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PLANT—MICROBIOME INTERACTIONS
IN THE LIGHT OF THE HOLOBIONTIC
CONCEPT
Higher organisms evolved in the
omnipresence of microbes, which could
be of pathogenic or symbiotic nature.
A framework of response patterns evolved
which is known as innate immunity.
A major part of this response is the recog-
nition of microbial-associated molecular
patterns (MAMP) such as chitin or
lipochitooligosaccharides, peptidogly-
can, lipopolysaccharides or flagellum
structures, and the initiation of effi-
cient plant defence reactions (Janeway
and Medzhitov, 2002; Jones and Dangl,
2006). However, there are many plant-
associated endophytic bacteria known,
which are living within plants without
triggering persistent and apparent defence
responses or visibly do not harm the
plant. In some cases, even a stimulation
of plant growth due to the presence of
specific players within the plant micro-
biome was reported (Turner et al., 2013).
It is now generally accepted, that plant
performance and activities can only be
characterized and understood completely,
if the “holobiont,” the plant plus the
intimately associated microbiota, is con-
sidered (Zilber-Rosenberg and Rosenberg,
2008). The evolutionary advantage of an
integrated holobiontic system is char-
acterized by a much better adaptability
and flexibility towards rapidly changing
adverse environmental conditions. It is still
mostly unknown, which particular plant
genetic loci are controlling the interactions
with the plant microbiome and which
signals are steering this cooperativity.
Mutualistic microbes are able to overcome

or short-circuit plant defence responses
to enable successful colonization of the
host (Zamioudis and Pieterse, 2012;
Alqueres et al., 2013). Beneficial associa-
tions with microbes other than mycorhiza
or Rhizobia are also controlled by system-
ically regulated or autoregulated processes
on top of the basic innate immunity
response. The induction of systemic
immunity responses like ISR (induced
systemic resistance) by some beneficial
rhizosphere bacteria or the SAR (systemic
acquired resistance) response provoked by
pathogens are results of multiple response
cascades employed by the plant host to
respond to microbial and other environ-
mental interactions. However, the entire
response network is by far not yet revealed.
For example, bacteria-induced plant
responses resulting in improved resistance
towards pathogens can also be due to the
perception of secondary metabolites, like
the surfactin lipopeptide, produced by cer-
tain biocontrol Bacilli (Garcia-Gutiérrez
et al., 2013) or volatile compounds of
plant-associated microbes (Yi et al., 2010).
The biocontrol activity of microbial inoc-
ulants is probably due to multiple effects
of their secondary metabolites to achieve
direct inhibition of the pathogenic coun-
terpart as well as an increase of systemic
resistance of the plant host.

BACTERIAL QUORUM SENSING
MOLECULES LIKE N-acyl
HOMOSERINE LACTONES MODULATE
PLANT RESPONSES TOWARD
CONTACT WITH BACTERIA
It is hypothesized, that eukaryotic
organisms developed ways to sense
microbes in addition to the recognition

of their MAMPs by their diffusible small
molecules. A very ancient and basic fea-
ture of unicellular bacteria is their way of
environmental sensing and social commu-
nication. In many Gram-negative bacteria
the synthesis of autoinducers of the N-
acyl-homoserine lactone (AHL) type is
tightly regulated in response to cell den-
sity or the cell “quorum” (Eberl, 1999).
These metabolites are released into the cel-
lular environment to sense the quality of
the ecological niche in terms of diffusion
space and the density and distribution
of their own population. This environ-
mental sensing mechanism helps to adapt
the regulation of their gene expression to
the given conditions in their habitat and
thus optimizes the fitness of the popula-
tion. Therefore, the generally known term
“quorum sensing” (QS) was supplemented
by the more broadly defined concept of
“efficiency sensing” (Hense et al., 2007).
Since this optimization of in situ gene
expression is of very basic importance,
autoinducer QS-molecules are widespread
among bacteria and have quite different
molecular structures. AHL are common in
Gram-negative bacteria, while cyclic pep-
tides as QS-signals are only to be found
in Gram-positive bacteria. The detailed
structure of the AHL-molecules can vary;
the acyl side chain consists of 4–14 car-
bon atoms and may also contain double
bonds. The C3-atom can be hydroxylated
or oxidized to a carbonyl-carbon; thus,
considerable information and quite dif-
ferent physicochemical properties can
be present within these different AHL-
structures. As is outlined below, also plants
have obviously learned during their evolu-
tion to respond to these QS compounds in
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Table 1 | Recent findings of direct AHL impact on different plants.

AHL type Plant reaction Plant species References

Short chain length Increased transpiration, stomatal conductance Phaseolus vulgaris Joseph and Phillips, 2003

C6 Primary root elongation A. thaliana von Rad et al., 2008

C6 Upregulation of metabolism, transport and
transcriptional regulation

A. thaliana von Rad et al., 2008

C6 (Serratia liquefaciens) Upregulation of defense genes Lycopersicon esculentum Schuhegger et al., 2006

C6, C8, C10 Lactonase induction Pachyrhizus erosus Götz et al., 2007

Oxo-C6, oxo-C8 G-protein coupled receptors for root growth A. thaliana Jin et al., 2012; Liu et al., 2012

3-oxo-C6 (Serratia plymuthica) Triggering plant immunity Cucumis sativa
Lycopersicon esculentum

Pang et al., 2009

C6, C8, C10 Root and shoot growth Hordeum vulgare Götz et al., 2007

3-O-C10 Adventitious root formation Vigna radiata Bai et al., 2012

C10 Lateral root formation A. thaliana Bai et al., 2012

C12 Root hair development A. thaliana Ortíz-Castro et al., 2008

3-oxo-C12 from P. aeruginosa Defense and stress management genes,
phytohormones, and metabolic regulation

Medicago truncatula Mathesius et al., 2003

oxo-C12 Resistance induction A. thaliana Schikora et al., 2011

oxo-C14 Systemic resistance against Golovinomyces orontii A. thaliana Schikora et al., 2011

oxo-C14 Systemic resistance against Blumeria graminis Hordeum vulgare Schikora et al., 2011

3-oxo-C16 from
(Sinorhizobium meliloti)

Defense and stress management genes,
phytohormones and metabolic regulation

Medicago truncatula Mathesius et al., 2003

different specific ways. We speculate, that
QS-compounds are early signals indicat-
ing that pathogens are in the surroundings
to gather themselves for attack or that
mutualists are about to interact with roots.

The first demonstration of specific
responses of a plant to bacterial AHLs was
demonstrated for the legumes Phaseolus
vulgaris (Joseph and Phillips, 2003) and
Medicago truncatula (Mathesius et al.,
2003) (Table 1). AHLs from symbiotic
(Sinorhizobium meliloti) or pathogenic
(Pseudomonas aeruginosa) bacteria pro-
voked at concentrations as low as nano-
to micromolar significant changes in the
accumulation of over 150 proteins. Auxin-
responsive and flavonoid synthesis pro-
teins were induced and also a secretion
of plant metabolites that mimic QS com-
pounds were found, which may have the
potential to disrupt QS signaling by asso-
ciated bacteria. In tomato plants, a spe-
cific induction of systemic resistance pro-
teins after inoculation of the roots with
C4- and C6-side chain AHL-producing
Serratia liquefaciens MG1 was discovered
independently (Hartmann et al., 2004;
Schuhegger et al., 2006). The fungal leaf
pathogen Alternaria alternata was much
less effective, when S. liquefaciens MG 1
wild type had been inoculated to roots
of tomato plants as compared to the

AHL-negative mutant. It could be shown,
that salicylic acid was increased as well as
SA- and ethylene-dependent defence genes
(i.e., PR1a) in MG1-inoculated plants.
Furthermore, Serratia plymuthica HRO-
C48, producing C4-/C6- and OHC4-
/OHC6-homoserine lactones, is able to
induce ISR-like systemic protection of
bean and tomato plants against the fun-
gal leaf pathogen Botrytis cinnera; this
response was greatly reduced with mutants
impaired in AHL-production (Liu et al.,
2007; Pang et al., 2009). In contrast,
Arabidopsis thaliana responds to short
(C4- and C6-) N-acyl AHL-compounds in
a different manner: C4- and C6- homoser-
ine lactones alter the expression of selected
hormonal regulated genes which results in
changes of the plant’s hormone content,
in particular an increased auxin/cytokinin
ratio (von Rad et al., 2008). However, no
systemic resistance response was found to
be induced in A. thaliana when roots were
stimulated with short side-chain AHLs.
Ortíz-Castro et al. (2008) found that
C10-homoserine lactone elicited develop-
mental changes in the root system in
Arabidopsis plants by altering the expres-
sion of cell division and differentiation-
related genes. Furthermore, Liu et al.
(2012) and Jin et al. (2012) demonstrated
that the root stimulatory effect of C6- and

C8- homoserine lactones in Arabidopsis
plants is mediated through the G-protein
coupled receptor encoded by AtGPA1. In
mung bean, oxoC10-homoserine lactone
activates auxin-induced adventitious root
formation via H2O2- and NO-dependent
cyclic GMP signaling (Bai et al., 2012). On
the other hand, N-acyl-AHLs with C12-
and C14- side chains induce systemic resis-
tance to the obligate biotrophic fungus
Golovinomyces orontii in A. thaliana and
to Blumeria graminis f. sp. hordei in barley
(Hordeum vulgare) (Schikora et al., 2011).
This response is mediated through altered
activation of AtMPK6. The mitogen-
activated protein kinases AtMPK3 and
AtMPK6 were stronger activated by the
model elicitor flg22 in the presence of C12-
or C14-AHL compounds which resulted
in a higher expression of the defence-
related transcription factors WRKY26 and
WRKY29 as well as the PR1 gene (Schikora
et al., 2011). Thus, AHLs with short
and medium side chain lengths induce
developmental effects on root architecture,
while long side chain AHLs induce sys-
temic resistance in A. thaliana (Schenk
et al., 2012). Furthermore, it was shown,
that better water soluble short side chain
AHL-compounds are actively taken up
into plant roots and transported along
the roots into the shoot; in contrast, the
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lipophilic long acyl side chain AHLs are
not transported in barley and A. thaliana.
(Götz et al., 2007; von Rad et al., 2008;
Sieper et al., 2014). However, no uptake
was detected in the legume yam bean
(Pachyrhizus erosus (L.) Urban) (Götz
et al., 2007). The latter finding corrobo-
rates the report of Delalande et al. (2005)
that legumes like Lotus corniculatus pro-
duce lactonases which degrade AHLs and
prevent their uptake and transport. In bar-
ley, it could further be demonstrated that
C8- and C10-AHLs are taken up in a
cell energy dependent manner by ABC-
transporters into the root and transported
via the central cylinder into the shoot
(Sieper et al., 2014).

Interestingly, several plants have been
demonstrated to produce AHL-mimic
substances or to develop other activities
influencing QS of plant associated bacte-
ria (Gao et al., 2003; Bauer and Mathesius,
2004). Flavonoids released by legumes
increase the expression of AHL synthesis
genes in Rhizobia (Pérez-Montano et al.,
2011). Indole acetic acid and cytokinin
biosynthesis of Gypsophila was shown to
influence QS, type III secretion system and
gall formation activity by Pantoea plan-
tarum (Chalupowicz et al., 2009). On the
other hand, tobacco plants have been engi-
neered to produce short- and long-side
chain AHL-compounds which could be
detected in substantial amounts at leaf
and root surfaces as well as in soil (Scott
et al., 2006). Constitutive expression of
QS genes in transgenic tobacco plants
leads to alteration in induced systemic
resistance elicited by the rhizobacterium
Serratia marcescens 90–166 (Ryu et al.,
2013). Furthermore, transgenic tomato
plants engineered to produce different
AHL-compounds were demonstrated to
alter the activity of plant growth pro-
moting rhizobacteria and resulted, e.g., in
increased salt tolerance (Barriuso et al.,
2008). We hypothesize, that QS in a
plant-microbe holobiont system should be
regarded in a bidirectional way with influ-
ences from the plant and the microbial
partners.

Uptake of AHL-compounds and
specific perception of AHLs in ani-
mal cells were also studied intensively
in recent years (Teplitski et al., 2011;
Hartmann and Schikora, 2012). 3-oxo-
C12-homoserine lactone (C12-AHL), the

major AHL-compound of Pseudomonas
aeruginosa, was shown to selectively
impair the regulation of the nuclear tran-
scription factor NF-κB which controls
innate immune responses in mammalian
cells (Kravchenko et al., 2008). C12-
AHL also impaired human dendritic cell
functions required for priming of T-cells
(Bernatowicz et al., submitted). Since the
response to AHL-compounds in mam-
malian systems is complicated due to the
interferences with the adaptive immune
system, plants provide an ideal model for
the detailed interaction studies of basic
innate immune responses and develop-
mental processes with N-acylhomoserine
lactones as modifying bacterial effector
molecules.
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