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Aims Lipoprotein-associated phospholipase A2 (Lp-PLA2) generates proinflammatory and proatherogenic compounds in
the arterial vascular wall and is a potential therapeutic target in coronary heart disease (CHD). We searched for
genetic loci related to Lp-PLA2 mass or activity by a genome-wide association study as part of the Cohorts for
Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.

Methods
and results

In meta-analyses of findings from five population-based studies, comprising 13 664 subjects, variants at two loci
(PLA2G7, CETP) were associated with Lp-PLA2 mass. The strongest signal was at rs1805017 in PLA2G7
[P ¼ 2.4 × 10223, log Lp-PLA2 difference per allele (beta): 0.043]. Variants at six loci were associated with
Lp-PLA2 activity (PLA2G7, APOC1, CELSR2, LDL, ZNF259, SCARB1), among which the strongest signals were at
rs4420638, near the APOE–APOC1–APOC4–APOC2 cluster [P ¼ 4.9 × 10230; log Lp-PLA2 difference per allele
(beta): 20.054]. There were no significant gene–environment interactions between these eight polymorphisms
associated with Lp-PLA2 mass or activity and age, sex, body mass index, or smoking status. Four of the polymorph-
isms (in APOC1, CELSR2, SCARB1, ZNF259), but not PLA2G7, were significantly associated with CHD in a second
study.

Conclusion Levels of Lp-PLA2 mass and activity were associated with PLA2G7, the gene coding for this protein. Lipoprotein-
associated phospholipase A2 activity was also strongly associated with genetic variants related to low-density
lipoprotein cholesterol levels.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Genome-wide association † Inflammation † Lipoprotein-associated phospholipase A2

Introduction
Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a 45.4-kDa
calcium-independent member of the phospholipase A2 family,
which is secreted by leucocytes1 and has been detected in rabbit
and human atherosclerotic lesions.2 In the bloodstream, two-thirds
of Lp-PLA2 circulates primarily bound to LDL; the remaining third
is distributed between HDL and VLDL. Circulating Lp-PLA2 can be
measured by different assays ascertaining mass or activity of
Lp-PLA2. However, there is only moderate correlation between
mass-based and activity-based measurements of Lp-PLA2
(r ¼ 0.51),3 and the independent role of these two measures in
cardiovascular disease (CVD) is unclear.

Several lines of evidence suggest that Lp-PLA2 is associated
with the development of atherosclerotic disease. Lipoprotein-
associated phospholipase A2 generates pro-inflammatory and
pro-atherogenic compounds in the arterial vascular wall. A large
meta-analysis with almost 80 000 participants in 32 prospective
studies showed that high levels of Lp-PLA2 mass and activity
were associated with the risk for coronary heart disease (CHD),
stroke, and cardiovascular mortality.3 Therefore, Lp-PLA2 might
represent an emerging biomarker for improved cardiovascular
risk assessment in clinical practice and a potential therapeutic
target for primary or secondary prevention of CVD.

Although familial factors explain about one-half and one-quarter
of the variance in Lp-PLA2 activity and mass, respectively,4,5 few
genetic determinants of Lp-PLA2 have been identified so far.6

Therefore, to better understand genetic control of Lp-PLA2, we
investigated genetic loci related to Lp-PLA2 mass or activity by
conducting genome-wide association (GWA) analyses in five
population-based studies, as part of the Cohorts for Heart
and Aging Research in Genomic Epidemiology (CHARGE)
Consortium.7

Methods
For more detailed information on the Methods, see Supplementary
material online.

Study data for meta-analysis
We used data from five community-based cohorts in the USA and
Europe: Atherosclerosis Risk in Communities (ARIC) Study, Cardio-
vascular Health Study (CHS), Framingham Heart Study (FHS), Rotter-
dam Study (RS), and Monitoring of Trends and Determinants in
Cardiovascular Disease (MONICA)/Cooperative Health Research in
the Region of Augsburg Study (KORA). Baseline clinical and demo-
graphic characteristics were assessed at the time of cohort entry for
CHS, KORA, and RS and at the time of biomarker collection for
ARIC and FHS. All participants gave written informed consent, includ-
ing consent for genetic studies. All studies received approval from local
ethical oversight committees.

Associations between significant single nucleotide polymorphisms
(SNPs) and CHD/coronary artery disease (CAD) were assessed in
the Coronary Artery Disease Genome-Wide Replication and
Meta-Analysis (CARDIoGRAM) consortium data. CARDIoGRAM
includes over 22 000 cases with CAD, MI, or both and over 60 000
controls from all published and several unpublished genome-wide
association studies (GWAS) in individuals of European descent.8

Lipoprotein-associated phospholipase A2 mass concentrations were
measured in ARIC, CHS, FHS, and KORA using a commercially avail-
able sandwich enzyme immunoassay (PLACw test; diaDexus, Inc.,
San Francisco, CA, USA). Lipoprotein-associated phospholipase A2
activity was measured in CHS, FHS, and RS on microtiter plates by
colourimetric or radioactive substrate methods (diaDexus CAM Kit,
diaDexus, Inc., San Francisco, CA, USA or Perkin Elmer Life Sciences,
Inc., Waltham, MA, USA).

Genotyping was performed in each cohort using high-density SNP
marker platforms. Genotypes were imputed to �2.5 million
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HapMap SNPs (platform and genetic analysis details provided in
Supplementary material online).

Statistical analyses
Associations between genotype and Lp-PLA2 mass and activity were
analysed separately within each cohort, using linear regression of
natural log-transformed phenotype on number (or imputed dose) of
reference alleles, i.e. an additive model (for more details, see Sup-
plementary material online). All analyses were adjusted for age, sex,
and if applicable, recruitment site. To assess whether classical cardio-
vascular risk factors confounded the associations, analyses were
additionally adjusted for diabetes, lipid-lowering medication, antihyper-
tensive treatment, aspirin intake ≥3 per week, current smoking,
hormone replacement therapy (HRT; coded men, women without
HRT, women with HRT), body mass index (BMI), systolic blood
pressure, diastolic blood pressure, triglycerides, waist circumference,
HDL-C, LDL-C, and prevalent CVD. For the most significant SNPs,
we also analysed interactions between genetic variant and age, sex,
BMI, or smoking status.

To combine results across cohorts, we performed an inverse
variance–weighted meta-analysis using the software METAL,9 which
was specifically developed for meta-analysing GWAS results. A
meta-analysis is a statistical method that combines analyses from differ-
ent independent studies to give an overall effect measure. In the case of
meta-analysing different GWAS, this approach increases the power to
detect significant genetic variants compared with analysing each
GWAS alone.10 Cohort-specific standard errors were adjusted using
genomic control.11 In GWAS, we chose P ¼ 5 × 1028 as the threshold

for significance12 (see Supplementary material online). To determine
whether the multiple SNPs associated in the respective region are
due to linkage disequilibrium (LD) with the top SNP or if there are
multiple independent signals, we performed a meta-analysis based on
models adjusted additionally for the SNPs with the smallest P-values.

Results
Sample size, demographics, and laboratory characteristics of each
cohort are presented in Table 1. Median values for Lp-PLA2
mass (241.8 ng/mL in FHS to 413.0 ng/mL in ARIC) and activity
(38.2 nmol/min/mL in CHS to 153.9 nmol/min/mL in FHS) varied
substantially across cohorts, but much of these differences may
be explained by the different assays used.

Genome-wide association of
lipoprotein-associated phospholipase
A2 mass and activity
The meta-analysis included 2 661 766 SNPs from one or more
studies. Genomic control (lgc) parameters were small (all lgc≤
1.058), suggesting negligible inflation in the type-I error rate.

Figure 1A and B illustrates the primary findings from the
meta-analysis; details are in Table 2. In total, 49 SNPs were signifi-
cantly associated with Lp-PLA2 mass and 59 with Lp-PLA2 activity.
For Lp-PLA2 mass, these signals clustered at two loci on chromo-
somes 6 and 16. For activity, the SNPs clustered at loci on
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Table 1 Characteristics of study participants (n 5 13 664)

Study sample

ARIC CHS FHS RS KORA

Number 798 3217 6909 1538 1202

Age (years) 58.6+5.5 72.3+5.3 49.3+13.8 69.1+9.0 53.5+8.9

Male (%) 62 38.5 46.9 39.5 52.6

Current smoking (%) 24.2 11.3 15.7 23.5 17.7

BMI (kg/m2) 28.0+4.8 26.3+4.5 27.4+5.4 26.2+3.6 27.4+4.1

Waist (cm) 99.8+13.4 93.1+12.9 96.0+15.0 90.2+11.0 91.0+12.7

Systolic blood pressure (mmHg) 125+19 135+21 121+17 138+22 134+19

Diastolic blood pressure (mmHg) 73+10 70+11 75+10 73+11 82+11

Hypertension treatment (%) 34.2 30.2 19.3 31.1 17.5

Lipid-lowering medication (%) 9.4 4.4 13.3 2.2 4.6

Aspirin ≥3 per week (%) — 28.1 18.5 — 5.1

Total cholesterol (mg/dL) 214+42 213+39 194+37 256+50 238+44

HDL-C (mg/dL) 44+15 55+16 54+17 52+15 54+16

LDL-C (mg/dL) 138+36 130+35 115+32 — 147+41

Total/HDL-C ratio 5.3 (2.2) 4.1+1.2 3.9+1.4 5.3+1.6 4.8+1.8

Triglycerides (mg/dL) 159+130 — 125+90 — 187+150

Prevalent diabetes (%) 18.6 11.7 7.5 9.9 4.7

Prevalent CVDa (%) 0 0 6.2 7.4 1.9

Hormone-replacement therapy (in women) (%) 29.6 8.6 16.4 21.3 28.6

Lp-PLA2 mass (ng/mL) 413.0 (328.5/513.5) 329.9 (261.4/407.4) 241.8 (208.0/299.3) — 269.0 (214.0/330.5)

Lp-PLA2 activity (nmol/mL/min) — 38.2 (30.9/47.0) 153.9 (129.2/181.2) 44.5 (36.3/51.3) —

Mean+ SD for continuous, per cent for categorical variables, median (25th/75th percentile) for Lp-PLA2 concentrations.
aHistory of myocardial infarction, angina, coronary revascularization, stroke, or transient ischemic attack.

H. Grallert et al.240
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chromosomes 1, 6, 11, 12, and (two clusters) 19 (Supplementary
material online, Tables S1 and S2).

Lipoprotein-associated phospholipase
A2 mass meta-analysis
Of the 49 SNPs significantly associated with Lp-PLA2 mass, 47
were within the Lp-PLA2 gene (PLA2G7), at chromosome
6p21.2-p12. The strongest association [P ¼ 2.4 × 10223; log
Lp-PLA2 difference per allele (beta): 0.043] was for rs1805017
(Figure 2A), which is located within the coding region of PLA2G7
in exon 4 and leads to an arginine-to-histidine substitution at
position 92 (Arg92His). Supplementary material online, Table S3
shows unadjusted median values of Lp-PLA2 mass by rs1805017
genotype for each cohort.

Based on pairwise LD (based on HapMap CEU) coefficients, 27
of the 47 signals with PLA2G7 lie within the same highly preserved
haplotype block (Lewontin’s D′ . 0.99). The remaining 21
associated SNPs in this region were correlated with rs1805017
(r2 , 0.83).

Lp-PLA2 mass was also associated with SNPs on chromosome
16 within the cholesteryl ester transfer protein (CETP) gene
(CETP; Figure 2F): rs247616 (P ¼ 2.5 × 1028; beta: 0.023).

There were no significant interactions between age, sex, BMI, or
smoking and the two most significant SNPs in each region
(rs1805017 and rs247616) in relation to Lp-PLA2 mass (Supplemen-
tary material online, Table S4). The association with Lp-PLA2
remained significant for these two SNPs after multivariable
adjustment with similar effect sizes and P-values (Supplementary
material online, Table S5).

Figure 1 Association of log-transformed lipoprotein-associated phospholipase A2 mass (A) and lipoprotein-associated phospholipase A2
activity (B) concentrations and 2 661 766 single nucleotide polymorphisms displayed per chromosome and region. The dashed line indicates
the significance threshold of P , 5 × 1028.
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Table 2 Association of the top single nucleotide polymorphisms in eight loci with log-transformed lipoprotein-associated phospholipase A2, adjusted for age, sex,
and site (if necessary)

SNP Mass Activity

ARIC CHS FHS KORA Meta-analysis CHS FHS RS Meta-analysis

rs4420638 (G/A) Sample size 798 3217 6899 1202 12 116 3217 6899 1538 11 654

Chromosome: 19 P-value 4.3E–04 1.9E–01 7.9E–01 5.1E–02 8.6E–02 5.4E–06 1.6E–19 3.9E–10 4.9E–30

Location: 50114786 Beta 20.075 20.023 0.002 20.034 20.009 20.071 20.048 20.099 20.054

Gene: APOC1 Standard error 0.021 0.017 0.006 0.017 0.005 0.016 0.005 0.016 0.005

Effect allele: A r2 0.0140 0.0005 0.0009 0.0032 — 0.0053 0.0162 0.0240 —

Effect allele frequency 0.82 0.83 0.84 0.82 — 0.83 0.84 0.80 —

I2 0.803 0.816

rs1805017 (C/T) Sample size 798 3217 6896 1202 12 113 3217 6896 1538 11 651

Chromosome: 6 P-value 2.6E–02 9.5E–08 5.0E–14 1.4E–03 2.4E–23 1.8E–02 1.8E–04 7.1E–02 2.4E–06

Location: 46792181 Beta 0.043 0.051 0.040 0.052 0.043 20.021 20.017 20.019 20.018

Gene: PLA2G7 Standard error 0.019 0.010 0.005 0.016 0.004 0.009 0.004 0.010 0.004

Effect allele: T r2 0.0056 0.0085 0.0097 0.0085 — 0.0016 0.0062 0.0014 —

Effect allele frequency 0.25 0.27 0.26 0.23 — 0.27 0.26 0.26 —

I2 0 0

rs7528419 (G/A) Sample size NA 3217 6907 NA 10 124 3217 6907 1538 11 662

Chromosome: 1 P-value NA 2.6E–03 4.9E–03 NA 7.1E–05 1.2E–05 9.4E–12 2.6E–03 1.3E–17

Location: 109618715 Beta NA 0.029 0.017 NA 0.020 0.041 0.034 0.033 0.035

Gene: CELSR2 Standard error NA 0.010 0.006 NA 0.005 0.009 0.005 0.011 0.004

Effect allele: A r2 NA 0.0026 0.0022 NA — 0.0054 0.0107 0.0051 —

Effect allele frequency NA 0.78 0.79 NA — 0.78 0.79 0.76 —

I2 0.096 0

rs6511720 (G/T) Sample size 798 3217 6907 1202 12 124 3217 6907 1538 11 662

Chromosome: 19 P-value 2.4E–01 1.6E–03 3.1E–02 2.8E–01 5.5E–05 9.9E–10 3.1E–03 5.2E–03 2.6E–11

Location: 11063306 Beta 20.043 20.039 20.025 20.035 20.032 20.071 20.029 20.040 20.045

Gene: LDLR Standard error 0.036 0.012 0.012 0.033 0.008 0.012 0.010 0.014 0.007

Effect allele: T r2 0.0016 0.0029 0.0016 0.0010 — 0.0101 0.0045 0.0043 —

Effect allele frequency 0.10 0.13 0.10 0.08 — 0.13 0.10 0.12 —

I2 0 0.739

rs964184 (G/C) Sample size 798 3217 6907 1202 12 124 3217 6907 1538 11 662
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Chromosome: 11 P-value 2.7E–01 1.6E–02 1.3E–01 2.8E–01 5.3E–03 1.4E–03 6.3E–08 4.1E–02 8.4E-11

Location: 116154127 Beta 20.026 20.034 20.010 20.020 20.016 20.044 20.030 20.029 20.032

Gene: ZNF259 Standard error 0.023 0.014 0.007 0.019 0.006 0.014 0.006 0.014 0.005

Effect allele: C r2 0.0014 0.0017 0.0013 0.0010 — 0.0030 0.0088 0.0020 —

Effect allele frequency 0.85 0.87 0.86 0.87 — 0.87 0.86 0.87 —

I2 0 0

rs7756935 (C/A) Sample size 798 3217 6907 1202 12 124 3217 6907 1538 11 662

Chromosome: 6 P-value 2.8E–01 9.2E–02 1.5E–01 3.3E–01 7.2E–01 1.5E–03 4.9E–06 2.1E–04 1.3E–10

Location: 46782984 Beta 0.021 0.017 20.009 0.016 20.002 20.030 20.023 20.043 20.027

Gene: PLA2G7 Standard error 0.020 0.010 0.006 0.016 0.005 0.010 0.005 0.012 0.004

Effect allele: A r2 0.0013 0.0009 0.0012 0.0008 — 0.0030 0.0072 0.0081 —

Effect allele frequency 0.78 0.79 0.81 0.79 — 0.79 0.81 0.8 —

I2 0.568 0.255

rs10846744 (G/C) Sample size NA NA 6904 1202 8106 NA 6904 1538 8442

Chromosome: 12 P-value NA NA 3.3E–05 7.1E–01 4.9E–05 NA 2.0E–08 9.9E–02 6.1E–09

Location: 123878378 Beta NA NA 0.026 0.007 0.025 NA 0.030 0.023 0.029

Gene: SCARB1 Standard error NA NA 0.006 0.020 0.006 NA 0.005 0.014 0.005

Effect allele: C r2 NA NA 0.0041 0.0001 — NA 0.0086 0.0011 —

Effect allele frequency NA NA 0.16 0.16 — NA 0.16 0.14 —

I2 0 0.066

rs247616 (C/T) Sample size 798 3217 6907 1202 12 124 3217 6907 1538 11 662

Chromosome: 16 P-value 3.3E–01 3.1E–01 6.0E–07 6.1E–04 2.5E–08 6.4E–01 8.4E–01 2.1E–01 4.2E–01

Location: 55547091 Beta 0.022 0.008 0.026 0.059 0.023 20.004 20.001 20.013 20.003

Gene: CETP Standard error 0.022 0.008 0.005 0.017 0.004 0.008 0.004 0.010 0.004

Effect allele: T r2 0.0011 0.0003 0.0043 0.0098 — 0.0001 0.0034 0.0004 —

Effect allele frequency 0.33 0.34 0.32 0.34 — 0.34 0.32 0.33 —

I2 0.618 0

Significant SNPs in the meta-analysis with respective data from each cohort are marked bold.
r2: increase in r2 after adding the SNP to a linear regression model with log Lp-PLA2 as outcome and age and sex (+site, if necessary) in the model.
I2: measure of heterogeneity.
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Figure 2 Regional plots for top single nucleotide polymorphisms rs4420638 (A), rs1805017 (B), rs964184 (C), rs7756935 (D), rs10846744
(E), and rs247616 (F). LD: red: r2 (with primary SNP) .0.8; orange: r2 between 0.5 and 0.8; yellow: r2 between 0.2 and 0.5; white: r2 , 0.2.
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Figure 2 Continued.
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Figure 2 Continued.
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Lipoprotein-associated phospholipase
A2 activity meta-analysis
The smallest P-value for association with Lp-PLA2 activity (P ¼
4.9 × 10230; beta: 20.054) was for rs4420638 (Figure 2B), located
on chromosome 19 near the APOE–APOC1–APOC4–APOC2
cluster and �11 kb proximal to the APOE-14 allele. The association
was similar in all three studies, with beta coefficients of 20.099 to
20.048 (Table 2). Other SNPs with significant associations were
rs7528419 (CELSR2), rs6511720 (LDLR), rs964184 (ZNF259), and
rs10846744 (SCARB1) (Table 2). Lipoprotein-associated phospho-
lipase A2 activity was also associated with PLA2G7. The strongest
association was for rs7756935 (P ¼ 1.3 × 10210; beta: 20.027),
which was in perfect LD with another functional SNP within the
PLA2G7 gene, rs1051931 in exon 11 (Ala379Val).

There were no significant gene–environment interactions of
age, sex, BMI, and smoking status with the top SNPs in six loci
in relation to log-transformed Lp-PLA2 activity (Supplementary
material online, Table S4).

Association of top single nucleotide
polymorphisms with prevalent coronary
heart disease/coronary artery disease
For all but two (rs247616, CETP; rs6511720, LDLR) of the top SNPs,
the association to CHD/CAD could be assessed in the

CARDIoGRAM project. Four of the top SNPs related to Lp-PLA2
activity [rs964184 (ZNF259), rs4420638 (APOC1), rs7528419
(CELSR2), rs10846744 (SCARB1)] were significantly associated
with prevalent CHD/CAD (Figure 3). The strongest association
was found for rs964184 with a P ¼ 8.0 × 10210, with an odds
ratio of 1.13 per G allele (95% confidence interval 1.09–1.18).
The two SNPs in the PLA2G7 gene most significantly associated
with Lp-PLA2 mass or activity were not significantly associated
with prevalent CHD/CAD in CARDIoGRAM. The estimated
changes in Lp-PLA2 mass or activity per risk allele revealed in our
meta-analysis were combined with the CHD risk estimations
related to Lp-PLA2 mass or activity drawn from a published
meta-analysis3 to estimate the expected CHD risk changes per
allele. For SD values (necessary to calculate the expected risks),
we chose the respective data from FHS, as of the five cohorts
FHS had the largest number of participants. This approach revealed
CHD risk increases between 0.8 and 2.1% per allele and were found
to be mostly smaller than that found in the CARDIoGRAM data.
The CARDIoGRAM study had ≥70% power to detect CHD risk
changes of 3.5% or more (Supplementary material online, Table S6).

Discussion
Meta-analysis of GWAS from five population-based studies com-
prising 13 664 subjects suggests that genes influencing Lp-PLA2

Figure 3 Association of the top single nucleotide polymorphisms in six loci with prevalent CHD/CAD in the CARDIoGRAM consortium.

Eight genetic loci associated with variation in Lp-PLA2 247

 at H
elm

holtz Z
entrum

 M
uenchen on February 17, 2012

http://eurheartj.oxfordjournals.org/
D

ow
nloaded from

 

http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehr372/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehr372/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehr372/-/DC1
http://eurheartj.oxfordjournals.org/


mass and activity differ. While enzyme concentration was regulated
mainly by the gene coding for Lp-PLA2 (PLA2G7), genetic variants
involved in lipid metabolism were strongly associated with
Lp-PLA2 activity.

Lipoprotein-associated phospholipase
A2 mass
Lipoprotein-associated phospholipase A2 mass was dependent on
variants within PLA2G7. Previous studies identified numerous SNPs
within PLA2G7: variants in exon 9 (Val279Phe; rs45619133), exon
11 (Val379Ala; rs1051931), exon 7 (Ile198Thr, Iso195Thr;
rs1805018), and exon 4 (Arg92His; rs1805017).13 A prior GWA
of Framingham data accessed through dbGaP also identified
multiple SNPs clustered in or near PLA2G7 that were associated
with Lp-PLA2 mass.6

Lipoprotein-associated phospholipase A2 mass was also
influenced by rs247616 (CETP).14 The T allele of rs247616 was
associated with higher HDL-C concentration14 and higher mean
Lp-PLA2 mass. This finding is in contrast to most epidemiological
studies, including ARIC15and Framingham,6 which showed an
inverse relation between HDL-C level and Lp-PLA2 mass.3 The
mechanism(s) by which reduced CETP activity leading to increased
HDL-C would also increase Lp-PLA2 mass is unclear.

Lipoprotein-associated phospholipase
A2 activity
All the SNPs associated with Lp-PLA2 activity in our meta-analysis
also determine plasma lipoprotein concentrations except for those
in PLA2G7. The strongest association for Lp-PLA2 activity was for
rs4420638 (APOC1), previously associated with LDL-C concen-
trations.14,16 rs964184 (ZNF259), near the APOA5–APOA4–
APOC3–APOA1 cluster, was associated with increased Lp-PLA2
activity and previously with increased triglycerides;14 elevated tri-
glycerides are associated with increased small dense LDLs, which
contain increased Lp-PLA2 mass.17

rs7528419 (CELSR2) located at 1q13.3, which also contains the
genes PSRC1 and SORT1, has strong associations with LDL-C
levels and CHD.14,16,18 Based on HapMap data, rs7528419 was
highly correlated with rs599839 (PSRC1) and rs646776 (CELSR2);
minor alleles of rs599839 and rs646776 have been associated
with lower LDL-C14,16,18 and lower CHD risk.19 The minor
allele of rs7528419 also was associated with lower Lp-PLA2
activity, consistent with the reduction in LDL-C in other
studies.14,16,18 rs7528419, or a SNP in LD, might have functional
effects due to its location in 3′ UTR of the CELSR2 gene (encoding
for cadherin, EGF LAG seven-pass G-type receptor 2), which
includes binding sites for transcriptional factors (e.g. Oct-1).

rs6511720 (LDLR) was also associated with lower Lp-PLA2
activity and lower LDL-C.18 It was highly correlated with
rs2228671 (LDLR) (r2 ¼ 0.734; D′ ¼ 0.899), which was related to
lower LDL-C and reduced CAD risk.20

rs10846744, an intronic SNP within the SCARB1 gene, which
encodes for scavenger receptor type B class 1 (SRB1), a major
receptor for HDL, was associated with Lp-PLA2 activity. Although
this SNP was not associated with lipids in this study, other SNPs in
SCARB1 have been shown to be associated with levels of

HDL-C.21,22 SCARB1 may also modulate Lp-PLA2 activity through
its role as a scavenger receptor for oxidized LDL, which has
been shown to increase Lp-PLA2 secretion by human macro-
phages.23 SCARB1 is expressed in macrophages and has been
shown to bind avidly to oxidized LDL.24

Finally, rs7756935 (PLA2G7), associated with increased Lp-PLA2
activity, was in complete LD with rs1051931 (PLA2G7;
Ala379Val).24 The V379 allele resulted in two-fold lower Lp-PLA2
activity in in vitro studies25 but increased plasma Lp-PLA2 activity
in epidemiological studies.26,27

Association of top single nucleotide
polymorphisms with prevalent coronary
heart disease/coronary artery disease
Of the top polymorphisms associated with Lp-PLA2 activity, four
(in ZNF259, APOC1, CELSR2, SCARB1) were significantly associated
with CHD or CAD, as also reported in previous
studies.14,16,18,20,28 However, the SNPs in the PLA2G7 gene that
were most significantly associated with Lp-PLA2 mass
(rs1805017) or activity (rs7756935) were not associated with
prevalent CHD or CAD. These findings are consistent with
Casas et al.,27 who found a significant association between
Lp-PLA2 activity and CHD but did not find any significant associ-
ation with PLA2G7 genotype (12 tagged SNPs including
rs1805017). We had .97% power to detect a 5% increase in
risk with these two SNPs, but only 35–40% power to detect a
2.5% increase in risk (Supplementary material online, Table S6);
therefore, if there is an increased risk, it is most likely in the
range of a few percent or less. However, considering the modest
effect of these common alleles of the PLA2G7 locus on Lp-PLA2
mass and activity (Supplementary material online, Table S5) and
the modest strength of the association of Lp-PLA2 mass and
activity with CHD,3 we may have had insufficient power to
detect a genetic association that would still be compatible with a
causal role for Lp-PLA2 in CHD, despite our large sample size.
In contrast to our findings and those of Casas et al., Sutton
et al.29 reported significant associations between SNPs in
PLA2G7, including rs1805017, with CAD in case–control and
family data sets. This suggests that the nature of the population,
or in fact having familial data, may influence the strength and like-
lihood of observing a significant association.

The Val279Phe substitution is located within the catalytical
domain of the encoded enzyme and therefore leads to reduction
(heterozygotes) or complete loss (homozygotes) of enzyme
activity. In Japan, this mutation occurs in 30% of the population
(27% heterozygous, 4% homozygous and therefore completely
lacking plasma Lp-PLA2 activity and mass).30 Although Val279Phe-
mediated loss of activity was an independent CHD risk factor in
Japanese men with hypercholesterolaemia, myocardial infarction,
stroke, or non-familial dilated and hypertrophic cardiomyopathies
and protective from CAD in South Korean men,31 no association
with CHD was observed in a Chinese population.32

Clinical implications
In the present meta-analysis, we identified eight SNPs associated
with Lp-PLA2 mass or activity which might contribute to the
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regulation of plasma levels and give insight as to whether Lp-PLA2
is a risk factor or risk marker for CHD. Most of these genetic loci
were in regions that have already been associated with levels of
lipoproteins. Of the six top SNPs that could be tested in the CAR-
DIoGRAM consortium, four located in ZNF259, APOC1, CELSR2,
and SCARB1 were significantly associated with CHD, whereas the
two SNPs in PLA2G7, the gene that encodes for Lp-PLA2, did
not have any significant association with CHD. This supports the
hypothesis that the genetic regions which are known to affect lipo-
protein levels also influence both the level of Lp-PLA2 and the
development of CHD and is consistent with the hypothesis that
Lp-PLA2 level may be a marker of atherogenic lipoproteins;
levels of Lp-PLA2 have been shown to be increased in subpopu-
lations of lipoproteins such as electronegative LDL. Although the
lack of association does not provide any evidence in support of
the hypothesis that Lp-PLA2 is a risk factor for CHD, our data
cannot rule out the possibility that Lp-PLA2 is a risk factor. First,
despite the large number of CHD cases in CARDIoGRAM, we
lacked sufficient power to rule out a small effect. The SNPs ident-
ified in PLA2G7 had modest effects on the levels of Lp-PLA2 mass
or activity and would be expected to have even smaller effects on
risk for development of CHD. Furthermore, we measured total
Lp-PLA2 mass and activity in plasma, not the mass or activity
associated with LDL or HDL. It is possible that genes which
alter lipoprotein metabolism may also alter the binding of
Lp-PLA2 to subspecies of lipoproteins,17 and Lp-PLA2 may only
be atherogenic when it is associated with atherogenic lipoproteins
such as LDL, not with HDL. Our observation that a SNP in the
CETP locus, which is associated with lower CETP activity and
higher levels of Lp-PLA2 mass, may have implications for clinical
programmes that are developing drugs that inhibit CETP.33

Levels of Lp-PLA2 mass and activity were strongly associated
with CHD in a large meta-analysis, supporting the view that circu-
lating Lp-PLA2 indeed represents a biomarker of CHD. Exper-
imental data in the pig model indicate that Lp-PLA2 has
important proinflammatory effects in the vessel wall.34 Further,
clinical trial data using virtual histology (an intravascular
ultrasound–derived modality) as a secondary endpoint suggest
that elevated level or increased activity of Lp-PLA2 is related to
the progression of atherosclerotic disease.35 With regard to a
potential causal role in the pathophysiology of atherosclerosis
and its complications, only large randomized clinical trials assessing
the effect of Lp-PLA2 inhibition on cardiovascular endpoints
(STABILITY36 and SOLID–TIMI 5237) can provide a definitive
answer.

Strengths and limitations
The routine ascertainment of Lp-PLA2 covariates and GWA data
in five community-based cohorts based on .13 000 European
ancestry subjects are strengths of our study. However, caution
should be taken when generalizing these findings to populations
with non-European ancestry. In addition, even the most significant
SNPs may be in LD with as yet unknown causal variants, and the
functional basis of the relation of the identified SNPs with vari-
ations in Lp-PLA2 concentrations requires study. Also, it is possible
that missense genetic changes may cause a difference in assay
immunoreactivity, warranting caution in interpreting genetic

effects on levels of Lp-PLA2. Lastly, because many of the cohorts
were community based, CHD was largely symptomatic CAD;
we acknowledge that asymptomatic CAD may have been
misclassified.

Conclusions
We extended the previously reported Framingham findings6 by
conducting a meta-analysis with four additional cohorts.
Whereas levels of Lp-PLA2 mass were primarily associated with
the gene coding for the protein itself, Lp-PLA2 activity was associ-
ated with genetic variants related to LDL-C levels, which were also
associated with CHD/CAD. Larger association studies and clinical
trials will be needed to determine whether Lp-PLA2 is a causal risk
factor for CHD.

Supplementary material
Supplementary material is available at European Heart Journal
online.
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