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Abstract

We study the differentiation of hematopoietic stem cells using machine learning
methods. This work is based on experiments focusing on the lineage choice of CMPs,
the progenitors of HSCs, which either become MEP or GMP cells. Identifying the
point in time when the decision of the linage choice is made is very difficult. As of
now, the two biological markers GATA and FCgamma are used to identify these cells
in an in-vitro experiment and then take them out for further expression analysis.
However, prior results showed that an earlier detection might be possible and that
the lineage choice seems to be several generations ahead of when the biological

markers can identify the cells.

We present a novel approach to distinguish MEP from GMP using machine learning
by using morphology features extracted from bright field images. Our model requires
continuous measurements over one cell cycle with features describing the shape and
texture of the segmented cell images. We test the performance of different models
and focus on Recurrent Neural Networks with the latest advances from the field of
deep learning. Two different improvements to recurrent networks were tested: Long
Short Term Memory (LSTM) cells that are able to remember information over long
periods of time, and dropout regularization to prevent overfitting. The best results
were achieved by developing an extension of the LSTM model, using a bidirectional

and deep-layered approach.

With our method, we considerably outperform standard machine learning methods
without time information like Random Forests and Support Vector Machines. We
were able to achieve a high accuracy of 80% after 60 hours of experiment time, while
the biological marker was able to identify the cells only at 80 hours on average. In
addition, we also trained our neural network with the expression level of the PU.1
transcription factor to study its potential use as a biological marker. By using PU.1,
we were able to distinguish the cells with a high accuracy even earlier at 40 hours
into the experiment. The classification accuracy can be improved to 90% by only
taking high confident predictions. We measure the classification performance on
different time-lapse movies with other experimental settings than the training data.
Training the network on two movies takes about 3 hours on a GPU board, while

making a prediction is in the range of 40 milliseconds. This allows us to potentially



combine our method with an auto tracking approach that can be used in a live setup

to identify the different cell types.



Zusammenfassung

In dieser Arbeit untersuchen wir die Differenzierung von hamatopoetischen
Stammzellen mit Hilfe von Machine Learning Methoden. Die Ergebnisse basieren auf
Experimenten, die sich mit der Zelllinienentscheidung von CMPs konzenrieren. CMPs
sind die Progenitorzellen von HSCs, welche entweder zu MEP oder GMP Zellen
differenzieren. Die Identifizierung des Zeitpunkts zu dem die Zelllinienentscheidung
getroffen wird ist sehr schwierig. Bis zu diesem Zeitpunkt werden die zwei
biologischen Marker GATA und FCgamma verwendet um die unterschiedlichen
Zelltypen in einem in-vitro Experiment zu identifizieren wund fiir weitere
Expressionsanalysen zu extrahieren. Bisherige Ergebnisse im ICB haben jedoch
gezeigt, dass eine frithere Erkennung der Zellen moglich sein konnte und dass die
Zelllinienentscheidung schon einige Generationen vor dem Zeitpunkt liegt, an dem die

biologischen Marker die Zellen identifizieren konnen.

Wir préasentieren einen neuen Ansatz mit neuen Machine-Learning Methoden um
MEP von GMPs zu unterscheiden unter Verwendung von Form- und
Texturmerkmalen die aus Hellfeldbildern von Mikroskopieaufnahmen berechnet
werden konnen. Unser Modell bendtigt kontinuierliche Aufnahmen der Zelle iiber
einen Zellzyklus mit Merkmalen aus segmentierten Zellbildern. Wir testen die
Leistung von verschiedenen Modellen und konzentrieren uns auf Recurrent Neural
Networks unter Verwendung der letzten Fortschritte aus dem Deep-Learning
Fachgebiet. Zwei verschiedene Verbesserungen fiir Recurrent Networks wurden
getestet: Long Short Term Memory (LSTM) Zellen welche Informationen iiber lange
Zeitspannen speichern kénnen, und Dropout-Regularisierung um Uberanpassung zu
vermeiden. Die besten Ergebnisse wurden mit einer Erweiterung der LSTM Modelle

mit einem mehrschichtigen und bidirektionalen Ansatz erzielt.

Mit unserem Modell kénnen wir deutlich bessere Ergebnisse erzielen als géingige
Machine Learning Methoden, die keine Zeitinformation verstehen wie z.B. Random
Forests oder Support Vector Machines. Wir konnten eine hohe Genauigkeit von 80%
nach einer Experimentzeit von 60 Stunden erzielen, wahrend die biologischen Marker
die Zellen erst nach etwa 80 Stunden erkennen konnten. Zusétzlich haben wir unser
Neuronales  Netzwerk auch mit den  Expressionsmessungen des PU.1
Transkriptionsfaktors trainiert um dessen mogliche Verwendung als biologischen

Marker zu untersuchen. Unter der Verwendung von PU.1 konnten die Zellen bereits



nach 40 Stunden Experimentzeit mit einer hohen Richtigkeit erkannt werden. Die
Genauigkeit beider Klassifikationsmethoden kann zusétzlich noch auf 90% verbessert
werden, indem nur sehr sichere Vorhersagen genommen werden. In allen Fallen haben
wir unsere Genauigkeit auf verschiedenen Mikroskopiefilmen gemessen, die nicht in
den Trainingsdaten enthalten waren. Das Training des Netzwerks fiir zwei Filme
bendtigt etwa 3 Stunden auf einer Grafikkarte, wahrend das Treffen einer Vorhersage
nur etwa 40 Millisekunden benotigt. Diese kurze Zeit bei der Vorhersage wiirde es
ermoglichen, die Methode mit einem Ansatz zur automatischen Zellverfolgung zu
kombinieren, welcher wihrend einem laufenden Experiment verwendet werden

konnte.
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1 Introduction

1.1 Machine Learning

The focus of machine learning is to develop algorithms that can learn from data [1].
The traditional approach to solving a data-driven problem is to build an algorithm
that describes a systematic procedure of calculations specifically for the problem [2].
However, data from experiments or observations is often noisy and building such an
algorithm for high-dimensional data is not feasible in most scenarios. Machine
learning offers a solution to this problem. Instead of looking at the observations by
hand and manually finding patterns in the data, machine learning “gives the

computers the ability to learn without being explicitly programmed” [3].

The power of a machine learning model can be measured by its ability to learn and
generalize [4,5]. Generalization describes the ability of the model to perform
accurately on unseen observations. Achieving a good balance between generalization
and capability to learn is key in machine learning models. For parametric models,
increasing the learning capability of a model usually leads to a better performance on
the training data. However, often times the increase in performance stems from the
model learning the individual examples by memorizing individual training examples.
In this case, the generalization degrades and the performance for unseen examples
drops [6].

There are two different approaches to learning from data. The general case is
unsupervised learning, where the model is trained on a set of unlabeled examples |7—
9]. This means, that the training data is unordered and there is no prior knowledge
about the underlying structure of the data. The model aims to find common patterns

in the data that best helps distinguish the individual examples from each other.

A different problem statement is supervised learning [5,10]. Instead of unordered
data, the model also gets a label for each example in the set of observations. In the
case of classification [11,12], the focus is not to distinguish individual examples, but
different groups of labels. The other supervised learning problem is regression. In
statistics, a supervised classification problem is often solved with a logistic regression
model, since the probability output can be interpreted as the probability for class-
membership [13,14].
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Several mathematical methods like Support Vector Machines [15] or Random Forests
[16,17] have been developed for supervised classification. Unfortunately, the level of
abstraction these models can handle is usually very limited. In most cases, it is
required to build an algorithm that extracts meaningful features from the raw data
before the data can be learned [18,19].

A machine-learning problem that has received a great deal of attention in the recent
years is image classification. Building features that describe an image requires manual
analysis and lots of effort. In most cases, images are very noisy and different from
each other, and there are no universal image descriptors that fit every case [20,21].
The process of building features is very problem dependent and often this work
cannot be transferred to different areas. This becomes especially difficult when the
images cannot be classified manually and it is unclear if the label can be deduced
from the data.

Instead, a different approach is taken, starting with a mediocre representation of the
data with features that describe it more in a general or in an imprecise manner. The
idea is to then use these low-level features and build a model that looks at many
examples to find similarities and patterns in these observations. Just like the human
brain, the algorithm learns abstraction [22|. The difficulty remains in constructing
such a model, but once it is built, it can be applied to all kinds of problems with
numerous training examples. With the beginning of the deep learning era, models

that can perform a high level of abstraction were introduced.

1.2 Deep Learning

During recent years, deep learning has been a topic of great interest in the field of
artificial intelligence. Deep learning can be described as a way of analyzing
information with a layered structure where the goal is to gain higher levels of
abstraction by introducing more layers in the model [23-25|. These layered models
assume that the information can be organized in different levels of detail with a
hierarchical structure [26]. The success of this approach has made it an essential part
of machine learning and also the gold standard in solutions for problems like

handwriting analysis [27], image classification [28] and speech recognition [29].

The essence of deep learning is that the need for designing special features that
perfectly describe an observation becomes less important. Instead, one tries to design
models that can build the necessary features themselves from a mediocre

representation or even raw input of images or audio signals. Given a low-level
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representation of the data, the algorithm learns to build layers of features that
become increasingly meaningful until the solution to the problem becomes obvious.
Essentially, building features can be interpreted as a way of making the data more

abstract.

A model that lends itself perfectly to the idea of a layered representation learning is
the Artificial Neural Network [30,31]. Therefore, deep learning commonly refers to
learning neural networks with many layers [32]. The first deep-layered feed-forward
networks were published in mid-2000 by G. Hinton in Toronto and simultaneously in
Montreal using a different approach by J. Bengio [23,25]. Both models rely on first
training an unsupervised model that learns an increasingly abstract representation of
the data by stacking hidden layers of neural networks. Each layer was trained
separately to find a good representation of the layer below given the amount of units
it has available. After pre-training the layers, one would attach the labels for
supervised classification on top of the last layer and then fine-tune the free
parameters of the model slightly to fit the labels rather than a general representation
of the data.

The introduction of the unsupervised pre-training technique allowed further
investigation into the characteristics of stable deep networks. It was found that the
stability and generalization of a network highly depends on the range of the
parameters [33|. Later studies have shown that neural networks can be trained
without any pre-training step when initializing the parameters of networks properly

[34]. This allows the immediate training of a supervised deep-layered model.

Although deep nets have been topping most machine learning competitions, there has
been surprisingly little application in bioinformatics, a field with many problems that
have large undiscovered datasets [35-37]. The newest methods in machine learning
and especially representation learning could be very beneficial to many open
problems in biology. A topic of interest in medicine with great potential is research in

stem cells.

1.3 High-throughput time-lapse microscopy of murine

stem cells

The benefits of stem cell research are great with possible therapies for diseases such
as cancer, cardiovascular disease or dementia [38,39]. Stem cells are defined as

biological cells that possess the capacity of self-renewal and have the potency to
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differentiate [40,41]. This means that stem cells are able to produce daughter cells

with the same properties as their own, but also give rise to more specialized cell

types.

In our work, we focus on hematopoietic stem cells (HSCs), which are blood stem cells
that can be found in the bone marrow of adults [42]. They are responsible for
rebuilding cells of the blood and immune system. Studies of HSCs resulted in clinical

treatments for leukemia [43] and immune system disorders [44].

The different classes of hematopoietic stem cells can be categorized by their potency
and structured in a tree [42,45] (see Figure 1-1). At the root of the hierarchy are the
HSCs, which have the ability to self-renew and can give rise to hematopoietic
progenitor cells (HPCs) that are more specific and can only divide a limited number
of times. Our studies focus on the progeny of the common myeloid and lymphoid
progenitor (CMP) cells, which are either megakaryocyte-erythroid progenitors (MEP)
or granulocyte-macrophage progenitors (GMP) cells. MEP cells are the predecessor of
red blood cells and megakaryocytes, while GMP cells become granulocytes or

macrophages.
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Figure 1-1: Hierarchy of hematopoietic stem cells, adapted from [45]
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As of now, there is little knowledge about the molecular processes, which are involved
in the differentiation of hematopoietic progenitor cells [46]. Methods to measure the
molecular processes, such as expression profiles of gene regulation, require the cells to
be lysed and destroyed in the analysis. As the time point of differentiation is not
known, a snapshot analysis at the right point in time is very difficult. If the analysis
is performed slightly too soon or too late, information about what caused the

differentiation might be gone.

Therefore, non-invasive methods for continuous long-term study of the cells are
required [47]. A very promising approach ideally suited for this purpose is live-cell
imaging of in-vitro experiments [48-50]. As taking microscopic images of cells can kill
or change the behavior of the cells, the images have to be taken in short intervals of
several minutes. Repeated images are taken over several days, resulting in a long-

term microscopy movie of the cells.

Markers used in live-cell imaging are either fluorescent proteins that are encoded in
the genetic sequence of the cell, or antibodies that bind to specific molecules of the
cell [47,51,52]. The fluorescence levels of the cells are measured using cell imaging of
the specific fluorescent wavelengths. In the case of MEP and GMP, biological
markers are known that correlate with the differentiation. These markers allow the

labeling of the cells.

Figure 1-2: Example of a bright field image from long-term microscopy
The cells are the black objects with the white halo in the images. The other small

particles are dirt.
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When looking at the tracked genealogies, we observe that most siblings will
differentiate to the same type, either all MEP or all GMP. As shown in Figure 1-3,
the left sub tree has only MEPs and the right ones only GMPs. This suggests that
the decision whether the cell becomes GMP or MEP seems to be several generations
ahead of when the biological markers become active. This raises the question whether

there is a way to distinguish the cells before the onset of the currently used markers.

fluorescent
antibody labeling

Time

HANE
[T 1]

MEP GMP

Figure 1-3: Labeled tracking tree of HSC differentiation to MEP or GMP

Each line is branch in the tree is one linage, consisting of several cell cycles. When

the cell divides, the branch is split. Green are cell cycles with an active MEP marker,

while blue are cell cycles with an active marker for GMPs.

Two potential sources of information that have not been used for labeling so far are
the bright field images and the expression levels of other biological markers. Usually,
the bright field images are only taken for tracking purposes. However, in preliminary
studies [53] it was shown that morphological features of the cells could potentially be
used to distinguish MEPs from GMPs. Our goal is to further investigate these ideas

using innovative approaches of deep learning.
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1.4 Problem Statement
The goal of this thesis is to use deep learning methods to distinguish between MEP

and GMP cells. As training data, we use sequences of bright field images for each cell
over one cycle. The cells are manually labeled, if the fluorescent level of the marker
passes a certain threshold. This problem is called supervised binary time series

classification.

We want to address this problem using deep recurrent neural networks. Despite the
advances of these models in the last years, taking raw images as input is still too
complex when dealing with time series data. Therefore, we use features describing the
shape and texture of segmented cell images. Nevertheless, these models still have to
achieve a high level of abstraction as they are presented with temporal input and

have to find patterns and similarities in time.

We want to apply our classifier to other time-lapse movies and predict the label
unknown cells. As the tracking tree suggests that the lineage choice of the cells is
earlier than the biological markers become active, we hypothesize our approach might

be able to distinguish the cells at earlier stages.

1.5 Structure of the thesis

In the first three of chapters, we give a general introduction into the techniques we
are using. First, we present basic Artificial Neural Networks and Feedfoward models
that can handle one-dimensional input. Afterwards we cover the structure as well as
problems of Recurrent Neural Networks and possible solutions on how to address
these issues. The most important part of a neural network is the training process
where we focus on the two classic optimization techniques that are still the most
commonly used approaches and different regularization techniques that prevent
overfitting of the networks when learning. Finally, we show and discuss the results of

our studies and conclude with ideas on how to continue this work.
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2 Introduction to deep neural networks

2.1 Feedfoward Neural Networks

Artificial Neural Networks (ANNs) are mathematical models for machine learning,
that were inspired by the structure of the central nervous system in animals or
humans [54,55]. The human brain is still the most powerful information processing
unit for complex tasks like perception, recognition and abstraction. By mimicking the
biological structure of neurons and synapses, the hope is to gain a similar capability

for understanding information and apply it to solve simple tasks.

The basic structure of an ANN is a network that consists of nodes and weighted
directed connections between these nodes. Biologically speaking, the mnodes, also
called units, represent neurons and the weighted connections represent the strength
of the synapses between the neurons. To process information, a subset of the nodes is
activated, the so-called input neurons, which in turn activate other neurons by
transferring their signal. The signals are fed through the network until an output unit
is reached, which is the result of our information processing and hopefully the desired

solution.

The goal of the learning process of an ANN is to use a training set of labeled
examples and minimize a task-dependent objective function in order to achieve a
good performance on the test set, which are the examples that the model has not
seen before. In most cases, the performance can be measured by an error function
that compares the predicted with the actual labels of the data. For parametric
models such as neural networks, the error can usually be minimized by iteratively
adjusting the free parameters. The ability of an algorithm to transfer performance
from the training set to the test set is called generalization and is a key part for

learning models.

Although it is now known that the models are far from the complexity of a real
brain, the methods have enjoyed continued popularity for pattern recognition and
regression tasks. Especially in recent years, with the advent of deep learning [56], a
field in neural networks where new ideas are employed to achieve a very deep

structure with many units, these models have become very powerful.
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2.1.1 Perceptron

The perceptron [55] is the basic building block of an ANN and generally seen as the
first generation of neural networks. It is an algorithm for supervised binary
classification, which is able to learn the relation of data x and target z of a given set
of trainings examples. The classifier works by predicting a binary output from the
data and comparing this prediction with the correct class label. The free parameters
of the model are then iteratively adjusted in order to close the gap between predicted

target and actual target in the training set.

Bias parameter
Activation

Function

Output
o(-) —*

Input Signals
% x
( ; o

1<

/S'umming

Junction

;

Weight

Figure 2-1: Structure of a Perceptron

The features of an observation x act as input signals to the perceptron (see Figure
2-1). Each signal x; is weighted by a free parameter w;, which represents the
influence of the input signal on the output. The weighted signals are summed up and
a bias b is added, which can act like an offset to the linear combination. Afterwards,
the combined value is transformed by an non-linear activation function ¢. To
produce a binary output value between 0 and 1, the sigmoid function o (see Figure

2-2) (also called logistic function) is used as an activation function.
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05~

Figure 2-2: Sigmoid activation function

The complete computation of the output y can be described with the following

equation:

N
y = 0<2Wixi +b>
i=1

The goal of the classifier is to minimize the errors in prediction. Therefore, the
resulting output y is compared with the supposed output z for every data-target pair

(x,2). To quantify the amount of errors, the zero-one loss function can be used:

D
LO.D) = ) Iy,
i=1

I ={1 if xisTrue
* 0 otherwise

where 8 are the free parameters and D is the set of training examples.

However, the zero-one loss function is not differentiable and it would be very
expensive for large models and many data pairs. Thus, the negative log likelihood is

used as a loss function:

ID|
NLL(6,D) = —Z log P(Y = zx;,6)
i=1
This loss function is iteratively minimized, by calculating the gradient of the loss and
updating the free parameters accordingly. Optimization techniques are described in

the following chapters.
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The perceptron can tackle binary classification problems. However, modeling a multi-
class classification problem is a bit more difficult. Multiple perceptrons have to be
used, where each of them models a yes or no answer for one of the classes. This is
equal to having a perceptron with multiple output units, as the output nodes are
independent. To obtain a probability value for each class, the softmax function is
applied to the final output units of the network:

Xi

softmax(x); = cg———
k=1€"F

Interestingly, the loss function stays the same even for the multiclass case.

2.1.2 Limitations of a Perceptron

If the right features are chosen by hand, a perceptron can learn almost anything.

However, when using the wrong features, it can be very limited.

Consider an example with two binary features and the goal is to perform binary
classification. Positive examples (same) are (1,1) and (0,0). Negative examples
(different) are (0,1) and(1,0). We want to do a check for equality. If both features are
equal, either both one or both zero, then the observation is classified as positive.

Otherwise, if the binary features are different, the classification should be negative.

Figure 2-3: Limitation of a perceptron
the four data points of two different classes cannot be separated linearly

This example is impossible to solve with a perceptron as shown geometrically in
Figure 2-3. The weight plane of the perceptron can be seen as a line and it is obvious
that is impossible for this line to separate the four data points properly. A solution to

this it is to stack perceptrons and thereby separate the data linearly with two lines.
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However, the case becomes more difficult for a problem where the points have to be
separated in a non-linear way. In this scenario, stacking perceptrons with linear units
is not enough as they can still only perform a linear separation of the data set. A
combination of non-linear functions and multiple layers of perceptrons is needed,

which we will discuss in the next chapter.

2.1.3 Multilayer Perceptron
The Multilayer Perceptron (MLP) [22,30] architecture, is as the name suggests, the

result of stacking perceptrons in a layer wise manner. A single perceptron is very
limited in its ability to model data and cannot distinguish input that is not linearly
separable. This problem is tackled by stacking perceptrons as depicted in Figure 2-4.
Given enough perceptron units, the MLP is able to approximate any boundary

function and thus has a universal approximation capability [57,58].

input hidden output

layer layer layer

Figure 2-4: Structure of a Multilayer Perceptron

FEach layer of the MLP is connected by using the outputs of the previous layer as
inputs for the next one. Instead of the sigmoid function, it is common to use the tanh
function as the activation function for the hidden layers. While the hyperbolic
tangent is a sigmoidal function and just a linear variation, it was shown that neural
networks using tanh layers learn better [33]. The problem is that the sigmoid
function is not centered on zero, which introduces a bias that causes the activation to

saturate towards one rather than towards zero.

Depending on the problem statement, it is also possible to change the activation

function of the last layer. For binary classification, the sigmoid function is used. For
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logistic regression, where the target is a probability value, the problem is the same as
binary classification and sigmoid function can be used again. However, for regression
of a real value, e.g. predicting the size of a loan in banking, the identity function can

be used and no transformation is required in the last layer.

Using matrix notation, the equations of an MLP can be denoted as follows:

h = tanh(W,, x + by,)
Y =@Why h + byy)

where h is a vector with one element for each unit of the hidden layer, and y is a
vector with one element for each output unit. ¢ is the activation function of the
output layer, either the sigmoid function, the softmax function or the identity
function depending on the type of problem. W,, is a weight matrix of size #input *
#hidden and Wy, has the dimensionality #hidden * #output. The bias vectors b, and
b, have the same size as h and y respectively. A weight matrix is multiplied with a
column vector by the matrix-vector product. The equation for the hidden layer can
be repeated for additional hidden layers, using the output of the previous one as
input for the next one. Note that for each layer, a separate set of free parameters W

and b is needed.

2.1.4 Backpropagation
To calculate the gradient of the loss function in a neural network, a technique called
backpropagation [22] is used. The partial derivative of the loss function E results from

using the chain rule:

6WU N 60] 517] 5WU

The change of a weight w;; connecting neuron i and j can be calculated as follows:

O0F
Awij = __6Wl] = 7]6]3(1
<p’(vj)(zj - oj) if jis an output unit
% = q"(”j) Z Sk Wik if jis a hidden unit
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Where v;is the linear combination of the input to a neuron j with bias before
applying the activation function and o; after applying the activation function ¢. z; is

the supposed output of the network.

2.2 Recurrent Neural Networks
A Recurrent Neural Network (RNN) is a different type of ANN architecture. So far,

we have only discussed feed-forward architectures like the MLP that do not contain
any cycles. With the introduction of RNN, directed cycles are allowed between the
units in the network. This creates an internal state, which enables the network to

remember information and therefore process temporal information.

Instead of a single vector of features per observation, each observation x can now be
a series of feature vectors, representing a time series. Note that each of these feature
vectors must have the same length, but the different observations of a data set can
have different time lengths. Each time step of an observation is fed iteratively into

the network.

2.2.1 Basic RNN

The basic structure of an RNN (see Figure 2-5) usually contains one recurrent hidden
layer. Each unit of this recurrent layer is fully connected with every unit in the
output layer and also with every unit in the recurrent layer itself. When processing a
time series, feature vectors are fed into the network in a stepwise manner. For each
time step, the new value of the output units and a value for every hidden unit is
calculated. In the next time step, this value for the hidden unit is combined with the
new incoming input, resulting in a new output and hidden value. This is how the

network is able to remember and understand temporal information.
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input recurrent output

layer hidden layer layer

Figure 2-5: Structure of a Recurrent Neural Network

This structure can be described with the following equations:

ht = tanh(th X+ Whh ht—l + bh)
Ve = ¢(Why he + by)

Note that the term h;_; Wy, is the main difference between the equations of a MLP
(see chapter 2.1.3). Wy, is the weight matrix for the hidden units of size #hidden *

#hidden and h;_; are the values of the hidden units from the previous time step.

The result of processing a time series is a vector with one output y; for each time
step. In the case of a sequence classification, where we are only interested in the label
of the whole time series, it is common to simply take the mean of the output units
for each time step and obtain an average prediction. The same kind of loss functions
as for MLP are then applicable to the RNN.

In theory, given enough neurons and time, RNNs can model and calculate anything
that can be computed by a computer. The problem however is that these RNNs are

very difficult to train.

2.2.2 Vanishing Gradient Problem
A major problem when training a RNN is the vanishing gradient [33,59,60]. The

sensitivity of the RNN to a time point decays exponentially as time passes and as
more steps are processed. New inputs overwrite the information in the hidden units

and the network forgets the first inputs.



2 Introduction to deep neural networks 17

The problem can be illustrated when unfolding the RNN over time (see Figure 2-6).
In the figure, the shading indicates the sensitivity of the network to the input signal.
Over time, the gradient vanishes and after ten or more steps, the information is gone

completely.

Outputs . .
A L

Hidden
Layer

Figure 2-6: Problem of the vanishing gradient for RNNs, adapted from [61].
The shading indicates the receptiveness of the network to the input information.
The receptiveness decays exponentially as new input overwrites the information

stored in the hidden units and the network forgets earlier information.

In the forward pass of a neural network, the common activation functions like the
logistic function limit the activities between fixed intervals, which prevents the
activity from exploding. For the backward pass however, the system is completely
linear. This means that when doubling the error derivatives in the final layer, all

derivatives of the layers before will double as the error is back propagated.

Because a neural net is a linear system during backpropagation, it has the same
problem as linear systems when iterated: their numbers grow or die exponentially. On
the one hand, very small gradients will die and the information is lost since it is too
small. On the other hand, big gradients will explode and the information will be
wiped out. Generally, this behavior causes the information of the gradients several

time steps before to be lost.

This problem does usually not occur in feed-forward networks, since feed-forward
nets have only a couple of layers. For RNNs however, e.g. if the training sequence
has 100 time steps, the RNN is essentially a network with 100 layers. Thus, the
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resulting gradient is to the power of 100. There are a few ways to handle this
problem, either on the architecture side or on the trainings side, which will be

discussed in the following chapters.

2.2.3 Long Short-Term Memory

A very good way to address the problem of the vanishing gradient is the use of Long
Short-Term Memory (LSTM) cells [61-63|. Instead of a normal neuron, which just
passes the values through to the next neurons in the network, LSTM cells have a

special memory block inside where they can store information.

The dynamic state of the network can be seen as a short-term memory. The idea of
the LSTM cells is to use this model of a short-term memory and create a long-term
memory on top of it. This means, building a module that can store information. A
crucial point of this model is that it is separated from the rest of the network and

new input does not interfere with the memory.
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Figure 2-7: Structure of a Long Short Term Memory cell, adapted from [63].
The cell has an additional memory store where it can read, write or forget
information. These operations are initiated by gate functions that depend on new
input values coming into the cell.

The memory block is separated by logistic gates from the rest of the network (see
Figure 2-7). There are three kind of gates: input, output and forget gates. Whether to

open one of these gates for a cell is determined by the rest of the network. When the
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network wants to store information, it opens the input gate and new information

floods into the memory block.

The information stays there as long as the forget gate is closed. Again, the rest of the
network determines the state of the logistic forget gate. To read the information, the
rest of the network simply opens the output gate. This causes the stored value to
flood out of the cell and affect the rest of the network.

The memory block can be thought of as a value storage unit. It can store the exact
value of a number. This number remains unchanged as long as the input and forget
gates are closed. If the network wants to forget the value, it can simply open the
forget gate and the number is overwritten by zero. New information can then be

stored again by opening the input gate.
The structure of the LSTM can be formalized as follows:

ip = o(Wyixe + Wiihe—y + Weiceq + by)

fi = U(foxt + Whrhe_q + Wepceq + bf)
¢t = feCe-1 + i tanh(Wyexy + Wyche 1 + be)
0; = 0 (Wyoxt + Wiohi—y + Weocr + by)

h; = o;tanh(c;)

where i; is the output gate, f; the forget gate, ¢; the value of the memory block that
is stored, o; the output gate and finally h; the hidden units.

It was shown that the LSTM cells can remember information for several hundred
time points. This means they do not suffer from the vanishing gradient problem. The
task they have shown to be best at is understanding handwriting [64]. Training the
LSTM network is the same as for RNNs and can be performed with gradient descent
methods (see chapter 2.3). The structure of an LSTM network is usually similar to a

RNN and only has one recurrent layer.

2.2.4 Bidirectional RNN

An extension of the RNN is the introduction of a bidirectional structure (see Figure
2-8) [65]. Instead of only using one RNN to process the time series in the forward
direction, a second RNN is used that processes the data in the backward direction.
At each time step, the information from the forward and backward direction is

combined to make the prediction for the network output.
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BACKWARD}:
STATES

Figure 2-8: Bidirectional RNN unfolded in time, adapted from [65].
At each time step, the network has the full sequence information available from
reading the sequence in the forward and backward direction. The output layer merges

the information from the two recurrent networks.

The main advantage of this structure is that the model has seen the complete time
series at every time step, the first part in the forward and the second part in the
backward direction. Therefore, the output at each time step is much more
meaningful. However, using the complete sequence for classification makes live

prediction impossible.

When only using a forward RNN, the model makes a prediction about a time step
without having seen the later time steps. This issue could be addressed by
introducing a small window into the future where the RNN has access to the next
few time steps. This however would introduce many additional weights. A better
solution might be to introduce a time delay for the output layer. However, the length
of the window would still be a very sensitive parameter that the user has to guess for

every problem manually.

Especially in the case of sequence classification, the first outputs of a basic forward
RNN are questionable and very problem dependent, since the RNN has only seen
very few time points so far. Weighting the outputs of the model with increasing
importance towards the end of the sequence is possible, but the important

information could be in the first time steps and since the net slowly forgets the
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information over time, this would be very counter intuitive. Instead, using a

bidirectional RNN is a much better solution and less arbitrary.
2.3 Training Neural Networks

2.3.1 Input normalization

Neural networks are generally very robust to unnecessary features. However, when
the dimensionality of the input becomes too big, learning the weights becomes
increasingly difficult. Further, if the data set is small, the network becomes prone to

overfitting on the unnecessary features.

An important preprocessing step that should be applied to every data set is to
normalize the mean and the standard deviation of the input. Each feature should
have a mean at zero and a standard deviation of one over the whole data set. This
preprocessing step does not change the information in the data set, but ensures that
the input is in a better range for the initial parameter values for the network [66].

Learning becomes easier and the trainings process more stable.

2.3.2 Parameter Initialization for RNN

In recent work [67] it was shown that the initialization of a recurrent neural network
plays a very important role in the success of the trainings process. If the parameters
are not initialized properly, the model is likely to end up in local minima, where it
has not achieved any generalization, but only learned to fit noise of the training set.
One might argue that a good optimizer should be able to escape local minima, but if
it starts far off from a good solution, then it is very unlikely that the optimizer will
ever reach a good solution because there are many steps in between where the error

value does not improve.

An important part of the RNN initialization is the spectral radius of the hidden-to-
hidden weight matrix. The spectral radius of a matrix is the eigenvalue that has the
largest absolute value. It was shown [68] that this has a great influence on the
dynamics of the hidden units when using a tanh activation function. If the spectral
radius is smaller than one, then the RNN will tend to quickly forget information.
When it is much bigger than one, then the information is saved for longer periods,
but also experiences chaotic behavior, which can lead to exploding gradients. As
discussed in chapter 2.2.2, exploding gradients often wipe out existing information, so

the network tries to remember too much information. However, if the spectral radius
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is only slightly bigger than one, the information is remembered without experiencing
exploding gradients. This means the network remembers just as much information as
it can handle. Therefore, it was suggested to use 1.1 as an optimal value for the

spectral radius.

Further, it was also found that the initial scale of the weights are very important as
well. For the input-to-hidden units, it depends on whether there are many
uninformative features in the data set. Generally, if the initial scale of the weights is
set too high, then the information is overwritten easily and features that are not
important will wipe out other useful information. However, when the initial scale is
too low, the learning process tends to be slow, which might not ever lead to a proper
solution. As a guideline, using a Gaussian distribution with a standard deviation of
0.001 for the input-to-hidden weights is recommended. However, if it is certain that
all features are useful, the value for the standard deviation can be increased up to 0.1

to speed up the learning process.

Parameter type Scale
input-to-hidden N(0, 0.001)
hidden-to-hidden Spectral radius of 1.1
hidden-to-output N(0, 0.1)
hidden-bias 0

output-bias average of outputs

Table 2-1: Optimal initial parameter values for RNNs

In addition to the scale of the parameters, the centering of the input and output is
also crucial. As suggested in chapter 2.3.1, the mean of the input should be zero with
a standard deviation of one. Additionally the output should also have a mean of one
and this can be fixed by setting the initial bias value for the output units as the

average of the correct output values.

2.3.3 Parameter optimization methods
Unfortunately, there is no best optimization method for training neural networks.
The issue with training them is that there are many different scenarios where

different aspects of the learning process are important [69].

First, the structure of neural networks is often very different. There are deep

networks with many layers, which makes them hard to train. The optimizer has to be
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very sensitive to small gradients to detect necessary changes in the first layers. The
same is the case for recurrent networks, which have even more layers if the structure
is unfolded the structure. Time sequences can have more than thousand steps, this
means when reaching the end of the sequence the information has gone through more
than thousand layers. To find the correct solution for the problem, the RNN often
has to find relations between information that happened over these long periods. A
very different learning scenario occurs when having shallow networks with only few
layers but many parameters. Optimizing the parameters the same way as for deep
networks would drastically overfit the data. Instead, the parameters are not trained
very sensitively and the training is stopped early as long as the networks has a good

generalization.

The other issue is that the problems vary widely in their type of input. For pixels
values, the input is very dense. Other times for e.g. binary input for words, the input
is usually very sparse. This difference in input has a huge impact on the expected
values for the weights. For highly informational features like words, the weights
should be very sensitive. However, if the input is dense like for pixels or speech
signals, the network has to find a good abstraction of the data first, which generally

requires small evenly distributed weights.

To decide what optimization technique to use in which scenario, we also have to look
at the amount of examples in our training set. As a general guideline, the different

algorithms can be categorized as follows [69]:

Small dataset (< 10000 examples) | Big redundant dataset
Conjugate gradient Minibatch-SGD with momentum
LBFGS Rmsprop

Adaptive learning rates

RPROP

Table 2-2: Different optimization methods depending on the size of the data set

While the algorithms for small datasets are usually full batch learning methods, the
ones for big redundant datasets are using batch learning. A special case is the
Hessian-Free optimization [70] technique which was tailored specifically for very deep
or recurrent neural networks. This algorithm is usually only applicable to small data

sets due to speed constraints, but makes use of mini batches for learning.
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2.3.3.1 Stochastic Gradient Descent

Gradient descent is a technique for updating the free parameters of a model. The
optimizer iteratively takes small steps on the error surface defined by a loss function

with respect to the parameters by using the gradient.

For ordinary gradient descent, a stepwise iteration is performed. In each step, the
error of the loss function and the gradient of the weights is calculated, with respect
to the loss on the whole trainings data set. Using the gradient calculation from
backpropagation (see chapter 2.1.4), the weights are updated with a factor according

to the learning rate.

Stochastic gradient descent (SGD) has the same approach as ordinary gradient
descent, except that the gradient is not calculated for the full data set in each step.
Instead, the gradient is estimated from one example to proceed more quickly. Not
only does this procedure save computation time, but it also adds randomness to the

descent that lets the optimizer escape local minima more easily.

The main hyper-parameter for gradient descent based methods is the learning rate.
This factor determines the step size that is taken in the direction of the gradient.
Unfortunately, this parameter is highly problem dependent and needs to be adjusted
during training. The later we are in the trainings process, the smaller the
adjustments to the parameters should be. This can be solved by introducing an
additional hyper-parameter for momentum, which controls the decay of the learning

rate after each iteration through the training set (also referred to as epoch).

A common variation of SGD is the mini-batch SGD that estimates the gradient from
a few trainings examples instead of only one. This results in a more stable learning
process. It is interesting to note that increasing the size of the batch from one to five
results in a drastic reduction of the variance and a more stable learning process.
However, increasing the batch size beyond 20 usually does not help and the

improvement fades rapidly.

2.3.3.2 Resilient Propagation
Resilient Propagation (RPROP) [71] is a full batch learning method. It is very robust
and a good general-purpose optimization method for both feed-forward and recurrent

neural networks.

Gradients in neural networks often vary widely in their magnitude. Some of the

gradients are huge and others are very small. This is especially true in the case of the
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RNNs as discussed in chapter 2.2.2. The central idea of the algorithm is to only use
the sign of the gradient and completely ignore the magnitude. A problem that occurs
if we only take the sign is that it is very hard to choose a suitable learning rate and
momentum parameter that fits all parameters well, as they vary greatly in size. The
solution of the RPROP algorithm is to introduce an individual learning rate, in this

case called step size, for every parameter.

In the algorithm, the step size adapts over time. When the parameter was moved in
the correct direction, the step is increased multiplicatively in size. Otherwise, the step
size is decrease multiplicatively. The direction was right, if the sign of the last two

gradients agree.

Good example values for the factor of the positive increase in step size is 1.2 and for
the negative decrease 0.5. To ensure that the step sizes are limited, a common value
for the lower bound is 107® and 50 for the upper bound. For the initial step size,
0.0125 is proposed as a suitable value. The hyper-parameters can be chosen problem
dependent, but they are very robust and usually have little impact. This is different
from momentum SGD where the learning rate and momentum make a huge

difference.

[Rprop- is the most robust variation of the RPROP algorithm. In the following we
provide the pseudo code for the update of a gradient with IRprop-:

# Input:
# - grad: the gradient of the error function

# - parameter: the old values of the free parameters before the update

change = grad * last_grad
if change > O:

delta = min(delta * pos_step, max_step)
if change < O:
delta = max(delta * neg_step, min_step)

parameter = parameter - sign(grad) * delta

if change >= O:

last_grad = grad
else

last_grad = 0

# Output:
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- parameter: the new values for the free parameters

2.3.4 Regularization

There is more to training a model than only optimization. As the goal of machine
learning is to perform well on unseen observations, it is necessary to achieve a good
generalization when learning the trainings examples. A model with enough
parameters could learn the data by heart, which would mean that the model does not
understand the data and will perform very bad on new observations. This
phenomenon is called owverfitting the training examples and there are several

regularization techniques that counter this effect.

The main reason for overfitting are irregularities in the data set. Some of these
irregularities have an actual correlation with the input to output mapping, others are
just noise that is caused by a sampling error of the training set. It is impossible to
tell which of these irregularities is real and which ones are accidental. The model fits
both kinds of these irregularities and if the model is flexible, it will fit the accidental

irregularities perfectly and have a bad generalization.

The best way to prevent overfitting is to simply get more data. If you can get more
data, there is no reason to try to approximate the noise or limit the networks
capabilities. More data is always better as long as it is computationally feasible.
However, if the items in the training set are correlated and distinct from the

examples in the test set, then even more training data cannot prevent overfitting.

Another way to ensure a good generalization is to limit the capacity of the network.
This is done by leaving the model just enough flexibility to fit the true irregularities
well, but not enough to fit the accidental ones. Of course, this is very difficult to do
and generally assumes that the irregularities of the noise are smaller than the

meaningful ones.

2.3.4.1 L1 and L2 Regularization

L1 and Lo regularization is a way to limit the networks capacity and works by adding

an additional term to the loss function that penalizes extreme parameter values:
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E(6,D) = NLL(6,D) + 71161,

1ol = (Z |w|v>ﬁ

which is the Lp-norm. A4 is a hyper-parameter that controls the influence of the

regularization term on the error function. p is usually 1 or 2.

The effect of this regularization term is that the parameter values are more evenly
distributed. Large parameter values are punished which limits the degree of
nonlinearity that can be modeled. This greatly prevents overfitting and favors a
simple solution that fits the trainings data well, which usually means that a good

generalization is achieved.

It was shown that Li performs better than Lo if there are a lot less trainings
examples than features, because L; performs a sort of feature selection on the data
set [72]. On the other hand, if all features are very meaningful, then Lo is expected to
perform better as it just smoothes the network mapping without removing features.
Since the use of L1/L2 is very case dependent, it is common to use the sum of both L
and Lo regularization with respective hyper-parameters that can be tuned. The exact
values of the coefficients for the regularization are often determined using cross-

validation and empirical testing.

2.3.4.2 Early stopping

Early stopping prevents overfitting by monitoring the learning process of the
network. The technique makes use of an additional validation set where performance
of the model is tested on new and unseen observations. If there is no more
improvement, or worse, the performance on the test set degrades, then the learning
process is aborted. The validation set is split off from the training set and is
independent from the test set. Therefore, the network is allowed to test its

performance on the validation set at each epoch.
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Figure 2-9: Example of early stopping to prevent overfitting

During the trainings process of a neural network (see Figure 2-9), the error on the
training set usually decreases continually, while the errors on the test and validation
set increase at some point. At this point, the model starts to adapt too much to the
trainings examples, which causes a loss in generalization and a decrease in

performance for new observations.

2.3.4.3 Input noise

Adding Gaussian noise to input vectors is a way of increasing the size of the training
set. This is a very good way to prevent overfitting and increase the generalization,
especially when small training set is small [73,74]. Using this technique usually results
in a worse performance on the training set, but a better performance on the

validation and test set.

The amount of noise to add highly depends on the data set, but the new observations
should be very similar to the original ones. If the noise is too big, then the model will
be unable to learn the data. Experiments have shown that adding half the variance is

usually a good start.
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2.3.4.4 Dropout

The idea of dropout [75]| is to get a large number of neural networks, each trained
separately by leaving out parts of the trainings data. Similar to the concept of a
random forest, a dropout network is an ensemble of many classifiers that form a
consensus prediction when evaluating. As training one neural network is quite

expensive, separately training many would not be feasible.

Dropout is a way of training one very large model that combines many neural
networks, without actually having to train them separately. For each training step,
half of the hidden units are randomly deactivated. This results in a different network
architecture for each trainings case. However, a hidden unit is not sampled only once,
but many times for different architectures. This results in a great amount of weight

sharing for the different models and it is the key idea behind dropout.

[(OROROIKINI

Figure 2-10: Example of dropout with one hidden layer
In this example, four of nine hidden units are randomly deactivated by sampling with
a probability of 0.5. The network is trained only using the active units, resulting in
the weights having twice their normal value on average.

Consider the example in Figure 2-10 with a feed-forward net with one hidden layer.
A neuron in the hidden layer is omitted with probability 0.5. In this case, the four
crossed out nodes were deactivated. When now training the network, these hidden
units are ignored and active ones are used. Note that the sampled architecture is only
used for one trainings example and a new dropout architecture is sampled. It is
evident that 2° different architectures can be sampled in our example with eight

hidden units.
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When using a hidden unit, it has the same weights as in all other sampled
architectures. This weight sharing makes the model strongly regularized. It is a much
better regularization technique than L1/L2, which just pulls the weights towards
zero. Instead, dropout has a regularization effect that pulls the weights towards the

correct value.

At test time, we could again sample architectures with the same probability, run the
test set hundreds of times and take the mean of the output. This would be very
expensive and often prediction needs to be done in real time. A much better solution,
and this is the second key idea behind dropout, is to use all hidden units but half all
their outgoing weights, meaning each weight is multiplied by 0.5. For a network with
one hidden layer, this is exactly equal to computing the geometric mean of the

predictions of all possible architectures.

For multiple hidden layers with dropout, the weights can also be halved. This is not
exactly the same as computing the mean from all different architectures, but it is
close enough and very fast. Further, dropout can also employed in the input layer.
Usually with a lower probability of dropping an input than a hidden unit, because
the input might be vital for the correct output.
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3 Using RNNs to predict the lineage choice of

stem cells

3.1 Methods

3.1.1 Biological data

The time-lapse movies used in this thesis were conducted at the Institut fiir
Stammzellforschung (ISF, Helmholtz Zentrum Miinchen) in the group of Dr. Timm

Schroeder.

3.1.1.1 Experimental setup / Data acquisition

A healthy mouse strain that shows no phonotypical difference to a wild type mouse
was used as a model organism. From the extracted bone marrow of the mice, HSCs
were isolated by fluorescence activated cell sorting (FACS). HSCs were identified by
antibodies that bind specifically at the CD150 surface proteins, which allows for
specific targeting of HSCs and their descendants. The extracted HSCs were put on a

plastic slide that enables cell growth over a long period of time.

During the growth, the cells were observed using an inverse fluorescence microscope
namely AxioVert200 (Zeiss) and repeated images were taken by an AxioCAM HRM
(Zeiss) camera. Since the used camera was not able to cover the full slide in a single
image, the plate was split into an overlapping grid of sub images, called positions. To
cover all the positions, the camera was attached to a motor that automatically moves
the camera in a programmed pattern. As a result, bright field images were taken in
an interval of usually 90 seconds and fluorescence images in an interval of 22.5

minutes.

After performing the experiments, the brightness differences in the bright field images
were normalized [76]. The cells in the images were manually tracked over time with
Timm’s Tracking Tool [46]. This resulted in cell genealogies as discussed in chapter
1.3.

In addition to the bright field images, fluorescence measurements were also taken at
certain intervals. This allows for an annotation of the expression values of the

biological markers. The transcription factors PU.1 and GATA, as well as the surface
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protein FCgamma correlate with the differentiation of MEPs and GMPs [77]. The

known correlations with the different cell types are as follows:

e FCgamma rises in GMPs
e GATA rises in MEPs
e PU.1 drops before GATA expression rises

e GATA is not expressed when PU.1 expression rises

Using FCgamma and GATA as markers, MEPs can be distinguished from GMPs
very reliably. As of now, PU.1 is not used to label the cells, as its exact expression

profile is still unclear during the differentiation of MEPs or GMPs.

The question this thesis addresses is whether MEPs can be distinguished from GMPs
using only bright field images that depict the morphology of the cells. This was
addressed in the thesis of F. Buggenthin [53| and we want to extend on these results.
Further, we want to investigate whether PU.1 can be used as a marker. In the ideal
case, one of these methods allows the identification of MEPs and GMPs before
GATA and FCgamma are able to.

3.1.1.2 Data used in this thesis

For testing purposes, four time-lapse movies were available, each with bright field
images at slightly different time intervals. Each cell cycle is counted as one cell. After
the cell divides, we start counting two new cells. During some cell cycles, the
biological markers pass a threshold and the cell as well as all its descendants can be

labeled accordingly.

Name Unknown MEPs  GMPs @ Time interval (sec)
120602PH5 705 213 489 153

130218PHS 544 337 1441 98

130708PH9 78 17 34 120

140206PHS 237 39 26 99

Table 3-1: The four time-lapse movies used in this thesis and their cell counts. The
120602PH5 and 130218PHS8 movies are the core of the data set, as the other movies
contain only few MEPs and GMPs.

When trying to distinguish the cells, we can look at different time windows. From
only using a single image, to cell tracks over one cell cycle or even including the cell

cycles of the cell’s ancestors to make a decision. In preliminary tests, we found that
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looking at one single image is not enough. This led us to start looking at complete
cell cycles and their ancestors where we achieved good results in first tests. However,
we shifted our focus to only looking at one cell cycle of a cell for classification, as this
led to good results while keeping the method practical. When using the method for
live prediction, we have to rely on automatic cell tracking and for tracking
algorithms, handling cell divisions is very difficult. Therefore, we focused on tracks of
a cell over one cell cycle for practical purposes, but using full lineages should also be

pursued (see chapter 4.6.4).

To normalize the time intervals (see Table 3-1), we chose to leave out every second
image for 120602PH5 and only take every third image for 130218PHS, 130708PH9
and 140206PHS8. Therefore, the time intervals are 300 seconds in all movies except
130708PH9 with 360 seconds. However, since this movie has only a small amount of
tracked cells, this difference is unlikely to affect the results. The fluorescence
measurements were interpolated with the nearest neighbor method for every time

step where a bright field image is available.
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Figure 3-1: Histogram of cell cycle length of the 120602PH5 movie
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The lengths of the cell cycles vary (see Figure 3-1). After time step normalization,
the cycles have an average length of 130 time points, which means that each cell
cycle is roughly 11 hours long. Note that we only normalize the time interval between
two images such that experiments with different settings become comparable; the cell

cycles are not length normalized.

3.1.1.3 Training and test sets

We aim to build a classifier that can understand time, learn from the cell tracks on
one movie and apply this learnt knowledge to predict the labels of cell tracks of
another movie. An easier task would be to perform the prediction on other cells of
the same movie the classifier was trained on, since the classifier could learn the movie
dependent biases. However, this is not practical, as it should be possible to apply the

method during live prediction for a new movie.

As we only have two movies with large amounts of tracked cells (see Table 3-1)

available, we create two different pairs of training and test sets as follows:

(A) Training: 130218PHS8, 130708PH9, 140206PHS8
859 unlabeled, 1932 labeled cells
Test: 120602PH5
705 unlabeled, 702 labeled cells

(B)  Training: 120602PH5, 130708 PH9, 140206PHS
1020 unlabeled, 818 labeled cells
Test: 130218PHS8
544 unlabeled, 1778 labeled cells

Merging the movies results in a more general data set. As the test sets are distinct
from the training set, having different movies in the training set is vital to achieve a
movie independent generalization. The disadvantage when adding movies to the
training set is a longer training time. Other than that, merging movies should not be
a problem and only result in a better performance if the data is correct. A concern is
that the data sets are imbalanced with 70% GMP in training and 80% in the test set
of data set (A). The imbalance for (B) is 80% GMP in the training and 70% in the
test set. However, since the training and test sets have roughly the same imbalance,

adding an additional normalization prior is not necessary.
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As an additional validation set is required for early stopping when training neural
networks, a random 15% of the observations in the training set were split off and

used to measure the networks performance on unseen data.

To evaluate our method, we mainly look at the performance when learning on labeled
cells of the training set and predicting labeled cells of the test set. However, to
investigate whether the cells can be distinguished before the marker onset, we also
need to perform our prediction on the unlabeled cells. In order to obtain a label for
the unlabeled cells, all the descendants of a cell in the tree were checked whether
their type in the in both descendants agrees, meaning only Unknown and MEP or
only Unknown and GMP. If this was the case, the cell and all its descendants were

labeled accordingly (see Figure 3-2).
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Figure 3-2: Backpropagation of labels

Time

The sub-trees of cells where both descendants have the same label, are all labeled

accordingly when back-propagating the labels.

In the data set, only cells with label MEP or GMP are used. The remaining cells with
class Unknown, where no label could be propagated, are not added to the data set, as
it is unclear which label they will develop. In very rare cases, a cell is labeled as MEP

and GMP at the same time. This is the case, when the activations of both biological



36 3 Using RNNs to predict the lineage choice of stem cells

markers become active. These cases are mislabeled and excluded from the sets. When
looking at the tracking trees, we often observe that the label of all descendants agrees
and most cells can be labeled accordingly. If the label of the descendants does not
agree, then the cell is not added to the data set.

3.1.2 Extracting features from images

As a result of the tracking, the position of each cell in the bright field images is
annotated. Previous work in the ICB focused on segmenting the cells in the images
from the background and extracting meaningful features from the segmentations [78|.
Using the maximally stable extremal regions (MSER) algorithm, the cells can be
segmented and a bounding box around the cell can be established [79]. The result is a

sequence of small cell images for each cell over its cell cycle (see Figure 3-3).

o
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o

Figure 3-3: Segmented bright field images of an exemplary cell over one cycle

The highlighted boundary indicates the manual segmentation of a cell.

Based on this segmentation, features can be derived that describe the cell’s shape and
texture. The diploma thesis of F. Buggenthin [53] combined several methods to

calculate 88 features for each bright field segmentation of a cell:

- Shape: area, axis lengths, eccentricity, orientation, perimeter, diameter

- Colors: intensity, contrast, correlation, variance

- Histogram of Oriented Gradients features [80]

- Histogram of Zernike moments [81]: similarity to predefined shapes

- Tamura features |[82]: coarseness, contrast, directionality, linelikeness,

regularity, roughness



3 Using RNNs to predict the lineage choice of stem cells 37

In addition to the features from the bright field images, the movement speed and the
intensity of PU.1 are also measured. However, we first focus on bright field images
and only use the PU.1 intensity as an alternative case as it requires transgenic mouse

strains that express fluorescently labeled PU.1 proteins.
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Figure 3-4: Exemplary features of a cell over one cycle with smoothing. The area
steadily increases while the movement declines as the cell grows. During the growth,
the cell becomes less oval-shaped until it divides again.

When looking at the features of cells over one cycle (see Figure 3-4), we repeatedly
observe the same behavior. During a cycle, the cell grows and increases in area size.
Further the eccentricity of a cell increases, meaning it gets less oval-shaped, during
the middle of the cycle and then declines again. We hypothesize that MEP and GMP
show differences in these features during the course of one cell cycle and that these

differences can be used to distinguish the cells.

3.1.3 Baseline with SVM
To test whether it is at all possible to distinguish MEPs from GMPs using the time

series of the extracted features over one cell cycle, we perform a simple test using a
Support Vector Machine (SVM) for classification [15]. In its nature, a SVM cannot

understand time and can only handle a fixed amount of features.
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Therefore, each cell cycle is first normalized to the same length and the time series of
a feature is described with only a few points. Instead of one measurement for each
time point, an estimate of the curve using 10 evenly spaced values is obtained. A
more complicated alternative is to fit a spline as used in the prior approach [53], but
this did not improve the results. Note that both approaches normalize all cell cycles
to an equal length, which is very questionable. For instance, if MEPs would simply
have longer cell cycles than GMPs, then this approach would fail to detect that.
Since the SVM cannot handle time, the time dimension is collapsed and the time
points of a feature are treated as independent observations. In our case of 88 features

with 10 normalized time points, this results in a feature vector of length 880.

For each time series in our training set, the SVM classifier is trained on the given
label for the observation. Afterwards a prediction for every cell in the test set is
made, resulting in a probability value whether the cell is MEP or GMP. To evaluate
the performance on the test set, the Area Under the Curve (AUC) is used as a
measurement of correctness. For a small data set, the AUC is much more reliable
than merely using the accuracy, as the accuracy only differentiates between correct
and false. The AUC however also takes the certainty of the prediction into account,

which is expressed in the probability value.

3.1.4 Recurrent Neural Networks

As a model that can understand time, our method of choice are the RNNs. Deep feed
forward neural networks have achieved great success in recent years, but its recurrent
counterpart was still lacking to show good results. However, just a few months before
this thesis and additionally during the writing of this thesis, two very promising new
approaches were developed. One using classic RNNs with dropout [83], the other
using LSTM cells in a multi layered and bidirectional model [63]. We focus on these

two approaches and build models on top of this work.

In addition to the training and test set, a validation set is also used when training
neural networks to allow for early stopping. With a validation set, the performance
on a set similar to the training set can be observed. This shows when the decrease in
error on the training set is not due to a better general understanding of the data, but
due to overfitting. For every trainings procedure, we observe the performance on the
validation set and the parameter combination that gave the best results on this set is

the result of the trainings process.
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3.1.4.1 Dropout RNN

The basic RNN is very hard to train as it suffers from the vanishing gradient
problem we described in chapter 2.2.2. This issue has recently been tackled by the
introduction of the hessian-free optimization technique [70], which is very sensitive to
small gradients by approximating the second derivative of the loss function. However,
using this optimization technique and testing different network architectures is

hardly feasible, as one optimization step takes several hours even for a small data set.

Recently it was reported that the success of training neural networks greatly depends
on the initial parameters of the network [67]. When using the initial values described
in chapter 2.3.2 for the RNN, the network can be trained even without using the
hessian-free optimization. Since the training set is small with about 2000
observations, using a full batch learning is optimal. We found that using RProp as
described in chapter 2.3.3.2 is an excellent general-purpose optimization method,
which produces great results on all tested architectures and bypasses the vanishing

gradient problem by only considering the sign of the gradient.

During the writing of this thesis, an extension to RNNs [83] by using dropout (see
chapter 2.3.4.4) was published. Specifically, the authors are using an approximation
to dropout called fast dropout [84]. As our network was overfitting, we implemented
this architecture. We use dropout on the input-to-hidden connections and the hidden-
to-hidden connections (see Figure 3-5) as described in the paper. A concern was
raised that using dropout on the hidden-to-hidden connections messes with the
ability of the recurrent network to model sequences [85]. In our case however, using
dropout only on the input-to-hidden connections was not enough to prevent

overfitting.
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t-1 t t+1

Figure 3-5: RNN with dropout unfolded in time
Dropout is used on the input-to-hidden and hidden-to-hidden connections as
indicated by the dashed lines.

We compared the performance of the classic RNN to the implementation with fast

dropout to see the impact of the regularization on the network.

3.1.4.2 Bidirectional Deep LSTM

As a second approach, we use a recurrent network with LSTM units as described in
chapter 2.2.3. By doing so we avoid the problem of the vanishing gradient as the
LSTM can naturally model very long time sequences with its memory cells. This even
allows us to train the network with SGD. However, we opted to use RProp to avoid
any hyper-parameters and we even observed faster convergence with RProp. All the
weights of the LSTM network can be initialized with mean zero and a Gaussian
standard deviation of 0.01.

It was reported that extending a basic LSTM model with a bidirectional approach
helped when performing frame wise classification [86]. In our case, the exact timing of
the predictions is not important and for sequence classification, the prediction only
needs to be right on average per sequence. However, we observed that the output of
the RNN at the first few time steps of the RNN is often useless, as the net has only
seen a few time points at this stage. Therefore, we also employ the bidirectional
approach for sequence classification, which enables the network to make proper

predictions at every time step as it has always seen the whole sequence.
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A further extension to the bidirectional LSTM model was published very recently [63]
which uses a hybrid model with stacked bidirectional networks in a layered fashion.
This results in a network that is not only deep in time, but also deep in space. The
idea is very simple: we copy the hidden layer of a bidirectional LSTM and put it on
top as a second or even third layer (see Figure 3-6). It was shown that this increases
the performance and the level of abstraction that the recurrent network can achieve.
We get a boost in performance for the first additional layers, but after adding three

layers there is no more gain.
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Figure 3-6: Deep bidirectional LSTM with two recurrent layers each, adapted from
[63]. The concept is similar to a bidirectional RNN, except that LSTM units are used
and that hidden layers are stacked on top of each other. However, the stacking of the

forward and backward direction is independent, and the information is only merged

at the output layer.

We are interested in the performance of the normal one layered forward LSTM in
comparison to the deep bidirectional LSTM (DB LSTM).
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3.1.4.3 Output Layer

A RNN gives an output for every time step. To perform sequence classification, these
outputs have be merged together into one output for each sequence. The general
approach is to sum up the values of all the output units over the different time steps
and then push them either through a sigmoid activation function in the case of
binary classification, or into the softmax function when having multiple classes. The
act of combining the values from different time points, or more generally from

different layers, is called pooling.

In our experiments, we observed that first pooling the output and then applying the
sigmoid function makes the network very hard to learn. The reason is probably that
optimizing this function while not overfitting is very hard for long sequences, as one
time point can already have a huge impact on the classification. Instead, we achieve
better results when first applying the sigmoid function to the output at every time
step and then pooling the time steps by calculating the average of the sigmoids. In
this case, each output is not weighted as heavily and the prediction relies more on
being correct on average. The result is a value between zero and one that can be used

as a binary probability output for the network.

We also tried to use different methods of pooling for the sigmoid values, like
weighting the different outputs by how much of the sequence the model has seen so
far in the case of the unidirectional RNNs. For example, a linear weight favoring the
later outputs could be used, but this did not improve our results. Also just using the
last output of the network might seem like a good idea at first because only at this
point has the unidirectional network seen the complete sequence, but this approach is

very prone to overfitting.

3.1.4.4 Implementation details and hyper parameters

Training deep neural networks is very time intensive. Therefore, we implemented all
methods from scratch to allow for optimized GPU calculation. For floating point
operations, graphic cards often outperform CPUs by a large margin, sometimes with
a 20-fold increase in speed when running code on the GPU. In our case we use
Theano [87], a framework that directly generates GPU optimized C code from

mathematical expressions.

To maximize the efficiency of the GPU calculations, our method operates on a 3-
dimensional tensor instead of 2-dimensional matrices. Usually, the RNN iterates over

the rows of a matrix, where each matrix contains the data of one training example
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with a row for each time point and a column for each feature. Therefore, only one
vector is calculated at a time when applying the equations. However, since the data
set is small and we only want to use full batch training methods, all calculations of
one time step can be performed at once for all sequences. The input is structured in a
3d-tensor with the first dimension being the time points, the second one the
sequences and the third one the features. The loop iterates over the time points and
performs the equations in one step for the matrix that comprises all sequences with
their features. After looping when all calculations are finished, the first dimension is

swapped with the second one to put everything in order.

During our tests, we found that using 50 hidden units per layer for all four
architectures is ideal in our case. This is surprising, as one would expect that with
e.g. a dropout rate of 0.5 we would be able to double the amount of hidden nodes in
the network. A reason for this is probably that fast dropout does not require
additional hidden units to achieve the same improvement. We use two recurrent
layers for the DB LSTM network, as we found that our results did not improve when
using more than two recurrent layers. For all other architectures only one recurrent

layer is used.

Fach model is trained with Rprop- since the training set is small and we want to
avoid the vanishing gradient problem of the long sequences. The weights of the
LSTM networks are initialized with mean zero and a standard deviation of 0.01. For
the RNN like architectures, we use the parameter initialization protocol described in
chapter 2.3.2.

In summary, we will present detailed results for four different types of RNNs. First,
the basic one layered forward RNN as well as the extension with dropout. Third, a
one layered LSTM network and also a two layered LSTM network with bidirectional

connections.
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3.2 Results

3.2.1 RNNs based on morphology yield high performance on
labeled data

We compared the different recurrent architectures by testing their performance on
both data sets (A) and (B) as discussed in chapter 3.1.1. In order to make the sets as
clean as possible, the models were only trained and tested on labeled data in this
comparison. As the main goal of this thesis is to build a RNN that can predict the
label of the cell by just looking at the bright field images, only the morphology

features and no additional PU.1 expression levels were used in this part.

The preliminary baseline approach with SVM yielded quite good results with an
AUC of 0.79 on both test sets (see Table 3-2). However, the features had to be
normalized by their mean and standard deviation of each movie separately, as not
doing so lowers the AUC by about 10%. This result indicates that predicting the
label from observing the cell’s morphology over one cell cycle is very promising. We

further compared the performance of the different recurrent architectures on both

data sets.
Classifier AUC A | AUC B | Mean AUC
SVM 0.789 0.786 0.788
RNN 0.776 0.891 0.833
Dropout RNN | 0.832 0.884 0.858
LSTM 0.837 0.902 0.870
DB LSTM 0.866 0.935 0.901

Table 3-2: Results of classifiers on unseen test sets from different movies. The RNN
approaches outperform the SVM approach significantly, while the best results are
achieved by the DB LSTM model. There is a difference in performance when
comparing set A and B since the movies are different. Overfitting was prevented
using early stopping on a validation set which was split off from the training set.
Therefore, the validation set remains independent from the test set. The classification

accuracy is around 3-5% higher for GMPs with every model.

We notice that our performance on the test sets improves quite a lot when using
RNNs compared to an SVM. However, the results vary slightly for the two different
data sets. While the SVM has a stable performance, the results for the recurrent

models are more diverse. The basic RNN performs much better on set B than set A.
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When introducing dropout, the result becomes more stable. It is interesting to note

that the performance on set B decreases marginally with dropout.

Looking at the results for the LSTM architectures, we observe a noticeable
improvement compared to the classic RNN models. This means that the model
benefits from the additional memory cells. Even the unidirectional one layered LSTM
achieves better results than the RNN with dropout. The accuracy can be increased
further by using the DB LSTM architecture with the proposed bidirectional deep
layers. The DB LSTM provides the best performance on both data sets and is

therefore our model of choice for any further experiments.

To understand the difference in performance of the recurrent networks on one data
set, we look at the trainings process for each architecture in more detail (see Figure
3-7). The AUC is measured during the training process during the first 50 epochs.
For each epoch, we measure the performance on the trainings, validation and test set.
Note that the trainings and validation set are both from the same set of movies,
while the test set is from a different time-lapse movie. For each of the different
architectures, we observe that the networks start to overfit on the training data after
about 15-20 trainings epochs. The optimal performance on the validation set is
marked with the dashed line.
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Figure 3-7: Comparison of the classifier performance on set A.

The dashed line indicates the best result on the validation set using early stopping.
The best performance is achieved by the DB LSTM model. There is a gap between
the AUC on the validation and test set, since the test set contains cells from a
different movie.

For the basic RNN and LSTM we can see a noticeable disparity in performance
between the training and validation set. This means, the model overfits heavily on
the training set and does not learn a general structure of the data. In the case of
RNNs, this problem can be addressed by using dropout. Using dropout, we observe
that the performance on the training set degrades, while the performance on the
validation set increases. This means the model has a better generalization, which also
results in a better performance on the test set. For the LSTM models, we see that the

model is able to fit the data better in general and has almost perfect results on the
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validation set. Unlike the simple unidirectional LSTM, the deep-layered bidirectional
LSTM is able to transfer this into a high AUC value on the validation set and

achieve a near perfect performance with an AUC of 0.995 on the validation set.

A concerning issue however is the discrepancy between the performance on the
validation and test set for every architecture. The best result on the test set is
achieved by the DB LSTM, which also performs best on the validation set, but the
difference is substantial, especially for set A. When looking at the accuracy on the
validation set, it looks like the DB LSTM has done its job perfectly, given the set of
features it has available. The reason for the difference in performance is due to the

training and test set being very different which will be discussed in chapter 4.

3.2.2 RNNs have long training time but short test time

The RNN has a long runtime for the training process, even when running the code on
the GPU. Depending on the size of the training set, several hours is common (Table
3-3). This means that the amount of training examples is very limited and a training

set above 10000 examples is problematic.

Model Training time in minutes
RNN 127
Dropout RNN 163
LSTM 189
DB LSTM 396

Table 3-3: Training time on GeForce GTX 570 of different RNN models
using 3000 sequences of length 1000 in the training set and training for 100 epochs

The recall time of the RNNs however is comparably small, ranging from 20 to 80
milliseconds per example. This means that the time for classification is significantly

lower than the runtime of the movie and the method can be used for live prediction.

3.2.3 RNNs can predict lineage choice before biological marker

A practical application is to apply our classifier to unlabeled cells and possibly
predict the label of the cells before the biological markers. To evaluate this, we also
add all the unlabeled cells to our test set. For each cell, its descendants are checked
and if it has only MEPs or GMPs descendants in the tree, the cell is labeled

accordingly.
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In our simulation, we use the DB LSTM model, which was the best classifier in the
last chapter and apply it to the full test set with all cells. It is clear that there is a
high correlation between experiment time and classification accuracy. The later in the
experiment, the more cells will be differentiated and reveal their label. To see if the
classifier can identify the cells before the biological marker, we plot the classification
AUC of the cells over experiment time as shown in Figure 3-8. Besides only using the
morphology, the network is also trained with the expression profile of PU.1 to test
whether PU.1 is viable as a marker. In this case, only PU.1 was used as a feature, as

also adding the morphology did not improve the results.
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Figure 3-8: Performance over experiment time with morphology or PU.1 on set B.
The prediction accuracy increases as the experiment progresses and the cells
differentiate. The average onset of the label is at 83 hours with a standard deviation
of 13 hours. At this point, around 90% of the cells can be classified correctly using
the morphology or PU.1 approach.
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The average onset of the GATA and FCgamma markers is at 83 hours, with a
standard deviation of 13 hours. In both cases, for morphology and PU.1, the accuracy
increases with experiment time. The closer the measured cells are to the onset of the
biological markers, the better the classification result. Using only the morphology, the
classifier reaches a high AUC of over 0.8 after about 60 hours into the experiment,
which is more than 20 hours before the biological markers become active. With PU.1,
the network is even able to get a decent AUC of 0.8 after 40 hours in to the

experiment.

3.2.4 Accuracy can be improved by only taking high-confidence

predictions
In order to evaluate the applicability of our classifier in practice, we extend the
simulation from the last chapter and focus only on unlabeled cells, which have no
active biological marker. We monitor the amount of cells over time and perform the

classification of cells on an unseen movie (set B).

The experiment time is divided into intervals of 6 hours. For each interval, the total
number of different cells is counted. Each of these cells is classified using the DB
LSTM model. To keep the precision as high as possible, only cells where the classifier
is very confident with a prediction score of over 0.9 for one class are taken. As we are
interested in the performance before the biological marker onset, only cells are

counted that have not been labeled.
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Figure 3-9: Performance over experiment time for unlabeled cells using morphology.
At 60 hours the classifier achieves a high accuracy on the unlabeled cells (proportion

of green to blue area), when only using high-confidence predictions.

For the morphology (see Figure 3-9), the classifier has a high accuracy of over 80%
after 48 hours and a very high accuracy of over 90% after 60 hours when only using
high-confidence predictions. It is interesting to note, that the overall amount of cells
grows faster than the amount of cells where the classifier predicts with a high
confidence. Still, more than 90% of the high confident cells are unlabeled after 48
hours, and more than 60% are unlabeled after 60 hours. The time until the onset of
the cells between 48 and 60 hours is 21 hours on average. This means that the
classifier is clearly able to predict the cells before the marker onset by only using the

morphology.
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Figure 3-10: Performance over experiment time for unlabeled cells using only PU.1.
At 60 hours the classifier achieves a perfect accuracy on the unlabeled cells when only

using high-confidence predictions.

For the classifier using only PU.1 (see Figure 3-10), the results are different. The
classifier is generally more confident and the amount of high confident cells is
proportional to the overall amount of cells. Interestingly, the accuracy at 42 to 60
hours is not better than the one for the morphology. Nevertheless, at around 30 to 36
hours and after 66 hours, the PU.1 classifier has a perfect accuracy of over 95% and
performs better than the morphology method. Note that all accuracies were

calculated using a different movie in the test set (set B).

3.2.5 Shape and Texture are important features
To analyze which of the features are key for the machine learning models to
understand the data set, we perform a feature reduction. This means that parts of

the features are left out from the training and test process, and the performance only
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using the rest of the features is measured. In chapter 3.1.2, we already discussed the
different types of features available. As leaving only a few features out made no
observable difference and training a network takes several hours (see chapter 3.2.2),

we decided to divide the features into groups and only use one of the groups per test

case.
Feature set AUC
Movement, Shape 0.849
Zernike moments 0.701
Entropy, Gabor 0.876
Tamura 0.891
HOG 0.537
All features 0.902

Table 3-4: Feature importance using DB LSTM on set B.
The basic features like shape and texture are very important. More advanced features

like Zernike polynomials are less informative.

Our results for this analysis (see Table 3-4) are very informative. We found that
movement and shape are very good indicators for the class of a cell. Even more
important seems to be the surface of the cell that is described by the Tamura
features. The other features describing the entropy and variance also seem to be very
important. As the features were calculated on the segmented cell images without a
fixed image size, the Histogram of Oriented Gradients (HOG) features are not

informational.
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4 Discussion

The results with the baseline SVM approach show that distinguishing between MEP
and GMP using the morphology of the cells is possible. We achieve a good accuracy
even though the time series is averaged for each feature to only a few time steps.
However, the features had to be normalized by their mean and standard deviation of
each movie separately, as not doing so lowers the AUC by about 10%. This procedure

makes the features more robust.

4.1 Different performance on movies

In the results, we noticed a better performance on set B than A. In both cases, the
majority of the training and test set each consist of one large movie with many cells.
When swapping the movies, one might expect the same performance on both test
sets, but there are a couple of different scenarios, which can cause the performance to

degrade.

The first explanation that comes to mind is that the learning process is worse for set
A which results in a lower generalization. If the training set contains many false
positives or cells which look slightly different than the average MEP or GMP, then
the model could not learn the data properly, which would result in a lower accuracy
on the test set. However, in this scenario, we would also expect a bad performance

when swapping the training and test set.

A more likely explanation is that the 120602PH5 movie, which is the test set in
dataset A, contains some observations that are very distinct from the other movies.
For instance, if the cells in this experiment were in a significantly later stage of
differentiation due to some external factors in the experiment, then the MEPs would
be larger in the movie. Another scenario is that this movie contains more cells and is
more crowded in the later stages than the other movies, which would cause the
segmentation to fail. In both cases, these cells could not be classified in the test set.
However, as there are still enough proper observations we would not notice this

problem when the 120602PH5 movie acts as the training set.

4.2 Robustness of features

The more complex recurrent model is able to give a much better performance on both
sets. Nevertheless, there is still have a noticeable gap between the validation and the

test set. The optimal performance on the validation set suggests that the features are
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well chosen. However, the accurate performance could also stem from biases in the

movies.

Each movie generally has the same conditions and some of them were even conducted
using the same microscope, but when looking at the bright field images, we often
notice a big difference in brightness. Even when comparing different position in one
movie, there is a noticeable change in brightness. In a post-processing step, the
brightness across positions is normalized by estimating the luminosity and contrast of
the different positions and then applying filters to equalize the difference but this is

still far from optimal.

In our preliminary tests, we observed a perfect accuracy when classifying on the same
movie within a cross-validation framework. Later we found, that the good
performance was due to the movie being darker on the right side and the fact that
MEPs were located more on the right, while GMPs were more on the left plate of the
movie. Therefore, our machine-learning algorithm was able to distinguish the cells by
merely looking at the brightness level. From this point forward, we completely
abandoned the idea of using the same movie in the training and test sets and focused

on classifying movies that are distinct from the training set.

In an ideal setting, the features would be independent from the experimental settings
of the time-lapse movies. As the shape and surface features performed best in our

feature reduction, we suggest building robust features on top of these.

4.3 Building better features

An idea we pursued was to normalize every cell image by its mean and standard
deviation after calculating its bounding box and before performing the segmentation
and the feature analysis. This causes the brightness and intensity of the cell image to
be dependent on the size and content of the cell image rather than the experimental
settings. Different images across one cell cycle would vary greatly in their intensity
depending on the size of the cell, but given enough examples, a machine-learning
algorithm could understand this and have a set of movie independent features. This
procedure also makes normalizing the final features by the mean and standard

deviation of each movie unnecessary.

Further, instead of calculating features on a variable size of the images, we changed
our approach to image patches with a fixed size of 30x30. This resulted in a better

performance when using position dependent features like the HOG. We chose a size
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of 30, as plotting the histogram for cells before the marker onset revealed that 95% of
the cells before the marker onset would not exceed this size. After the onset of the
marker, the cells tend to be bigger, but these cells are mostly fully differentiated

MEPs and easy to detect using the size criteria alone.

Applying these normalizations resulted in a more closely matched AUC for the test
and validation set, but unfortunately, the overall AUC decreased, meaning the
performance degraded. We suspect that there was a loss in information when
performing the brightness normalization. Interestingly, we were able to increase the
AUC significantly when again normalizing the final features by the mean and
standard deviation of each movie. Still, the AUC was 5-8% percent lower compared
to the approach as reported in our results. This means that despite the
normalization, the features are still movie dependent, which requires further

investigation.

A different approach we pursued was building completely new features using a
Stacked Autoencoder [23]. We did not include this in our methods or results, as this
approach yielded no success. The features were overfitting on the movies resulting in
a good performance on the validation set, but poor on the test set. Distinguishing
MEPs and GMPs is very difficult for the human eye and usually only possible in
later stages of an experiment when the MEPs are significantly larger than the GMPs.
Automatically creating the features using an unsupervised approach would therefore
be ideal. However, doing so usually means that the feature do not describe distinct
properties of biological cells, but rather differences between whole image patches and
thus different movies. This would mean that all the features are heavily movie biased
and therefore an unsupervised approach is unlikely to work until the movie bias is

completely removed.

4.4 Limitations of RNNs

Looking at the results, the advantages of using RNNs are clear. The performance of
the RNN, compared to other classifiers that cannot understand time, is substantial.
However, using this type of model also has its disadvantages. The RNN has a long
runtime for the training process, even when running the code on the GPU (see
chapter 3.2.2).

Further, the amount of input features has to be below 100 in order for the network to

learn the data. This is evident when trying to combine the RNN with other layers,
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like prepending a convolutional layer before the recurrent layer, which does not work.
The reason for this is the vanishing gradient problem that has been discussed.
Introducing a full batch learning method like RProp helps, but at the cost of
computational time. Using the LSTM neurons, also avoids the vanishing gradient
problem. However, the LSTM model needs more parameters and equations, resulting

in a longer optimization time.

4.5 High accuracy before biological marker

In our results, we achieve a high accuracy at around 60 hours when using the
morphological features and 40 hours when using the PU.1 expression level. This
suggests that the lineage decision of the HSC whether to become MEP or GMP is
already much earlier than the change in GATA and FCgamma levels.

The disadvantage of the PU.1 approach is that special mice are required which have
the fluorescent knock-in sequence for PU.1. This is a very complicated process and
requires a long period of preparation. Unfortunately not using this marker and only
using the morphological features only gives us a high accuracy at about 60 hours. A
tradeoff would be to perform a semi-automatic approach where the tracking
algorithm creates small periods of tracks where it is very certain and asks a user to

make interactive decisions to connect them.

Both results can be improved by only taking cells, where the classifier has a high
confidence in the prediction of the label. This approach increases the accuracy from
80% to 90% in both cases, for either morphology or PU.1. As having false negatives is
not problematic as long as enough cells are identified as positive and decreasing the

amount of false positives is very important, this step is highly practical.
4.6 Outlook

4.6.1 Learning on raw images

Our great results could be improved by developing features that are more robust.
The recurrent neural network is able to classify cells perfectly if they stem from the
same movie with the same conditions. However, when cells from another movie are
classified, the results drop. This means that the features are movie dependent. The
issue can be addressed by either gathering more training data in order for the model
to learn the difference between movies, or by building a set of more robust and movie

independent features.
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Instead of spending a lot of time on making new features, one could try to normalize
the individual cell images and build a model that can work directly on the raw
images. This approach is very difficult with recurrent neural networks, as they
already have to spend a lot of power on understanding the temporal component.
However, as the cell images are easy to normalize and bring into a central position of
the image, this might be possible with deep-layered temporal model like the DB
LSTM. This method was successfully used for speech recognition on mel-cepstrum
features of audio spectrograms and cell images are only seem slightly more complex
when normalized properly. A concern is that recurrent nets are known to have
problems with too many features. The cell images would have around 500 pixel
features for each image with a square size of 24 and this is much more than the mel-

cepstrum with only 24 features.

4.6.2 Finding specific important features by feature reduction

To build a better classifier, it is important to find out which specific features are
important when distinguishing the cell types. This is especially important in our case,
as the test set is distinct from the training set, and an improvement might only be
possible by manually restricting the features to prevent overfitting on the training
data.

We thought about making a complete feature reduction, by iteratively leaving out all
possible groups of features, but the training time for the network with several hours
is too long. To reduce the amount of different combinations that have to be tested,
the Apriori algorithm [88] is often used in these reduction based problems. The
central idea is that if leaving one feature out increased the error above a threshold,
removing additional features will not decrease the error again. This assumes that the
network always finds the optimal parameters for the validation set. However, this
theorem does not hold in our case, as removing an additional feature could decrease

the error as it prevents overfitting.

Nevertheless, as we already identified subgroups of important features in our results,
we could perform a complete feature reduction with all combinations based on these
results. When estimating the training time at 3 hours with and performing a
reduction of 2 subgroups with 5 features each, this would take 7,5 days of training
time on the GPU board.
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4.6.3 Predicting cell fates live during movie acquisition

A key step in making the classification method practical is to combine it with an
auto tracking approach that can track cells live during movie run-time. This would
make on-line prediction of cell fates possible. However, auto tracking approaches are
still limited in their performance, especially in later stages of the experiments where
the images are too crowded to separate the cells properly. Therefore, a tradeoff in
experiment time has to be established where the prediction yields a good accuracy

and auto tracking is still possible.

If this method were to be put in practice, it would become feasible to extract cells
with high prediction confidence at early stages of the movie. Single cell sequencing
could be performed on the extracted cells, which could provide new insights into the

biological processes that are involved in differentiation.

4.6.4 Using lineages of cells instead of only one cell cycle
During our work, we mainly focused on using the current cycle of a cell and not the
complete linage with all cell cycles of the cell’s ancestors. This was due to practical

reasons, as the auto tracking approach has problems with cell divisions.

However, once these problems are addressed, using complete linages is likely the
better option, as more information about the cell usually leads to better results. In
prior tests, we already evaluated this and achieved very promising results. The
extended length of the sequences of up to 2000 time points did not cause any
problems when using the LSTM models. Also concatenating the cell cycles, without
explicitly defining the bounds of each cycle in the sequence, did not seem to be an

issue for the model.

A problem, that needs to be addressed when learning full lineages, is that some cells
share the same ancestors. These common ancestors are the prefix of the sequence in
different linages, which results in the first part of the sequences being identical. If a
very large tree is added to the training set with many examples, this prefix is learned
many times and the network might only use this prefix to identify the linages. To
address this issue, the recurrent architecture of the network needs to be changed.
Instead of learning different linages, the network would have to learn a complete tree.
This can be implemented by indexing the time steps and using specific previous time

steps instead of t_;. These models are called recursive neural networks [89].
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5 Conclusion

We successfully managed to distinguish MEP from GMP cells by only using
morphological features with a very high accuracy of over 80%. Further, our method
can detect these cells up to two cell cycles before the currently used biological
markers. When only using the morphology of the cells, we achieve a high accuracy
after 60 hours of experiment time, while the biological marker detects the cells at
about 80 hours on average in our experiments. If the expression level of PU.1 is used
for identification, the cell types can be classified with a high accuracy at 40 hours.

Both results can be improved to 90% accuracy by only high confidence predictions.

This enables us to combine our method with an auto tracking approach that is viable
for the first few cell cycles of a time-lapse movie where the cells are not as great in
number and easier track. Note that we measured our performance for the prediction
of cells from time-lapse movies that are different from the training set and therefore

the approach is directly applicable in a practical method.

As the recurrent neural networks are general machine learning models, our fast GPU
implementation can be used as a general-purpose method for other time-series
classification problems in bioinformatics. By slightly changing the architecture of the
network, the model could also be applied to other problems in cell imaging like cell

segmentation and auto tracking.
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