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Abstract

Correlations provide a measure of the interdependence of variable pairs in multivari-
ate data, and thus are useful for the analysis of relations in transcriptional, metabolic,
and regulatory biological data. However, data from cell populations can contain behav-
iorally heterogeneous subpopulations that render correlation analysis misrepresenta-
tive of the true regulation when behaving differently to the population as a whole.

Knowledge about heterogeneous subpopulations exposes those different modes of
behavior in all kinds of biological interactomes and proves to be important for the in-
ference of interaction networks and correlation analysis.

However, correlation analyses in biological data mostly do not consider the possi-
bility of heterogeneous subpopulations, and even if they do, their identification and
analysis have no established procedures except the heuristic of thresholding accord-
ing to the level of one variable, which divides the population into two subpopulations.
This method has several problems including a sensibility to outliers and the lack of both
a concept for overlapping subpopulations and of information about the robustness of
subpopulation correlations.

This work presents a novel interactive framework for visualizing correlations within
subpopulations utilizing Multiresolution Correlation Analysis (MCA), a tool for ex-
ploratory subpopulation analysis in multivariate data. Using it, it is possible to detect
and analyze such heterogeneities, as well as find subpopulations with notably different
correlation behavior.

This work provides an overview of statistical groundwork for correlation analysis
and several correlation types. It explains the principles of the MCA visualization tech-
nique, provides a guide for interpreting the resulting plots and an algorithm to filter
out interesting plots.

Furthermore the architecture and usage of an R library and a web application are
described, both developed in scope of this work. They complement each other in that
the latter provides interactive and intuitive access to the functionality of the former,
which in turn can be used to for automation.

Finally, this work presents the results of an application of those tools to two meta-
bolic data sets, where connections to existing biological knowledge are found, and the
application to a transcriptomic study, the conclusions of which could be confirmed and
extended. This way it is shown that MCA is an useful tool for the inspection of correla-
tions in cell subpopulations, and is thus able to provide better insight than conventional
methods.



Kurzzusammenfassung

Korrelationen stellen ein Maf3 fiir den Zusammenhang von Variablenpaaren eines mul-
tivariaten Datensatzes dar, und sind daher niitzlich fiir die Analyse von transkriptionel-
len, metabolischen, und regulatorischen Daten. Jedoch kénnen Zellpopulationsdaten
aus Subpopulationen heterogenen Verhaltens zusammengesetzt sein, fiir welche eine
Korrelationsanalyse der Gesamtpopulation nicht reprédsentativ ist.

Wissen iiber die Zusammensetzung dieser Subpopulationen zeigt ihre verschiede-
nen Verhaltensweisen auf und erweist sich daher als wichtig fiir sowohl die Inferenz
von Interaktionsnetzwerken als auch Korrelationsanalyse.

Dennoch erkennen die wenigsten Korrelationsanalysen biologischer Daten die mog-
liche Existenz derartiger Subpopulationen an, und selbst wenn, ist die einzige etablierte
Methode um die Gesamtpopulation in Subpopulationen aufzuteilen eine Zweitelung
anhand eines Schwellwertes. Diese Methode hat verschiedene Probleme, welche eine
Sensibilitdt gegentiber Ausreifiern einschlieffen, sowie den Mangel der Moglichkeit,
tiberlappende Subpopulationen oder Robustheit gefundener Subpopulationen darzu-
stellen.

Diese Arbeit prasentiert ein neuartiges Framework, mit dessen Hilfe Korrelationen
innerhalb von Subpopulationen visualisiert werden kénnen. Dazu nutzt es Mehrfach-
aufgeloste Korrelationsanalyse (MCA), ein Werkzeug zur explorativen Subpopulati-
onsanalyse in multivariaten Daten. Auf diese Weise ist es moglich, obige Heterogeni-
taten aufzuspiiren, zu analysieren, und Subpopulationen mit deutlich abweichendem
Korrelationsverhalten zu identifizieren.

Diese Arbeit zeigt einen Uberblick des statistischen Fundaments der Korrelations-
analyse, sowie verschiedener Korrelationstypen. Sie erkldrt die Prinzipien der MCA-
Visualisierungstechnik, und stellt einen Leitfaden zur Interpretation der resultieren-
den Diagramme zur Verfiigung, sowie einen Filter-Algorithmus fiir dieselben, welcher
interessante Diagramme erkennt.

Weiterhin werden Architektur und Nutzung einer R-Programmbibliothek und einer
Web-Anwendung beschrieben, die im Rahmen dieser Arbeit entstanden sind. Die Pro-
gramme ergdnzen einander, indem zweiteres intuitiven und interaktiven Zugang zur
Funktionalitét des ersteren zur Verfligung stellt, welches wiederum dazu genutzt wer-
den kann, MCA zu automatisieren.

Schliefslich prasentiert diese Arbeit die Ergebnisse einer Anwendung besagter Pro-
gramme auf zwei metabolische Datensidtze, in welchen Verbindungen zu existiendem
Wissen gefunden werden, und Anwendung auf eine transkriptionelle Studie, deren
Ergebnisse bestétigt und erweitert werden konnten. Auf diese Weise wird gezeigt, dass
MCA ein niitzliches Werkzeug fiir die Analyse von Korrelationen in Zellpopulationen
ist, und dabei tiefere Erkenntnisse als existierende Methoden erméglicht.



Contents

1 Introduction

2 Statistical background:
Correlation analysis
2.1 Regression and correlation
2.2 Pearson correlation estimation
2.3 Spearman’s rank correlation coefficient
2.4 Partial correlations
24.1 Partial correlation estimation using matrix inversion
24.2 Partial correlation estimation using GeneNet’s shrinkage estimator
2.5  Significance assessment
2.5.1 Pearson correlation
2.5.2 Partial correlations

3  Multiresolution correlation analysis

3.1 MCA plots

3.2 A scoring system for subpopulations
3.3 A scoring system for MCA plots

4  Implementation

41  Rpackage

41.1 MCA plot creation

4.1.2 Plotting

413 Filtering interesting MCA plots
42  Web application

4.2.1 Communication Architecture
4.2.2 Client architecture

4.2.3 Visualizations

424 Client usage

5 Application

51  KORA (Kooperative Gesundheitsforschung in der Region Augsburg)
52  Qatar Metabolomics Study on Diabetes (QMDiab)

53  Ensemble networks in embryonic stem cell populations

6  Conclusion
7  References

8  Appendix

O O O 0 0o OO Ul = =

— =

[
N OOBNDN

19
19
19
21
21
22
23
24
24
27

29
29
32
35

37

39

42



1 Introduction 1

1 Introduction

Systems biology is based on the idea that all kinds of biological systems can only be un-
derstood as a whole instead of trying to do research for each part individually. The rea-
son why we are still able to make sense of all of those highly complex biological systems
is their modularity. This modularity is hierarchical and reaches from the molecular
level over gene regulation up to division of labor between cells, organs, and organisms
(Lorenz et al., 2011 and Vemuri and Aristidou, 2005). This and the systems approach
are not contradictory — only when considering the interactions between modules, they
can be fully understood.

In bacteria as well as eukaryotes, this heterogeneity through specialization is of
advantage, and while the former are already able to amalgamate into heterogeneous
biofilms, it becomes a permanent part of the eukaryotic organism through cell differ-
entiation additionally to regular heterogeneity (Crespi, 2001). Differentiation itself is
preceded by reduced expression of genes maintaining pluripotence state (Trott et al.,
2012). Regardless of differentiation, cells are therefore heterogeneous in another exam-
ple of modularity, gene regulation (see Figure 1.1). Cells with different metabolic and
catabolic roles also have different gene activation patterns (Reik, 2007).

Figure 1.1 Immunoflourescence staining in mouse embryonic stem cells as example
of heterogeneity. A) Oct4, B) Nanog C) DAPI, and D) an overlay. Nanog can be seen to
be heterogeneously expressed. (Figure taken with permission from Roeder and Radtke
(2009))
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The heterogeneity of gene expression in cell populations can therefore be attributed to
a combination of cell-intrinsic regulation and extrinsic influences such as intracellular
organization, availability of nutrients, or presence of toxins. It can be maintained even
through cell division where epigenetic changes and concentrations of metabolites and
gene products are passed on to daughters of dividing cells.

Cell population heterogeneities like this can be found in pluripotent stem cell pop-
ulations (Narsinh et al., 2011 and Huang et al., 2005), metabolomics (Amantonico et al.,
2010), and transcriptomics (Tang et al., 2009). This becomes apparent with emerging
technologies capable of single-cell analysis such as transcription analysis like quanti-
tative single-cell PCR and flow cytometry, next-generation sequencing methods like
mRNA-Seq (Tang et al., 2009), protein analysis methods like mass cytometry, and mass
spectrometry (MS) methods like electrospray MS or secondary ion MS (Amantonico
et al., 2010). Advances in the area of single-cell imaging and tracking also allow for
subpopulation analysis in live cells.

Motivation

Common to all fields based on mentioned single-cell analyses is the dawning realiza-
tion that the ensemble system state inferred by averaging data taken from the whole
population is not indicative of the real multitude of states the subpopulations reside
in. For example, a regulatory subsystem that either keeps a gene product at a very low
level or a very high level via feedback loops is not aptly represented by the calculated
medium level resulting from averaging the measurements of multiple cells with either
high or low level.

An important field for integration of subpopulation information is the modeling of
the system as a network, be it pathways, gene regulatory networks (GRNs) or other
dependency graphs. Represented this way, interactions between subsystems are most
easily understandable while also being assessable by computational methods using
graph statistics like connectedness, or by overlaying and extracting parts of the network
(Krumsiek et al., 2012).

One approach to create networks like this are Gaussian Graphical Models (GGMs),
which are based on partial correlations. Partial correlations themselves are a correlation
statistic for data sets that aims to reduce or remove the effects that indirect associations
between variables have, while retaining direct associations (Baba et al., 2004). GGMs
are networks created by removing all edges with insignificant partial correlations, opti-
mally leaving only direct associations between the respective network nodes, be it genes
or metabolites (Schéfer and Strimmer, 2005 and Krumsiek et al., 2012).

Inference of networks able to faithfully represent associations between genes is com-
plicated by having to rely on data that is not divided into heterogeneous subpopula-
tions, which creates the demand for subpopulation identification (Trott et al., 2012).

Common approaches to the inference of subpopulations include mostly space- or
density-based clustering algorithms such as EM and DBSCAN. There are also corre-
lation-based clustering algorithms available that cluster data points according to their
distance to regression lines (Bohm et al., 2004). All of those clustering algorithms share
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the property of being dependent of some sort of separation in the data, be it space or
density. Even correlation-based approaches are not able to identify strongly intersect-
ing subpopulations, and highly sensitive to any separation in the data.

Another criterion to define subpopulations depends on the level of one factor, which
is common in metabolomics, where marker metabolites for diseases are sought (Krum-
siek et al., 2012), as well as in transcriptomics, where concentrations of transcripts are
able to represent system states (Trott et al., 2012).

Current approaches to alleviate the problem of finding this kind of heterogeneous
subpopulations rely on the manual division of levels into a high and low segment
(Trott et al., 2012). This can be problematic because the threshold for division has to
be carefully selected, subpopulations that overlap cannot be described, outliers influ-
ence the resulting values greatly, and the found subpopulations may be unstable to
small changes.

Overview

This work presents an approach to analyze data using Multiresolution Correlation Analy-
sis (MCA), which allows a more detailed analysis of correlations within possible sub-
populations in multivariate data by visualizing them for all possible segments of a
binned sorting variable domain. It is therefore also dependent on one factor, but able to
represent overlapping subpopulations and leaving out data. MCA visualizes the corre-
lations of those subpopulations in a way that variations in similar subpopulations give
insight into correlation estimation confidence, subpopulation robustness, and outlier
sensibility, which allows for identification of interesting subpopulations.

Chapter 2 presents the statistical foundation of MCA and how they are related, start-
ing with regression and continuing over Pearson’s and Spearman’s correlation coeffi-
cients to partial correlation. The part ends with confidence assessment using confidence
intervals and p-values.

Chapter 3 presents the operating principle of the MCA visualization method based
on subdivision of a sorting variable quantile and a scoring of the resulting plots which
is able to extract potentially interesting variable pairs from high-dimensional data sets.

Chapter 4 explains the capabilities and usage of an R library implementing those
methods, as well as a web application utilizing this library to provide an interactive
interface to all described methods. The web application unifies all presented concepts
and methods behind an easy to use interface and puts selected subpopulations in a con-
text to the whole population. It is available internally on the servers of the Helmholtz
Zentrum Miinchen, Institute of Computational Biology (ICB).

Chapter 5 shows the application of the scoring to two metabolic data sets, in order to
generate hypotheses concerning differentially regulated subpopulations and test them
using existing biological literature. Also, it shows a third application to a transcrip-
tomic data set, where conclusions about previously-described subpopulations from a
published study were analyzed and extended.
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2 Statistical background:
Correlation analysis

Statistical analysis is often based on relations between the existing variables, examples
including gene regulatory networks and metabolic profiles. They also intend to give
information about whole populations. However, due to only a limited number of mea-
surements being possible, they generally have to be estimated from a sample such as the
measurements in a data set. Those observations each contain a number of realizations
of the variables in that data set.

The available measurements are used as sample from which to estimate statistics
describing those relations. A basic relation between pairs of variables is the correlation
coefficient, which describes how the value of one variable influences that of another -
or the other way round, as correlations are undirected (Bohm et al., 2004).

A significant positive correlation between two variables usually means that there is
a common factor regulating both or they have another relation, including more indi-
rections. Negative correlations imply the same, only for downregulation. Similarly it
applies to metabolites, where the presence of one metabolite might provoke a biological
response that depletes or produces other metabolites to fuel a reaction.

Correlations are statistical measures in the interval [—1, 1], with the two extrema
being perfect negative and positive correlation, respectively, and 0 being no correlation
of the two compared variables.

In this section, formulas refer to X, which is a representation of an example data
set with p variables and n observations. Let X = [X;, ...,X][,]T € RP*" be a matrix
containing p vectors X; which each represent a sample of n realizations of variable i.
Thus X; = (X;1, ..., X;) Vi € {1,...,p}.

2.1 Regression and correlation

Some correlation types are related to regression, the act of describing the relation of a
subset of variables with a simple formula. There are multiple such correlation types, for
example both Pearson’s product-moment correlation coefficient and Spearman’s rank
correlation coefficient.

Pearson’s correlation coefficient is for example based on linear regression, which
means the act of describing the relation between variables using the line that best de-
scribes all data points. This line can be estimated by finding the linear function with
the minimal sum of squared distances ¢ to all points, also called the least squares esti-
mator (Seber and Lee, 2012). A regression line has the function y = a 4+ px. Given two
variables i and j from the data set, « and B are the solution for

n n
argmin lz é% = Z(Xik - — ,BXjk)2 (2.1)
ap  Lk=1 k=1
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Figure 2.1 Scatter plots of data sets for two variables with linear regression
lines. The Pearson correlation coefficient of both is 0.816, despite their different
shape, while the Spearman coefficient is 0.818 for a and 0.50 for b. (Data from
,Anscombe’s Quartet”, (Anscombe, 1973))

This optimization problem has the following solution:
Y1 X = Xp) Xy = X))
Y pog X — X)?
= X, - pX, (2.3)

oY
Il

(2.2)

A colinearity of both variables, i.e. all data points being on the regression line and
the sum of squares being zero is a perfect Pearson correlation of -1 or 1, with positive
correlation meaning the regression line is sloped upwards and negative meaning it is
sloped downwards. Zero correlation indicates a non-elongated shape of the data cloud,
such as a radially symmetric shape (Pearson, 1895).

The relation of Pearson correlation and linear regression extends to the sensitivity
against outliers, while certain other correlationtypes do not share this problem to the
same degree (see Figure 2.1).

2.2 Pearson correlation estimation

The most common way to calculate correlation is Pearson’s product-moment correla-
tion coefficient (Pevsner, 2013), which will be described in the following section. It relies
on the definitions of sample covariance and variance, which already appeared in the
least squares estimator for linear regression.

The sample covariance COV(X,,X )y =3
lation covariance can be calculated frorn X:

ij, which is an estimator for the true popu-

n

Z - X;) (Xjk — Xj) (2.4)

3 = Cov(X;, X)) =
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with X; being the mean value of each sample X; of variable i. The sample variance is
derived from it: Var(X;) = Cov(X;, X;)

The correlation matrix p is obtained by normalizing the covariance matrix with the
respective standard deviations. The sample estimator r;; for the correlation coefficient
is written as

COV(XZ', X]) . Z]:l:l(xik — Xl)(X]k — X])
WVar(XpVar(X)) S (X — X2 X, (X — X))?

rij = o=

(2.5)

Using this definition, another way to solve the linear regression formula for  is possi-
ble, with s being the sample standard deviation of a variable:

p= A L (2.6)
Var(X;) g s,

Pearson correlation has a few weaknesses and limitations. For example, the metric is

not robust against outliers, a requirement fulfilled by other correlation statistics such

as Spearman’s rank correlation coefficient and others (Rousselet and Pernet, 2012). A

limitation in some use cases is that it does not distinguish between direct and indirect

inter-variable relations, which are better represented by partial correlations.

2.3 Spearman’s rank correlation coefficient

The estimation of Spearman’s rank correlation coefficient simply involves ranking the
correlated samples and estimating Pearson’s correlation of the ranked samples (Spear-
man, 1904). For example, the ranking of the samples (0.64,0.1,0.13) is (3,1,2), even
while the distances between the sample values vary.

The Spearman coefficient describes how monotonic the association of two variables
is. So two variables have a perfect Spearman correlation coefficient of 1 if each variable
is a monotonically increasing function of the other, with the same applying to a perfect
negative coefficient for a monotonically decreasing relation (Spearman, 1904).

This coefficient is more robust against outliers and approximately similar to Pear-
son’s coefficient when the data is shaped roughly elliptically, as it is the case with nor-
mally distributed data. If however a real linear relation between variables is to be as-
sessed, Pearson correlation represents this property best (Zezula, 2009).

2.4 Partial correlations

Apart from problems like outlier sensitivity, there are properties of normal correlation
coefficients that are undesirable for analysis, such as the lack of distinction between di-
rect and indirect correlation. Partial correlations eliminate those indirect effects, leaving
only the direct portions of correlations.

Applied to the earlier example of Gene Regulatory Networks, the Pearson correla-
tion between two gene products might be high while no direct regulatory connection



2 Statistical background: Correlation analysis 7

exists between them, and they are regulated by a common third gene instead. Provided
the partial correlation between both is estimated factoring in the third gene, partial cor-
relations between it and the first two will be high, while the removal of the indirection
from the correlation between the first two leads to a lower value (see Figure 2.2).

Due to this property, partial correlations are for example useful to illustrate and
process correlation networks such as Gaussian Graphical Models (GGMs), which are
sparse networks containing only those edges where partial correlations between vari-
ables is non-zero.

~ N(0,1)

B ©)

=A+c¢ =A+¢

e ~ N(0,0.4)

.o rhtt =023
|

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 2.2 Regular Pearson correlation is unable to distringuish between direct and
indirect effects: Both B and C were generated by adding noise to A, and are thus only
indirectly correlated, but the Pearson correlation coefficient reflects this as only a slight
decrease, while the partial correlation between B and C is much lower than between
A and each. Partial correlations are usually lower than non-partial ones while staying
significant.

The term “partial correlations” applies to both limited-order and full partial correla-
tions. Limited — or ith — order partial correlations are correlation coefficients with the
effect of i other variables removed, and are easier to obtain the smaller the i is (de la
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Fuente et al., 2004). Full partial correlations are more similar to the true direct relations
between variables, but are also more difficult to obtain in situations where “small #,
large p” situations are prevalent (Schéfer and Strimmer, 2005). This is common in bio-
logical fields, especially in metabolomics, where the number of metabolites measured
can be an order of magnitude higher than the number of study participants.

Formulas for it order partial correlations can be derived from the i — 15 order one,
with zeroth order being the Pearson correlation coefficient described in Section 2.2.
With xy.z meaning the removal of z’s effect and xy.zqg meaning the removal of both z’s
and g’s effects, as well as r as generic denominator for sample correlations, r,, can be
extended for partial correlations:

Xy

Ty = Tzt

Y Yz
(1—=r2)(A—r2)

first-order: 1y, , =

rxy.z - rxq.zryq.z

v (1- r%q.z)(l - rﬁq.z)

second-order: r

2.4.1 Partial correlation estimation using matrix inversion

While limited-order partial correlations prove to be useful for analysis (de la Fuente
et al., 2004), complete partial correlations, while more difficult to obtain, offer better
potential for interpretation (Schéfer and Strimmer, 2005).

The full partial correlation matrix o can be estimated from the covariance matrix X
using matrix inversion, provided it itself is well-conditioned, and estimated very accu-
rately. This can only be the case in a n > p situation, i. e. when more observations than
variables exist in the data set, but a n > p situation does not imply a well-conditioned
covariance matrix (Schéifer and Strimmer, 2005). If all those predicates are given, an
estimator for the partial correlation matrix can be derived from the precision matrix
Q= (w;p), which is the inverse of the covariance matrix Q = £~1. Given an estimated
covariance matrix, the partial correlation is also an estimate

art A
I’P = 0;; =

j
1]' [/ d)iid} . (27)

2.4.2 Partial correlation estimation using GeneNet’s shrinkage es-
timator

A well-behaved covariance matrix, the requirement of the matrix inversion method for
partial correlation estimation, cannot always be easily obtained. A more reliable way
to estimate those full-order partial correlations is provided by the shrinkage estimator
implemented in GeneNet (Schifer and Strimmer, 2005). GeneNet is the result of an
effort to find the best-performing estimator for partial correlationsin ann < p situation.
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This is the essential advantage gained by using GeneNet, while it is also able to
outperform the simple estimator in n > p situations. Without the ability to estimate
partial correlations in a n < p, subpopulation analysis like the one provided by this
work would be only possible for situations with enough observations that even small
subpopulations containing few bins still have more observations than variables.

GeneNet’s shrinkage estimator works by estimating a covariance matrix in a way
that is guaranteed to yield a positive definite result while being fast and reliable. The
chosen method is a shrinkage estimator that reduces covariances while fulfilling those
constraints.

In n < p situations, only the unbiased empirical covariance matrix can be derived,
which however, especially in those situations, is a bad estimator. It is both able to be-
come non-invertible (singular) and lose its positive definiteness, making it unfit for de-
riving an estimation for the partial correlation matrix from it. GeneNet employs this
unbiased empirical covariance matrix as full model U, as well as a submodel T, and a
shrinking factor A € [0, 1] which mixes both.

The principle of GeneNet is to select a submodel T as estimator for the whole data
set, which is easy to estimate, yet has significant bias, since it only contains a subset of
all variables of the data set. Then this submodel is mixed with U into U* by fitting a
shrinkage factor A that describes the ratio of mixing.

U* = AT + (1 - )U (2.8)

The target T is selected from a range of suitable candidates like the identity matrix. This
way, starting from an unbiased estimation U and shrinking the covariances towards the
target T, U~ is always improved, and other than U guaranteed to meet the constraints
of having to be invertible (non-singular) and positive definite. After the shrinkage step,
that covariance matrix U is tested for its ability to describe the input data using an error
loss function based on the Frobenius norm, a distance between the true and estimated
covariance matrix. This can be generalized by using multiple targets and shrinkage
factors (Schafer and Strimmer, 2005).

2.5 Significance assessment

Due to the random nature of the drawn sample, i. e. the measured datapoints, there is
a possibility that a statistic on that sample was obtained by chance. This probability is
called the p-value, and the hypothesis Hy is that the data is not correlated at all. For
correlations, the p-value is the probability that a correlation R, which is at least as strong
as the estimated one, is estimated by chance under Hy:

p = P[IR| > r], with Hg being true (2.9)

The p-value of a correlation can be calculated as the probability that the correlation
is at least as extreme under Hj as the one estimated. In case of a two-tailed test, this
means the area under the probability distribution from the estimated correlation r (see
Figure 2.3).
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Figure 2.3 When estimating correlations, the probability distribution for the possible
values can be derived from the sample size. The area under its curve is 1. Using it, the
two-tailed p-value can be calculated from the area to both sides of a correlation estimate
rand —r.

2.5.1 Pearson correlation

It is based on the concept of the confidence interval, which denotes the limits around
from the estimate in which the real statistic lies with a certain confidence c¢. Using
Fisher’s r to z transformation, a value z can be constructed that is suitable to construct
those interval limits z, (Fan and Thompson, 2001),

1, (1417

zZ, =z4cC- y(n—3)1 (2.11)

whereupon the limits are converted back to the numerical space r resides in:

e —1

(2.12)

-
+
R |

The p-value for Pearson’s correlation coefficient can be calculated using the probability

density function @, of the normal distribution with standard deviation o = \[ (n—23)"1
(Pevsner, 2013):

. @=mw?

D, (x) = e 22 (2.13)

o2

p=2-P,(2) (2.14)

2.5.2 Partial correlations

The p-value for the matrix-based estimation can be calculated using a ¢-statistic of the
correlation and deriving the two-tailed p-value from it as described in Figure 2.3 (Levy
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and Narula, 1978). The ¢ statistic is distributed according to Student’s t-distribution
which is dependent of the n — 2 — p degrees of freedom.

P n—2-p
= 7’1']' 1_ (rPWf)z
ij

, with t ~ Student’s t-distribution (2.15)

GeneNet is a sophisticated tool in which many parts are selected from a number of
choices, such as model selection of the shrinking target, the option to shrink towards
multiple simultaneous targets, the choice of an error loss function and more. Utiliz-
ing those, it is able to improve the accuracy of the resulting partial correlations. The
specifics of confidence assessment for GeneNet-estimated partial correlations is another
part of the project covered in Strimmer (2008), a full description of which is beyond the
scope of the present work.
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3 Multiresolution correlation analysis

Facing data from single-cell sources, a scientist often encounters heterogeneities within
the cell populations which can provide great insight once found. A common exam-
ple for heterogeneity is gene expression dynamics, which often contain multiple stable
modes in which genetically identical cells can exist, and can be switched between when
a certain condition is met. Cells residing in one of those modes can be caused by the
presence of one or multiple gene products, such as for example pluripotency mark-
ers, and be reversible or irreversible (Huang et al., 2005 and Narsinh et al., 2011). The
same is true for metabolic markers: Organisms with certain concentrations of disease
markers have different metabolic states (Amantonico et al., 2010).

In order to detect heterogeneities in data, the extraction and comparison of subpop-
ulations is necessary. Because the real subpopulations are a property of the hetero-
geneous biological processes responsible for the data, they are often mixed stochasti-
cally and therefore impossible to fully separate. However, methods like clustering algo-
rithms exist that identify approximate subpopulations in the data (B6hm et al., 2004).

An effective subpopulation extraction method reveals the inherent heterogeneity of
heterogeneous data (see Figure 3.1). The method presented in this chapter is able to
visualize and extract heterogeneities based on the level of one variable in the data set.

1,500
~ 1,000

2,000

1,000
X y

Figure 3.1 Correlation analyis detects heterogeneous structures. a) The original
components, which were created by different processes, and have a different cor-
relation structure, yet overlap. b) Subpopulations that were found using the tool
developed in scope of this work which are able to reflect the two-componential
nature of the data.

3.1 MCA plots

Multiresolution correlation analysis (MCA) plots are a way to visualize sample corre-
lations between two variables as a diagnostic for the identification of subpopulations,
as defined by the distribution of a sorting variable (Feigelman et al., 2014).
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An MCA plotis defined by its granulatity, its sorting variable, and the two correlated
variables. The sorting variable is used for the MCA plot’s coordinate system, and the
granularity is defined by the bin number and determines the MCA plot’s resolution.
The variables determine which correlations are plotted on the resulting grid. Therefore,
for one sorting variable and bin number, one MCA plot for each variable combination
exists.

By arranging the sorting variable according to its quantile, a range of a certain length
taken from the sorting variable quantile domain is guaranteed to contain a certain num-
ber of data points, which would not be the case when using ranges of the sorting vari-
able’s domain itself. For example, a sorting variable with 500 observations is guaran-
teed to have 250 below its 50" quantile, even if 499 are above the mean value.

—_ a b

2 100 @ 1 —

8 80 = 08 :

-

¢ 60| (c,s) 206 s ]
£ 40 N s 2 o4)

=~ Y0 20 40 ¢ 60 80 100 = Qo max

Sorting variable quantile (%) Sorting variable

Figure 3.2 Subpopulations according to the sorting variable quantile. a) The meaning
of the coordinates (c, s). The example point has a populations size s = 40% and a center
¢ = 50%, which results in a population including the observations from the 30% to
the 70% quantile. b) The empirical cumulative distribution function F maps a sorting
variable range [u, v] to those quantiles.

Mathematically, the empirical distribution function F, computed from and applied to
the sorting variable has a range of [0,1]. MCA plots are 2D charts using this quantile
range as coordinates for plotted points.

Each quantile range and therefore subpopulation can be defined by a point (c,s)
that encloses it by being a distance s € [0, 1] above its center ¢ € [0,1] (see Figure 3.2).
The coordinates of such a point can also be called the relative population size s and the
quantile center c.

By plotting all correlation estimates 7, for a specific variable pair at the respective
coordinates (c, s) for all populations and with a certain granularity, the triangle below
the tip is filled. This tip 7 5 ; represents the full quantile range, so the whole population.
This chart is able to represent the estimated correlation for each subpopulation of a
chosen granularity and sorting variable.

The granularity defines how highly resolved the corresponding chart is. It corre-
sponds to a number of bins in which the data can be divided using equidistant quan-
tiles. While the bins are defined by only one sorting variable quantile range, they are a
sample of all variables. Using those bins, a correlation can be calculated for each point
of the chosen granularity by combining a range of bins instead of selecting data points
anew by recomputing their sorting variable quantile.
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Figure 3.3 With a bin size of b = 9, the correlation estimated for the first three bins,
and therefore the first third of the population, is represented by the term r; ;, which can
be visualized as a square colored according to to the population’s correlation estimate.
The correlation of a subpopulation of the same size spanning the middle third quantile
range is r 1L and the correlation for the whole population is r Ly

Dividing the sorting variable range into a number of bins b like this and inverting
the empirical distribution function F maps each bin to an almost equal number of ob-
servations (see Figure 3.2). The upper limit of b can be specified by a minimum possible
sample size of the correlation estimation method, or defaults to the number of obser-
vations.

Therefore, the size of samples to estimate the correlation from can be guaranteed
to have a lower bound when taking one or multiple bins as sample, as described above
regarding quantile ranges, which is useful for correlation estimation methods requiring
such a minimum size.

Let b be the number of bins and g = % the relative bin size, the value r;_¢5,, Vi €
1,...,b represents the sample correlation estimated for the ith single bin, with observa-
tions between the sorting variable quantiles (i — 1)g and iq. Higher population sizes
include more bins (see Figure 3.3).

Using that chart to show a heatmap of all subpopulations’ partial or regular correla-
tions allows to spot locally different regions that indicate correlation behavior different
from the whole (see Figure 3.4). Further characteristics and statistics for subpopulations
can also be incorporated in or displayed as MCA plot, which is done in Chapter 3.2.
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Figure 3.4 Partial correlation MCA example with 201 bins and a spectral color map,
with two bigger, differently correlated regions of subpopulations marked.
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3.2 A scoring system for subpopulations
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Figure 3.5 Correlations are masked when their p-value is above a certain threshold.
a) Correlations. b) Their p-values. c) P-values > 0.05 are masked d) Applying the same
mask to the correlations forms regions. e) Small regions are removed (red cross) and
the local score maxima are extracted from the remaining regions (cyan dots).

MCA plots can incorporate more information than correlation alone. For example the
p-values of each subpopulation’s correlation estimate can be either displayed as trian-
gle like a MCA plot themselves (see Figure 3.5b), or used as a thresholding of the cor-
responding correlation plot, hiding subpopulation points that were not significantly
correlated (see Figure 3.5d).

P-values are calculated from correlation value and sample size like explained in
Chapter 2.5. Since the p-value is dependent on population size and correlation, using
p-values as score eliminates those small subpopulations which show stronger correla-
tions than bigger ones due to chance.

In order to identify such subpopulations with sufficiently high confidence, a func-
tion of the p-values is used as a score with the inherent ability to eliminate low-con-
fidence values. A low p-value can mean either that it is not significant because there
is no real correlation, or because the population size was too small to make confident
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estimations. For each subpopulation of size s and center ¢ with a correlation estimate
r.s and corresponding p-value p, ,, the score is defined as

,if p. s > threshold (3.1)

SCOTecs = { —log,, (pes) else

The score-masked MCA plot yields several connected regions in the chart, separated
by other regions with p-values exceeding the significance threshold. The bigger such
a region, the more robust is the correlation within, since its size means that smaller
changes in subpopulation size and quantile do not change the correlation behavior.

Conversely, small or interrupted regions mean that correlation behavior is not stable
and can be changed by inclusion or removal of few data points. Similarly, outliers can
easily be detected when the inclusion of single bins has great impact on the correlation
of subpopulations.

Each of those stable regions contains a score maximum that is a local maximum in
the scoring chart. In bigger regions, those maxima define subpopulations that are both
big and highly correlated (see Figure 3.5e). As previously mentioned, this applies due
to the definition of the p-values the score is based on. Due to their robustness, those
maxima define subpopulations that are representative for similar subpopulations (see
Figure 3.1).

Based on the subpopulation sizes of those maxima, the region sizes around them,
and other features, filtering criteria for whole MCA plots can be specified.

3.3 A scoring system for MCA plots

Although MCA plots give an overview of all subpopulations’ correlations, manual as-
sessment is only feasible for a certain number of combinations, depending on time con-
straints and patience while skimming plots.

The number of MCA plots possible for a certain set of variables corresponds to the
number of 2-combinations between those variables. This number is calculable using
the second binomial coefficient. If no suitable sorting variable was found in advance,
all plots for all sorting variables have to be calculated, which multiplies this number by
the number of variables p:

#eombinationsgying = (Z) (3.2)
#combinations = p(i) (3.3)

Those formulas grow in O(pz) and Q(p3 ), respectively, depending on the number of
variables in the input data set. This motivates the automatic elimination of MCA plots
— and therefore variable combinations — which are definitely not interesting.

A minimal definition of uninteresting plots can be generated: Plots that are uni-
formly positively, or uniformly negatively correlated, or those for which only a small
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number of subpopulations were predicted to be correlated differently than the rest with
low confidence (see the regions of < 5% population size in Figure 3.4).

As described in Chapter 3.2, MCA plots masked using a score threshold yield co-
herent regions of similar populations (see also Figure 3.5). Two subpopulations are
considered as being together in a region if they are left, right, above or below another,
while both are within threshold, or if both are connected transitively with this criterion.
Let I C Z? be the set of two-dimensional points in the image raster that fall below the
threshold. Then © C I x I is the relation between two such points a and b, so that

a=>b or (3.4)

_ _ a1 = bl AN a) = bz + 1 or (35)

a@bc va—(al,az),b—(bl,bz),CEI. a2=b2/\a1=b1il or (36)
a@cAcob : (3.7)

Then a region is defined as a point sets within which ® applies, and the set of regions
in an MCA plot is the set of all sets possible according to this definition.

In order to extract potentially interesting plots automatically, several filtering criteria
can be applied to each MCA plot’s set of regions, a process able to narrow down the
number of potentially interesting plots drastically.

A set of criteria able to spot the corresponding kind of potentially interesting MCA
plots is the presence of at least two large subpopulations with differing correlation sign
in one plot. For example in Figure 3.5e, three regions are visible, one of which is pruned
for being too small. Due to two big regions with differing correlation signs remaining,
the plot is considered interesting. The maximum size to be pruned is a free parameter
dependent only on plot granularity.

This algorithm is applied to three data sets in Chapter 5.
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4 Implementation

In order to do statistical analysis in biology, there are generally three major interac-
tion levels: Programming language libraries, spreadsheet applications, and specialized
interfaces for a certain type of analysis. MCA encompasses a novel visualization tech-
nique not available in spreadsheet applications, which therefore requires a reutiliza-
tion of drawing and calculation code to be of use. This and the error-prone nature of
spreadsheets (Powell et al., 2008) necessitates a specialized interface or programming
library based approach, despite the widespread use of spreadsheets in biological re-
search (Topaloglou et al., 2004).

In order to make MCA available for researchers with and without programming ex-
perience, a combined approach was adopted where a specialized front-end was devel-
oped based on a documented, independently usable back-end library. This library for
the programming language R is capable of performing the automatic part of Multires-
olution Correlation Analysis by plotting MCA plots and identifying interesting ones as
described in Chapter 3. The front-end, a web application, automates this procedure
and provides interactive access to the plots of one sorting variable at a time.

4.1 R package

Ris an open source programming language with focus on statistics and data processing.
It has many statistical functions and plotting facilities readily available in its standard
library, as well as an extensive repository of packaged libraries extending the standard
library. Those include a partial correlation estimation method suited for small subpop-
ulations, the shrinkage estimator provided by GeneNet.

The R package developed for this work contains a library providing algorithms and
data structures for Multiresolution Correlation Analysis. This includes methods to cre-
ate the matrices holding the MCA analysis data, as well as functionality to generate
MCA plots and scatter plots of subpopulations (see Chapter 3.1). Finally, it provides
algorithms for identifying potentially interesting plots (see Chapter 3.3).

In the Appendix, a full API documentation can be found describing the specific
methods implemented in the R library.

MCA plots are stored in a structure — the MCA object — containing input parame-
ters such as data, bin number, and correlation method, as well as two recursive lists
of MCA plots. Those lists contain an MCA plot for each pair of variables in the data
once. This has the advantage of reducing the memory footprint compared to storing
the MCA plots twice for the inverted variable order. The MCA plots themselves and
their p-values are stored as matrices in two recursive lists like this.

4.1.1 MCA plot creation

Creating a set of MCA plots with partial correlations involves estimating the partial cor-
relations of all pairs of variables for each subpopulation. Since calculating the partial
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correlation between one pair of variables involves removing the influence of all others,
as described in Chapter 2.4; the calculation of all partial correlations is done simulta-
neously. Since only creating one MCA plot would not reduce the overall run time, all
plots for one sorting variable are created simultaneously.

As described in Chapter 3.1, for each possible subpopulation all correlations be-
tween pairs of variables are obtained by applying the GeneNet shrinkage estimator to
the values of the current subpopulation. Processing one subpopulation therefore fills
one point in each plot of the chosen sorting variable. After all subpopulations are ana-
lyzed, all MCA plots are filled and available. This process is described in Listing 4.1.

def create_mca(DATA, p, b):
height « ceil(b *+ 2)
offset « 1 if is_odd(b) else 2
# MCA_X and MCA_P g RPxpxbxleight
MCA_X ¢ [pxpxbxheight]
MCA_P ¢« [pxpxbxheight]
for ¢ in 1 to b:
h_max ¢« ¢ if ¢ = height else height + offset - ¢
for h in 1 to h_max:
# X and P € RP*P
subpop = extract_subpopulation(DATA, c, h)
X ¢« estimate_partial_correlations(subpop)
P ¢« fdrtool_pvalues(X)
for vl in 1 to p:
for v2 in 1 to p:
MCA_X[vl, v2, c, h] ¢« X[vl, v2]
MCA_P[vl, v2, c, h] « P[vl, v2]
return MCA_X, MCA_P

Listing 4.1 Pseudocode for MCA creation with DATA being the data set, p the num-
ber of variables in it, b the wanted number of bins, estimate_pcors the shrinkage
estimator from GeneNet (Schifer and Strimmer, 2005), and fdrtool_pvalues the
p-value calculation method from Strimmer (2008).

MCA plots for non-partial correlations do not have to be created this way, since only
partial correlations are dependent on other variables than the two the correlation is es-
timated for, therefore the correlation for each subpopulation and plot can be estimated
individually.

A minimal session to create a MCA object sorted by a variable called “varl” from
a data file named “data.dat”, and assigning it to the name “mca.variablel” looks as
follows:

library(mca)
data <- read.table('data.dat')
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mca.variablel <- mca(data, 'varl')

4.1.2 Plotting

Visualizing MCA requires the computed MCA object, which contains the common
properties of all plots, and a pair of variables to be plotted. Other parameters can be
specified to override defaults, like for example the color map translating partial corre-
lations to colors, the p-value threshold, and axis labels.

Plotting an MCA plot with default settings for the variable combination “var2” and
“var3” from the MCA object created earlier looks as follows:

plot(mca.variablel, 'var2', 'var3')

and plotting all variable combinations containing “var2” with the strict significance
threshold of 0.001 and a red-black-green colormap is done like this:

plotMCAs (mca.variablel, 'var2', 0.001, palette = 'rbg')

4.1.3 Filtering interesting MCA plots

Alternatively, all plots of an MCA object can be visualized and optionally saved to disk,
or interesting plots can be extracted and visualized together with their scoring plots
and scatter plots of the subpopulations with the highest scores.

Multiple functions on different abstraction levels exist in the R library to automate
or manually execute the steps of extracting maxima, plotting and listing MCA plots
whose criteria match the ones described in Chapter 3.3. The full API documentation
can be found in the Appendix.

Finally, the filtering for interesting plots sorts the found results by maximum dis-
tance between correlation maxima, a criterion that favors plots with strong, differential
correlation. Since the filtering only allows plots where at least one positive and one neg-
atively correlated score maximum is available, this score can be defined as the distance
between the correlations of the most positive and the most negative subpopulation:

Cmins min = argminscore, j, 4.1)
ch

Cmaxs Mmax = argmax score, (4.2)
ch

dlSt = rCmax'hmaX - Cmin/hmin (43)

Finding and plotting potentially interesting variable combinations, as well as their scor-
ing charts and scatter plots, and saving them to the directory “mca-variablel” looks as
follows:

interesting <- findInteresting(mca.variablel, base.dir='mca-variablel/")
head (interesting)
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This code snippet generates a series of plots sorted by the maximal difference of the
subpopulation scores, and saves them to the specified directory on disk. The top ten
results are also displayed on screen.

Creating and plotting the subpopulation scores including found maxima manually
for only one known variable combination is also possible:

scores <- populationScores(mca.variablel, 'var2', 'var3')
plot(scores)

4.2 Web application

The web application offers a fully interactive interface to all functionality available in
the R library, except from automatability. It is intended for biological researchers with
little or no programming experience who want to assess subpopulations in their data
using only a mouse or touch driven interface.

It provides a server application that can be run locally by more programming-ex-
perienced researchers or remotely by an institute or hosting company. The front-end
is realized as single interactive web page. The server is available for local installation
on the attached CD and available on request from ICB, where it is also deployed on an
internal server.

Significance threshold Display options

Figure 4.1 Screenshot of the web application. a) Parameters for MCA creation and
display options. b) The current MCA plot. c¢) The graph used to select variable combi-
nations. d) The sorting variable histogram. e) The scatter plot of the selected variables.

The web application consists of three structural parts: A back-end consisting of a Web-
Socket server, an R script allowing the server to interface with the R library described
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above, and a front-end implemented as a web page client implemented using HTMLS5,
SVG and JavaScript (see Figure 4.1).

4.2.1 Communication Architecture

The communication between server and client happens via standard HTTP requests for
assets like style sheets and the page itself, as well as WebSocket technology for client-
server communication. WebSockets are full-duplex channels between server and client
that use a persistent TCP socket connection to exchange messages (Pimentel and Nick-
erson, 2012). Once the page is loaded, a WebSocket connection is established and used
for transmitting all computation requests from the front-end to the back-end, as well as
returning their progress and results to the front-end.

The constant serial connection makes it feasible to show a real-time progress status
as seen Figure 4.2 of server side computations for the client, which would be far less
immediate and more error-prone if HTTP requests were used. This is the case because
with WebSockets, multiple messages can be sent from the server at any time, while
HTTP requests only allow one server response per request, and therefore have to resort
to a polling solution with answers arriving at time points decoupled from the order
in which they were sent (Pimentel and Nickerson, 2012). This would also cause traffic
overhead due to request headers being repeatedly exchanged.

Computing correlations Finding interesting edges -

Figure 4.2 Real-time progress bar able to give exact feedback about the server-side
state

The server-side implementation is written in the Python programming language and
can be used as coupled HTTP /WebSocket server able to serve static files as well as Web-
Socket connections, or a standalone WebSocket server used in tandem with an arbitrary
static file server configured to dispatch WebSocket connections to it. Its implementa-
tion uses the Autobahn | Python library (Tavendo GmbH, 2014) as well as the AsynclO
library recently included into Python’s standard library. This allows for multiple paral-
lel clients running, cancelling and monitoring the progress of their own computations
independently from each other.

Requests for Multiresolution Correlation Analyses carry the data set, correlation
method, sorting variable, and bin number, from which a unique identifier is derived.
Computed MCAs are stored in a persistent cache database using this identifier, so that
they do not have to be reproduced for the same data set and parameters when those are
requested again by the user. The database is a lightweight SQLite container with a con-
figurable path, chosen for portability. On demand, the database connection logic can be
easily replaced with a database server connection, since the queries and insertions are
standard SQL. Old cache entries can be removed via SQL using the stored time stamps
for each entry.

Once a new request not available in the cache is encountered, and due to R’s nonex-
istent capability for inter-process communication, a sub-process is started to pass the
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parameters received via WebSocket to the R library and translate the progress mes-
sages, as well as the final MCA result to the JSON format. Communication happens
via JSON because the WebSocket specification includes compression of the otherwise
verbose serialization format, and JSON is the fastest possible format for JavaScript to
parse (Nurseitov et al., 2009).

4.2.2 Client architecture

Network or machine

Figure 4.3 Interactions between the back-end and front-end. The server is able to in-
teract with multiple clients transparently, independently if they are located on the same
machine or network, or through the internet. Parameters get queried in the database
cache and a MCA is fetched there if available (green arrow). If the right MCA is not
available, the parameters get passed to the R script wrapping the MCA library, where-
upon the result is sent back to the client (red double arrow) and the cache (red single
headed arrow).

The webpage client is built to leverage modern web technologies and browser capabil-
ities including the aforementioned WebSocket protocol, the HTML5 canvas, CSS3 and
SVG. It heavily relies on the D3.js library (Bostock, 2014) for binding data to document
elements, which enables high-performance visualizations and charts, and the Bootstrap
3 CSS framework for responsive visual design on all device form factors from handheld-
size to widescreen displays.

4.2.3 Visualizations

Up to four interactive visualizations can be active, depending on the parameters
specified by the user: A correlation network graph showing all overall correlations be-
tween variable pairs for the currently active data set and sorting variable, a histogram
of the sorting variable value distribution, the MCA plot between the currently selected
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Figure 4.4 a) Parameters for the MCA calculation from left to right: Data set, corre-
lation method, sorting variable, bin number, as well as buttons to submit or revert the
parameters. b) Display options, such as toggleable significance threshold, color map
selection and color bar scaling, as well as a button to save the MCA plot as SVG image.

correlated variables and the sorting variable, and a scatter plot between the currently
selected variables (see Figures 4.5a, b, ¢, and d).

Apart from the parameters to be submitted to the server, visualization options are
available that apply to MCA plot and graph (see Figure 4.5a): A colorblind-friendly
set of color maps known as ColorBrewer (Brewer, 1994), the option to automatically
scale the color range to minimum and maximum correlation available, and a toggleable
significance threshold for the MCA plot.

Correlation Network

positive
----- negative
selected

Nanog-o6—tgfs

Figure 4.5a Variable combination graph with the color map scaled to the values avail-
able in the MCA plot. Edges with negative correlation are additionally drawn dashed,
and the selected edge has a grey aura.

The graph is manipulable for easier assessment of the correlations of all variable combi-
nations which are shown both numerically and visualized as edge thickness and color
(see Figure 4.5a). Another important function of the graph is to provide an interface to
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select edges and therefore variable pairs to display as MCA and scatter plot. Alterna-
tively to the graph, a table of variable combinations is displayed, filtered for interesting-
ness and ranked by the maximum correlation distance, as described in Chapter 4.1.3.
If the variables in the data set are more than ten, the set of all variable combinations to
be displayed as graph is considered to be too big for being displayed as a graph, and
only the table is available.

MCA Plot of Oct4 and Gbx2
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Figure 4.5b (a) MCA plot, with the color map scaled to the available correlation range
using the respective display parameter.

The MCA plot (shown in Figure 3) is realized using both a HTML5 canvas and SVG
in order to leverage the performance advantages of both technologies (Smus, 2009).
The visualization responds to the chosen display options and allows introspection of
subpopulations by hovering the mouse over them. When hovered, lines indicate the
subpopulations and bins included in the selected subpopulations, and three tool tips
indicate information about it, such as size, median percentile, correlation and p-value,
as well as start and end percentile, and the corresponding sorting variable values.

When selecting a subpopulation by hovering above the respective plot point, the
corresponding bars and points on both histogram and scatter plot, get highlighted as
well, as seen in Figures 4.5c. Also, the correlation of the selected subpopulation for all
variable combinations gets shown on the graph edges.

The histogram, when hovered, also shows a tool tip of the range of sorting variable
values in the hovered bar, as well as the number of values in that bar, i. e. its height. The
histogram serves to show how range binning differs from quantile binning and from
what values exactly a hovered subpopulation is composed.

The scatter plot shows the number of observations, as well as the relation of the two
selected variables by plotting the values of both against each other for each observation
in a 2D coordinate system. It also shows the number of observations and, if applicable,
of observations in the currently selected subpopulation. The highlighted subpopula-
tion on the scatter plot visualizes its correlation.
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Figure 4.5¢ Histogram with bars highlighted blue that correspond to the subpopula-
tion selected in Figure 3.
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Figure 4.5d Scatter plot with the subpopulation selected in Figure 3 highlighted blue.
The relatively strong correlation of the subpopulation is reflected in its elongated shape
of the highlighted section in the scatter plot.

4.2.4 Client usage

Due to the dependencies in visualization from parameters and variable pair, a ses-
sion involves the following interaction levels:

o The user selects a data file to upload, a sorting variable, a correlation method, and
a granularity that determines the number of bins. The data file is allowed to be in
common text delimiter based formats like CSV or TSV with header (see Figure 4.6).

The maximum available granulatity is defined by a pragmatic bin number max-
imum calculated from the number of variables p:

(1000/p) - p*2 (4.4)
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1.5e-10,4,5.4
€e-1v,4, 15e-104 5.4

Figure 4.6 Example CSV file. a) Stan-
dard comma separated values format.
b) Table data structure with a variable
name per column derived from it.

With the default granularity being a third of this maximum. The default correlation
method is partial correlation.

A two-part progress bar shows the current state of the MCA computation and ex-
traction of interesting plots.

After computation, a network graph is shown with nodes for all variables in the
data and edges displaying the correlations for each pair of variables. If the data set
has too many variables to sensibly display as a graph, a table of interesting variable
combinations is shown instead.

A histogram showing the density of the sorting variable is shown.

Once a variable combination is selected by clicking a graph edge or table row, the
MCA plot of the corresponding variable pair is shown, as well as a scatter plot of
the variables.

Options

The MCA plot and graph share the same color map, which can be scaled to display
maximal contrast for the available correlations in the plot. The p-value thresholding
can also be adjusted and disabled.

By moving the mouse over the MCA plot, information about the subpopulation

selected this way is shown, such as population size and median quantile, as well as
correlation and p-value. The data in the subpopulation is highlighted on the scatter
plot and histogram, and, if available, the graph is updated to show the correlations of
other variable combinations for that subpopulation.

Finally, the user can download the current MCA plot as image file.
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5 Application

In order to demonstrate the usability of MCA for hypothesis generation in data sets and
its advantage over simply subpopulation extraction using a threshold, MCA is applied
to three data sets of different content and size.

5.1 KORA (Kooperative Gesundheitsforschung in der
Region Augsburg)

KORA is an observational study on health and lifestyle related data. It provides a re-
search platform that can be accessed by international research groups after signing a
project agreement. In the course of the initial KORA plan, four series of “S” surveys
were carried out every five years (Peters, 2012). The protocol of each survey set in-
cluded examination of a different representative sample of Augsburg residents in the
age of 25 to 74. Those were then repeatedly tested in follow-up “F” studies as long as
the participants were available.

The last and ongoing phase of KORA is the evaluation of the data resulting from
each series of initial and follow-up studies. Included in the data gathered by KORA,
depending on the survey could be lung and skin examinations, balancing ability, ECGs
and ultrasonic bone density assessment (Peters, 2012).

The study providing the data on which the following MCA is based is F4, the fol-
low-up study of the survey series 54, the last initial study, which lasted from 1999 to
2001. Of its 4261 initial baseline examination participants between the ages of 25 to 74
years, 3080 participants between 32 and 77 years were still available for the follow-up
study F4 in the years 2006 to 2008 (Meisinger et al., 2010).

Application

For MCA, a version of the F4 data cleaned for missing values was obtained from Jan
Krumsiek. This data set contains 1765 observations of 355 metabolites and the addi-
tional variables gender, body mass index (BMI), age, as well as high- and low-density
lipoprotein; HDL and LDL. Consequently, this amounted to 360 variables and therefore
64 620 possible combinations and MCA plots.

As an example application, the interesting plot extraction algorithm described in
Chapter 3.3 was applied to Pearson correlation MCA plots. Sets of MCA plots were
generated for each of the non-metabolite variables as sorting variable, and for Pearson
as well as partial correlations. Pearson correlations are easy to interpret and the result-
ing sets of plots showed no obvious differences to the ones of the partial correlations,
and were therefore chosen for further analysis.
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a b
Score Variable 1 Variable 2 Score Variable 1 Variable 2
0.35 hept te70 idoxat ADpSGEGDEX-
epranoate pyricoxate 0.32 P butyrylcarnitine
0.33 1dl urate AEGGGVR
0.32 alphatocopherol urate 0.31 indolepropionate linoleate182n6
0.32 caproate60 pyridoxate 0.3 bilirubinZZ cysteineglu-
tathionedisulfide
alphahydrox-
0.32 yisovalerate valerate 0.3 methionine threitol
dehydroisoandros- ,
0.3 tyrosine
teronesulfateDHEAS
c d
Score Variable 1 Variable 2 Score Variable 1 Variable 2
0.41 acetylphosphate arabitol 0.36 pcresolsulfate phenolsulfate
0.33 alanine mannose alphahydrox- L
0.29 ) uridine
0.31 cortisol pcresolsulfate yisovalerate
0.3 serotonin5SHT valerate 028 betaine caffeine
0.3  arachidonate204n6 phenylalanine 0.27 eicosapentaenoa- glutamate
teEPA205n3
ADpSGEGDEFX- _
0.26 cortisone
AEGGGVR

Table 5.1 The 5 MCA plots in KORA with the maximum correlation distance, as de-
scribed in Chapter 4.1.3 for each of the sorting variables a) age, b) BMI, ¢) glucose, and
s) HDL.

For each sorting variable, 162 to 371 plots with potentially interesting properties
were found. The found Pearson correlation MCA plots were ranked by maximum cor-
relation distance between local score maxima. Among those plots were 120 to 284 com-
binations with unknown metabolites. Filtering out those and all variable combinations
containing the sorting variable itself left 23 to 81 potentially interesting plots per sort-
ing variable. The top 5 of those plots, according to the maximum correlation distance
described in Chapter 4.1.3, are listed in Table 5.1.

To illustrate the different subpopulations, the two top-scoring MCA plots for age,
BMI and HDL are also replicated in Figure 5.1.

For some of those combinations, connections to the literature could be made. These
combinations include the second-top scoring age MCA plot (Figure 5.1b), which shows
negative correlations between LDL and urate for older study participants and positive
ones for younger. Indeed, serum urate excretion declines with age, while urate is antiox-
idant for LDL at high concentrations, but pro-oxidant at low concentrations (Stiburkova
and Bleyer, 2012 and Filipe et al., 2002). Increasing urate concentrations therefore stop
oxidizing LDL and starts antioxidizing it, which could explain the inverting correlation.
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Figure 5.1 Potentially interesting KORA variable combinations. Examples of the top
scoring Pearson correlation MCA plots for each of the variables ab) age, cd) BMI, and
ef) HDL. The real, non-quantile values are displayed in braces along the x axes.

Others have obvious connections like the top scoring MCA plot for HDL (Figure 5.1e)
where phenol sulfate and 4-methyl-phenol sulfate (another name for p-cresol sulfate)
only differ by methylation. This modification might occur depending on HDL level or
a process responsible for it (see Figure 5.2).
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Figure 5.2 Methylation of phenol sulfate to p-cresol
sulfate. The reactants are positively correlated for
low HDL concentrations and negatively for high ones
in the KORA data set.

5.2 Qatar Metabolomics Study on Diabetes (QMDiab)

QMDiab is a 2012 study from the Dermatology Department of Hamad Medical Cor-
poration in Doha, Qatar. The incentive was Qatar’s high prevalence of type II diabetes
mellitus, where the country ranked #21 worldwide in 2013 (International Diabetes Fed-
eration, 2014).

a b
Score Variable 1 Variable 2 Score Variable 1 Variable 2
0.15 estrone-3-sulfate nicotinamide bisphe-
indoleacetyl- 0.12 beta-sitosterol nol-A-mono-
0.12 cortisol ) sulfate
glutamine
adeno- 0.12 dihydroorotate indolepropionate
0.12 sine-5-monophosphate BMI 0.11 isovalerate pantothenate
(AMP) undecanoate
) o 0.11 indoleacetylglutamine
0.11 dihydroorotate scyllo-inositol (11-0)
N-acetylpheny- lycolat
0.11 cystine ace YP o 0.11 glycorate stearamide
lalanine (hydroxyacetate)
C
Score Variable 1 Variable 2
0.13 estrone-3-sulfate indoleacetate
0.13 allantoin LDL
glycolate
0.12 estrone-3-sulfate
(hydroxyacetate)
thyl-4-hy-
0.12 ey y pro-hydroxy-pro
droxybenzoate
Né6-car-
0.12  homostachydrine- bamoylthre-
onyladenosine

Table 5.2 The 5 top scoring MCA plots in QMDiab for each of the sorting variables
age, BMI, and glucose.
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The study measured metabolites in 369 individuals within the age of 17 to 81. The
metabolites were measured in the three body fluids non-fasting blood plasma, urine,
and saliva. In the time from February to June 2012, 1107 samples were taken from the
participants, comprising 1563 metabolites including amino acids, peptides, carbohy-
drates and lipids, as well as age, gender, ethnicity, weight, height, body mass index
(BMI) and personal history of diabetes type II (Do, 2013).

The samples were analyzed by the three companies Metabolon Inc., Chenomx Inc.,
and Biocrates Life Sciences AG. The respective companies utilized liquid/gas chro-
matography with mass spectrometry injections, targeted profiling using nuclear mag-
netic resonance (NMR), and multiple reaction monitoring (MRM) (Do, 2013).

The study found that all variables of ethnicity, gender and smoking had a strong
effect on a diabetes risk factor, advanced glycation end products. So were women,
Arabs, Filipinos, and smokers more strongly affected than men, south Asians, and non-
or irregular smokers (Do, 2013).

Application

For an example MCA application, plasma was selected of the three fluids due to it
being the most complete set, in which 758 of the 1563 total metabolites were measured.
The data was minimum-imputed, which describes a method of cleaning it for missing
values using the minimum concentration for a variable as described in Do (2013). This
resulted in a data set of 636 metabolites, of which many were unknown, as well as the
variables age, gender, BMI, HDL, LDL, and logarithmized glucose concentration from
the urine data.

MCA plots were again created and ranked as described in Chapter 5.1, only for par-
tial correlations. Similarly to the KORA data set, the QMDiab data set and therefore
the potentially interesting MCA plots contained many unknown metabolites. After
running the extraction algorithm for interesting plots, the number of MCA plots per
sorting variable were reduced from around 2500 to around 310 by eliminating the com-
binations where at least one of both variables was an unknown metabolite.

Searching for the participating variables in the literature provides some insight to
the subpopulations found like this. For example, the correlation between cortisol and
the acetylated glutamine derivative indoleacetylglutamine seems to be negative in very
old participants, and not significantly correlated in the young, while being positively
correlated in people around the age of 50 (see Figure 5.3b). A rise in plasma cortisol
concentration, which can be the result of prolonged bodily exercise, stimulates gluta-
mine release (Gleeson, 2008). Also, plasma cortisol levels increase with age in obese
subjects (Chalew et al., 1993), which, together with the earlier mentioned diabetes mel-
litus tendency in the region, might explain the later negative correlation as an adaption
effect.

Another example is the relation between allantoin and low desity lipoprotein (LDL).
Apparently, these variables are negatively correlated only if the urine glucose level is
low, and positively or not significantly correlated for higher glucose levels (see Fig-
ure 5.3f). Uraic acid, also named urate, is a precursor to allantoin.
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Figure 5.3 Potentially interesting QMDiab variable combinations. Examples of the top
scoring partial correlation MCA plots for each of the variables ab) age, cd) BMI, and ef)
glucose

The urate/allantoin ratio is an indicator for oxidative stress, since urate reacts with
oxidants, which is a step in the reaction from urate to allantoin (Mikami et al., 2000).
This reaction with oxidants leads to an antioxidant effect of low density lipoprotein
under high urate concentrations (Kopprasch et al., 2000).
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Also, uraic acid levels are lower in people with diabetes mellitus (Cook et al., 1986),
which is consistent with the high urine glucose levels and high oxidative stress levels
found in diabetes type II patients (King and Loeken, 2004). Combined, this confirms
that non-diabetics with low urine glucose levels have less oxidative stress, less allantoin,
more uraic acid and more unoxigenized LDL, with the situation reversed for type II
diabetics.

5.3 Ensemble networks in embryonic stem cell popula-
tions

Apart from metabolic data that contains a multitude of variable combinations that have
to be filtered computationally, MCA is also suited for manual examination of whole
data sets with a surmountable amount of MCA plots or a goal-oriented approach of
testing existing hypotheses.

Trottetal. (2012) published an analysis of heterogeneity in subpopulations of mouse
embryonic stem cells (mESCs). They used transcript level data from 83 mESCs by
Hayashi et al. (2008). The cells were grown in a medium promoting pluripotency and
the mRNA transcript numbers of 9 transcription factors were measured using RT-PCR.
Those transcription factors contained amongst others Sox2, Oct4, and Nanog, a known
triad of pluripotency related transcription factors called the SON genes (Trott et al.,
2012). Using principal component analysis, they were able to see a separation between
three subpopulations of cells with different expression behavior depending on Nanog
and Fgf5 levels: Low Nanog and Fgf5*, high Nanog and Fgf5, as well as low Nanog
and Fgt5".

They proposed that the heterogeneity in the data was representative for multiple
subnetworks, active in each of the subpopulations, of the gene regulatory network. Ar-
gumenting from their reconstructed subnetworks, they proposed that Rex1 expression
levels are indicative of the cell state.

They calculated Pearson correlations for two sets of subpopulations defined by Fgf5
and Nanog levels by choosing a threshold between low levels and high levels of the data.
For those subpopulations they found different correlation behavior of some variable
combinations (see Figure 5.4a and b).

Application

MCA is able to display all subpopulation categorizations based on one variable at once,
which provides greater insight than simply choosing a high/low threshold (see Fig-
ure 5.4c and d).

The Pearson correlations of Gbx2 and Sox2, as well as Pecam1 and Stella can be con-
tirmed to be significantly positive for high Fgf5 (varying from above the 50th percentile
to above the 62t and insignificant for lower Fgf5.

But also, using MCA plots, it can be seen for Gbx2 and Sox2 that the overall positive
correlation comes from certain bins around the 80t pertencile casting streaks across



36

5 Application

—_

Population size
S o o o

S N B O
| | | |

I'ﬁi ml

&
T T
0 0.2 0.4 0.6 0.8 1
© © © © (0 (058
Fgf5 Quantile

0.8
0.6
0.4
0.2
0.0

Population size

—_

O~ 4
> O 0o
1 1 1

o
o v
1

0.5

0.0

o

©)

0.2
©)

04 06 08 1
© O O (058

Fgf5 Quantile

Figure 5.4 Subpopulations of mouse embryonic stem cells based on Fgt5 level are differ-
ently collelated. ab) Trott et al. (2012) found different correlations for subpopulations
depending on low (a) and high Fgt5 (b). Edges designate significantly correlated vari-
able pairs, with purple being negative, and green ones being positive correlations. cd)
The MCA plots confirm those results, while providing more insight by displaying many
subpopulations instead of just 2. (Graphs a and b taken from Trott et al. (2012))

the plot. If those bins are assumed outliers and only considering subpopulations con-
taining lower or and higher Fgf5, not much significant plot area is left.

Also, considering the large robust area in the plot for Pecam1 and Stella, which is
also robustly significant for subpopulations including only medium Fgf5, and MCA
plot allows finer-grained information and therefore an improved conclusion over the
proposal derived from the graph and made using only two subpopulations that “Pecam1
and Stella are insignificantly correlated in low-Fgf5 subpopulations”.

Using MCA plots, one is easily able to identify subpopulations like the ones found
by Trott et al. (2012). This process, however, is more interactive, intuitive and versatile
than finding a threshold like they did, as looking at a chart is sufficient to recognize
subpopulations of any size and location, and other local phenomena like outliers do
not go undetected.
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6 Conclusion

In this work, a method for the assessment a kind of subpopulations based on the level of
one variable was presented that allows to see correlation structures of subpopulations
and therefore identify a set of interesting subpopulations which may overlap and leave
out data points.

This Multiresolution Correlation Analysis is able to visualize correlations between
two variables for all subpopulations defined by a sorting variable in one novel chart
type, the MCA plot. This MCA plot is based on a sorting variable quantile, as well as
two coordinates derived from it: Subpopulation size and median quantile.

Because the manual assessment of MCA plots is only feasible if the number of po-
tentially interesting plots is small enough, their use would be constrained to data sets
where either the number of variables is small enough to assess all plots, or the potential
for interestingness is known. This would only be the case when reducing the plot num-
ber by excluding certain variables from the set of which plots are generated — a likely
candidate is for example the sorting variable — for example when testing a theory.

Therefore, a heuristic criterion to eliminate uninteresting plots was found and im-
plemented, which is based on extracting significant regions from each plot, each corre-
sponding to a stable, significantly correlated subpopulation, and comparing the MCA
plots using those regions’ features. These features include correlation distance between
the subpopulations, number of subpopulations and corresponding region size, a mea-
sure related to correlation robustness.

The methods were implemented in R and exposed in an interactive web application
that will be available for public use on the ICB’s homepage!, which includes other sta-
tistics and visualizations in addition to MCA plots that react to interactive input such
as subpopulation and variable pair selection per mouse. Those include a scatter plot
visualizing correlations and a histogram that shows the sorting variable distribution in
depencence of the selected subpopulation.

Finally, the algorithm to extract interesting MCA plots was applied to two data sets,
after which some of the top-scoring combinations could be found plausible from liter-
ature. MCA was also performed on a third data set, where the results of the accompa-
nying paper could be confirmed and extended upon.

Results

Despite the relevance of subpopulations in single cell data, methods for their identifica-
tion were found to be lacking. Clustering algorithms are unsuited to find overlapping
subpopulations based on correlation, and using a single thresholding of one variable
level to divide all data into two subpopulations is unable to find overlapping subpop-
ulations as well. The latter also proved to be sensitive to local effects that cannot be

! http:/ /helmholtz-muenchen.de/icb/
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described by a single threshold, such as outliers and randomly found fragile subpopu-
lations.

MCA was shown to be an effective tool able to visualize and partially automate
subpopulation identification in biological data. It proved to be useful in the correlation
analysis of pairs of variables by uncovering subpopulations with interesting correlation
behavior, and showed information regarding correlation robustness of those subpopu-
lations, and outliers.

The algorithm for the extraction of potentially interesting plots was able to automat-
ically find plausible heterogeneous correlation behavior for metabolic variable combi-
nations, which was not possible with existing tools before MCA.

MCA has been made usable through the web application for biological researchers
without programming experience, and additionally through a well-documented R pack-
age for computational biologists. Both are simple to access for users of the web frontend
or the R library, respectively.

Outlook

Looking forward, the integration of MCA in a subpopulation analyis workflow will be
of advantage. Extension of the method for integration of found robust subpopulations
into heterogeneity-sensitive network inference might be an interesting project.

While working on this thesis, I implemented another method related to correlation-
based subpopulations, that is a hierarchical clustering algorithm which merges existing
EM clusters according to internal correlation. Its goal is to find clusters with different
locations and sizes, but similar correlation behavior. It works by initializing a separate
correlation model per cluster and iteratively re-calculating a smaller set of correlation
models as long as fitting it to all clusters improves its BIC score consisting of fitting
correctness and model parameter number.

It was not included into this thesis due to its different nature and reliance on a good
clustering, a requirement that, as mentioned earlier, is not fulfillable in data with over-
lapping subpopulations. It nevertheless shows promise that can be expanded upon in
cases where precise, yet possibly incomplete clustering is possible, like it is done by the
4C algorithm from Béhm et al. (2004).
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Multiresolution Correlation Analysis

April 9, 2014

mca

Multiresolution correlation analysis

Description

Perform a multiresolution correlation analysis and create an object storing the result

Usage
mca(data, sorting, N = 51L, progress = "text"”, method = c("pcor”, "cor”,
n SCOr Il) )
Arguments
data Data set to be used, data.frame like. Will be converted into a data.frame
sorting Either a numerical index of the column of the data frame to use, or the name of
the column
N The number of bins to divide the sorting variable. Will be coerced into an odd
number.
progress Callback called with fraction of progress (0..1), or "text’ for a text progress bar,
or NULL for nothing
method Correlation method to use: Pearson ("cor"), Spearman ("scor"), or Partial ("pcor’)
Value

An object of class mca.

N

data
method
X

number of bins
input data
Correlation method used

Correlations. A list of lists of matrices, e.g. mca$var4$var8 corresponds to the
subpopulation correlations of var4 and var8

Correlation p-values. same shape as X
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2 levelplot.mca

summary.mca Generics

Description

Standard generic methods defined for MCA objects
Usage
summary .mca(mca)

## S3 method for class 'mca'
sort(mca, sorting.var, N = mca$N)

Details

See summary and sort

levelplot.mca MCA Plot

Description

Creates a lattice levelplot representation of a single MCA plot

Usage

## S3 method for class 'mca’

levelplot(mca, v1, v2, cutoff = .05, show.values = TRUE,
levels = 200, palette = c("rwb”, "rbg", "rbb"”, "rwg", "grb", "gwb”,
"gbb"), xlab = paste(mca$sorting, "Quantile”), xticknum = mca$N,
yticknum = ceiling(mca$N/2), main = sprintf("%ss %s %s", mca$method,
vl, v2), ...)

## S3 method for class 'mca'

plot(mca, v1, v2, ...)

plotMCAs(mca, subset = NULL, name = NULL, type = "pdf", ...)
Arguments

vi Variable 1. Like v2 a column name of mca$data

v2 Variable 2

cutoff P-value threshold used for significance testing

show.values Show sorting variable values on quantile axis?

levels How many color steps to use. Default is a smooth gradient

palette Palette name among the default values or color palette function

levelplot arguments
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populationScores 3
subset Subset of variables to use for plot generation. All variable combinations in the
subset are plotted. If subset is of length 1, all combinations with that variable
are plotted.
name File name base. When NULL, don’t save the plots to files
type File extension to print to

Options passed to the plot function

populationScores Extract a MCA-shaped scoring from a mca plot

Description

Extracts coordinates of best negative and positive subpopulation via which(abs(scores$scores)
== 1, arr.ind=T). Negatively correlated scores are still negative, so abs(scores$scores) gives
the absolute ones

Usage

populationScores(mca, v1 = NULL, v2 = NULL, cutoff = 0.05)

Arguments

mca An MCA object. Other params are transferred to the return object:

Details
The return values scores and uncutScores are matrices with the same dimensions of a MCA plot
from the input MCA object.

Value

An object of class populationScores:

scores Thresholded scores

uncutScores Scores for all subpopulations, even those above threshold
N Number of subpopulations analyzed

vi Variable 1. Like v2 a column name of mca$data

v2 Variable 2

cutoff Significance threshold

mean Mean significant score before assigning signs
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4 levelplot.populationScores

levelplot.populationScores
Population score plot

Description

Plots population scores and their local maxima, as found by extractPeaks.

Usage

## S3 method for class 'populationScores'

levelplot(scores, levels = 200L,
draw.cutoff = TRUE, draw.uncut = TRUE, big = NULL, palette = "gwb",
main = paste("”Scores"”, scores$vl, scores$v2), ...)

plot.populationScores(scores, ...)

plotAllPopulationScores(mca, name = NULL, type = "pdf", ...,
score.args = list())

Arguments
scores An object of class populationScores
levels How many color steps to use. Default is a smooth gradient
draw.cutoff Draw line where cutoff is located
draw.uncut Draw all scores instead of just the ones remaining after thresholding
big See extractPeaks
palette Palette name among the default values or color palette function. For allowed
palette anmes, see levelplot.mca
Options passed to levelplot
name If present, write files with this base name
type File extension to print to
score.args List of arguments to pass to populationScores
Details

The default is to plot all scores and draw a line where the threshold lies.

plotAllPopulationScores generates and plots the scores for all variable combinations of mca.
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quantseq Used to create sequences of quantile steps, mostly until slightly above
5
Description

Used to create sequences of quantile steps, mostly until slightly above .5

Usage

quantseq(n, end = 0.5)

datalndex Subpopulation extraction

Description

Logical array used to extract a subpopulation from a MCA object

Usage

dataIndex(mca, from, to)

Arguments
mca MCA object
from Sorting variable quantile at which the subpopulation starts
to Quantile at where it stops
extractPeaks Extract local score maxima of thresholded scoring regions
Description

Extracts multiple score peaks by segmenting the score-image and finding the maximum in each of
the biggest segments

Usage

extractPeaks(scores, big = NULL, fuzzy = 0.02)
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6 cor.with.p
Arguments

scores populationScores object or score matrix

big Function applied to the list of region sizes to determine which regions are big

enough to be considered for a maximum. Takes a vector of integers and returns a
logical vector of the same size. Defaults to function(sizes) sizes > sqrt(max(sizes))

fuzzy How far away from a subpopulation triangle (the whole plot is seen as width 1,
height .5) is still considered “inside” a subpopulation. Used to prune subpop-
ulations slightly outside of bigger ones which got split into multiple segments
(separated by insignificant areas).

Details

Only “big” sized regions are considered, because they contain more stable subpopulations that re
robust against adding and removing a few bins.

centered.seq 0-Centered sequence

Description

Gives a sequence along the range of values in x, with as many below as above 0. Cuts the divergent
palette accordingly

Usage

centered.seq(x, levels, palette)

Arguments
X Vector of values
levels Number of levels. Forced to be odd
palette Color palette
cor.with.p Pairwise correlation
Description

Estimates correlations for all variable pairs in x

Usage

cor.with.p(x, method = c("pearson”, "kendall"”, "spearman"))
Arguments

X Matrix or data.frame

method Correlation method
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findInteresting 7

Value

A List containing two matrices of shape ncol(x) x ncol(x):

corr Correlations
pval P-values
findInteresting Find interesting plots
Description

Finds plots that have at least two differently correlated score maxima while fullfilling other criteria.

Usage

findInteresting(mca, cutoff = 0.05, interesting.height = mca$N/10,
big = NULL, fuzzy = 0.02, base.dir = NULL, width = 10, height = 5,
progress = function(p) { }, type = "pdf"”, xticknum = mca$N,

yticknum = ceiling(mca$N/2), ...)
Arguments
mca The MCA object
cutoff P-value cutoff

interesting.height
The minimum height all maxima must have that count towards the two necessary

ones
big See extractPeaks
fuzzy See extractPeaks
base.dir If set, plots are written to this directory
width Width of saved plots
height Height of saved plots
progress Progress function. The default does nothing
type File extension to plot to if applicable

Options passed to levelplot
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8 subpopulationPlot

shrunk.pvals P-values for shrunk partial correlations

Description

Calculates p-values for partial correlations estimated using pcor.shrink

Usage

shrunk.pvals(pcors)

Arguments

pcors Partial correlation matrix generated using ggm.estimate.pcor or pcor.shrink

Details
A version of GeneNet’s ggm.test.edges that is silent, much faster, and outputs a matrix instead of a
sparse list of top edges.

Value

p-values for input partial correlations

subpopulationPlot Subpopulation plot

Description

Plots a scatter plot for a number of subpopulations specified using a table of subpopulation coordi-

nates.
Usage

subpopulationPlot(mca, maxima, v1, v2, colors = c("#00QQFF", "#FF0000"), ...)
Arguments

mca MCA object

maxima data.frame with $height and $center attributes, as generated by extractPeaks.

V1 Variable 1. Like v2 a column name of mca$data

v2 Variable 2

colors Colors to override default scatter group colors
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