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MicroRNA-196a and -196b as
Potential Biomarkers for the
Early Detection of Familial
Pancreatic Cancer

Abstract

Screening programs are recommended for individuals at risk (IAR) from families with familial pancreatic cancer (FPC).
However, reliable imaging methods or biomarkers for early diagnosis of pancreatic ductal adenocarcinoma (PC) or its
precursor lesions are still lacking. The ability of circulating microRNAs (miRNAs) to discriminate multifocal high-grade
precursor lesions or PC from normal was examined. The presence of miRNA-21, -155, -196a, -196b and -210 was
analyzed in the serum of transgenic KPC mice to test their ability to distinguish mice with different grades of pancreatic
intraepithelial neoplasia (mPanIN1-3) or PC from control mice. Serum levels of miR-196a and -196b were significantly
higher in mice with PanIN2/3 lesions (n = 10) or PC (n = 8) as compared to control mice (n = 10) or mice with PanIN1
lesions (n = 10; P = .01). In humans, miR-196a and -196b were also diagnostic. Patients with PC, sporadic (n = 9) or
hereditary (n = 10), and IAR with multifocal PanIN2/3 lesions (n = 5) had significantly higher serum levels than patients
with neuroendocrine pancreatic tumors (n = 10) or chronic pancreatitis (n = 10), IAR with PanIN1 or no PanIN lesions
(n = 5), and healthy controls (n = 10). The combination of both miR-196a and -196b reached a sensitivity of 1 and
specificity of 0.9 (area under the curve = 0.99) to diagnose PC or high-grade PanlIN lesions. In addition, preoperative
elevated serum levels of miR-196a and -196b in patients with PC or multifocal PanIN2/3 lesions dropped to normal after
potential curative resection. The combination of miR-196a and -196b may be a promising biomarker test for the
screening of IAR for FPC.
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Introduction
Pancreatic ductal adenocarcinoma (PC) is a highly malignant tumor
that has a poor prognosis because of the lack of early symptoms.
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Familial pancreatic cancer (FPC) accounts for about 3% of all PC
cases [1,2]. Families with at least two first-degree relatives with confirmed
PC that do not fulfill the criteria of other inherited tumor syndromes with
an increased risk for the development of PC, such as Peutz—Jeghers
syndrome or hereditary pancreatitis, are defined as FPC [3,4]. The major
underlying gene defect(s) of FPC has not yet been identified, but causative
BRCA2, PALB2, CDKNZ2a, and ATM germline mutations were identified
in about 10% to 15% of the FPC families [4-9]. It has been
recommended by a recent consensus conference that individuals at risk
(IAR) of FPC families should undergo PC screening under research
protocol conditions [3]. Individuals with at least a 5- to 10-fold increased



2  miR-196a / b as potential FPC biomarkers ~ Slater et al.

risk of PC, such as members of FPC families with two or more affected
first-degree relatives, are considered to be candidates for screening. Most
experts currently consider magnetic resonance imaging (MRI) and
endoscopic ultrasonography to be the best imaging modalities for FPC
screening [4]. Unfortunately, these imaging tools are not able to reliably
visualize early PC or, even more important, its high-grade precursor
lesions, i.e., pancreatic intraepithelial neoplasia grade 3 (PanIN3). Thus,
there is a definite need for biomarkers to facilitate screening of IAR in the
setting of FPC to identify those individuals with high-grade PanINs
before the development of invasive carcinoma that could allow for a
curative resection.

Familial as well as sporadic PCs are characterized by a progression
from low-grade PanINs (PanIN1) over carcinoma iz situ (PanIN3) to
invasive cancer. The majority of pancreatic specimens of resected
FPC individuals reveal multifocal PanIN disease in addition to
small intraductal papillary mucinous neoplasms (IPMNs) of branch
duct/gastric type [10—13]. Branch-duct IPMNs might be a surrogate
marker for the presence of high-grade PanIN lesions in other locations
of the gland in the FPC setting [14]. The stepwise progression
from PanIN to invasive PC comprises activating mutations of the
Kras oncogene and inactivation of the ARF-p53 tumor suppressor
pathway in the great majority of cases [15]. Nowadays, genetically
engineered mouse models of PC that closely recapitulate the
histopathogenesis and progression of the human disease are available.
These include the LSL-Kras“"?""*; Pdx1-Cre (KC) mice that progress
up to PanIN3 lesions and the LSL-Kras“'?”*;LSL-Trp53% 721,
Pdx1-Cre (KPC) mice that develop PanIN lesions and ultimately
invasive carcinoma at 5 to 10 months [16—18]. These mouse models
are considered an adequate tool for the study of biomarkers [16,17],
especially given the lack of FPC patients with preoperative, well-
defined high-grade PanIN lesions.

MicroRNAs (miRNAs) are small non-coding molecules, which
have an important function in regulating RNA stability and gene
expression. The deregulation of miRNAs has been linked to cancer
development and tumor progression [19]. Recently, it has been
reported that serum contains sufficiently stable miRNA species that
might deem useful as non-invasive biomarkers for several cancers,
including pancreatic cancer [20-22]. Thus, the aim of the present

study was to evaluate a panel of miRNAs as potential biomarkers for
PC screening in IAR of FPC families.

Materials and Methods

miRNA Selection

miRNAs overexpressed in serum samples or specimens of
human or murine PC were compiled by searching the PubMed
and MEDLINE databases for articles published from 1 January 1990
to 31 July 2011. The search terms “miRNA,” “microRNA,”
“pancreatic cancer” or “familial pancreatic cancer” and “protein
markers” or “biomarker,” or “early detection,” or “diagnostic test”
were used. A second-level manual search included the reference list of
the articles considered to be of interest. The literature search and
study selection were performed by two authors (D.K.B. and E.P.S.).

Transgenic KPC Mouse Samples
Conditional ZSL-Trp53"7?"*,1.SL-Kras“"?”"* and Pdx1-Cre [17]
strains were interbred to obtain LSL—Km:GlZD/*;LSL—T7p53R172H/+;

Pdx1-Cre (KPC) triple mutant animals on a mixed 129/Sv]ae/C57Bl/6
background as described previously by our group [18]. The time span
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for the development of different PanINs is well established in these
mice. KPC mice develop PanIN2/3 lesions after 3 to 4 months and
invasive cancer after 5 months. The generation of RIPI-7ag2 mice as a
model of pancreatic islet cell carcinogenesis has been previously reported
[23]. All experiments were approved by the local committee for animal
care and use. Animals were maintained in a climate-controlled room
kept at 22°C, exposed to a 12:12-hour light-dark cycle, fed standard
laboratory chow, and given water ad libitum.

For genotyping, genomic DNA was extracted from tail cuttings
using the REDExtract-N-Amp Tissue PCR Kit (Sigma-Aldrich, St
Louis, MO). Three polymerase chain reactions (PCRs) were carried
out for each animal to test for the presence of the oncogenic
Kras (using LoxP) primers, p53, and Pdx1-Cre transgene constructs
(using Cre-specific primers), respectively. SV40-Tag specific primers
were used for the genotyping of the RIPI-Tag2 mice.

Mice were killed, blood was collected from the thoracic cavity for
serum, and the pancreas was removed and inspected for grossly visible
tumors and preserved in 10% formalin solution (Sigma-Aldrich) for
histology. Formalin-fixed, paraffin-embedded tissues were sectioned
(4 pm) and stained with hematoxylin and eosin. Six sections (100 tm
apart) of pancreatic tissues were histologically evaluated by an
experienced pathologist (A.R.) blinded to the experimental groups.
mPanIN lesions were classified according to histopathologic criteria as
recommended previously [18].

Human Samples

Preoperative serum samples of patients with histologically proven
sporadic PC, familial PC, chronic pancreatitis (CP), and pancreatic
neuroendocrine neoplasms (pPNENs) were obtained from the tissue
bank of the Department of Surgery, Philipps University of Marburg
(Marburg, Germany) and analyzed for the presence and expression
level of miR-196a and -196b. All tumors were histologically staged
according to the Union Internationale Contre le Cancer/Tumor,
Node, Metastasis (UICC-TNM) classification 2009 [24]. Serum and
blood samples of 10 voluntary healthy individuals, 3 males and 7
females, 25 to 50 years of age, served as controls. In addition,
preoperative and early postoperative serum samples of patients with
potentially curative resected PC and IAR of FPC families who either
underwent total pancreatectomy or partial pancreatic resection
for suspicious imaging lesions were also analyzed for miR-196a
and -196b. In TIAR who underwent pancreatectomy, the entire
resection specimen was cut into 5-mm sections and analyzed for the
presence of PanINs, IPMNs, and invasive cancer by experienced
pathologists (I.E. and G.K.). Informed written consent was obtained from
every individual who participated in the study according to the ethics
committee vote of the Philipps University of Marburg (No. 36/1997;
Amendment 5/2009).

RNA Isolation and Real-Time PCR

Total RNA was extracted from mouse serum using
mirVana PARIS kit (Ambion 1556; 100 pl) according to
the manufacturer’s instructions. The PAXgene system (Becton
Dickinson, Heidelberg, Germany) was used to isolate total RNA,
including miRNA from human blood samples using the miRNeasy
kit again according to the manufacturer’s instructions.

Real-time PCR was performed in triplicate. miRNAs were amplified
after specific reverse transcription using TagMan microRNA assays and
TagMan MicroRNA Reverse Transcription Kit (Applied Biosystems,
Darmstadt, Germany) according to the manufacturer’s instructions
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(Applied Biosystems, Darmstadt, Germany) and normalized against
miR-24 as previously described [25]. These authors recently confirmed
the validity of using miR-24 as it is ubiquitously expressed in normal
and pancreatic tissues [26]. Relative expression was determined using
the AAC, method and a C, value > 35 indicated negative amplification.

Statistical Analysis

To assess whether the levels of the tested miRNAs in the murine
PanIN and carcinoma samples were significantly different from
the levels in the control samples, a Wilcoxon signed rank test was
used. A Pvalue <.05 was considered statistically significant. A logistic
regression model was set up to determine the effect of the respective
miRNAs on the affection status of a subject. Additionally, a model
including the combination of miRNAs was calculated. To evaluate
the ability of an miRNA to distinguish pairwise between PanIN,
carcinoma, and control samples, true-positive rates (sensitivity) and
true-negative rates (specificity) were determined by the calculation of
a receiver operating characteristic (ROC) curve. The area under the
curve (AUC) served as an additional performance index.

For analysis of miR-196a and -196b expression in human samples,
the Wilcoxon signed rank test as well as logistic regression modeling
was applied. The resulting predicted probabilities of being affected
were analyzed again by the calculation of an ROC curve and the
determination of sensitivity, specificity, and AUC. All steps were
conducted with R version 2.13.1. A cutoff value for a range of fold
change that indicates the presence of high-grade PanIN (2 or 3) and/
or PC was calculated.

Results

The literature search revealed a potential association between
miRNAs (miR-21, -155, -196a, -196b, and -210) and pancreatic
cancer or high-grade PanIN lesions [27-33]; thus, these miRNAs
were evaluated. Although all five miRNAs could be detected in the
serum of the analyzed KPC mice, miR-21, -155, and -210 did not
discriminate between controls, PanINs, and PC (data not shown).
miR-21 levels were already increased in mice with low-grade PanIN1
and there was no greater than a two-fold increase in expression levels
of miR-155 and miR-210 in the KPC mice with PC as compared to
controls (data not shown). Thus, these miRNAs were excluded
from further analysis. Using miR-24 as a reference and wild-type mice
(n = 10) as control, we were able to consistently measure significantly
increased levels of miR-196a and -196b in the serum of mice
with multifocal PanIN2/3 lesions (7 = 10) and mice with invasive PC
(n = 8) (Figure 1 and Table 1).

The levels of miR-196a were similar between control mice (7 = 10)
and KPC mice with PanIN1 lesions (72 = 10) or endocrine tumors (7 = 4).
In contrast, mice with PanIN2/3 lesions had a median fold change of 2.7
above control/PanIN1 and mice with PC revealed a median fold change
of 3.0 compared to controls and mice with PanIN1 lesions, which were
both statistically significant (P = .03 and P < .01, Table 1). miR-196a
had a sensitivity and a specificity of 0.9 and 0.78 for the discrimination
between normal and PanIN2/3 and 0.9 and 1 for the discrimination
between normal and PC, respectively.

The levels of miR-196b were also similar between control mice
(n = 10) and KPC mice with PanIN1 lesions (7 = 10) or endocrine
tumors (72 = 4). The mice with multifocal PanIN2/3 lesions (7 = 10) and
invasive carcinoma (7 = 8) had a median fold change in the serum levels
of miR-196b of 4.2-fold and 3.6-fold compared to normal controls and
mice with PanIN1 lesions (Figure 1 and Table 1). The calculated
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sensitivity and specificity for miR-196b was 0.86 and 1 for the
discrimination between control and PanIN2/3 lesions and 0.86 and
0.86 for the discrimination between control and invasive cancer.

The combination of both miR-196a and miR-196b attained a
perfect discrimination between control and PanIN2/3 with a
sensitivity and a specificity of 1. Two of the 15 samples with
PanIN2/3 lesions did not have elevated miR-196a levels
(cycle threshold difference values: 0.022, 1.2), but both samples
revealed raised miR-196b levels (cycle threshold difference values: - 2.02,
-1.2; Figure 1, D and E). For the discrimination between normal
control and invasive PC, a sensitivity of 0.86 and a specificity of 1
were calculated.

Since the levels of miR-196a and miR-196b are potential
diagnostic serum markers for high-grade PanIN lesions and invasive
PC, we next evaluated the presence of miR-196a and -196b in human
blood samples. These included samples from patients with sporadic
PC (2=9, 2 stage I, 6 stage II, and 1 stage IV), familial PC (n = 10, 1
stage 11, 9 stage IV), CP (z = 10), pNENs (z = 10), IAR with
histologically proven multifocal PanIN2/3 lesions (7 = 5), IAR with
PanIN1 or no PanIN lesions upon histopathology (» = 5), and
healthy subjects (7 = 10) as controls. Again, the serum levels of miR-
196a and miR-196b were significantly higher in patients with
sporadic and familial PC and IAR with multifocal PanIN2/3 lesions
than in patients with pNENs, CP, and PanIN1 lesions and healthy
controls (Figure 2 and Table 2). miRNA levels were highest
(up to 46-fold) in patients with metastasized PC stage IV (z = 10).
miR-196a had a sensitivity of 1 and a specificity of 0.6 (AUC = 0.64)
for the discrimination between normal and PanIN2/3 (Figure 3), as
well as 0.9 and 0.89 (AUC = 0.97) for the discrimination between
normal and PC, respectively. miR-196b had a sensitivity and a
specificity of 1 each (AUC = 1.0) for the discrimination between
normal and PanIN2/3 (Figure 3) and a sensitivity of 1 and a
specificity of 0.78 (AUC = 0.86) for the discrimination between
normal and PC. The combination of both miR-196a and miR-196b
attained the best discrimination between control and either multifocal
PanIN2/3 (a sensitivity of 1 and a specificity of 1) or sporadic
invasive PC (a sensitivity of 1 and a specificity of 1). The results of
miR-196a and -196b ROC curves are presented in Table 2. A AC,
value of 7.51 for miR-196a and a AC, value of 6.35 for miR-196b
were calculated as cutoff values that indicate the presence of high-
grade PanIN2/3 lesions or PC.

Interestingly, in nine PC patients with available preoperative
and early postoperative serum samples, the preoperative elevated
miR-196a and miR-196b dropped to the normal range after potential
curative resection. The same was true for the five IAR with multifocal
PanIN2/3 lesions (Figure 4, A and B).

Discussion

Consensus statements recommend screening IAR of FPC families
with endoscopic ultrasonography and MRI, as these are considered to
be the best imaging modalities [12,34]. However, these tools often
fail to reliably detect high-grade lesions (PanIN3) and early PC. In
addition, up to 40% of IAR show small cystic lesions on imaging that
might represent small branch-duct type IPMNs [34]. It was suggested
that these lesions are a surrogate for the presence of non-visible, high-
grade PanIN lesions somewhere else in the pancreas of the IAR [14].
Thus, biomarkers that reliably indicate the presence of high-grade
PanIN or early PC lesions would be of great value for the screening of
IAR in the setting of FPC and could lead to curative resection. Several
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Figure 1. Histologic sections stained with hematoxylin and eosin from wild-type (A) and KPC mice with PanIN2/3 lesions (B) and invasive
carcinoma (C). Scatter plot showing the results from TagMan analyses of miR-196a (D) and miR-196b (E) in mouse serum. Results are
expressed as the cycle threshold difference between miR-196a, or miR-196b, and miR-24 in the experimental animal compared to that of
wild type. Control represents samples from wild-type mice, PanIN are the KPC mice with histologically proven PanIN2/3 lesions, and
carcinoma are KPC mice presenting with invasive carcinoma. The values obtained with PanIN1 and mice with pancreatic endocrine

tumors did not vary from control values.

miRNAs can potentially serve as such biomarkers as these are reported
to be upregulated in PC [27], PanINs [35], and IPMNs [28]. A
recent meta-analysis of nine studies, including four with serum
analysis, evaluating 20 miRNAs in 941 patients with PC calculated a
pooled sensitivity of 0.89, a specificity of 0.93, and an AUC of 0.97

Table 1. Results of TagMan Analyses in Mice

N Median Range P versus Control
Fold
Change T test Wilcoxon Test
miR-196a
Mouse
Control 10
PanIN1 10 1.0 1-1.2 1.0 .85
PanIN2/3 10 2.4 1-6 .03* .05
Carcinoma 8 2.7 1.5-20 <.01* <.01*
Endocrine tumor 4 1.2 1-1.5 1.0 .85
miR-196b
Mouse
Control 10
PanIN1 10 1.0 1-1.3 1.0 1.0
PanIN2/3 10 4.3 2.1-30 <.01* <.01*
Carcinoma 8 3.6 1.5-8.8 <.01* .02*
Endocrine tumor 4 1.3 1-1.5 1.0 1.0

*Statistically significant as compared to control.

for the diagnosis of PC [36]. However, high-grade precursor PanIN
lesions, which are the main targets of pancreatic cancer screening in
IAR of FPC families, were not analyzed in this study. Thus, the
present study focused on the identification of miRNAs that allows the
detection of high-grade PanINs and early PC (T1 tumors) with high
sensitivity and specificity. The optimal miRNA assay for routine
clinical use in FPC screening should ideally consist of a small set of
miRNAs that provides quick and reproducible results. Therefore, the
presented study was focused on a small panel of five miRNAs (miR-21,
-155, -196a, -196b, and -210).

To ensure the investigation of properly characterized PanIN stages,
the KPC mouse model mimicking the progression of PC was first
used to test the five miRNAs for their diagnostic potential. All five
tested miRNAs could be reproducibly detected in the serum of these
animals. The important new finding of the present study is that only
serum miR-196a and -196b proved to be promising in the ability to
distinguish mice with high-grade PanIN lesions or PC from wild-type
mice and KPC mice with no or low-grade PanIN lesions. The
combination of both miRNAs reached a sensitivity and a specificity of
1 for the discrimination between control/PanIN1 and PanIN2/3 and
a sensitivity of 0.86 and a specificity of 1 for the discrimination
between control/PanIN1 and invasive PC. The diagnostic value also
held true in human serum samples, because serum miR-196a and
-196b expression revealed remarkable similarities between murine
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Figure 2. Scatter plot showing the results from TagMan analyses of miR-196a (A) and miR-196b (B) in samples of patients with FPC,
sporadic PC, CP, and pNENSs, IAR with multifocal PanIN2/3 lesions, IAR with PanIN1 lesions, and healthy controls. Results are expressed
as the cycle threshold difference between miR-196a or miR-196b and miR-24 in the patient’s blood compared to that of control.

and human samples. Again, the serum levels of miR-196a and miR-196b
were significantly higher in patients with PC and most importantly in
IAR with multifocal PanIN2/3 lesions than in patients with pPNENs and
CP, IAR with none or PanIN1 lesions, and healthy controls, respectively.
The combination of both miR-196a and miR-196b attained the best
discrimination between control/PanIN1 and invasive PC (a sensitivity of
1 and a specificity of 1) as well as between control/PanIN1 and PanIN2/
3 (a sensitivity of 1 and a specificity of 1).

The presented findings are supported by previous reports.
Significantly, a study on laser-dissected human PanIN lesions
revealed miR-196b as the most selectively differendally expressed
miRNA in PanIN3 lesions [35]. In addition, Liu et al. reported
that serum levels of miR-196a were significantly higher in
PC patients than in healthy controls, although the combination of
miR-16, miR-196a, and CA19-9 was most effective for the PC
diagnosis [37]. However, the present study shows for the first time
based on well-defined PanIN lesions in the KPC mouse model that
miRNA-196a/b might also be promising serum markers to detect
high-grade PanIN lesions in IAR of FPC families. This is also
supported by the fact that preoperatively elevated miR-196a and

-196b levels in patients with PC as well as IAR with multifocal, non-
imageable PanIN2/3 lesions dropped to normal values after
potentially curative pancreatic resection. This provides strong
evidence for the hypothesis that the diseased organ was the true
cause of the overexpressed miR-196a and -196b levels. As available
imaging methods alone are not sufficient for the diagnosis of high-
grade PanIN precursor lesions in IAR, they might be complemented
by the results of biomarkers miRNA-196a/b to make a decision for
further surveillance or surgery.

According to a large-scale microarray analysis, no single miRNA,
including miR-196a and miR-196b, was able to reliably discriminate
between PC and CP in serum samples [38]. In the present study, the
combination of miR-196a and -196b reached a sensitivity 0of 0.89 and a
specificity of 1.0 with an AUC of 0.96 for the discrimination between
CP and multifocal PanIN2/3. However, this reduced sensitivity is of
minor importance in the setting of FPC, because individuals with FPC
usually do not present with the phenotype of CP.

In contrast to miR-196a and -196b, miR-21, -155, and -210 could
not discriminate between mice with high-grade PanIN or PC lesions
and low-grade PanIN lesions or even wild-type mice. miRNA-21
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Table 2. ROC Curve Analyses of miR-196a and -196b in Human Blood Samples

Human miR-196a miR-196b miR-196a/b
Con-PanIN2/3 Sensitivity 1.00 1.00 1.00
Specificity 0.60 1.00 1.00
AUC 0.64 1.00 1.00
Cutoff* 7.51 6.35 7.51/6.35
Con-spPC Sensitivity 0.90 1.00 1.00
Specificity 0.89 0.78 1.00
AUC 0.97 0.86 1.00
Cutoff 7.96 6.35 7.51/8.01
Con-FPC Sensitivity 0.90 1.00 1.00
Specificity 1.00 1.00 1.00
AUC 0.99 1.00 1.00
Cutoff 7.96 6.35 7.96/6.35
Con-CP Sensitivity 0.90 0.89 1.00
Specificity 1.00 1.00 1.00
AUC 0.96 0.96 1.00
Cutoff 7.96 6.87 8.84/6.87
CP-PanIN2/3 Sensitivity 1.00 0.78 0.89
Specificity 0.60 1.00 1.00
AUC 0.60 0.91 0.955
Cutoff 7.09 5.90 7.09/5.76
CP-spPC Sensitivity 1.00 0.89 1.00
Specificity 0.78 0.67 0.78
AUC 0.83 0.70 0.90
Cutoff 7.09 5.76 7.41/4.83
CP-FPC Sensitivity 1.00 0.89 1.00
Specificity 0.90 1.00 0.90
AUC 0.91 0.96 0.99
Cutoff 7.09 5.76 7.41/4.83

*Cutoff is expressed in AC, for the corresponding miRNA; a perfect discrimination (AUC = 1.00) is
highlighted in bold; PanIN1 and endocrine tumor values versus control values showed no
significant differences and are not presented here.

con, control; spPC, sporadic pancreatic carcinoma.

already showed significant overexpression in low-grade murine PanIN
1 lesions, as reported previously [39,40]. In the study of LaConti et
al., miR-21 levels were even higher in PanIN1 than in PanIN2/3
lesions [40]. Because the major goal of FPC screening is the
identification of high-grade PanIN lesions, miR-21 was considered
not to be useful for further analysis in the present study.

In the present study, there was no greater than a two-fold increase
in serum levels of miR-155 in the KPC mice with PC as compared to
controls and mice with PanINT1 lesions. This is in line with the study
of LaConti et al. who reported an up-regulation of miR-155 in
murine and human PC of at most two- to three-fold [40]. In another
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study of human laser-dissected PanIN lesions, miR-155 was also not
significantly overexpressed in PanIN3 lesions, which is the most
important lesion to identify in IAR undergoing PC screening.

Ho et al. reported in a small-scale study of 22 PC patients and
25 controls that miR-210 was reliably detected and quantified in
serum samples with a statistically significant four-fold increase
in expression in PC patients compared with normal controls
(P < .0001)[31]. In the present study, however, there was no
greater than a two-fold increase in expression of miR-210 in the
KPC mice with PC as compared to controls and mice with PanIN1
lesions. This is in line with the results of previous miRNA
microarray analyses of human blood and tissue samples [37] and
microdissected PanIN lesions [35], in which no significant
overexpression of miR-210 was detected. Thus, miR-210 is not
useful for the FPC screening,.

The present study has several limitations. First, the number of
human samples is small, such that no definitive conclusion can be
drawn. However, tissue and blood samples from IAR who underwent
pancreatectomy and meticulous pathologic analysis are extremely
rare. It would take years to accumulate significant numbers of samples
from IAR with histologically proven PanIN2/3 lesions, even in a
multicenter study. Nevertheless, the detected significance is strong
underscoring the strengths of the finding. Second, neither the murine
nor the human samples originated from living beings with pure
PanIN2 or PanIN3 lesions, so that we could not determine, whether
or to which extent miR-196a and -196b were exclusively expressed by
either PanIN2 or PanIN3 lesions. Third, meanwhile other promising
miRNAs such as miR-221, miR-27a-3p, miR-10b, and RNU2-1f
were reported [41-45] that might also have potential value for
the diagnosis of PC. However, there are no studies yet that analyzed
their discriminatory potential between patients with different PanIN
lesions and invasive cancer.

In summary, the present study provides first evidence that miR-
196a and -196b might be promising biomarkers for the detection
of multifocal high-grade PanIN lesions and PC in IAR of FPC
families. These results should be validated in larger controlled trials.
If confirmed, these biomarkers could supplement imaging for
an adequate timing of a curative pancreatic resection in IAR of

FPC families.
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Figure 3. Serum miR-196a (A) and miR-196b (B) from preoperative IAR with multifocal PanIN2/3 lesions compared to healthy controls
yielded ROC curves with AUC values of 64% and 100%, respectively.
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Figure 4. Scatter plot showing the results from TagMan analyses of miR-196a (A) and miR-196b (B) in serum samples from patients
both before and after resection of PC or multifocal PanIN2/3 lesions. Results are expressed as the cycle threshold difference between
miR-196a or miR-196b and miR-24 in the patient’'s blood compared to that of control.
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