim is to use these four
assumptions in order to select a model for a given pathway. We
will first consider the most simple situation – one substrate only,
and then proceed to the case that several substrates are present.
Necessarily, the assumptions made induce certain shortcomings.
In particular, assumption (4) – the optimization – will be done
with respect to a constant environment, considering individual
cells only. Later we will discuss which aspects we miss by this
constrain.
a 1/Mol Activity/metabolic control variable
E biomass/h Contribution of the pathway to the growth rate
Eþ biomass/h Energy gain by actual nutrient uptake
E� biomass/h Energy loss by maintenance of the pathway
Ks 1 Rescaled half-saturation of the monot kinetic
lmax biomass/h maximal degradation rate
e biomass/(h u) Proportionality constant between activity and costs
2.1. One substrate

First we analyse the situation of a single cell, processing one
single substrate that is available at a concentration u constant in
time. In order to formulate the control for substrate uptake, a var-
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
iable describing the state of this control, or the potential activity of
the pathway, is required; we name this variable a (see Table 1 for
the variables used). While u relates to the environment, a relates to
the internal state of a given cell. The variable a represents the over-
all readiness to process the substrate – if there is substrate (u > 0),
cells will consume it at a rate given by a and u; if there is no sub-
strate (u ¼ 0), the cell may nevertheless be prepared to take up the
substrate. Therefore a represents the potential activity or the con-
trol. In response to the environment, the cell will dynamically
adapt this control. In order to be less abstract, we could think of
a to represent the number of transport molecules in the cell mem-
brane. Once the substrate is transported into the cell, it will be uti-
lized by the particular pathway. It should be emphasized that this
thought model for a is not meant as a recipe for measurements of
the potential activity level, but rather as a theoretical concept help-
ing to gasp the idea behind a. Indeed, a represents in an averaging
manner all components used to control a pathway, including
uptake and degrading enzymes. This variable allows to quantify
two different aspects: firstly, it is related to the rate at which a sub-
strate is consumed, and secondly it allows an overall estimation of
the costs connected with the maintenance of the pathway at a
given potential activity level.

Growth is the read-out that is to optimize. Growth indicates in
some sense the energy available to the cell. That is why we will
also call this optimization the maximization of energy. Let Ecell be
the complete energy available. This energy is the sum of several
gain and loss terms. Some of the (for us) most relevant terms will
be discussed now. Assumption (1) indicates that the consumption
of a substrate follows a saturation function. The most natural sat-
uration function is a Monod term in au. The substrate degraded is
converted into biomass production or growth rate. The benefit
Eþða; uÞ of the substrate available at a level au

Eþða; uÞ ¼ lmax au
Ks þ au

; ð1Þ

quantifies the contribution to the growth rate, or energy (see also
Fig. 1). As usual, lmax indicates the maximal possible benefit, and
Ks the value for au at which we find the half-maximal benefit.
The interpretation developed so far requires that the activity
assumes non-negative values, a P 0.

Apart from the benefit, there is a second effect connected with
a: microorganisms need to maintain the pathway at a certain level
of activity, which comes with costs. As we want to keep things as
simple as possible, we assume that these costs increase linearly in
a with proportionality constant e, and define the corresponding
contribution E�ðaÞ to the net growth rate by

E�ðaÞ ¼ �ea: ð2Þ

Note that this term does not include direct costs for processing
nutrient. E�ðaÞ are merely the maintenance costs for the metabolic
pathway at a certain activity level, that are even there if the corre-
sponding nutrient is not available. We may interpret this assump-
tion as follows: in order to keep a certain activity level, a certain
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://
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number of e.g. transport proteins have to be sustained. These pro-
teins are degraded at a certain rate c, say, and have to be replaced
at the same rate. If each protein costs n energy units (an appropriate
measure for ‘‘energy units’’ could be for example the number of ATP
molecules used for the production of one protein), the energy lost
per time unit is nac. With e ¼ nc we find the term for E�ðaÞ above.
As a represents all parts of the pathway, the interpretation may be
more complex, but the description given here shows the principle
behind the assumed shape of E�ðaÞ.

The total growth rate of a cell of course depends on a multitude
of factors: maintenance, temperature, availability of other sub-
strates and molecules apart from the substrate under consideration
(e.g. electron acceptors), the pH in the environment, etc. For now,
we assume that all these influences do not change, and are either
additive or multiplicative to the pathway under consideration,
but do not directly depend on u and a. That is, we assume that
the overall net growth rate Ecell is given by

Ecell ¼ Ecell;0 þ A Eþða; uÞ þ E�ðaÞð Þ: ð3Þ

where Ecell;0 and A may depend on many influences, but are assumed
to be independent on a and u, i.e. independent on the pathway
under consideration. Furthermore, A > 0. We now believe that the
cell optimizes the control, i.e. maximizes Ecell. As Ecell;0 and A are
constant and A > 0, this is equivalent with the maximization of

Eða; uÞ :¼ Eþða; uÞ þ E�ðaÞ ¼
lmax au
Ks þ au

� e a: ð4Þ

To be precise in notation, we will call E the net (energy) gain, while
we call Eþ the (energy) gain, and E� the costs (of this pathway).

Most likely, the special forms of the functional responses cho-
sen here do not matter for the discussion below. Important are
two features: an unbounded, strictly monotonous increasing main-
tenance costs E�ðaÞ, and a monotonously increasing saturation
function in au that describes the gain Eþðu;aÞ.

We may simplify the expression: defining ~a ¼ a=Ks and
~e ¼ eKs=lmax, we find

lmax au
Ks þ au

� e a ¼ lmax

~au
1þ ~au

� ~e ~a
� �

: ð5Þ

This is, a reparameterization allows to take lmax and Ks to one. For
now, we will stay with this parametrization and drop the tilde
again. We assume that the regulatory network in the cell is
designed in such a way that the control variable a is adjusted to
maximize the energy intake. In consequence, either a ¼ 0 if
Eða; uÞ is a monotonously decreasing function in a, or a is given
by a local maximum,

0 ¼ @

@a
Eða; uÞ ¼ u

ð1þ auÞ2
� e () a ¼ 1

u

ffiffiffi
u
e

r
� 1

� �
: ð6Þ

If this term is negative, E is monotonously decreasing for all a P 0
and the optimal activity level a in this case is zero. This is, the opti-
mal strategy a� ¼ a�ðuÞ in presence of a constant (time-indepen-
dent) substrate concentration u can be written as

a�ðuÞ ¼ 1
u

ffiffiffi
u
e

r
� 1

� �
þ
; ð7Þ
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
where we define the brackets ð�Þþ by ðxÞþ ¼ x for x > 0 and ðxÞþ ¼ 0
else. The energy gain reads

Eða�ðuÞ; uÞ ¼ 1�
ffiffiffi
e
u

r� �
þ

� �2

: ð8Þ

The control variable is positive only for u=e > 1. This threshold can
be interpreted as follows: if a is small, then au=ð1þ auÞ � au. If we
identify a with the concentration of transport proteins, each of
these proteins yield a gain of u energy units per time unit. On the
other hand, each of these proteins costs e energy units per time unit.
The net gain is positive, if u > e. Only in this case, it pays to process
the substrate.
311
2.2. Two substrates

It may be of value to keep in mind that the model developed
here will be applied to experiments looking at the uptake of tolu-
ene, acetate and benzoate. That is, we are interested in the interac-
tions of metabolic pathways processing different substrates.

Pathways processing two substrates eventually converge, as
they have to end in central building-blocks for biomass production,
e.g. pyruvate or acetyl-CoA. We find the first part of the processing
chains to go in parallel, more or less independent of each other.
Eventually the paths merge into one single processing route.
Which setups are interesting? The main difference in the pathways
addressed here is the location of bottlenecks. Bottlenecks represent
the capacity-limiting biochemical step in the pathway (modeled by
a Monot term). Bottlenecks may be indicated by intrinsic costs,
either to produce the corresponding enzymes (in the spirit of the
‘‘potential activity’’), or to process the substrate. Basically, we iden-
tify three different situations (see Fig. 2): (a) the bottlenecks are
located in the parallel parts, above the convergence point. In this
case, the pathways will not or only weekly influence each other.
We name this topology ‘‘independent pathways’’. (b) No bottleneck
is located upstream of the convergence point, but only down-
stream. This is the ‘‘early convergence’’ situation. We will model
the combination of benzoate and acetate in this way. Acetate is
converted in acetl CoA, and benzoate is first converted to bezoyl-
CoA, which in turn is transformed to acetyl CoA (see Fig. 6). The
data indicate that these conversions happen rather readily, and
therefore no bottleneck is identified in this part of the pathway.

(c) Only one of the substrates possesses a bottleneck upstream
of the converging point, and a further bottleneck is located down-
stream. One substrate flows without hindrance to the converging
point, while the other first passes an obstacle. Basically all nutrient
without upstream bottleneck is available in the convergence point.
This structure allows to re-interpret this situation slightly, in
assuming that one of the substrates is converted into the other
one, and subsequently they are commonly processed. This topol-
ogy is called the ‘‘hierarchical’’ situation. We use this pattern to
formulate the submodel for toluene and benzoate. Toluene is con-
verted into benzoyl CoA, and so is benzoate. However, the growth
data indicate that the conversion of toluene requires a considerable
higher effort than the conversion of benzoate. This observation
suggests the hierarchical topology for these two substrates.
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://
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In the next subsections, we discuss the different control pattern
emerging from these topologies.

2.2.1. Independent pathways
Let us consider two pathways that work independently, in a

parallel mode. We attach an index i 2 f1;2g to all variables to indi-
cate pathway one or pathway two. The net energy for each of the
two paths is given by

Eiðai; uiÞ ¼
aiui

1þ aiui
� ei ai: ð9Þ

These two net energies have to be combined to one single term.
Thereto, we weight the gain, using substrate one as reference. E2

is multiplied by a constant h,

Eða1;a2; u1;u2Þ ¼ E1ða1; u1Þ þ hE2ða2; u2Þ: ð10Þ

h indicates the different energy yield per unit of u2 in comparison
with u1: if h > 1, the energy gain per molecule u2 is larger, if
h 2 ð0;1Þ, it is less than that of u1. Clearly, as the two pathways
are independent, the optima for the pathways are those of the indi-
vidual pathways,

a�i ðu1;u2Þ ¼
1
ui

ffiffiffiffi
ui

ei

r
� 1

� �
þ
; ð11Þ

with the total energy

Eða1;a2; u1;u2Þ ¼ 1�
ffiffiffiffiffi
e1

u1

r� �
þ

� �2

þ h 1�
ffiffiffiffiffi
e2

u2

r� �
þ

� �2

: ð12Þ

We may identify different regions in the plane given by the normal-
ized substrate concentrations u1=e1 and u2=e2; in each of these
regions, we find another optimal strategy ða1;a2Þ. We call this fig-
ure bifurcation diagram, although – strictly spoken – we have no
dynamics and hence no bifurcations in the sense of dynamical sys-
tems. However, we will later introduce dynamics and are therefore
allowed to interpret the diagrams as bifurcation diagrams. The
bifurcation diagram for the given topology is depicted in Fig. 3. In
the upper, left part of the figure, for different combinations of
u1=e1 and u2=e2, different regions are indicated. E.g., if
u1=e1; u2=e2 is small, the combination falls in the region named A.
In order to read off the optimal strategy, we go to the small dia-
grams below the two larger panels: Here, we find a a1;a2 coordinate
system, with a bullet located in the point a1 ¼ a2 ¼ 0. This dot indi-
cates, that the strategy a1 ¼ a2 ¼ 0 is optimal in the region A. If we
increase u1=e1 above one but stay with u2=e2 below one, we move to
region C1. Again, in the a1;a2 panels we find one named C1; here we
have a black dot at a2 ¼ 0; a1 > 0. That is, the optimal strategy for
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
the cell is to consume substrate u1 only. Additionally to the bullet
we also find an open circle. Later, we will introduce dynamics.
The open circles indicate unstable, stationary states (saddle points
in the energy landscape, or minima/maxima if we restrict ourselves
to the axes, but the landscape increases if we go into the interior of
the positive cone). The region D is interesting: here, we find a bullet
in the interior of the positive quadrant, indicating that the optima
for a1 and a2 are strictly positive. If there is sufficient substrate,
both substrates are consumed in parallel. As we have no direct
influence of one pathway on the other pathway, both are degraded
if there is enough substrate s.t. the degradation pays.
2.2.2. Early-converging pathways
In case of the topology called ‘‘early converging pathway’’, the

pathways soon converge into a single one with limited capacities.
We model this effect by

Eða1;a2; u1;u2Þ ¼
a1u1

1þ a1u1 þ a2u2
� e1 a1

þ h
a2u2

1þ a1u1 þ a2u2
� e2 a2

� �
: ð13Þ

There are the trivial cases that u1=e1 < 1 indicating that it does not
pay to degrade substrate one (regions A, B1 in Fig. 3), resp. u2=e2 < 1
(regions A, C1 in Fig. 3), s.t. substrate two is not utilized. If
u1=e1;u2=e2 > 1, the situation is non-trivial, as each substrate alone
pays to be degraded. Only interactions may hinder a substrate from
being consumed. A more detailed analysis partially based on
numerical observations (Appendix A) reveals that several cases
are to be distinguished: in C2 and E, there is a (local) optimum
where substrate one is degraded alone, while in B2 and E there is
a local optimum where substrate two is degraded alone. The regions
B1 and B2 can be interpreted as catabolite repression; if h is not close
to one (i.e., the substrates have a rather different yield), the region E
is narrow and close to one axis. I.e., B2 is large and C2 small, or vice
versa, indicating that the inhibition is not symmetrical, one of the
substrates is overwhelming predominant. We know this situation
from glucose and lactose.

If the yield of the substrates are similar, h � 1, then E may
become large (see also Fig. 11). It is not merely a small strip, sep-
arating the regions where one substrate clearly dominates the
other, but we expect also in experiments (or in nature) the sub-
strate concentrations to meet this region. The two local optima
that are present in region E indicate that a given cell has to decide
between two different favorable strategies: either to only feed on
substrate one, or to only feed on substrate two. Of course, generi-
cally, only one of these strategies forms a global optimum, while
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://
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the other one only is a local optimum. In this sense, all cells should
go for the global optimum. Cells are faced with the difficult prob-
lem to avoid local maxima and select the global maximum.

It is inspiring to briefly review the mathematical theory of opti-
mization. There are two fundamentally different approaches. One
class uses local information to improve a candidate solution of
an optimization problem by small steps. A typical member of this
class is the method of steepest ascent: the candidate solution is
shifted along the gradient of the target function. Such methods
approach efficiently the next local maximum. They completely
depend on the initial conditions. If the starting point is close to
the global optimum, they are likely to converge to that. If local
maxima are closer, they will not converge to the global maximum,
but select a local maximum. Another class is formed by stochastic
methods. A typical member here is simulated annealing. Randomly
a new candidate solution is chosen, and accepted at a certain prob-
ability. It is even allowed – with a relatively small probability –
that the next candidate solution is worse than the present one. In
this way, the algorithm prevents to get stuck in a local maximum.
Under certain conditions, it is possible to prove that the global
optimum is found almost surly. These class of algorithms is rela-
tively slow, but much better suited for a rough energy landscape.
It is most likely that hybrid algorithms, combining local and deter-
ministic parts with some global, stochastic component, are the
most powerful optimizers for a wide range of target functions.

Based on these considerations, we expect that cells move
towards one of the two local maxima; stochastic components of
the biochemical pathway controlling substrate uptake will lead
to a heterogeneous population, where a fraction of cells choose
the ‘‘substrate-one-only’’ solution, while the other fraction selects
the ‘‘substrate-two-only’’ solution. The exact distribution of the
population cannot be determined taking the view of a single cell
only, but by consideration of the overall population; most likely
it also depends on the typical time course of the substrate concen-
trations in the environment. We expect that arguments similarly to
those indicating the optimality of bed-hedging in case of switching
environment [29] can be used to analyse the present situation. It is
out of the scope of the present work to follow this line of thoughts.
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
2.2.3. Hierarchical pathways
Now we come to a situation that is per se not symmetric any

more: the hierarchical topology (see Fig. 4). The second substrate
(concentration u2) is first transformed to the first substrate (con-
centration u1) and then – using the pathway of the first substrate
– converted to energy. Such a pathway design is frequently found,
e.g. if beside monosaccharides as glucose their oligo- or polysac-
charides as cellulose, starch or cellobiose are used for nutrition,
or in the stepwise degradation of aromatic pollutants [24,37]. We
adapt our basic model to allow for this intertwined situation.

For u1, the situation does not change: in case u2 ¼ 0 we have
one pathway of the usual type. This part is well described by the
net energy gain
E1ða1; u1Þ ¼
a1u1

1þ a1u1
� e1 a1: ð14Þ
In case of the second substrate, u2, we have a first step that converts
substrate two into substrate one, and then pathway one is used. We
denote by U2 the concentration of the intermediate product, i.e. of
substrate u2 that has been converted into a form that can be han-
dled by pathway 1 in the same way like u1. This first step in the
metabolism of u2, the conversion into U2, may be connected with
gain as well as loss of energy. We presume that in this conversion
step a bottleneck is present. In accordance with earlier consider-
ations the rate at which U2 is produced is given by
a2u2

1þ a2u2
: ð15Þ

For convenience, we denote by e3 the loss of energy superim-
posed by this first degradation step; each molecule converted
requires e.g. a certain number of ATP molecules, i.e. comes at some
costs. It may happen, of course, that during this first step ATP mol-
ecules are produced, and we have a given energy gain per molecule
converted; this case is covered by taking e2 to negative values. The
contribution of this step to the net gain is described by
�e3 a2u2=ð1þ a2u2Þ. The product of this first step is assumed to
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://
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be equivalent with substrate one, and fed into the substrate-one-
processing-chain in the same way as substrate one. The overall
net energy gain reads

Eða1;a2; u1;u2Þ ¼
a1ðu1 þ U2Þ

1þ a1ðu1 þ U2Þ
� e3

a2u2

1þ a2u2
� e1 a1

� e2a2: ð16Þ

How can we obtain the concentration U2? In the present consider-
ations, we focus on an equilibrium situation. U2 should be produced
at the same rate at which it is further processed,

a2u2

1þ a2u2
¼ a1U2

1þ a1ðu1 þ U2Þ
: ð17Þ

Solving this equation for U2, we find

a1U2 ¼
a2u2ð1þ a1u1Þ

1þ a2u2

� �
1� a2u2

1þ a2u2

� ��1

¼ a2u2ð1þ a1u1Þ: ð18Þ

Using these two relations, we obtain the overall net gain

Eða1;a2; u1;u2Þ ¼
a1u1

ð1þ a1u1Þð1þ a2u2Þ
� e1 a1 þ ð1� e3Þ

� a2u2

1þ a2u2
� e2a2: ð19Þ

In view of our applications, we concentrate on the case e3 > 0. The
energy gain per molecule of substrate u2 is smaller than that for
substrate u1, as the pre-processing is connected with costs. From
the formula for the net gain, we read-off that for e3 > 1 it never pays
to utilize u2. If e3 > 1, we are left with a2 ¼ 0 and a single-path-
ways-situation for u1. As this situation is already well understood,
we restrict ourselves to e3 2 ð0;1Þ.

The analysis can be found in Appendix B, partially performed by
numerical analysis only. We summarize the outcome in Fig. 5 and
in the following statement:

Result: The overall structure of the bifurcation diagram resem-
bles that of the early convergence case: the regions A, B1, B2; C1

and C2 are similar; only the region E in the early convergence path-
way is split into several sub-regions in the present case. The reason
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
for this similarity is the similarity of the topology: once the inter-
mediate product U2 is formed, we basically have an early-conver-
gence topology for u1 and U2.

The analysis indicates that two cases have to be distinguished:
e3 2 ð0;3=4Þ and e3 2 ð3=4;1Þ. The bifurcation diagrams are slightly
different for these two cases. However, in both cases we find that
for u1 large, and u2 small enough, the trivial solution a2 ¼ 0 is a
local maximum of the energy gain function (parameter regions
C1; C2). Under these conditions, substrate u1 will prevent substrate
u2 from being processed. If the concentration of u1 decreases, even-
tually it pays to utilize u2. Inspecting the bifurcation diagram, the
concentration of u1 has to be rather small until the degradation
of substrate two is beneficial. This situation can be interpreted as
catabolite repression. The details for the transition from utilization
of u1 only (C2) to the utilization of u2 only (region B2) depends on
the energy necessary to pre-process u2. If this energy is large,
i.e. e3 2 ð3=4;1Þ, we have a region (D1) resembling heterogeneous
region of the early-convergence pathway. In this region, the strat-
egies given by degradation of one substrate only form two local
optima. It is likely to find a heterogeneous population. In the other
case, where the effort for the pre-processing is not very high,
i.e. e3 2 ð0;3=4Þ, the transition from C2 (substrate one only) to B2

(substrate two only) happens via parallel degradation of both sub-
strates: in D2 as well as in E, there is an optimal strategy in the
interior of the cone. Both substrates are consumed in parallel.
However, in E and F, we still have the possibility of heterogeneity,
as two local optima are present at the same time.

3. Dynamic models

In real world situations, substrate concentrations are likely to
change in time. We add dynamics to the models above. At the same
time, we slightly extend the concept to become more realistic: we
take into account the possibility of a constant, low basal degrada-
tion, caused e.g. by co-metabolic degradation. In this section, we
focus on the applicability of the models developed, and not on a
classification of behavioral types as we did on the last section.
The equations developed here will be used to analyse batch- and
retentostat data.
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://
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3.1. Single substrate

Let pðtÞ denote the population size (density), uðtÞ the substrate
concentration, and aðtÞ the activity of the pathway at time t. Note
that we implicitly assume a homogeneous population – all cells
use the same substrate consumption strategy aðtÞ. The net energy
gain given in Eq. (4) describes population growth as well as sub-
strate uptake – the growth is due to conversion of substrate into
biomass. In accordance to the standard chemostat models, we
assume at the present time that the costs (for the pathway as well
as for maintenance) are small and can be neglected to describe the
population growth with the precision necessary to analyse data.
Growth-rate and substrate uptake rate are proportional to the
energy gain Eþða; uÞ ¼ Kau=ðKm þ auÞ, with proportionality con-
stants A resp. B,

P0 ¼ A
K au

Km þ au

� �
p and u0 ¼ �B

K au
Km þ au

� �
p: ð20Þ

The more sophisticated (and, in some sense, more arbitrary)
part is the formulation of the dynamics for the control variable a.
Given the substrate concentration u, this variable should adapt to
the optimal value discussed above. The variable should always
climb to higher net energy levels, leading to the equation
a0 ¼ @aEða;uÞ. The control variable a is assumed to stay non-nega-
tive. In order to force the equation to preserve positivity, we
replace the r.h.s. by a@aEða;uÞ. Two more aspects are included:
first, we allow for a basal degradation. The costs for this basal deg-
radation are part of the general maintenance costs, and do not
count for E�ða; uÞ. We rewrite the costs of the pathway as

E�ða; uÞ :¼ eða� a0Þþ ð21Þ

where, as before, ðxÞþ is zero if x < 0, and ðxþÞ ¼ x for x > 0. That is,
if the control variable a becomes less than a minimal activity a0, the
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
costs drop to zero; since only the term �eða� a0Þþ has a negative
contribution to a0 and becomes zero for a 6 a0, there will be always
a basal, minimal activity of the pathway. In some cases, this basal
activity may be interpreted as co-metabolic degradation. The last
point that we take into account is the time scale of adaptation,
expressed by e. All in all, we derive at

ea0 ¼ a@a Eþða; uÞ � E�ðaÞð Þ ¼ a@a
K au

Km þ au
� eða� a0Þþ

� �
: ð22Þ

If e is small enough, we may apply Fenichels theory; i.e., the system
is well approximated by assuming the quasi steady state
aðtÞ ¼ a�ðuðtÞÞ. This assumption leads to a two-dimensional system
of equations

p0 ¼ AEþða�ðuÞ; uÞp ¼ Af ðuÞp; u0 ¼ �BEþða�ðuÞ; uÞp
¼ �Bf ðuÞp: ð23Þ

The function f ðuÞ possesses the typical properties usually assumed
for the term describing the uptake rate of substrate: f ð0Þ ¼ 0; f ðuÞ is
monotonously increasing, and f ðuÞ is bounded. In this, the model we
derived here by considering optimization of energy uptake basically
yields the usual model for microorganisms consuming substrate in
a batch culture. The present approach is consistent with well tested
models [40].

3.1.1. Independent pathways
The considerations for one pathway can be directly generalized

to this case. If we take into account a basal degradation, we find the
net energy gain given by

Eða1;a2;u1;u2Þ ¼ E1;þða1; u1Þ � e1ða1 � a0
1Þþ

� �
þ h E2;þða;;u2Þ � e2ða2 � a0

2Þþ
� �

; ð24Þ
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://
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where the terms E i;þðai;uiÞ ¼ aiui=ðKi þ aiuiÞ reflect the substrate
uptake, and h indicate the different energy content in the two sub-
strates. The control variables will climb upwards towards an opti-
mization of the energy gain (along the gradient), and we find/
define the equations ruling the dynamics of the control variables
similar to the case with one substrate only,

p0 ¼ A1E1;þða1; u1Þpþ A2E2;þða2; u2Þp
u01 ¼ �B1E1;þða1; u1Þp
u02 ¼ �B2E2;þða2; u2Þp
e1a01 ¼ a1@a1Eða1;a2;u1;u2Þ ¼ a1@a1 Eþða1; u1Þ � e1ða1 � a0

1Þþ
� �

e2a02 ¼ a2@a2Eða1;a2;u1;u2Þ ¼ ha2@a2 Eþða2; u2Þ � e2ða2 � a0
2Þþ

� �
:

ð25Þ

If ei � 1, we may reduce the equations to two dimensions by
assuming ai to be in their quasi-steady state. As in the case of one
substrate only, we obtain p0 ¼ ðA1f1ðu1Þ þ A2f2ðu2ÞÞp; u0 ¼
ðB1f1ðu1Þ þ B2f2ðu2ÞÞp, where fiðuÞ have similar characteristics as a
Monod function. We obtain a model structure that resembles the
usual two-substrate-models for e.g. the chemostat [7].

3.2. Two substrates

3.2.1. Early converging pathways
The dynamic model equations for the early converging pathway

resemble those for the parallel pathways; we only need to take the
interaction into account in defining

Ei;þða1;a2; u1;u2Þ ¼
uiai

1þ ðu1a1 þ u2a2Þ
: ð26Þ

The net gain reads

E ¼ E1;þða1;a2; u1;u2Þ � e1ða1 � a0
1Þþ þ hðE2;þða1;a2; u1; u2Þ

� e2ða2 � a0
2ÞþÞ: ð27Þ

The full, dynamic model is given by Eq. (25) with the obvious
changes. This model is able to address more complex behavior as
catabolite repression.

3.2.2. Hierarchical pathways
Recall the structure of the present topology: substrate u1 is

degraded directly, basically following the one-substrate case. The
second substrate u2 is first converted into an intermediate product
U2, that is subsequently degraded by the u1-pathway in the early-
convergence-fashion (competition of u1 and U2 in the bottleneck of
the u1-pathway). The model equations are obvious (with the nota-
tion introduced above in Section 2.2.3); we only add the time scale
g for the dynamics of the intermediate product U2,

p0 ¼ A1 Eþ;1;1ða2; u1;U2Þ þ Eþ;1;2ða2; u1;U2Þð Þ þ A2Eþ;2ða2; u2Þ
u01 ¼ �B1Eþ;1;1ða2; u1;U2Þp
u02 ¼ �B2Eþ;2ða1; u2Þp
gU02 ¼ B̂2; Eþ;2ða1; u2Þp� �B2 Eþ;1;2ða2; u1;U2Þp
e1a01 ¼ a1@a1Eða1;a2;u1;u2;U2Þ
e2a02 ¼ a2@a2Eða1;a2;u1;u2;U2Þ

Eþ;1;1ða1;a2; u1;U2Þ ¼
a1u1

1þ a1ðu1 þ U2Þ
;

Eþ;1;2ða1;a2; u1;U2Þ ¼
a1U2

1þ a1ðu1 þ U2Þ

Eþ;2ða2; u2Þ ¼
a2u2

1þ a2u2

Eða1;a2; u1;u2;U2Þ ¼ Eþ;1;1ða1;a2; u1;U2Þ
� e1ða1 � a0

1Þþh Eþ;1;2ða1;a2; u1;U2Þ � e2ða2 � a0
2Þþ

�
�e3Eþ;2ða2; u2Þ�:

ð28Þ
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
The factor h scales the energy yield of the two pathways. In order to
simplify the model, we take g to zero, assuming the quasi-steady
state for U2. There is no justification for this assumption; experience
shows that in many cases the resulting model is suited to explain
data. With B ¼ B̂2=�B2 we find in the quasi-steady state

B
a2u2

1þ a2u2
¼ a1U2

1þ a1ðu1 þ U2Þ
: ð29Þ

Solving this equation for U2

a1U2 ¼
ð1þ a1u1Þða2u2Þ
1þ ð1� BÞa2u2

ð30Þ

yields the system

p0 ¼ A1Eþ;1ða1;a2;u1;u2Þ þ A2Eþ;2ða1;a2;u1;u2Þ
u01 ¼ �B1

~Eþ;1ða1;a2; u1;u2Þp
u02 ¼ �B2

~Eþ;2ða1;a2; u1;u2Þp
e1a01 ¼ a1@a1

~Eða1;a2; u1;u2Þ
e2a02 ¼ a2@a2

~Eða1;a2; u1;u2Þ

~Eþ;1ða1;a2; u1;u2Þ ¼
a1u1ð1þ a2u2ð1� BÞÞ
ð1þ a2u2Þð1þ a1u1Þ

;

~Eþ;2ða1;a2; u1;u2Þ ¼
a2u2

1þ a2u2

~Eða1;a2; u1;u2;u2Þ ¼ Eþ;1ða1;a2; u1;u2Þ
� e1ða1 � a0

1Þþh ð1� e3Þ~Eþ;2ða1;a2; u1;u2Þ � e2ða2 � a0
2Þþ

� �
ð31Þ

Though the new model equations are more handy, one effect is
scaled away: In the non-scaled equation, presence of substrate u2

leads to the presence of U2, and this in turn forces the
@a1Eða1;a2; u1;u2Þ to become positive, even if u1 ¼ 0. This is, sub-
strate two will increase the velocity at which pathway one is acti-
vated, even if substrate two is largely hindered to be degraded. In
order to re-introduce this effect that has been scaled away, we
introduce artificially an interaction term into the net energy
~Eða1;a2; u1;u2Þ, but leave the energy gain functions ~Eþ;1 and ~Eþ;2
unchanged. We define

Êða1;a2; u1;u2;u2Þ ¼ ~Eða1;a2; u1;u2;u2Þ þ w
a1u2

1þ a1u2
: ð32Þ

That is, in presence of u2, the energy eE increases in a1. This fact
forces pathway one to increase its potential activity if substrate u2

is present. Please note that, for a1 ¼ u1 ¼ 0, we obtain the overall
form of a single substrate pathway for u2, and for u2 ¼ a2 ¼ 0, we
have for substrate u1 the usual single-pathway model. The model
here is a direct generalization of single-pathway dynamics to a hier-
archical topology of substrate processing networks.
4. Application to data

4.1. Batch experiments

We consider the degradation of toluene, acetate and benzoate
by G. metallireducens. In the present section, we focus on four batch
experiments: two experiments where acetate and benzoate are
offered alone, and two experiments with two substrates present
at the same time: toluene and acetate, resp. toluene and benzoate
[25,26].

In G. metallireducens, the important stepping stones in the
metabolism are the conversion of toluene and benzoate to ben-
zoyl-CoA [33,2], resp. the conversion of benzoyl-CoA and acetate
to acetyl-CoA [2,47]; acetyl-CoA is a central intermediate product
of a class of substrates that enters the TCA cycle, one central
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://
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energy-producing pathway. Among other things, the energy pro-
duced here is used to produce biomass or energy [14] (see Fig. 6).

There is, of course, some degree of freedom in the interpretation
of the metabolism; in particular which step is to consider as ‘‘bot-
tleneck’’ has some arbitrary aspects. We know that benzoate and
benzoyl-CoA are rather similar, and only minimal reactions are
required to transform benzoate into benzoyl-CoA. Though toluene
is also rather readily transformed into benzoyl-CoA, at least two
intermediate steps are necessary. We thus assume that these two
substances form a hierarchical pathway. The intermediate product,
benzoyl-CoA, as well as acetate are both converted into acetyl-CoA,
which in turn is – via the TCA cycle – eventually also converted
into biomass. There are several reactions necessary for the trans-
formation of benzoyl-CoA into acetyl-CoA, while only one step is
required to transform acetate into acetyl-CoA. However, we sim-
plify the situation in considering benzoyl-CoA and acetyl-CoA as
close relatives, and grouping them together as one entry node into
the TCA cycle. We thus only place a bottleneck downstream of
acetyl-CoA, and consider the pathway from acetate resp. benzo-
ate-CoA as early converging.

Following this line of reasoning, we set up one single model for
the pathway and all experiments. Only initial conditions of the
concentrations in toluene, benzoate and acetate are adapted in
order to reproduce the data of four batch culture experiments: ace-
tate only, benzoate only, acetate and toluene, and benzoate and
toluene. p denotes the population size, and acetate; benz; tol
denote the concentrations of acetate, benzoate and toluene, and
aa; ab and at the respective activity variables. In addition, also
FeII has been measured in the experiment; as G. metallireducens
is anaerobic microorganism it uses FeIII as electron acceptor and
during degradation of carbon sources the FeIII is reduced into
FeII which can be monitored. FeII is generated in the degradation
of all three substances, and is thus an additional indicator about
the amount of substrate consumed. Although sometimes a large
variance in the FeII data can be observed, it can be used as an addi-
tional, advantageous check of the system and model.

In order to build up the model, we define the energy gain and
the loss for the different pathways, and describe how to combine
the energies to the complete model. First of all, the concentrations
of acetate, benzoate and toluene that are to process (modulated by
the activity variables) read

aa acetate; ab benz; at tol:
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We first consider the fate of toluene: toluene is pre-processed to
benzoyl-CoA. Let T denote the intermediate product that is fed into
the benzoate pathway. We have the equation for the dynamics of T
given by

eT T 0 ¼ B̂t
attol

1þ attol
� �B2Et;þ: ð33Þ

Connected with this pre-processing are not only the costs for
the potential activity of the pathway etðat � a0

t Þþ, but also costs
per processed toluene molecule, i.e. the energy required to process
tol is proportional to attol=ð1þ attolÞ. Three substrates at different
concentrations are fed into the Michaelis–Menten processing
device downstream the convergence point: ab T; ab benz, and
aa acetate. From that, we are able to define the different contribu-
tions to the overall energy:

gainðacetateÞ Ea;þ ¼aa acetate=ð1þaa acetate
þab benzþab TÞ

costsðacetateÞ Ea;� ¼ eaðaa�a0
aÞþ

gainðbenz:Þ Eb;þ ¼ab benz=ð1þaa acetateþab benzþab TÞ
costsðbenz:Þ Eb;� ¼ ebðab�a0

bÞþ
gainðpre-pr:tol:Þ Et;þ ¼ab T=ð1þaa acetateþab benzþab TÞ

costsðpre-pr:tol:Þ Et;1;� ¼ etðat�a0
t Þþ

lossðpre-processingÞ Et;2;� ¼attol=ð1þattolÞ

An overall maintenance energy of the metabolism is neglected, as
this energy is known to be extremely low in case of G. metalliredu-
cens [21]. We follow the reasoning in Section 3 (hierarchical model):
we let eT ! 0, and introduce additionally an interaction term
between toluene and benzoate,

ETB ¼ abtol=ð1þ abtolÞ: ð34Þ

The experimental results indicate that the acetate pathway is
(indirectly) activated by toluene (compare the time scale for ace-
tate degradation in Figs. 7 and 10). The biochemistry of G. metalli-
reducens supports this conjecture up to a certain degree, since
toluene is degraded via benzoyl-CoA into acetyl-CoA; to mimic this
process, we additionally introduce the interaction energy

ETA ¼ aatol=ð1þ aatolÞ: ð35Þ

Note that these terms do not appear directly in the consump-
tion of nutrients or biomass production, but that these terms influ-
ence the control variables. The interaction terms formulate
additional aspects of the pathway that controls the nutrient
uptake, and not the uptake itself. Details of the model can be found
in Appendix C.

We fit this model simultaneously to four batch experiments
with acetate only, benzoate only, and the combinations of ace-
tate/toluene resp. benzoate/toluene. Note that not all components
have been measured in all experiments; however, there is
sufficient information to adapt the model in a sensible way. The
rate constants of the model are the same for all experiments, only
the initial conditions are adapted. The parameters are stated in
Appendix C, the simulation and data are shown in Figs. 7–10.

The first point to note is that the model structure represents the
biochemical pathways well enough to allow not only for qualita-
tive but also for quantitative analysis of the data. If we consider
the data and model results more in detail, we find that benzoate
and toluene are processed at the same time (Fig. 9, corresponding
to regions D1, D2 and E in Fig. 5). Furthermore, as expected on basis
of the topology and our theoretical considerations, we find that
acetate inhibits toluene consumption (Fig. 10, region C2 in
Fig. 3): the classical diauxic growth can be observed in Fig. 10.
Additionally, we nicely observe the effect of cross-linking between
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://
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the pathways. If only acetate resp. benzoate is present, the control
variables of the other two pathways stay at the basal level. Tolu-
ene, however, activates via the interaction terms the acetate as
well as the benzoate pathway. In presence of toluene, aA and aB

are increased also if no acetate resp. benzoate is present (Figs. 9
and 10). The activation of the benzoate pathway by toluene is nat-
ural as benzoate (better: benzoyl-CoA) is an intermediate product
of the toluene pathway, and since benzoyl-CoA is processed into
acetyl-CoA one can understand why also the acetate pathway is
activated.

We may infer from the model the interaction characteristics of
acetate and benzoate (though this substrate combination is not
directly investigated in the batch experiments). If we use the
parameter values determined, and assume a fixed acetate
resp. benzoate concentration, Fig. 11 indicates the optimal nutrient
consumption strategies. If the acetate concentration is
predominating, acetate will hinder benzoate to be consumed. Only
if very few acetate but a high benzoate concentrations are present,
the bacteria will prefer benzoate over acetate. Of special interest is
a substantial region of combinations of concentrations (gray
shaded), where the degradation of benzoate only resp. the
0 20 40 60 80 100

0
20

40
60

80
10

0

time [h]

p 
[1

e6
 c

el
ls

/m
l]

0 20 40 60

0
0.

2
0.

4
0.

6
0.

8

time [h]

ac
et

at
e 

[m
M

]

acetate

αa

0 20 40 60

0
0.

2
0.

4
0.

6
0.

8

time [h]

to
lu

en
e 

[m
M

]

toluene

α
t

0 20 40 60 80 100

0
5

10
15

20

time [h]

Fe
II

 [m
M

]

Fig. 8. Batch experiment: benzoate only (d

Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
degradation of acetate only form local maxima. While the single
cell should concentrate on one nutrient only, the population may
decide for one nutrient only, or to consume both nutrients in par-
allel. It is not clear if the nutrient uptake strategy will be homoge-
neous or heterogeneous in the population, i.e. if all cells decide for
the same strategy, or if the population splits in two phenotypes,
each of them specialized to one nutrient. Even oscillatory behavior
cannot be excluded, where individuals or the population switches
periodically or randomly between feeding first on one and then on
the other substrate.

4.2. Retentostat

In order to further validate the model approach, we analyzed
three further experiments using the retentostat, and acetate/ben-
zoate as substrate combination. A retentostat is a device similar
to a chemostat, in which the bacteria are not washed out but are
kept in the reaction vessel. The ecological situation and the
physiology of bacteria under retentostat conditions relatively to
batch is very different [25,26]. It is not clear at all, if a model,
adapted to batch culture experiments, can be adapted to a
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retentostat. A second challenge for the model is the fact, that this
substrate combination (acetate/benzoate) has not been present in
the batch culture experiments, s.t. the model has only been able
to indirectly learn what to expect in this situation.

The adaptation of the model structure is straight, only inflow
and outflow has to be added where necessary (see Appendix C).
The flow rates are known. We used the rate constants obtained
by the batch culture up to one rate: the growth rate of bacteria
due to acetate, Aa, had to be adapted; and, of course, initial condi-
tions required adaptation. With these little modifications, the
model is able to explain the data quite well for the first and the
third replicate for the first 120 h (see Figs. 12 and 14). In these
two replicates, we basically find catabolite repression as expected
from the analysis of the toluene/acetate batch culture experiments.
In the second replicates, acetate seems to oscillate (Fig. 13). In this
case, the overall concentration range is met by the model, but the
model does not follow the time course of the data in detail. We
excluded the time after 120 h in our analysis, as the cells started
to attach to the vessel wall and seemed to initiate biofilm forma-
tion. From this time on, the behavior is not comparable any more
with the batch experiments.
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
If we compare the data of the three replicates, we find the sec-
ond replicate differs strongly from the first and the third, quantita-
tively as well as qualitatively. The reason for this is by no means
clear. A possible explanation is offered by Fig. 11: the acetate/ben-
zoate concentration measured in the retentostat are close or within
the bistable region indicated in Fig. 11. It may happen that cells
switch between the different behavioral pattern (consumption of
benzoate resp. consumption of acetate) in a complex manner.
Depending on initial conditions, a heterogeneous population may
lead to the complex, dynamical patterns observed in the experi-
ments. In particular, it is possible that the oscillatory behavior as
observed in the second replicate is a consequence of the adaptation
of the abundance of phenotypical subtypes. However, there are
other and more explanations possible.

5. Discussion

Our study aims to deepen the understanding of driving forces
behind the interactions of metabolic pathways. It can help to pre-
dict the degradation dynamics e.g. in bioremedation processes, if
some core properties of the involved catabolic pathways are
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://
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known. Vice versa, in cases of unknown catabolic pathways,
observed degradation dynamics for different substrates give hints
about the underlying topology. The approach is based on the idea
that a cell tries to optimize its energy intake. It is necessary to note
that an implicit assumption underlying all these considerations is
that evolution forced the cells to optimize the pathways indeed.
If the possible advantage is too small, this optimization may not
take place. Furthermore, it may be that the cells are still in a tran-
sient stage, and the optimization is still not complete. In such sit-
uations, the results discussed here are not applicable. However,
this approach is for example close to metabolic control theory
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
due to Kascar et al. [16] and cybernetic modeling of metabolic
fluxes [20,41,34]. Kascar still requires a fundamental knowledge
of fluxes within the cell. This is far more than what we want to
ask as prerequisite for modeling. The differences to cybernetic
models are mainly the treatment of costs connected to the activity
of a pathway; we propose to introduce a generic term explicitly
addressing the burden, while mostly cybernetic addresses these
costs not explicitly, but by an appropriate formulation of the met-
abolic chain, including the production of enzymes required to acti-
vate the pathway. The simplicity of the present approach allows to
formulate models with less knowledge about the metabolic chains,
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://
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Fig. 14. Third replicate of the retentostat (‘‘retent. 3’’). Dots: data, curves: result of the model.
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as we use Monod terms and linear functions, implicitly claiming
that these functions are generically sufficient approximations of
more complex, ‘‘true’’ functional responses. We developed this
idea, following two different lines of reasoning: a qualitative, the-
oretical analysis allowed to classify different consumption strate-
gies; a quantitative application to data validating the concept
and allowing to investigate batch- and retentostat experiments.

The theoretical considerations identified situations where dif-
ferent behavior is to expect. The results indicate that the overall
topology of the pathway is decisive. In the present work, we distin-
guish three, basic topologies: two independent pathways (parallel
topology), two pathways competing for one enzymes (early con-
verging topology), and the case that one substrate is intermedi-
ately converted into the other substrate (hierarchical pathway).
The first possibility leads to a simultaneous degradation of the sub-
strates. Early converging as well as hierarchical topologies have
catabolite repression as consequence: if the concentration of sub-
strate one is much higher than that of substrate two (in the sense
that it pays considerably more to degrade substrate one), the con-
sumption of substrate two is repressed. It is to note that this
repression is basically symmetric: also the substrate two may
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
repress substrate one if the concentrations are in favor for it. How-
ever, it may happen that this reversed situation appears only if
substrate one is present in extremely low concentrations. If we
change the concentrations, somewhere a transition between the
repression of the first substrate by the second, and the second by
the first appears. It is this transition, where the early convergent
and the hierarchical pathways are different. In the case of early
convergent pathways, a bistable region appears. Within this region,
the consumption strategy ‘‘consume only one substrate’’ forms a
local optimum, for consumption of substrate one as well as for con-
sumption of substrate two. Though one of the local optima is most
likely slightly better than the other, we nevertheless expect a
region where the two local optima are de facto equivalent. From
the present analysis it is not clear what the population will do –
split into two phenotypes, or decide to go for one substrate only.
Inspired by optimization theory, we expect the population to split
into two sub-populations, each of them targeted on one substrate.
The hierarchical pathway shows even a richer dynamic: depending
on the parameters and on the concentrations, either a bistable
region with two one-substrate-only solutions, a bistable region
with one both-substrates and one one-substrate-only strategy, or
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://

http://dx.doi.org/10.1016/j.mbs.2014.06.012
http://dx.doi.org/10.1016/j.mbs.2014.06.012
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a region with parallel consumption of both substrates by all cells
appear.

All in all, we have three basic carbon utilization pattern: parallel
consumption, catabolite repression, and a bistable behavior, where
individual cells only access one carbon source, but the population
(may) split into two phenotypical subtypes, s.t. on population level
both carbon sources are utilized. Schreiber and Tobiason [36] con-
sider an ecological model for allocation strategies in case of two
resources. They distinguish between antagonistic, substitutable,
complementary and essential resources. In case of substitutable
resources they predict that the allocation strategy is a random dis-
tribution over the resources. However, the authors conclude that
this situation is highly unstable as any modification of the model
that introduce some aspect of antagonism leads to the formation
of specialized sub-populations. The difference between the present
and that model is in particular the formulation of costs related
with the allocation of a resources. In [36], costs are only taken into
account in so far as the total uptake rate is limited, and can be dis-
tributed between the two resources. Therefore it is not strictly pos-
sible to connect different topologies in the present work to
different resource types in their work. It is perhaps possible to
relate the parallel topology to the substitutable case. In case of
early converging or hierarchical structure, our model can be con-
sidered as antagonistic: the uptake of one resource decreases the
uptake rate of the other resource in a nonlinear fashion. In this
interpretation, our conjecture that this competition of substrates
in the processing chain leads to heterogeneity in the population
is in line with the conclusions in [36].

It is remarkable that – in contrast to parallel consumption and
catabolite repression – almost no heterogeneous utilization strate-
gies, i.e. formation of two specialized microbial sub-populations,
are reported. At least, heterogeneous uptake of leucine by Cytoph-
aga-Flavobacter has been found [39]. Even more interesting is the
discussion in [18]. This paper studies the simultaneous uptake of
pentose and hexose sugars; very often catabolite repression hin-
ders the simultaneous consumption. There are, however, microbial
species or strains, where the different sugars are utilized in paral-
lel. It is not clear, if single cells access both carbon sources, or if the
cells specialize. In a second study [19] the authors found differ-
ences between cells of the species Lactobacillus brevis in their
uptake behavior, depending on the history of the cells. Recent
results indicate heterogeneity in the TOL system ([30] and refer-
ences herein); the TOL system degrades toluene in two steps: first
it is degraded to benzoate/3-methylbenzoate, which in turn can be
easily converted into intermediates for the central metabolism.
Seemingly, in particular the first step is only done by a sub-popu-
lation; the diffusing benzoate/3-methylbenzoate can be then con-
sumed by all of the bacteria. Also this is an example for
heterogeneity in nutrient uptake, this time in case of a single nutri-
ent. The reason that heterogeneous uptake strategies are seldom
monitored could be also caused by the fact that this behavioral
type is difficult to recognize, and does not necessarily indicate that
it is not abundant.

In order to validate this approach, and to test if not only quali-
tative but also quantitative conclusions are possible by means of
this structure, we modeled the degradation of acetate, benzoate
and toluene by G. metallireducens. We first applied the model to
four batch experiments. A large simulation model for the metabo-
lism of G. metallireducens is described in [42]. The starting point of
that model is the genome of the bacteria, comparison with similar
bacteria and flux balance analysis. Though it represents a useful
tool, it is difficult to validate these large simulation models and
to extract reliable information. Our approach is at the other end
of the complexity, taking into account only very little pre-knowl-
edge about the topology of the pathways. Therewith it was possi-
ble to explain all four experiments by means of one single model,
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
without e.g. changing the rate constants. In particular, we found
in accordance with the theory catabolic repression of toluene by
acetate. The combination of benzoate and acetate has not been
addressed in the batch culture experiments, but the theory pre-
dicts also here catabolic repression resp. bistable situations. Next,
we extended the model describing batch culture to retentostat
experiments with benzoate and acetate. Even here, only minor
adaptations (concerning one rate constant only) have been neces-
sary to explain the data for two of the three replicates; though
rather different in detail, these two replicates showed catabolic
repression as predicted before. The third replicate showed oscilla-
tory behavior – the model has only been able to meet the overall
range for the concentration but not to follow the precise time
course. An explanation (which is only one explanation possible,
but an interesting one) is, that the concentrations met the bistable
region. That is, heterogeneity and complex switching between the
two optimal consumption strategies may lead to rather heteroge-
neous experimental results.

Naively, one would expect that the pathways consisting of
many, tightly controlled, and sophisticated biochemical reactions,
cannot be covered by the model developed by rather qualitative
considerations. However, also many models that describe chemo-
stat or batch culture use e.g. Monod- or Hill functions to describe
substrate uptake, are able to quantitatively reproduce and predict
data. Our approach is a direct generalization of these models, tak-
ing into account possible interactions between different pathways.
On that basis, we expect that the present finding, the ability to
reproduce and predict experimental data in a quantitative way, is
not a coincidence but is a generic property of the modeling
approach.

Although the constraints are not too tight, the model naturally
does not cover all possible scenarios. In particular, there are three
shortcomings: (1) the core idea of the model does not cover spatio-
temporal heterogeneities, (2) the model approach focuses on single
cells, and not on the population and (3) the model does not take
into account interaction with different microbial species or other
organisms as plants and higher animals.

Spatio-temporal heterogeneities may lead to more complex
strategies. It is possible that a typical time-pattern of appearance
and disappearance of substrates forces cells to keep pathways
potentially active, even in absence of the substrate, in order to
allow for a fast degradation.

To focus on the population instead of single cells is necessary as
some situations are not to decide on single cell level. An example
are the bistable uptake pattern revealed in the analysis. Another
example is bet hedging [5,29]: a small fraction of the population
selects a suboptimal state in order to survive or grow fast if the
environment changes.

Further interesting aspects not yet included in the actual state
of our model arise from the growing field of sociomicrobiology
[31], which understands bacterial populations as social entities.
This allows to safe maintenance costs for e.g. extracellular activi-
ties as pre-processing of large substrate molecules. This might be
organized in a cell density, or more generally, efficiency depending
way [10,13]. Interestingly, almost all quorum sensing systems con-
trol extracellular degrading enzymes. Our cellular model, which
does not consider the population, predicts that for the hierarchical
pathways under certain conditions it can be optimal for cells to
degrade any of the substrate, but not both simultaneously. This
hints to the possibility of a controlled differentiation of isogenic
bacteria populations, allowing division of work which optimizes
colony growth and survival (see e.g. [22]). Other abiotic and biotic
factors also interact with optimization of catabolic processes.
Examples comprise cross feeding with other species, concentration
of other potentially relevant, e.g. limiting factors, which might
even be affected by the catabolic process itself (e.g. electron
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://

http://dx.doi.org/10.1016/j.mbs.2014.06.012
http://dx.doi.org/10.1016/j.mbs.2014.06.012
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acceptors), the existence of more than one catabolic pathway for a
substrate in a cell, and a dependency of the net energy gain on
environmental or physiological conditions. Under some conditions,
for example in the presence of a high competitive pressure by
other species, a faster, but with respect to net energy gain more
inefficient catabolic pathway may benefit the overall performance
of a population [9].

Appendix A. Analysis of two early converging pathways

The derivatives of the net gain w.r.t. a1 (a2) read

@a1E ¼
u1ð1þ ð1� hÞa2u2Þ
ð1þ a1 u1 þ a2 u2Þ2

� e1

@a2E ¼ h
u2ð1þ ð1� 1=hÞa1u1Þ
ð1þ a1 u1 þ a2 u2Þ2

� e2

 !
:

There are natural candidates for the control: the single-substrate
strategies ða1;a2Þ ¼ ða�1;0Þ resp. ¼ ð0;a�2Þ. We know the solution
for a single substrate:

a�i ui ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi
u1=ei

p
� 1Þþ:

Is ða�1;0Þ a local minimum or maximum? We are inspecting the sign
of @a2E at ða�1;0Þ. We identify the curve @a2E ¼ 0, at which the strat-
egy switches from local maximum to saddle point,

0 ¼ @a2Eja�1 ;0Þ ¼ h
u2ð1þ ð1� 1=hÞa1u1Þ

ð1þ a1 u1Þ2
� e2

 !

¼ h
u2ð1þ ð1� 1=hÞ ð

ffiffiffiffiffiffiffiffiffiffiffi
u1=ei

p
� 1ÞþÞ

ð1þ ð
ffiffiffiffiffiffiffiffiffiffiffi
u1=ei

p
� 1ÞþÞ

2 � e2

0@ 1A ) ðu2=e2Þ

¼
ð1þ ð

ffiffiffiffiffiffiffiffiffiffiffi
u1=ei

p
� 1ÞþÞ

2

ð1þ ð1� 1=hÞ ð
ffiffiffiffiffiffiffiffiffiffiffi
u1=ei

p
� 1ÞþÞ

:

For u1 < e1 this curve becomes trivial (u2 equals e2 in this case); let
us assume that u1 > e1. Then, ðu2=e2Þ ¼ f ðu1=e1; hÞ with

f ðxÞ ¼ x
1=hþ ð1� 1=hÞ

ffiffiffi
x
p :

In a similar way, the control ða1;a2Þ ¼ ð0;a�2Þ can be investigated;
we find, that in this case the stability changes at

ðu1=e1Þ ¼ f ðu2=e2; 1=hÞ

with the same function f ðxÞ as defined above; this finding can be
obtained by the following observation: if we exchange substrate
one and substrate two (renaming the corresponding variables), then
h is transformed into 1=h. As the properties of the energy function
(local maxima and minima) are not changed by renaming the vari-
ables, we have an invariance of the system under the transforma-
tion ðu1;a1;u2;a2; hÞ# ðu2;a2; u1;a1;1=hÞ. We note that f ðx; 1Þ ¼ x.
I.e., for h ¼ 1 the two curves coincide.

Definition. Let yaðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðx2; hÞ

p
, where x 2 Rþ if h P 1, and

x 2 ½0; ð1� hÞ�1Þ in case of h 2 ð0;1Þ. ybðxÞ is defined by
x2 ¼ f ðy2

b ; 1=hÞ; yb P 0.

Bifurcations happen at the curves u1=e1 ¼ yaðu2=e2Þ, and
u1=e1 ¼ ybðu2=e2Þ.

Proposition. If h – 1; h > 0; yaðxÞ ¼ ybðxÞ happens only for x ¼ 0,
yað0Þ ¼ ybð0Þ ¼ 1, and x ¼ 1; yað1Þ ¼ ybð1Þ ¼ 1.
11831183

1184

1185

1186
Proof. For x ¼ 0, we find yað0Þ ¼ ybð0Þ ¼ 0;. Now assume that
x – 0. If yaðxÞ ¼ ybðxÞ ¼ y, we find
Please cite this article in press as: J. Müller et al., Model selection for microbial
dx.doi.org/10.1016/j.mbs.2014.06.012
x2¼
x2

h�1þð1�h�1Þx

hþð1�hÞy ) y¼ 1
1�h

h
1þðh�1Þx�h

� �
¼ x

h�1þð1�h�1Þx
:

Hence,

x2

h�1þð1�h�1Þx
¼ y2¼ x

h�1þð1�h�1Þx

 !2

) h�1þð1�h�1Þx¼1:

This in turn, implies x ¼ 1 and y ¼ 1. h
Proposition. Let h 2 Rþn f1g. Then,

yaðxÞ > ybðxÞ for x > 1

if yaðxÞ is defined.
Proof. We first show that y0að1Þ > y0bð1Þ. Thereto we note that

d
dx

f ðx2; hÞ ¼ 2xðh�1 þ ð1� h�1ÞxÞ � x2ð1� h�1Þ
ðh�1 þ ð1� h�1ÞxÞ2

¼ 2xh�1 þ ð1� h�1Þx2

ðh�1 þ ð1� h�1ÞxÞ2
:

Thus,

y0að1Þ ¼
d
dx f ðx2; hÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðx2; hÞÞ

p 					
x¼1

¼ ð1þ h�1Þ=2:

From 1 ¼ ðd=dxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðybðxÞ

2; 1=hÞ
q

, we conclude that

1 ¼ y0bðxÞ
d

dy f ðy2; 1=hÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðy2; 1=hÞÞ

p 					
x¼1;y¼1

) ybð1Þ ¼
2

1þ h
:

The inequality yað1Þ > ybð1Þ is equivalent with hþ 2þ 1=h > 4. The
minimum of hþ 1=h is located at h ¼ 1; thus, for h P 0; h – 1, we
indeed find 0:5ð1þ 1=hÞ > 2=ð1þ hÞ.

Above we showed that yaðxÞ and ybðxÞ do not intersect for x > 1.
Therefore, from yað1Þ ¼ ybð1Þ, and y0að1Þ > y0bð1Þ, we conclude
yaðxÞ > ybðxÞ for x > 1. h

In the region X1 :¼ fðx; yÞjyaðxÞ > y > 1; x > 1g, the function
Eðu1;a1;u2;a2Þju1¼xe1 ;u2¼ye2

possesses a local maximum on the axis
fa2 ¼ 0g; in X2 :¼ fðx; yÞjy > maxfyaðxÞ;1g; x > 1g, a local
maximum is on the axis fa1 ¼ 0g. Numerical analysis shows that
for ðu1=e1;u2=e2Þ 2 X1 \X3, there are two maxima on the axis,
and a saddle point in the interior of the positive cone.

Appendix B. Analysis of two hierarchical pathways

We consider the static situation for two hierarchical pathways
as stated in Section 2.2.3. We are interested at extremal points
(especially: maxima) of the energy function for a1a2 > 0. As the
energy function is zero for a1 ¼ a2 ¼ 0, and becomes negative if
either a1 or a2 is larger than a certain, positive constant, we may
restrict ourselves to a compact region of the positive quadrant in
order to find all relevant maxima. This is, we already know that
we have at least one global maximum; we may have several local
maxima.

We expect (for different parameters resp. substrate concentra-
tions) up to four different minima/maxima of the energy function
in ða1;a2Þ:

ð0;0Þ; ða�1;0Þ; ð0;a�2Þ; ða��1 ;a��2 Þ

where a�1; a�2; a��1 ; a��2 > 0.
We will compute these four solutions resp. find conditions

s.t. these solutions are local maxima. We will use u1=e1 and u2=e2
nutrient uptake using a cost-benefit approach, Math. Biosci. (2014), http://
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as bifurcation parameters. At the end, we will find that we need to
distinguish e3 2 ð0;3=4Þ and e3 2 ð3=4;1Þ, this is, also e3 is a bifur-
cation parameter, unfolding some higher codimension bifurcation
(codimension of at least three).

Before we start, for convenience we state the partial derivatives
of the energy function Eða1;a2; u1;u2Þ w.r.t a1 and a2,

Eða1;a2;u1;u2Þ ¼
a1u1

ð1þa1u1Þð1þa2u2Þ
� e1a1þð1� e3Þ

a2u2

1þa2u2
� e2a2

@

@a1
Eða1;a2;u1;u2Þ ¼

u1

ð1þa1u1Þ2ð1þa2u2Þ
� e1

@

@a2
Eða1;a2;u1;u2Þ ¼

ð1� e3Þu2

ð1þa2u2Þ2
� a1u1u2

ð1þa1u1Þð1þa2u2Þ2
� e2

ða1;a2Þ ¼ ð0;0Þ :

The location ða1;a2Þ ¼ ð0;0Þ is a local maximum, if the partial
derivatives at this point are negative, this is,

u1

e1
< 1 and

u2

e2
<

1
e3 � 1

:

In this case there is not enough nutrient of either substrate species,
s.t. the utilization does not pay at all.
ða1;a2Þ ¼ ða�1;0Þ :

If a2 ¼ 0, we have a single-substrate pathway, s.t.

a�1 ¼
1
u1

ffiffiffiffiffi
u1

e1

r
� 1

� �
if e1=u1 < 1. We inspect the partial derivative w.r.t. a2 at a�1;0Þ; this
point is a local maximum, if

0 >
@

@a2
Eða�1;0; u1;u2Þ ¼ ð1� e3Þu2 �

u2 a�1u1

1þ a�1u1
� e2:

All in all, we have a feasible, local maximum in ða�1;0Þ iff

u1

e1
> 1; and

u2

e2
<

ffiffiffiffi
u1
e1

q
1� e3

ffiffiffiffi
u1
e1

q :

This is, the region where ða�1;0Þ is a local maximum is strongly
enlarged by the interaction term (the effect of a2u2 on the energy
gain by substrate one). Let us call the curve

u2

e2
¼

ffiffiffiffi
u1
e1

q
1� e3

ffiffiffiffi
u1
e1

q
the curve C1.
ða1;a2Þ ¼ ð0;a�2Þ : We have again the single pathway solution

(slightly modified by the term 1� e3Þ,

a�2 ¼
1
u2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e3Þu2

e2

s
� 1

 !
if e3 < 1� e2=u2. The condition for this point to be a local maximum
reads

0 >
@

@a1
Eð0;a�2; u1;u2Þ ()

u1

e1
> 1þ a�2u2:

Thus, the point ð0;a�2Þ is a feasible, local maximum iff

u1

e1
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e3Þu2

e2

s
and

u2

e2
>

1
e3 � 1

:
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We may rewrite the first condition, and find

u2

e2
> max 1=ð1� e3Þ; ðu1=e2Þ2=ð1� e3Þ

n o
¼: Hðu1=e1Þ:

We call fu2=e2 ¼ Hðu1=e1Þju1=e1 P 1g curve C2.
ða1;a2Þ ¼ ða��1 ;a��2 Þ :

This situation is more involving to address than the previous
cases. We first assume a2 to be fixed and positive, and compute
the optimal a1 in dependence on a2 using the condition
@a1Eða1;a2;u1;u2Þ ¼ 0,

0 ¼ 1
ð1þ a2u2Þ

u1

ð1þ a1u1Þ
� e1ð1þ a2u2Þ


 �
a1 ¼ a��1 ða2Þ ¼

1
u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1

e1ð1þ a2u2Þ

r
� 1

� �
together with the condition
u1

e1
> 1þ a2u2

to ensure that a��1 ða2Þ > 0. If we plug a1 ¼ a�1ða2Þ into the energy, we
find

Eða�1ða2Þ;a2; u1;u2Þ ¼
1

1þ a2u2
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1

u1ð1þ a2u2Þ

r
� e1

u1
þ ð1� e3Þ

� a2u2

1þ a2u2
� e2a2:

The derivative of this term w.r.t. a2 is zero for a��2 . We obtain the
equation

0 ¼ �u2

ð1þ a��2 u2Þ2
þ

ffiffiffiffiffi
e1

u1

r
u2

ð1þ a��2 u2Þ3=2 þ
ð1� e3Þu2

ð1þ a��2 u2Þ2
� e2:

If we multiply this equation by ð1þ a2u2Þ2=e2, we may introduce
the functions g1ðxÞ and g2ðxÞ to re-write this condition in the follow-
ing way

g1ðxÞ ¼ �e3
u2

e2
þ

ffiffiffiffiffi
e1

u1

r
u2

e2

ffiffiffi
x
p

g2ðxÞ ¼ x2

g1ð1þ a��2 u2Þ ¼ g2ð1þ a��2 u2Þ:

For x > 0, we have g002ðxÞ ¼ 2 > 0 > g001ðxÞ. Thus, we have at most two
solutions. The transcritical bifurcation through ða1;a2Þ ¼ ða�1; 0Þ
happens, if g1ð1Þ ¼ g2ð1Þ and a�1 > 0. The condition g1ð1Þ ¼ g2ð1Þ
reads

u2

e2
<

ffiffiffiffi
u1
e1

q
1� e3

ffiffiffiffi
u1
e1

q :

At this line, the condition for positivity of a��1 ða2Þ becomes
u1=e1 > 1. This is, a transcritical bifurcation is located at the line C1.

A second transcritical bifurcation (this time at ð0;a�2Þ) takes
place, if the positivity condition u1=e1 > 1þ a2u2 breaks down,
i.e. for u1=e1 ¼ 1þ a2u2. We find the corresponding line by inspect-
ing g1ðu� 1=e1Þ ¼ g2ðu1=e1Þ, and find in this way the line C2 back.
This is, the boundaries of the single-strategy regions C1 and C2 form
transcritical bifurcations.

We do have an additional bifurcation in the system: a saddle-
node bifurcation. The saddle-node bifurcation happens for
g1ðxÞ ¼ g2ðxÞ; g01ðxÞ ¼ g02ðxÞ at x ¼ 1þ a2u2 > 1. The condition
g01ðxÞ ¼ g02ðxÞ reads

ffiffiffiffiffi
e1

u1

r
u2

e2

1
2
ffiffiffi
x
p ¼ 2x ) x ¼ 1

24=3

u1

e1

� ��1=3 u2

e2

� �2=3

:
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If we plug in this value into g1ðxÞ ¼ g2ðxÞ, we have

�e3
u2

e2
þ u1

e1

� ��1=2�1=6 u2

e2

� �1þ1=3 1

22=3 ¼
1

28=3

u1

e1

� ��2=3 u2

e2

� �4=3

) u2

e2
¼ 256e3

3

27
u1

e1

� �2

:

The positivity condition for a��1 implies u1=e1 > 1, while the pos-
itivity condition for a��2 corresponds to x > 1, this is

ðu2=e2Þ2 > 24=3ðu1=e2Þ:

If e3 2 ð0;1Þ; e – 3=4, the slope of the saddle-node line is less
than that of C2. Only for

e3 ¼ 3=4

the saddle-node line and the transcritical curve C2 coincide, while C1

and C2 are tangential at ða1;a2Þ ¼ ð1;1=ð1� e3ÞÞ. This point is the
organizing center of the bifurcation structure. We basically need
to understand two parameter intervals: e3 2 ð0;3=4Þ and
e3 2 ð3=4;1Þ.

Numerical analysis reveals that for e3 > 3=4 the saddle-node
line is not feasible, and we only have one non-trivial two-sub-
strate-solution that connects the one-substrates regions.

For e3 2 ð0;3=4Þ, the situation is more involving: by means of
numerical analysis, one finds that both single-substrate regions
overlap. Moreover, from line C1 a saddle-node bifurcation curve
branches (tangentially to this line). In this case, we do have a bista-
ble region with two non-trivial two-substrate solutions, one locally
stable and one locally unstable (this is, one local minimum and one
local maximum).

Appendix C. Model for batch- and retentostat experiments

Batch culture model. We start off with the energy gain defined in
the main part of the paper. Like before, we use time scale argu-
ments to remove the variable T. Letting eT ! 0, we obtain

B
attol

1þ attol
¼ Et;þ ¼

ab T
1þ aa acetateþ ab benzþ ab T

and

Bat tolð1þaa acetateþab benzÞ¼abTð1þat tolð1�BÞÞ
) ð1þaa acetateþab benzþabTÞ

¼ð1þat tolÞð1þaa acetateþab benzÞ
ð1þat tolð1�BÞÞ

This results leads to the adapted gain functions,
P
d

gain (acetate)
lease cite this article in
x.doi.org/10.1016/j.mb
Ea;þ
press a
s.2014.0
¼ aa acetate 1þattolð1�BÞ
ð1þat tolÞð1þaaacetateþabbenzÞ
costs (acetate)
 Ea;�
 ¼ eaðaa � a0
aÞþ
gain (benzoate)
 Eb;þ
 ¼ ab benz 1þattolð1�BÞ
ð1þat tolÞð1þaaacetateþabbenzÞ
costs (benzoate)
 Eb;�
 ¼ ebðab � a0
bÞþ
gain (pre-
processing
toluene)
Et;þ
 ¼ attol=ð1þ attolÞ
costs (toluene)
 Et;1;�
 ¼ etðat � a0
t Þþ
loss (pre-
processing)
Et;2;�
 ¼ attol=ð1þ attolÞ
Interaction
toluene/
acetate
ETA
 ¼ aatol=ð1þ aatolÞ
1492
Interaction
toluene/
benzoate
ETB
 ¼ abtol=ð1þ abtolÞ
s: J. Müller et al., Model selection for microbial
6.012
that in turn determine the dynamic model

p0 ¼ ½AaEa;þ þ AbEb;þ þ AtEt;þ�p
acetate0 ¼ �BaEa;þ

benz0 ¼ �BbEb;þ

tol0 ¼ �BtEt;þ

FeII0 ¼ jaBaEa;þ þ jbBbEb;þ þ jtBtEt;þ

eaa0a ¼ aa@aaE
eba0b ¼ ab@ab

E
eta0t ¼ at@atE
E ¼ Ea;þ � Ea;� þ haðEb;þ � Eb;�Þ þ hbðEt;þ � Et;1;�Þ

þ wTAETA þ wTBETB:

The constants wTA and wTB indicate the relative importance of the
cross links between toluene and acetate/benzoate.

Retentostat model. Let D denote the influx/efflux rate, and acet0,
benz0, and tol0 the concentration of the three substances in the
inflowing medium the model equations then read

p0 ¼ ðAaEþ;aþAtEþ;tþAbEþ;bÞp
acetate0 ¼Dðacetate�acetate0Þ�BaEþ;ap

benz0 ¼Dðbenz�benz0Þ�BtbEþ;bp

tol0 ¼Dðtol� tol0Þ�BtEþ;tp
FeII0 ¼ ðjaBaEþ;aþjtBtEþ;tþjbBbEþ;bÞp
eaa0a¼aa@aaE
eba0b¼ab@ab

E
eta0t¼at@atE
E¼Ea;þ�Ea;�þhaðEb;þ�Eb;�ÞþhbðEt;þ�Et;1;�ÞþwTAETAþwTBETB:

Parameters of the models. First we list the rate constants of the
model. Note that only the rate constant Aa varies between batch
culture and retentostat model.
nu
Name U
trient u
nit V
ptake using a cost-ben
alue
(Batch)

V

efit approach
alue (Retento)
Aa 1
/h 0
.17 0
.17 (0.085) (see text
below)
ea m
M 0
.1 0
.1

hA 1
 1
:2 1
.2

Ba m
M/(h cells/ml) 8
:4e� 09 8
:4e� 09

ea h
/mM 4
0 4
0

aA;0 1
/mM 0
:01 0
.01

At 1
/h 0
:8 0
.8

et m
M 0
:001 0
.001

hT 1
 0
:5 0
.5

Bt m
M/(h cells/ml) 4
e� 09 4
e� 09

et h
 mM 0
:57 0
.57

aT;0 m
M 0
:01 0
.01

B 1
 1
 1

Ab 1
/h 0
:26 0
.26

eb m
M 0
:02 0
.02

hB 1
 0
:468 0
:468

Bb m
M/(h cells/ml) 2
e� 09 2
e� 09

eb h
 mM 1
 1

aB;0 1
/mM 0
:14 0
.14

wTB 1
 1
 1

wTA 1
 1
00 1
00

ja 1
 8
 8

jt 1
 3
6 3
6

jb 1
 2
0 2
0
, Math. Biosci. (2014), http://
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For replicates ‘‘retent. 1’’, ‘‘retent. 3’’ we used Aa ¼ 0:085=h,
while for replicates ‘‘retent. 2’’ Aa ¼ 0:17=h was chosen. The initial
conditions and D had to be adapted to the experiments (D is zero
for batch culture, and given by physical conditions for the retento-
stat experiments). The following table indicates the values used.
Note that only the initial values for the control variables are arbi-
trary; all other variables have been chosen as indicated by the
measurements at the first time point (time zero) resp. the physical
conditions of the experiments. To abbreviate notations, we denote
in the batch experiments by bath 1 the experiment with acetate
only, by batch 2 the experiment with benzoate only, by batch 3
that with benzoate and toluene, and by batch 4 that with acetate
and toluene.
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607

Variable unit batch 1 batch 2 batch 3 batch 4 retent. 1 retent. 2 retent. 3

acetate mM 3.7 0 0 2.5 0 1.3 1.3
benz mM 0 0.7 0.35 0.5 0 0.3 0.45
tol mM 0 0 0.4 0 0 0 0
p 1e6 cells/ml 6.65 6.65 6.65 6.65 120 75 288
FeII mM 3.6 4.5 0.9 0.325 37 0 35
aA 1/mM 0.01 0.01 0.01 0.01 0.4 0.8 0.06
aB 1/mM 0.01 0.01 0.01 0.01 0.8 0.08 7e�5
aT 1/mM 0.01 0.01 0.01 0.01 0.01 0.01 0.01
acetate0 mM – – – – 2.5 2.5 2.5
benz0 mM – – – – 0.7 0.7 0.7
tol0 mM – – – – 0 0 0
D ml/h – – – – 30 30 30
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