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Abstract

Background: With the help of epigenome-wide association studies (EWAS), increasing knowledge on the role of
epigenetic mechanisms such as DNA methylation in disease processes is obtained. In addition, EWAS aid the
understanding of behavioral and environmental effects on DNA methylation. In terms of statistical analysis, specific
challenges arise from the characteristics of methylation data. First, methylation β-values represent proportions with
skewed and heteroscedastic distributions. Thus, traditional modeling strategies assuming a normally distributed
response might not be appropriate. Second, recent evidence suggests that not only mean differences but also
variability in site-specific DNA methylation associates with diseases, including cancer. The purpose of this study was to
compare different modeling strategies for methylation data in terms of model performance and performance of
downstream hypothesis tests. Specifically, we used the generalized additive models for location, scale and shape
(GAMLSS) framework to compare beta regression with Gaussian regression on raw, binary logit and arcsine square
root transformed methylation data, with and without modeling a covariate effect on the scale parameter.

Results: Using simulated and real data from a large population-based study and an independent sample of cancer
patients and healthy controls, we show that beta regression does not outperform competing strategies in terms of
model performance. In addition, Gaussian models for location and scale showed an improved performance as
compared to models for location only. The best performance was observed for the Gaussian model on binary logit
transformed β-values, referred to as M-values. Our results further suggest that models for location and scale are
specifically sensitive towards violations of the distribution assumption and towards outliers in the methylation data.
Therefore, a resampling procedure is proposed as a mode of inference and shown to diminish type I error rate in
practically relevant settings. We apply the proposed method in an EWAS of BMI and age and reveal strong
associations of age with methylation variability that are validated in an independent sample.

Conclusions: Models for location and scale are promising tools for EWAS that may help to understand the influence
of environmental factors and disease-related phenotypes on methylation variability and its role during disease
development.
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Background
DNA methylation is an important epigenetic mechanism
that is involved in the regulation of gene expression [1].
In humans, methylation occurs most frequently at cyto-
sine (C) nucleotides preceding a guanine (G) nucleotide,
referred to as CpG sites [2]. Owing to its role in numerous
physiological processes and disease states including can-
cer, changes in DNA methylation introduced by lifestyle
factors and disease-related phenotypes have received
increasing attention [3-9]. High-throughput array tech-
nologies such as the Illumina Infinium HumanMethyla-
tion450k BeadChip [10] have enabled epigenome-wide
association studies (EWAS) to explore the relationship
between phenotypes and DNA methylation in large
population-based studies [2].

The statistical analysis of genome-wide DNA methy-
lation data entails specific challenges. Most commonly,
methylation signals from the Infinium HumanMethyla-
tion450K BeadChip are summarized as β-values, the pro-
portion of methylated in relation to the sum of methylated
and unmethylated signals at a specific genomic site in a
biological sample [10]. Methylation β-values are bounded
in the unit interval, with values occuring between 0 (cor-
responding to 0% methylation at the respective site) and
1 (corresponding to 100% methylation at the respective
site). As typical for proportion data, their distributions
display substantial heteroscedasticity [11]. Specifically,
they tend to show smaller variances when located near
the boundaries 0 and 1 as compared to the center of the
unit interval. In addition, their distributions are typically
skewed. Therefore, when using β-values as response vari-
able in a statistical regression model, traditional modeling
strategies that assume a normally distributed response
might be inappropriate [12]. To solve this problem, it has
been proposed to use the less heteroscedastic M-values
for Gaussian regression, which are approximately equal
to binary logit transformed β-values [13]. An alternative
transformation for proportion data, which is often used
in ecology to achieve variance stabilization, is the arcsine
square root transformation [14]. This transformation has
also recently been applied to methylation data [15]. In
addition, beta regression, a statistical regression technique
that is tailored to bounded response variables, has been
proposed as a “natural” modeling strategy for propor-
tion data [11,16]. Currently beta regression is beginning
to find application in methylation data analysis [17-20].
Although improved performance of beta regression as
compared to traditional approaches was reported [18],
a thorough comparison of these competing approaches
for the purpose of univariate screening for genome-wide
phenotype-methylation associations is lacking.

Furthermore, there is increasing evidence that not only
mean differences but also variability of methylation plays
a role in disease processes, including cancer [21-25]. This

enhances the need to screen for an effect of lifestyle fac-
tors and disease-related phenotypes on DNA methylation
level and variability [9,26,27]. In these studies, variability
was either modeled isolated from the mean, in a combined
test together with the mean, or not explicitly modeled as a
function of covariates at all.

Here we propose generalized additive models for loca-
tion, scale and shape (GAMLSS) [28] as a flexible
approach to model methylation data. GAMLSS can be
specified such that a regression model is estimated for
the mean (location parameter), and another model for the
variability (scale parameter), so that covariate effects on
both parameters can be quantified simultaneously. Joint
modeling of location and scale is preferable to separate
modeling since mean and variance of bounded β-values
are not independent [11].

The purpose of this study was to compare model perfor-
mance as well as the performance of downstream hypoth-
esis tests of (1) beta regression as compared to Gaussian
regression on raw, binary logit or arcsine square root
transformed β-values, (2) with and without simultane-
ous modeling of covariate effects on the scale parameter
within the GAMLSS framework. Using simulated and
real data sets from the large population-based research
platform Cooperative Health Research in the Region of
Augsburg (KORA) (n = 2299), we demonstrate that
models for location and scale, specifically the Gaussian
model on M-values, increase predictive performance as
compared to models for location only, while being more
sensitive towards violations of the distribution assump-
tion and towards the presence of outliers in the methy-
lation data. To address this problem, we propose and
evaluate a resampling-based strategy based on paramet-
ric bootstrapping followed by rank-based reassignment of
the original data. All findings concerning model perfor-
mance and evaluation of the resampling-based strategy
are subsequently validated in an independent data set of
acute lymphoblastic leukemia patients and healthy con-
trols. Finally, an application in an EWAS of BMI and age is
presented.

Methods
Data sets
Our study is based on two large data sets of 1799 and
500 subjects from the F4 and F3 studies, respectively,
of the population-based research platform KORA [29].
These data sets have been used in published EWAS
before [3-5], and study design and data collection have
been described in detail [29,30]. Methylation measure-
ments from whole blood were obtained from the Illu-
mina Infinium HumanMethylation450K BeadChip [10],
as described in [3,4]. Raw methylation data were prepro-
cessed and quality controlled as described in Additional
file 1. Subjects with missing or outlying (value outside
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mean ± 5 standard deviations) covariate information were
excluded from the analysis, so that the final F4 methyla-
tion data set comprised 413,641 autosomal sites, mainly
CpG sites, and 1763 subjects. Similarly, data from 486 F3
subjects were available for analysis. A phenotypic descrip-
tion of both data sets is provided in Tables S1 and S2
in Additional file 2. For the F4 data, genome-wide sin-
gle nucleotide polymorphism (SNP) data were obtained
using the Affymetrix GeneChip array 6.0, and genotypes
were imputed with IMPUTE v0.4.2 using the HapMap2
reference panel [31]. In the F3 population, genotyping
was performed with the Illumina HumanOmniExpress
BeadChip and the Illumina 2.5 BeadChip, followed by
imputation with IMPUTE v2.3.0 using the 1000g phase1
reference panel (integrated haplotypes).

Modeling strategies for DNA methylation data
The Illumina Infinium HumanMethylation450K Bead-
Chip assay provides a readout of methylated and
unmethylated signal intensities from hybridization of
DNA fragments from a biological sample to oligonu-
cleotides attached to beads on the chip. For a given CpG
site j, the methylated (Mj) and unmethylated (Uj) signal
intensities are combined to methylation β-values [13]:

β-valuej = max(Mj, 0)

max(Mj, 0) + max(Uj, 0) + αβ

where the inclusion of an offset αβ = 100 is recommended
as as a stabilization in the situation when both methylated
and unmethylated signal intensities are small [13]. Since
the total number of signals exceeds 1000 in the major-
ity of CpG sites, the offset does not induce much bias.
By definition, β-values are bounded to the unit interval.
Ignoring the offset, they can be interpreted as proportion
of methylation at a specific CpG site in a biological sam-
ple. Typically, β-values at specific CpG sites tend to have
a skewed distribution, centered at either a low or a high
methylation state, with variances smallest for CpG sites
centered close to the bounds of the standard unit interval
(Figure S1 in Additional file 3).

We consider regression models with β-values as
response variable, and disease-related phenotypes as
explanatory variables. When modeling proportions as a
function of covariates, their boundedness as a function of
covariates, their boundedness implies that the conditional
mean must be a nonlinear function of the explanatory
variables, since a linear combination of the explanatory
variables would not be restricted to values within (0, 1).
In addition, it implies that the conditional variance must
be a function of the conditional mean, i.e. the distribution
is heteroscedastic [32]. Both conditions are not met when
Gaussian regression is used, so that both the expectation
and the variance structure are misspecified, potentially
resulting in biased and inconsistent estimation.

To overcome these problems, it was proposed to use
the log2 ratio of the methylated to unmethylated signal
intensities:

M-valuej = log2

(
max

(
Mj, 0

) + αM

max
(
Uj, 0

) + αM

)
,

where αM = 1 is typically used. M-values are defined
on (−∞, +∞) and are less heteroscedastic than β-values
[13]. They are also more symmetric than β-values (Figure
S1 in Additional file 3). Ignoring the offsets αβ and αM, the
M-value is approximately equal to the binary logit of the
β-value:

M-valuej ≈ log2

(
β-valuej

1 − β-valuej

)
.

When using binary logit transformed β-values as
response variable in Gaussian regression, the corre-
sponding model is specified as follows: Let y =
(y1, . . . , yn)T be the vector of β-values corresponding to
n independent observations, and h(·) the binary logit
transformation. Then the transformed response ỹ =
(h(y1), h(y2), . . . , h(yn))T is modeled as a function of
covariates:

ỹ = Xγ + ε; ε ∼ N
(
0, σ 2I

)
E(ỹ) = Xγ

where X represents the n × p matrix of covariate values,
γ = (γ1, γ2, . . . , γp)T a vector of regression coefficients
corresponding to p covariates, ε the n × 1 vector of inde-
pendently normally distributed error terms with variance
σ 2, and E(·) the expectation. Note that this model formu-
lation also comprises Gaussian regression with untrans-
formed β-values as response variable. In that case h(.)
would be the identity function. In addition, the model
can be extended to facilitate explicit modeling of σ as a
function of covariates (see below).

In a titration experiment by Du et al. [13], M-values out-
performed β-values in terms of power and precision when
identifying differentially methylated sites based on methy-
lation differences between two groups. However, when
differential methylation was defined based on test statis-
tics, superiority of M-values was only observed in small
sample sizes, when regularized t-statistics were used [33].
In multivariate feature selection, β-values tended to better
preserve the correlation structure of methylation signals
[33]. Generally, due to the logit transformation, the inter-
pretation of a regression model based on M-values is less
intuitive than the interpretation of a corresponding model
based on untransformed β-values, since covariate effects
have to be interpreted with regard to the expectation of
the transformed response ỹ rather than y itself.
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In ecological applications, proportions are often trans-
formed using the arcsine square root transformation

A-valuej = sin−1
(√

β-valuej
)

to achieve homoscedasticity [14]. The transformed values
are then for instance modeled with a Gaussian regression
model as described above, specifying h(·) as the arcsine
square root transformation. However, the arcsine square
root transformation maps (0, 1) to (0, π/2), so that values
are still bounded.

A natural alternative to the Gaussian models consid-
ered above is beta regression, which explicitly takes into
account that β-values are proportions [11,12,34,35]. The
beta distribution has the density function

f (y; μ, σ) =
�

(
1
σ 2 − 1

)
�

((
1
σ 2 − 1

)
μ

)
�

((
1
σ 2 − 1

)
(1 − μ)

) ·

y
(

1
σ2 −1

)
μ−1 · (1 − y)

(
1

σ2 −1
)
(1−μ)−1,

where y ∈ (0, 1) represents the response vector, μ ∈ (0, 1)

a location parameter, σ ∈ (0, 1) a scale parameter, and
�(·) the gamma function. Typically, f (y; μ, σ) is skewed
(see e.g. [11] for an illustration). Expectation and vari-
ance of a beta distributed random variable y are given by
E(y) = μ, andVar(y) = μ(1−μ)σ 2. Thus, beta regression
incorporates boundedness and skewness of a proportion
response [11]. Also, because Var(y) explicitly depends on
μ, heteroscedasticity of the response can be modeled via
beta regression.

The beta regression model is defined analogously to a
generalized linear model and is formally given by

g(μ) = g(E(y)) = Xγ

where μ represents the mean of a beta distributed
response vector y, and g(·) a strictly monotonic and twice
differentiable link function that maps the open unit inter-
val into R [16]. In practice, the logit function is commonly
chosen for g(·). Note that in case of y ∈ [0, 1], values can
be rescaled to lie in (0, 1) [11]. In our methylation data,
zeros did not occur after preprocessing.

To model the effect of the explanatory variables on
Var(y) (and thereby the heteroscedasticity of the response
explicitly), a “variable scale beta regression model” has
been proposed as an extension. Thereby, location (μ) and
scale (σ ) parameter are both modeled, with a possibly
distinct set of covariates [11].

Despite these appealing properties and modeling
options, beta regression has been considered in few stud-
ies on DNA methylation data so far [17-20]. A thorough
examination of its performance in comparison to com-
peting modeling strategies, and specifically the relevance
of modeling the scale parameter in beta and Gaussian
regression models, has not been conducted.

Generalized additive models for location, scale and shape
(GAMLSS)
GAMLSS provides a flexible modeling framework for
responses from a large class of distributions, includ-
ing Gaussian and beta distributions [28,36]. It extends
generalized linear and additive models first, by relaxing
the distribution assumption, and second, by allowing for
modeling not only the mean (location parameter) but
also other distribution parameters (e.g. a scale parame-
ter) as a function of explanatory variables. Consequently,
beta regression is a special case of a GAMLSS. Moreover,
the GAMLSS methodology allows for modeling the resid-
ual error variance σ 2 of the Gaussian models described
above. Together, this makes GAMLSS highly relevant for
modeling DNA methylation data. Specifically, it provides
a unique framework for the comparison of the different
approaches to model methylation data considered in this
study.

In this article we focus on the fully parametric GAMLSS
with linear covariate effects and two submodels:

g1(μ) = X1γ 1
g2(σ ) = X2γ 2

where X1 and X2 are matrices of covariate values, γ 1
and γ 2 the respective vectors of regression coefficients
of lengths p1 and p2, and μ and σ the location and
scale parameters as defined above within the context of
Gaussian and beta regression. In “fixed scale models”, i.e.
models for location only (as opposed to “variable scale
models”), X2 reduces to an all-ones vector, and γ 2 to a
scalar intercept. For beta regression models, the link func-
tions g1(·) and g2(·) were both chosen as the natural logit.
For Gaussian regression models based on raw β-values,
M-values and A-values, they were chosen as identity and
log links, respectively.

Analysis of model fit and predictive performance
Model comparisons were conducted on the KORA F4 data
set (n = 1763). We compared eight different modeling
strategies: Four fixed scale models, i.e. Gaussian regres-
sion on raw data (ra), on binary logit transformed data (lo)
and on arcsine square root transformed data (ar), as well
as beta regression (be), and the corresponding four vari-
able scale models (ra+, lo+, ar+ and be+) that additionally
regressed the scale parameter on the covariates (Table 1).
The variable scale models and the fixed scale beta regres-
sion model were fitted as GAMLSS (R package gamlss,
version 4.2-6) [28,36], whereas the remaining fixed scale
models were fitted as generalized additive models (GAMs)
(R package mgcv, version 1.7-24) [37].

In location and scale submodels, the respective parame-
ter was specified as a linear function of covariates that are
known to have an effect on methylation levels, including
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Table 1 Competing models for methylation data analysis

Model (abbreviation) Transformation Distribution Submodels
of response y

Fixed scale models

raw (ra) y Gaussian μ only

logit2 (lo) log2

(
y

1−y

)
Gaussian μ only

arcsine (ar) sin−1(
√

y) Gaussian μ only

beta (be) y beta μ only

Variable scale models

raw+ (ra+) y Gaussian μ and σ

logit2+ (lo+) log2

(
y

1−y

)
Gaussian μ and σ

arcsine+ (ar+) sin−1(
√

y) Gaussian μ and σ

beta+ (be+) y beta μ and σ

age [6], sex [38], smoking state (with the categories
current, never and former smoker) [3], alcohol intake (in
g/d) [8], physical activity (with the categories active and
inactive) [7], body mass index (BMI) [5,9], white blood
cell count (WBC) and estimated proportions of six white
blood cell types as derived using the method by House-
man et al. [39]. In the location submodel, the first 15
control probe principal components (PCs) were included
to avoid technical confounding (see Additional file 1).

Model performance was investigated in a random set of
10,000 CpG sites. Repeating analyses in newly drawn sets
of CpG sites showed that results were stable towards the
CpG sites chosen. We fitted every model to a random sub-
sample comprising 50% of the observations as a training
set, drawn anew for each CpG site, with the remaining
50% left out as a test set. The pseudo R2 criterion [40,41]
was then calculated from both training and test sets as a
measure of model fit and predictive model performance,
respectively. The pseudo R2 criterion has been used to
compare beta and Gaussian regression before [34,35]. It
measures the improvement of the likelihood of the fitted
as compared to the intercept-only model, and is therefore
more appropriate in the context of models for location
and scale than measures based on correlation or deviance
of fitted versus observed response values, since it better
accounts for the fit of the scale submodel. The precise def-
inition of the pseudo R2 criterion for the different models
is given in Additional file 1. The analysis was repeated in a
smaller sample size of 250 observations, randomly drawn
for each CpG site, to evaluate the impact of sample size on
model performance.

Residual model fit was assessed using Shapiro-Wilk tests
on normalized quantile residuals [28].

Simulation study
To assess type I error and power of downstream
hypothesis tests of the competing models, and the

sensibility towards violations of the distribution assump-
tions, a data-driven simulation study was conducted
comprising beta distributed and real-data distributed
methylation responses. All data were deliberately simu-
lated to be close to the observed methylation data, in
terms of average location and scale, as well as in terms of
the size of observed covariate effects, aiming to approxi-
mate the real-data scenario as closely as possible.

Beta-distributed data setting
For each CpG site j, j = 1, . . . , 10000, real methyla-
tion data were modeled using variable scale beta regres-
sion with covariates as described above. From these
models, the fitted distribution parameter vectors μ̂j =
g−1

1

(
X1γ̂ j1

)
and σ̂ j = g−1

2

(
X2γ̂ j2

)
were obtained, where

γ̂ j1 and γ̂ j2 represent vectors of the estimated covariate
effects. Then, the entries of γ̂ j1 and γ̂ j2 corresponding
to the effects of one covariate, BMI, were manipulated to
values given in Table 2, to represent zero, moderate and
strong covariate effects on location and scale. Thereby, the
moderate effect size was chosen such that observed effects
of age, sex, smoking state, alcohol intake and physical
activity, BMI and WBC were rarely stronger in absolute
terms.

Finally, beta distributed data were simulated as a para-
metric bootstrap sample [42] y∗

j ∼ BE(μ = μ̂j, σ = σ̂ j)
for each CpG site. The resulting data were beta distributed
with known effects of the covariate BMI on location and
scale, in absence or presence of nuisance effects on the
respective other parameter.

The eight competing models (Table 1) were fitted to
these data, and observed type I error rate and power of the

Table 2 Simulation settings

Setting Tested parameter γ
(μ)

BMI γ
(σ)

BMI

Settings for the assessment of type I error

μ| − σ

γ
(μ)

BMI

0 0

μ| + σ moderate 0 0.005

μ| + σ strong 0 0.05

σ | − μ

γ
(σ)
BMI

0 0

σ | + μ moderate 0.005 0

σ | + μ strong 0.05 0

Settings for the assessment of power

μ| − σ

γ
(μ)

BMI

0.005 0

μ| + σ moderate 0.005 0.005

μ| + σ strong 0.005 0.05

σ | − μ

γ
(σ)
BMI

0 0.005

σ | + μ moderate 0.005 0.005

σ | + μ strong 0.05 0.005

The simulated effects for the tested parameters are displayed in bold font.
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test with the null hypothesis H0 : γBMI = 0 were estimated
as the proportion of p-values below 0.05, given γBMI = 0
or γBMI = 0.005, respectively. The analysis was conducted
at n = 1763 and n = 250 as before.

Real data setting
To investigate the influence of the response distribu-
tion on test performance, data were generated having the
distribution of the real β-values, while covariate effects
were maintained. This was achieved by reassigning the
originally observed methylation values to the subjects,
according to the ranks of the subjects’ simulated response
values. Thereby, the simulated covariate effects were
largely maintained, while the original response distribu-
tion was reconstructed. The eight competing models were
fitted to these data, and observed type I error rates and
power were estimated.

Results and discussion
Comparison of competing models for methylation data
Model fit and predictive performance were compared in
terms of the pseudo R2 criterion evaluated in training
and test data, respectively, as described in detail above
(total sample size n = 1763). Among the fixed scale
models, the beta regression model (be) performed worst
on average (Figure 1A-D; median training R2: ra 0.438,
lo 0.454, ar 0.466, be 0.398; median test R2: ra 0.393, lo
0.412, ar 0.422, be 0.348) and for the majority of CpG
sites (Figure 1E and F) according to both criteria. For
the Gaussian regression models, performance improved
when also the scale parameter was modeled as a func-
tion of covariates, suggesting that effects of the modeled
covariates on methylation scale are present. This was not
as clearly observed for the beta regression model (be+),
which performed considerably worse than the variable
scale Gaussian regression models on raw (ra+) or trans-
formed (lo+, ar+) data. Among the variable scale models,
the Gaussian model on binary logit transformed data
(lo+), i.e. on M-values, showed the best model fit (median
training R2: 0.510) and predictive performance (median
test R2: 0.474) on average (Figure 1A-D) and for the largest
proportion (> 30%) of CpG sites (Figure 1E and F).

When the analyses were repeated with a reduced sample
size (n = 250), training set R2 values indicated a substan-
tial increase in model fit for variable scale as compared
to fixed scale models (Figure S2 in Additional file 3). At
the same time, test set R2 values were strongly deflated for
a part of the CpG sites, indicating diminished predictive
performance in the presence of overparametrization.

Distribution assumption in the competing models was
checked through residual normality tests. As shown in
Figure 2A, a significant deviation from residual normality
was indicated for more than 94% of CpG sites for all fixed
scale models, and for more than 88% of CpG sites for all

variable scale models. In contrast, parametric bootstrap
draws from the fitted variable scale beta regression model
showed a deviation from residual normality for 5% of the
CpG sites in the be+ model, as expected (not shown).
Thus, none of the competing models fitted well to more
than 12% of CpG sites, suggesting that at the majority of
CpG sites, methylation followed neither a beta distribu-
tion, nor a normal distribution after any of the investigated
transformations.

The unexpectedly bad beta distribution fit might be
attributed to an error component arising from the
microarray experiment [43]. Of note, the two assay
designs present on the Infinium HumanMethylation 450K
BeadChip differed in the severity of the deviation from
beta distribution fit.

When we compared the eight models in terms of sever-
ity of deviation from residual normality, model fit was
improved when also the scale parameter was modeled as
a function of covariates (Figure 2B). Overall, the variable
scale Gaussian model on M-values (lo+) showed the best
residual normality fit in the majority (34.12%) of CpG
sites.

Performance of hypothesis tests
Next, we investigated how strongly the violation of the
distribution assumptions of the competing models, specif-
ically the beta regression model, affected the performance
of downstream t-tests for covariate effects. Specifically, we
explored the impact of known covariate effects on one dis-
tribution parameter on the performance of tests for the
effect of this covariate on the other distribution parame-
ter. For this purpose, in a simulation study beta distributed
and real-data distributed methylation responses were gen-
erated with known covariate effects on location and/or
scale (see Methods section and Table 2).

Observed type I error rates in beta distributed data
First, observed type I error rates of tests for covariate
effects on the location parameter μ (μ|σ setting) were
investigated in beta distributed data at full sample size
(n = 1763). Here, all models met the nominal level α =
0.05 on average if no effect of the same covariate on the
scale parameter σ was present (Figure 3A; Figure S3A,
C and E in Additional file 3). In the presence of a weak
covariate effect on σ , which was chosen to be within the
range of actually observed covariate effects on the methy-
lation data, all models adhered to their norminal level.
When strong effects of the same covariate on σ were
present, the models be, lo and lo+ (observed type I error
rate >88%) and ar as well as ar+ (observed type I error
rate >58%) showed severely inflated type I error rates.
In contrast, the models be+ and ra showed moderately
inflated type I error rates (be+: 11.6%, ra: 10.4%), whereas
the nominal level was met in the case of the model ra+.
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Figure 1 Performance of competing models for DNA methylation data. A and B Median, 5% and 95% quantile of pseudo R2 in training and
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Next, we investigated tests for covariate effects on the
scale parameter σ in beta distributed data (σ |μ setting).
The models be+ and ar+ almost adhered to their nom-
inal level irrespective of covariate effects on μ, whereas
ra+ and lo+ showed a mild inflation of type I error rates
(>10%) in the presence of weak effects on μ, which
increased to above 88% when the covariate effect on μ was
strong (Figure 3B; Figure S3B, D and F in Additional file 3).

Exemplarily, we provide theoretical considerations
explaining the increased type I error rates observed for the
different models in the σ |μ setting. Since the simulated
data were beta distributed, their variance depended on
the mean, with Var(y) = μ(1 − μ)σ 2 (compare Methods
section). In the variable scale Gaussian model on raw data
(ra+), the parameter

σ̃i = √
Var (yi) =

√
μi (1 − μi) σ 2 = σ

√
μi (1 − μi)
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Figure 2 Residual normal fit of competing models for DNA
methylation data. A Proportion of CpG sites for which significant
deviation of residuals from normality was indicated by Shapiro-Wilk
test p-value < 0.05. B Proportion of CpG sites for which the respective
model had the best residual normal fit as compared to the
competing models. Model abbreviations are explained in Table 1.

is modeled. In the setting where covariate effects on μ are
present but not on σ , σ̃i would still depend on covariates
through μi, so that effects on μ might be falsely attributed
to σ , explaining the increased type I error rate. Similarly,
in the Gaussian model on binary logit transformed data
(lo+), applying the delta method yields

σ̃i =
√

Var
(

log2

(
yi

1 − yi

))

≈ √
Var (yi) · 1

log(2)μi (1 − μi)
= σ · 1

log(2)
√

μi (1 − μi)

which depends on μi as well. Again, this explains an
increased type I error rate for σ . In the special case of
arcsine square root transformed data,

σ̃i =
√

Var
(
sin−1 (√yi

))
≈ √

Var (yi) ·
√

1
2μi (1 − μi)

= σ · 1√
2

.

Here, σ̃i is approximately independent of μi, explain-
ing the good performance of the ar+ model in the σ |μ
setting.

Observed type I error rates in the real-data scenario
Next, analyses were repeated with real-data distributed
methylation responses, which had exactly the same
marginal distributions as the original data. In contrast
to beta distributed data, none of the models adhered
to the nominal level in the presence of strong covariate
effects on the other distribution parameter (Figure 3C and
D; Figure S4 in Additional file 3), with type I errors of
above 40% observed for all models in both μ|σ and σ |μ
settings.

Although methylation data are bounded in the unit
interval with a dependency between mean and variance,
they show deviation from the beta distribution (Figure 2)
so that the relation between mean and variance might not
be correctly reflected by Var(y) = μ(1 − μ)σ 2. Con-
sequently, effects on either location or scale parameter
might be falsely attributed to the other during model
fitting.

In addition, in the σ |μ setting, type I error rates larger
than 15% were observed for all models, even in absence
of covariate effects on μ. They were largest (22.9%) for
the ra+ model (Figure 3D). This suggests that tests on
the scale parameter are more sensitive towards violations
of the distribution assumption than tests on the location
parameter.

In our simulated data, two reasons seemed to be mainly
responsible for this observation: missing covariates such
as SNPs (Figure 4A), and outliers in the data (Figure 4B).
It is not uncommon that SNPs located in close proximity
to CpG sites strongly affect their methylation level [44],
at some CpG sites resulting in multimodal marginal dis-
tributions of methylation values (as in Figure 4A). When
these effects are not modeled and genotypes are unevenly
distributed among the subjects with low and high covari-
ate values - by chance or through a true SNP effect on
the covariate - a falsely significant effect of the covari-
ate on methylation scale is sometimes observed. Also, the
fact that the investigated data were derived from whole
blood might contribute to the increased type I error rates.
Whole blood represents a mixture of different blood cells,
which are known to show cell-specific methylation pat-
terns [19]. The applied method to estimate and then adjust
for selected white blood cell proportions might not fully
remove the mixture effect from the methylation data.
Furthermore, tests for covariate effects on σ are specif-
ically sensitive towards outliers in the methylation data
(Figure 4B). A potential solution to these problems is
presented in the next section.

When the analyses were repeated in a smaller sam-
ple (n = 250), an additional trend emerged: observed
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Figure 3 Simulation study: Observed type I error rates of hypothesis tests for covariate effects. Observed type I error is plotted against the
effect size that the same covariate (BMI) had on the other distribution parameter. Simulation results are shown for beta distributed (A, B) and for
real-data distributed methylation values (C, D). Model abbreviations are explained in Table 1.

type I error was systematically larger for variable scale
than for fixed scale models even in absence of covariate
effects on the other distribution parameter (Figure S5 in
Additional file 3). This was observed for both beta dis-
tributed and real-data distributed methylation responses,
and was in line with the reduced predictive performance
of variable scale models in the smaller sample (Figure
S2 in Additional file 3). Together these findings suggest
overfitting.

Observed power
Finally, we compared the models in terms of their power
to detect existing covariate effects of moderate strength.
We observed that power of downstream t-tests was gen-
erally smaller to detect similarly sized covariate effects
on σ than on μ (Figure S6 in Additional file 3). How-
ever, none of the models clearly outperformed the oth-
ers in terms of power in absence of covariate effects
on the other distribution parameter. The presence of
weak effects on σ tended to reduce power to detect
effects on μ for all models. When strong effects on σ

were simulated, type I error superimposed power, so that
results are difficult to interpret (Figure S6 in Additional
file 3).

Resampling procedure for models for location and scale
Since asymptotic inference for variable scale models for
methylation data is associated with inflated type I errors,
we next considered resampling-based modes of inference.
Standard parametric bootstrap is not an option for DNA
methylation data, since we do not know the true dis-
tribution of the data. In non-parametric bootstrap, i.e.
sampling of observations with replacement, the prob-
lem arises that the mean-variance structure within each
observation is maintained, and false positives due to iden-
tifiability problems between covariate effects on the two
distribution parameters would not be corrected for. This
problem might occur in a reverse manner in permutation
testing. Therefore, we developed a resampling procedure
for models for location and scale (Algorithm 1), which
provides a solution for both the unknown distribution of
methylation data and false positives arising from covariate
effects on the respective other distribution parameter.

To evaluate the performance of the developed resam-
pling procedure, we applied it to the real-data distributed
methylation values generated in the simulation study for
10,000 CpG sites (see Methods section), for the variable
scale models lo+ and be+, with B = 100. In addition,
we identified for each CpG site the three SNPs from a
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±5 Mb window around the CpG site showing successively
the strongest correlation with methylation at this site [4].
These SNPs were then included as additional covariates in
the model. For both lo+ and be+ models, this combined
strategy substantially reduced type I error rate close to
the nominal level, as long as covariate effects on the other
distribution parameter were moderate (Figure 5).

Algorithm 1 Resampling-based inference for models for
location and scale

1. For each CpG site j, fit the model for location and scale
and derive the test statistic tj.

2. For (b ∈ 1, · · · , B):

i. Obtain a parametric bootstrap sample y∗(b)
j as

a draw from the fitted model for each j, setting
the effect of the covariate of interest to zero.

ii. Reassign the originally observed methylation
values yij, i = 1, . . . , n, to the subjects,
according to the ranks in y∗(b)

j . The resulting
response vector is y(b)

j .
iii. Fit the model for location and scale to y(b)

j and
derive the test statistic for the covariate of
interest t(b)

j .

3. Approximate the distribution of the test statistics t(b)
j ,

b = 1, . . . , B, through a normal distribution N
(
μj, σj

)
,

to obtain an estimate of the null distribution of tj.
4. Derive the resampling-based p-value pj as the prob-

ability of having observed the test statistic tj given its
null distribution: pj = 2 · z

(
−| tj−μj

σj
|
)

, where z is the
standard normal distribution function.

Validation in a data set of acute lymphoblastic leukemia
patients and healthy controls
An important question is whether our observations are
valid also for methylation data from cancer patients and
healthy controls, which might differ fundamentally from
population-based data in terms of their distribution and
outlier structure. These aspects might have an impact
on the performance of the different models, as well as
on the performance of the proposed resampling strat-
egy. Therefore, we repeated all performance comparisons
and evaluations on a publicly available data set compris-
ing Infinium HumanMethylation 450K methylation data
from bone marrow samples of 615 acute lymphoblastic
leukemia (ALL) patients of two different types (B-cell pre-
cursor ALL and T-cell ALL), as well as 80 healthy controls
(GEO accession number: GSE49031 [45]; see Additional
file 1 for methodological details).

In these data, we were able to confirm our main find-
ings: First, models of location and scale outperformed
models of location only in terms of model fit and predic-
tive performance (Figure S7 in Additional file 3). Second,
the Gaussian variable scale model on methylation M-
values most often showed the best residual model fit
(Figure S8 in Additional file 3). Third, we again observed
increased type I error rates for tests of covariate effects
on the scale parameter, and on both distribution param-
eters in the presence of strong effects on the respective
other parameter (Figure S9 in Additional file 3). Finally,
although genetic confounding could not be accounted for
due to lack of SNP data, the proposed resampling prece-
dure performed considerably well in the moderate effect
size scenario (Figure S10 in Additional file 3).

It remains a challenge to improve the method to control
type I error in the presence of strong covariate effects on
the other distribution parameter. In the population-based
KORA data, effects of lifestyle and phenotypic factors
were rarely stronger than the simulated moderate effect
size. In contrast, in the investigated cancer data set, case-
control effects were sometimes larger than the simulated
moderate effect size, so that the proposed resampling pro-
cedure will not be capable of clearly separating effects
on location and scale. A similar issue might arise when
investigating the effect of proportions of white blood cell
types, which tend to have strong effects on specific CpG
sites, affecting both mean [39] and variability [27]. How-
ever, we would like to emphasize that a clear separation
of covariate effects on location and scale in the presence
of a strong (but unknown) relation between the two is
a major challenge to any parametric or nonparametric
approaches.

Application to an EWAS of BMI and age in the KORA study
Our results have shown that it is worth to examine covari-
ate effects on DNA methylation variability, since model
performance was improved by modeling the scale param-
eter. Therefore, we undertook an EWAS of BMI and age
in the large population-based KORA F4 sample. We used
the Gaussian model on M-values (lo+) which achieved
the best model fit and predictive performance in our
model comparisons. BMI was chosen since obesity has
been reported before to associate with DNA methylation
variability at specific CpG sites [9]. In addition, we were
interested in age since a recent investigation has revealed
the presence of regions in the genome that are charac-
terized by an increased methylation variability in an age
group specific manner, where significantly more of these
regions were observed in older age groups [26].

To avoid inflated type I errors of tests for covariate
effects on location and scale, we included SNPs as addi-
tional covariates as described above. Otherwise, all covari-
ates were included that were also included in the model
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comparisons. In addition, we used the resampling proce-
dure described above for the significant associations.

Before the resampling procedure was applied, 158 and
3481 genome-wide significant associations between BMI
and methylation level (μ) as well as variability (σ ) were
observed, respectively (p < 1.3 · 10−7, corresponding
to Bonferroni correction for multiple testing) (Figure 6A
and B). We term these CpG sites differentially methy-
lated CpG sites (DMCs) and differentially variable CpG
sites (DVC), respectively, in accordance with Xu et al. [9].
Larger numbers of significant associations (26116 DMCs
and 21805 DVCs) were observed for age (Figure 6C and
D). As expected from the test performance results, the
percentage of CpG sites for which significance was “con-
firmed” using the resampling procedure was larger for
DMCs (BMI: 80.1%, age: 92.3%) than for DVCs (BMI:
2.1%, age: 45.7%). Specifically in the case of BMI, the
majority of DVCs seemed to be false positives according
to the resampling procedure.

For BMI DVCs, age DMCs and age DVCs, we
observed that associations with significant resampling-
based p-values could be validated significantly more
often in the independent KORA F3 study (Figure 6B-D).
This observation was stable to the threshold of sig-
nificance in the replication study. For instance, when
the threshold was changed from nominal significance
(p ≤ 0.05) to a Bonferroni-corrected threshold (p ≤
0.05/{number of tests}) which is often used, enrichment
results essentially did not change. Assuming that valida-
tion in an independent study is an indicator of trueness

of an effect (ignoring the presence of unaccounted con-
founders), these results suggest that the resampling proce-
dure filtered out false positives. Note that the replication
study was smaller (n = 486) than the discovery study
(n = 1763), so that not all true effects can be expected to
validate.

Investigating the observed effect directions, we noted
that for the majority (79.9%) of BMI DVCs that were not
confirmed by resampling, associations were positive (p =
4.9 · 10−16). This was not observed for the DVCs signif-
icant after resampling. A plausible explanation might be
that the variable scale model is more susceptible towards
methylation outliers at larger BMI values where BMI den-
sity is sparser. Interestingly, Xu et al. [9] reported an
enrichment of positive associations of obesity and methy-
lation variability in a study population of 48 obese and
48 lean subjects, where the standard deviation of BMI in
the obese group was fivefold that of the lean group. The
identified DVCs were often characterized by one or sev-
eral outliers occuring in the obese group. The authors
used the parametric Bartlett’s test to identify DVCs. To
evaluate this test procedure using our own data, we sub-
jected the 3481 initially discovered BMI DVCs to Bartlett’s
test after dividing the study population into two groups
by the median BMI. Although this approach differs con-
siderably from ours, for instance since Bartlett’s test does
not include covariate information, and the variability is
modeled separately from the mean, Bartlett’s test indi-
cated genome-wide significance for 1893 (54.4%) of the
DVC initially identified by GAMLSS, 80.3% of which were
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Figure 6 EWAS results. Results for BMI (A and B) and age (C and D) effects on methylation level (μ) and variability (σ ) are shown, respectively.
Bold number in the right top corner: Number of CpG sites with genome-wide significant association (p < 1.3 · 10−7) according to asymptotic test
results. Numbers in the box represent percentages of associations that were significant according to resampling-based inference (red circle) and/or
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resampling-significant associations.
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positive associations. This suggests that Bartlett’s test
might share the susceptibility to outlier values and likely
also to genetic confounding in the methylation data, and
might have increased type I error rates in that case.

In the EWAS of age, a substantial number of
DMCs (22774, 87.2%) and DVCs (8279, 38%) passed
both resampling-based correction and validation step
(Figure 6C and D). The vast majority of validated DVCs
(98.3%) showed positive associations (p-values < 2.2 ·
10−16 as compared to unvalidated CpG sites), indicating
increased methylation variability with increasing age. This
observation fits well with the previous finding of larger
DNA methylation variability in adult as compared to new-
born blood [27]. It is also in agreement with an increased
number of age group specific highly variable CpG sites
in older as compared to younger age groups [26]. Specif-
ically, we also observed DVCs at neurotransmission-
related genes. In addition, highly variable CpG sites were
enriched in the vicinity of genes involved in develop-
mental and morphogenetic processes [46,47], suggesting
a role of methylation variability during development. Age-
related increases in methylation variability at specific CpG
sites might be attributed to both stochastic events [46]
as well as accumulating environmental and lifestyle influ-
ences. We also have to acknowledge the possibility that
the observed age effects on methylation variability are par-
tially attributed to changes in white blood cell proportions
with age [48]. White blood cell types differ strongly in
methylation variability [27]. Although we included esti-
mated white blood cell proportions as covariates, residual
confounding might occur [48].

Conclusions
We have addressed two challenges arising from the char-
acteristics of methylation data: First, the appropriate treat-
ment of methylation β-values as a proportion response,
and second, the difficulty of assessing covariate effects on
both location (mean) and scale (variability) of these data.
The latter issue has become important because recent
findings suggest a role of methylation variability in addi-
tion to methylation level in disease processes, including
cancer [21-25]. In contrast to recent strategies to assess
associations between methylation variability and disease-
related traits [9,25-27], we propose simultaneous model-
ing of location and scale using the GAMLSS framework
[28].

A key result of our study is that simultaneous mod-
eling of mean and variability of DNA methylation data
improved the predictive performance as compared to
modeling the mean only. A particularly good performance
was observed for the Gaussian model on methylation M-
values. To avoid false positives arising from violations of
the distribution assumption, we proposed and applied a
resampling procedure as a mode of inference for models

for location and scale. In our experiments, this proce-
dure substantially reduced type I error rates so that they
became close to the nominal level in practically relevant
settings. The validity of this approach could be confirmed
both in population-based data and in a data set of cancer
patients and healthy controls. Moreover, the application of
our methodology to an EWAS of BMI and age in the large
population-based KORA F4 study revealed biologically
plausible positive effects of age on methylation variabil-
ity. These effects were stable towards validation in an
independent study.

Our findings suggest that GAMLSS is a useful tool to
explore environmental and lifestyle effects on methylation
variability, simultaneously to effects on the mean. Since
the investigated models for location and scale were sus-
ceptible towards overfitting when sample size was moder-
ate, it could be promising to investigate extensions based
on regularization techniques such as boosting (which has
been implemented for GAMLSS [49]). In addition, in
our data, methylation at the majority of CpG sites fol-
lows none of the compared distributions. Thus, it might
be relevant to explore robust methods such as quantile
regression [50].
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