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Regulated changes in gene expression underlie many biological
processes, but globally profiling cell-to-cell variations in transcriptional
regulation is problematic when measuring single cells. Transcriptome-
wide identification of regulatory heterogeneities can be robustly
achieved by randomly collecting small numbers of cells followed by
statistical analysis. However, this stochastic-profiling approach blurs
out the expression states of the individual cells in each pooled sample.
Here, we show that the underlying distribution of single-cell regula-
tory states can be deconvolved from stochastic-profiling data through
maximum-likelihood inference. Guided by the mechanisms of tran-
scriptional regulation, we formulated plausible mixture models for
cell-to-cell regulatory heterogeneity and maximized the resulting
likelihood functions to infer model parameters. Inferences were val-
idated both computationally and experimentally for different mixture
models, which included regulatory states for multicellular function
that were occupied by as few as 1 in 40 cells of the population. Im-
portantly, when the method was extended to programs of heteroge-
neously coexpressed transcripts, we found that population-level
inferences were much more accurate with pooled samples than with
one-cell samples when the extent of sampling was limited. Our
deconvolution method provides a means to quantify the heteroge-
neous regulation of molecular states efficiently and gain a deeper
understanding of the heterogeneous execution of cell decisions.
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Cell-to-cell differences in transcriptional or posttranslational
regulation can give rise to heterogeneous phenotypes within

a population (1–7). There are several elegant techniques for mon-
itoring regulatory states in single cells after a network of marker and
effector genes has been identified (8–13). However, the options are
much more limited when seeking to discover novel states without
a predefined network. At the transcript level, global methods have
been developed to profile single cells by oligonucleotide micro-
arrays (14, 15) or RNA sequencing (16–19). However, generally
such approaches overlook the considerable technical variation in
RNA extraction (20) and reverse transcription (21) when applied to
the limited starting material of single cells. Single-cell profiles also
retain the biological noisiness (22) associated with each cell’s iso-
lation and handling. These confounding sources of variation cannot
be separated from reproducible heterogeneities in regulation unless
many (>50) cells are individually profiled (9). Therefore, challenges
remain for single-cell methods to discover regulatory hetero-
geneities in a reliable, unbiased, and efficient way.
An attractive alternative to single-cell methods is to analyze sets

of population-averaged data and define regulatory signatures for
discrete subpopulations. Existing approaches for transcriptomic
data are able to deconvolve mixed cellular states computationally,
but they require hundreds of coexpressed markers (23) or cali-
bration with purified cell populations (24, 25). Usually, the size or
identity of regulatory states is not defined beforehand and their
discovery is what motivates the study (9, 11, 26). Certain states may
also lack well-defined surface markers that would allow purifica-
tion. It thus remains unclear whether computational inference with

multiple cell averages can track quantitative characteristics of regu-
latory states not previously thought to exist.
As a hybrid between single-cell and mixture-based approaches,

we previously developed a technique that applies probability
theory to transcriptome-wide measurements (27). The method
begins with random collections of up to 10 cells isolated in situ
where cell-to-cell regulatory heterogeneities could possibly re-
side. Each of these “stochastic samples” is then profiled for
overall mRNA expression by using a heavily customized cDNA
amplification procedure together with oligonucleotide micro-
arrays (20, 27). The process of random sampling is repeated 15–
20 times to build a distribution of 10-cell averages. Transcripts
with stark cell-to-cell variations can be distinguished statistically
because of binomial fluctuations in single-cell expression that
convolve their 10-cell averages. Last, candidate heterogeneities
are clustered on a gene-by-gene basis according to the patterns
of their sampling fluctuations to indicate putative regulatory
states in single cells (27).
Stochastic-profiling experiments are quantitative and highly re-

producible as a result of the 10-fold increase in starting material
compared with a single cell (20). However, a recognized drawback
of the approach is that explicit information about single cells is
“lost” in the 10-cell averages. Here, we report that one can recover
this information computationally and reconstruct the single-cell
distribution of regulatory states with remarkable accuracy. Our
method combines maximum-likelihood estimation with mixture
models that are grounded in known mechanisms of transcrip-
tional regulation. This approach of maximum-likelihood inference
quantifies the single-cell characteristics of each regulatory state,
including the probability that a cell will reside in one state or the
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other. Our predictions are validated with independent gene-specific
observations in single cells, and we demonstrate for one very rare
state (∼2–3% of the population) that it is important for normal
morphogenesis of breast epithelial cells in 3D culture. Last, we
show that, when sampling is limited to fewer than 20 observations,
the parameterization of regulatory states is substantially more
accurate when given 10-cell data compared with one-cell data.
Maximum-likelihood inference now enables stochastic pro-
filing to bridge the gap between -omics datasets and single-cell
information.

Results
Probability Models for Heterogeneous Transcriptional Regulation. To
make reliable single-cell inferences, it was critical to start with
simple probabilistic models of gene expression that were bi-
ologically accurate. Our method considers genes that exhibit two
distinct regulatory states in a population of cells (19, 20, 27).
Within each state, the cell-to-cell variation of expression was
originally described by a lognormal distribution according to
measurements of high-copy transcripts in single mammalian cells
(28, 29). We tested whether there was a mechanistic foundation
for using two lognormal subpopulations by examining a standard
model of regulated gene expression (30, 31) (SI Appendix, Fig.
S1). In this model, transcript levels per cell are determined by
the kinetics of polymerase binding–unbinding, transcriptional
elongation, and mRNA degradation. The relative magnitudes
of the kinetic rate parameters together govern the steady-state
distribution of transcripts in the population (32), allowing dif-
ferent regulatory states to be simulated.
For parameter sets where the probability of observing zero

transcripts per cell was near zero, we found that the lognormal
distribution was a suitable approximation of basal expression
(Fig. 1A, blue). Parameter sets yielding median expression levels
as low as 20 copies per cell showed only minor skewness in
quantile–quantile comparisons with a lognormal distribution
(Fig. 1A, blue inset). Starting with this basal distribution, we
simulated a second cellular regulatory state by increasing the rate
of polymerase binding, decreasing the rate of mRNA degrada-

tion, or both (Fig. 1A, orange). The apparent rate of polymerase
binding increases upon recruitment by transcription factors that
are expressed or activated heterogeneously within a population
of cells (4, 5). Conversely, mRNA stabilization occurs post-
transcriptionally through dedicated signal-transduction pathways
activated by environmental stresses and proinflammatory stimuli
(33). We found that either mechanism of gene up-regulation led
to right-shifted distributions that were lognormal (Fig. 1A, orange
inset). These simulations indicated that lognormal random var-
iables were appropriate for the regulated expression of mid- to
high-abundance transcripts.
One drawback of the lognormal distribution is that it has no

support at zero copies (34), making it poor for capturing low-
abundance genes that are completely silenced in some cells. To
identify an alternative in this circumstance, we reconfigured the
parameters of the model and defined a steady-state population
where most cells would contain close to zero transcripts (Fig. 1B,
blue). As noted before (32), this regulatory state was best cap-
tured by an exponential distribution (Fig. 1B, blue inset). Im-
portantly, we found that when the kinetic parameters of a basal
exponential state were modified to create a second right-shifted
state (Fig. 1B, orange), the resulting distributions were lognor-
mal (Fig. 1B, orange inset). Together, we conclude that the basic
mechanisms of gene expression lead to steady-state distributions
described by probability models that are relatively simple.

Deconvolution of Random 10-Cell Averages by Maximum-Likelihood
Inference. Our results from the gene-expression model suggested
that single-cell regulatory heterogeneities could be depicted as
a mixture of two lognormal states or as a mixture of an exponential
state and a lognormal state (Fig. 1). Either mixture gives rise to
a probability distribution characterized by four key parameters.
The lognormal–lognormal (LN–LN) mixture requires the log-
mean expression of the two regulatory states (μ1 and μ2), the log-
SD for biological noise (σ), and the expression frequency (F) de-
scribing the probability that cells will occupy the higher regulatory
state (step 1, Fig. 2A). (For simulations, the two lognormal states
are assumed to share a common σ, but in practice we test whether
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Fig. 1. Simple probability models capture regulated changes in gene expression. (A and B) Probability densities for the number of transcripts per cell were
calculated using a kinetic model (30, 31) whose parameters led to basal regulatory states (blue) with either nonzero copies per cell in A or with near-zero
copies per cell in B. The basal-regulatory states were compared with a lognormal distribution in A or an exponential distribution in B through a quantile–quantile
(QQ) plot (blue insets). A second, induced regulatory state (orange) was created by increasing the polymerase binding rate (Lower Left), decreasing the
transcript degradation rate (Upper Right), or both (Lower Right) in the model (SI Appendix, Fig. S1). All induced regulatory states were compared with
a lognormal distribution through a QQ plot (orange insets).
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inferences are improved when each lognormal state is allowed its
own noise parameter; see below.) Thus, an LN–LN gene that is
expressed at an approximately eightfold higher level in 20% of the
population with a coefficient of variation (CV) of∼50% is captured
by μ1 – μ2 = 2, F = 20%, and σ = 0.48.
The exponential–lognormal (EXP–LN) mixture also requires σ

and F, along with a single log-mean for the high lognormal state
(μ) and a rate parameter for the low exponential state (λ) (step 1,
SI Appendix, Fig. S2). The rate parameter relates to how quickly
the lower distribution decays above zero copies per cell. For ex-
ample, a rate parameter of λ = 1 creates a distribution that
has ∼37% overlap with that of a high lognormal state of μ = 0.5
and σ = 0.225 whereas λ = 3 causes only a ∼6.3% overlap. We
modeled two distinct regulatory states by restricting the simulations
to rate parameters that caused negligible overlap with the high

lognormal state (λ > 3). Together, the different mixture models
enabled us to simulate stochastic-profiling data by summing the
expression of 10 cells randomly sampled from the appropriate
two-state distribution (step 2, Fig. 2A and SI Appendix, Fig. S2).
To infer the most-likely parameters from a collection of ran-

dom 10-cell samples, we derived maximum-likelihood estimators
for the LN–LN and EXP–LN mixtures (Methods and SI Appen-
dix, Methods). Maximum-likelihood estimation requires a de-
fined probability density function (pdf). The stochastic-sampling
pdf is the convolution of 10 binomial choices drawn from the two
underlying distributions in the mixture (step 3, Fig. 2A and SI
Appendix, Fig. S2). The pdf has a ≤11-modal shape where each
mode corresponds to choosing 0–10 cells from the high regulatory
state. The most-likely parameter combination was calculated by
maximizing the likelihood function (Methods), yielding parameters
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Fig. 2. Inferring cellular subpopulations by maximum-
likelihood inference of stochastic 10-cell samples from
an LN–LN mixture of regulatory states. (A) The maxi-
mum-likelihood approach involves four steps. (1) A
model of heterogeneous gene regulation is posed,
where single cells are assumed to express genes at
a low or high level with a common coefficient of vari-
ation for both subpopulations. The weight of each
subpopulation is defined by the integrated single-cell
expression distribution of the subpopulation (ϕ1 and
ϕ2). The four parameters of the model are the log-
mean expression for each subpopulation (μ1 and μ2),
the proportion of cells in the high subpopulation (F),
and the common log-SD of expression (σ). (2) Random
10-cell samples are collected to build a distribution of
measurements for inference by the model. (3) Based on
the model in step 1, a likelihood function is derived
(Methods). (4) The likelihood function is then maxi-
mized by searching through the four parameters of the
model to identify those that are most likely given the
experimental observations. Additionally, we obtain
measures of confidence for each estimated parameter
(gray). (B–E) Accurate prediction of single-cell param-
eters from simulated 10-cell samples. Ten-cell expres-
sion data were simulated using different values of (B)
μ1, (C) μ2, (D) F, and (E) σ (solid gray line) and then
estimated by maximum likelihood. For each group of
simulations, the remaining three model parameters
were kept fixed at (C–E) μ1 = 0.5, (B, D, and E) μ2 = –2.5,
(B–C and E) F = 22.5%, and (B–D) σ = 0.225 (dashed gray
line). Solid gray line shows the one-to-one mapping of
inferred-to-known parameter value. Off-diagonal plots
are categorical plots of the fixed parameter estimates
for a given value of the perturbed parameter. Graphs
show the parameter estimates together with 95%
maximum-likelihood CIs from three independent sets
of 50 10-cell samples. (F–H) Prediction and validation of
expression frequency for the heterogeneous transcript,
SOD2, during breast-epithelial acinar morphogenesis.
(F) Distribution of 81 10-cell qPCR measurements of
SOD2 in outer ECM-attached epithelial cells and esti-
mated subpopulation distribution (red line). Maximum-
likelihood parameters (red box) are shown with 95% CI
in brackets. (G) Representative RNA FISH image of en-
dogenous SOD2 expression. A pseudocolored image
(Left) is shown alongside a two-color image with
DRAQ5 counterstain to visualize nuclei (Right). Arrows
indicate ECM-attached cells with high SOD2 expression.
(Scale bar, 20 μm.) (H) Percentage of cells showing high
expression of SOD2 by RNA FISH (gray bar) compared
with the maximum-likelihood estimate of F (white
dashed line). RNA FISH data are shown as the mean
percentage with 95% CI of ECM-attached cells show-
ing high expression of SOD2. Maximum-likelihood
predictions are shown as the parameter point esti-
mate (white) with 95% CI (red).
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with interval estimates that best explained the data (step 4, Fig. 2A
and SI Appendix, Fig. S2). By performing this maximum-likelihood
estimation, we could “invert” stochastic profiling data to infer
single-cell characteristics from 10-cell samples.

Theoretical and Experimental Validation of Maximum-Likelihood
Inference. We evaluated the performance of our approach by us-
ing computational simulations of 10-cell samples with known
distribution parameters. First, it was important to identify the
minimum number of random samples needed to ensure accurate
parameter estimation. Given hundreds to thousands of samples,
we found that robust and accurate estimates were obtained for all
model parameters irrespective of the mixture type (SI Appendix,
Fig. S3 A and B). Conversely, with very few samples (∼20 or
fewer), the convolved distributions were incompletely populated
and our resulting estimates were highly uncertain and sometimes
inaccurate for the LN–LN and EXP–LN mixtures. The transition
between the two regimes occurred at 50–100 samples, which we
defined as the approximate number of data points required for
effective maximum-likelihood inference of single transcripts.
We next used simulations to identify the parameter ranges

where maximum-likelihood inference makes accurate estimates of
each regulatory state. Starting with the LN–LN mixture, we per-
turbed μ1, μ2, σ, or F individually while keeping the other three
parameters fixed and simulated 50 random 10-cell samples. For
a wide range of subpopulation log-means (μ1 and μ2), maximum-
likelihood inference accurately inferred model parameters with
negligible bias (Fig. 2 B and C). We also observed good perfor-
mance when altering the expression frequency (F). Accuracy de-
clined near F = 50%, when the two subpopulations offset one
another and disguise as a distribution with large σ (Fig. 2D).
Nevertheless, the estimation procedure still accurately and confi-
dently captured ∼70% of the total parameter space (F = 0–35%
over the range of 0–50%). For the log-SD (σ), performance de-
clined only when this parameter was extremely high (Fig. 2E).
Parameter estimates were accurate until σ reached ∼0.8, corre-
sponding to a ∼95% CV that is higher than nearly all genes ex-
amined thus far (35, 36). None of the mixture parameters could be
reliably inferred from higher-order moments of the 10-cell dis-
tributions, although low F or high σ correlated with a slight in-
crease in skewness (SI Appendix, Fig. S4). These results indicated
that maximum-likelihood inference could extract parameters that
were otherwise inaccessible by descriptive statistics.
We repeated the simulations for the EXP–LN mixture and

arrived at very similar conclusions. As long as λ and μ were large
enough to prevent overlap of the two regulatory states, we found
that parameter estimates were accurate, although the variance of
inferred σ was somewhat higher than in the LN–LN mixture (SI
Appendix, Fig. S5). Together, these simulations suggested that
maximum-likelihood inference is able to deconvolve a wide
range of regulatory heterogeneities from 10-cell samples.
To examine the accuracy of maximum-likelihood inference

with real 10-cell samples, we focused on expression of the de-
toxifying enzyme superoxide dismutase 2 (SOD2) during breast-
epithelial acinar morphogenesis. We used a culture model in
which immortalized human breast epithelial cells are grown as
single-cell clones in reconstituted basement-membrane ECM to
form 3D organotypic spheroids (37, 38). Earlier stochastic-
profiling studies of developing spheroids had suggested that
there were two SOD2 regulatory states among the ECM-at-
tached cells (27, 39). To apply maximum-likelihood inference,
we deeply sampled SOD2 expression by quantitative PCR
(qPCR) in 81 random samples of 10 ECM-attached cells (Fig.
2F, Left). Using these data, we maximized the likelihood of the
LN–LN and EXP–LN models, as well as that of a relaxed LN–

LN model, which allowed each regulatory state to have its own
log-SD (σ1 and σ2). The three estimates were compared by
using the Bayesian information criterion (BIC) score to calcu-

late the quality of the fit relative to the number of inferred
parameters (SI Appendix, Table S1). The best overall estimate
was the mixture model that parameterized two distinct regu-
latory states with the lowest BIC score.
For the 10-cell measurements of SOD2, we found that the LN–

LN mixture was slightly preferred over the EXP–LN mixture
(Fig. 2F, Right and SI Appendix, Table S1). The inability to dis-
criminate clearly between these two models was likely caused by
the basal regulatory state, which could be described as an ex-
ponential distribution (λ = 46) or a lognormal distribution with
a very small log-mean (μ2 = –4.1) given the sampling data. Re-
gardless, the two models predicted similar SOD2 expression
frequencies among ECM-attached cells: 23% (13–33%) for the
LN–LN mixture vs. 19% (12–27%) for the EXP–LN mixture. To
determine the accuracy of this shared prediction, we directly
measured F in 3D spheroids by RNA FISH (Fig. 2G). Scoring
individual cells with high SOD2 fluorescence intensity, we calcu-
lated an expression frequency of ∼26%. This measurement closely
agreed with the inferred parameter of the LN–LN mixture (the
better-scoring model; Fig. 2H and SI Appendix, Table S1) and
lay within the estimated confidence interval (CI) of the EXP–LN
mixture. By resampling the 10-cell SOD2 data, we found that
at least 50 observations were required to arrive at an accurate
result (SI Appendix, Fig. S3C), confirming our earlier esti-
mates using simulated data (SI Appendix, Fig. S3 A and B).
The SOD2 parameterization suggested that maximum-likelihood
inference could correctly extract single-cell information from
10-cell sampling data.

Maximum-Likelihood Inference of Coordinated Stochastic Transcrip-
tional Profiles. Programs of gene expression are often controlled
by common upstream factors that enforce the regulatory state.
We reasoned that coordinated single-cell gene programs would
be the product of an overarching regulatory heterogeneity charac-
terized by a shared F. If true, then it should be possible to es-
timate the expression frequency more confidently and with fewer
samples by extending maximum-likelihood inference to gene
clusters with coordinated 10-cell fluctuations.
We extended the approach as follows (Fig. 3A). First, each

gene within the cluster was assigned its own μ1 and μ2 (or μ and λ
for the EXP–LNmixture) to account for gene-to-gene differences
in expression level and detection sensitivity. Next, we assumed
that the genes within a cluster share a common F and σ (or F, σ1,
and σ2 in the relaxed LN–LN mixture), implying a shared mech-
anism of regulation (39, 40). Therefore, each mixture model of
a cluster of g genes involved 2g+ 2 or 2g+ 3 parameters. Even for
small gene programs (g≤ 10), this parameter search space was too
large for nonconvex optimization methods to maximize the global
likelihood function quickly (Methods). To increase the speed and
efficiency of estimation, the cluster was broken down into smaller
four-gene subgroups to infer log-means for each gene in the
subgroup together with local estimates of F, σ , and λ (steps 1 and
2, Fig. 3A). After log-means were locally estimated, the remaining
parameters were globally inferred by remaximizing the likelihood
function for the entire gene cluster while retaining the local gene-
specific estimates of μ1 and μ2 (LN–LN mixture) or μ (EXP–LN
mixture) (steps 3 and 4, Fig. 3A). As before, selection of the LN–

LN, relaxed LN–LN, and EXP–LN mixture model was made
according to the lowest BIC score (SI Appendix, Table S1). This
revised formulation of maximum-likelihood inference enabled
accurate and confident estimates of the expression frequency
while requiring only approximately one-third of the sample size
(SI Appendix, Fig. S6).
We tested our extension of maximum-likelihood inference by

extracting from an earlier study two coexpression clusters that were
completely uncharacterized (27) (SI Appendix, Fig. S7). These
clusters contained one to two dozen genes with strongly co-
ordinated expression fluctuations across 16 samples of 10 ECM-

Bajikar et al. PNAS | Published online January 21, 2014 | E629

SY
ST

EM
S
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1311647111/-/DCSupplemental/sapp.pdf


attached cells, but the patterns of fluctuation were markedly dif-
ferent (Fig. 3 B and C). Accordingly, when we inferred the
parameters for the two clusters, the model predicted two very
different expression frequencies. The first “infrequent” gene clus-
ter was predicted to be up-regulated in∼25%of the ECM-attached
population (Fig. 3B). The LN–LN mixture model was preferred
over the EXP–LN or relaxed LN–LNmixtures (SI Appendix, Table
S1), although all three models converged upon similar values for F.
By contrast, the expression frequency of the “rare” second cluster
was predicted to be ∼10% by the LN–LN mixture (Fig. 3C), which
was the best-scoring model of the three (SI Appendix, Table S1).
Our parameterization of the two clusters emphasizes themosaicked
regulatory states that evolve even in a very simple model of tissue
architecture (27, 38, 41).
To test whether the predicted values of F were accurate within

the coexpressed clusters, we designed and validated riboprobes
for four or five genes in each cluster and quantified their fre-
quency of high expression by RNA FISH (SI Appendix, Fig. S8 A
and B). We found that transcripts in the infrequent expression
cluster were strongly expressed in three to five ECM-attached
cells per acinus cross-section (Fig. 3 D and F and SI Appendix,
Fig. S9A), yielding an average expression frequency of ∼25%.
Conversely, genes in the rare expression cluster (Fig. 3 E and G

and SI Appendix, Fig. S9B) were strongly expressed in one or two
ECM-attached cells per acinus cross-section, consistent with
an expression frequency of ∼10%. The expression frequencies
of both clusters closely agreed with the inferred F parameters,
suggesting that our extended inference approach was effective
and accurate.
We evaluated the estimates of expression frequency more

broadly by selecting four additional clusters from the same
dataset for parameterization (SI Appendix, Fig. S7) (27). The
clusters showed distinct fluctuation patterns and consequently
led to F estimates that ranged from less than 5% to greater than
25% (Fig. 4 A–D, Upper). We validated riboprobes for a repre-
sentative gene in each cluster and scored the expression fre-
quency (Fig. 4 A–D, Lower and SI Appendix, Fig. S8C). Together
with the earlier clusters, we observed a strong correlation be-
tween the expression frequency inferred computationally and the
manual counts obtained by RNA FISH (R = 0.89, Fig. 4E). The
accuracy of the manual counts was further confirmed by corre-
lation with an expression-frequency index derived from digital
image analysis of segmented acini (Methods and SI Appendix,
Fig. S10). Taken together, these data indicate that maximum-
likelihood inference accurately infers single-cell expression
frequencies from cluster-wide patterns of 10-cell fluctuations.
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Fig. 3. Maximum-likelihood inference accurately
estimates subpopulation frequencies from 10-cell
gene-expression clusters. (A) The maximum-likeli-
hood approach was modified for gene clusters with
coordinated 10-cell sampling fluctuations as fol-
lows. (1) Global gene measurements are grouped
and assumed to share a common F and σ. (2) An
expression cluster of interest is divided into four-
gene subsets for the first round of parameter esti-
mation of μ1 and μ2 for each gene in the subset. (3)
A maximum-likelihood estimator is derived based
on an expanded version of the model in Fig. 2A,
where each gene k in a group of genes, {1, . . ., g},
has its own μðkÞ1 and μðkÞ2 . The likelihood function is
maximized to infer μðkÞ1 and μðkÞ2 locally. (4) The
likelihood function is then remaximized for the
entire dataset keeping the log-mean estimates (μ̂ðkÞ1
and μ̂ðkÞ2 ) fixed to provide clusterwide estimates of F
and σ. Note that each gene has a different range of
gene expression to reflect differences in overall
expression levels, which are captured in the model
predictions as well. (B–G) Prediction and valida-
tion of expression frequency for heterogeneously
expressed gene programs during breast-epithelial
acinar morphogenesis. (B and C) Heat map of clus-
tered 10-cell transcriptional profiles (27). Gray labels
indicate the 10-cell sample numbers from Fig. 3B.
Maximum-likelihood estimate of expression fre-
quency (red box) is shown with 95% CI in brackets
for each cluster. Note that the two gene clusters are
predicted to have substantially different frequencies
of high expression based on their 10-cell sampling
fluctuations. (D and E) Representative RNA FISH
images of transcripts from (D) the infrequent cluster
and (E) the rare cluster. Images are shown with
DRAQ5 counterstain to visualize nuclei. Arrows
show ECM-attached cells with high expression.
(Scale bar, 10 μm.) (F and G) Percentage of cells
showing high expression by RNA FISH (gray bar) of
a subset of genes in each cluster compared with the
maximum-likelihood estimate of F (white dashed
line). RNA FISH data are shown as the mean per-
centage with 95% CI of ECM-attached cells showing
high expression. Maximum-likelihood predictions
are shown as the parameter point estimate (white)
with 95% CI (red).
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Identification of a Peculiar, Very Rare Transcriptional Regulatory
State. Maximum-likelihood inference provides critical informa-
tion about the state distribution and expression frequency of any
gene cluster identified by stochastic profiling to be heterogeneously
regulated. As a proof-of-concept application, we screened gene
clusters from the 3D profiling data (27) to identify unusual reg-
ulatory states that warranted follow-up study. One cluster was
notable among those surveyed because the predicted expression
frequency of the high regulatory state was very rare (F = 2.3%).
The very rare cluster was also distinguished by its strong concor-
dance with the relaxed LN–LN mixture compared with the alter-
native mixture models (SI Appendix, Table S1). Moreover, the log-
mean of the low regulatory state was extremely low (μ2 ∼–3.3),
suggesting that the cluster was at or below detection in the
population. Within this coexpression cluster, we recognized several
genes that were strongly associated with breast cancer, including
the breast cancer susceptibility gene BRIP1 [alternatively called
FANCJ or BACH1 (42)], the breast cancer-associated gene IRF2
(43), and the zinc-finger gene HIVEP2, which is frequently down-
regulated or mutated in breast cancer (44, 45) (Fig. 5A). We
speculated that genes within the cluster were tightly regulated so
that they could be activated in a restricted cellular context where
their expression was critical.
Among the genes in the very rare cluster, we were most in-

trigued by the phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit δ isoform (PIK3CD alternatively called p110δ).
Three-dimensional breast epithelial cultures abundantly express
two other PI3K isoforms, PIK3CA and PIK3CB (Fig. 5B and
SI Appendix, Fig. S11), and it is generally thought that any PI3K
isoform can support proliferation and survival (46). Never-
theless, we found that the low-copy expression of PIK3CD was
transcriptionally up-regulated with delayed kinetics compared
with the other PI3K isoforms (Fig. 5B), suggesting a unique
regulatory mechanism. When PIK3CD abundance was visualized
in single cells by RNA FISH, we observed a striking pattern.
Most cells lacked PIK3CD or expressed it at very low levels;
however, we consistently identified a sporadic subpopulation of
cells (roughly one or two cells every other acinus cross-section)
with high PIK3CD expression (Fig. 5C and SI Appendix, Fig.
S8D). The overall frequency of cells in the PIK3CDhi state was
somewhat higher than the estimates of F for the cluster, but the
inferred frequency agreed with the very rare expression of two
other members of the cluster, FEM1A and IRF2 (SI Appendix,

Fig. S12). Together, these observations pointed to an acute (and
likely transient) regulatory event triggering the selective in-
duction of cluster genes in single ECM-attached cells.
We next asked whether PIK3CD was specifically important for

normal acinar morphogenesis. To eliminate the very rare PIK3CDhi

subpopulation, we perturbed p110δ by two independent methods:
RNA interference and the p110δ-specific small-molecule inhibitor,
IC87114 (ref. 47, Fig. 5D, and SI Appendix, Fig. S13). When
shPIK3CD cells were placed in 3D culture, we found that acini were
larger and distorted, suggesting a defect in proliferation arrest.
Using phosphorylated Rb (pRb) as a proliferative marker, we ob-
served that shPIK3CD acini were still cycling after 15 d of 3D
culture when shGFP control acini had quiesced (Fig. 5 E and F).
Furthermore, when control cells were cultured with IC87114,
we observed sustained proliferation that phenocopied PIK3CD
knockdown (Fig. 5 E and F). These data together indicate that
p110δ activity stemming from the very rare PIK3CDhi regulatory
state is critical for normal proliferation arrest of breast epithelia in
3D culture. More broadly, our results with the very rare cluster il-
lustrate how maximum-likelihood inference can be used to hone in
on gene programs with an expression frequency or regulatory pat-
tern of interest.

Comparison with Alternative Deconvolution Methods.We compared
the performance of our method to other computational ap-
proaches for deconvolving mixed populations (48–50). The al-
ternative methods invoked different mathematical formalisms—
Bayesian statistics (48), nonnegative matrix factorization (49),
and principal component analysis (50)—and none had previously
been applied to transcriptional profiles of small samples. Using
the sampling fluctuations within the infrequent, rare, and very
rare clusters, we attempted estimates of expression frequency
and found that all were substantially less accurate than our ap-
proach (Table 1). The comparison illustrates that our method
is uniquely effective at parameterizing transcriptional regulatory
states within cell populations.

Direct Comparison of Single-Cell and 10-Cell Sampling Strategies.
Maximum-likelihood inference reconstructs the single-cell ex-
pression distribution without the need to measure single cells.
Ignoring the technical challenges of global single-cell methods
(17, 20, 21, 27), it should also be theoretically possible to rec-
reate the complete expression distribution by measuring many
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individual cells. However, it was not clear whether single-cell
profiling would be as effective as stochastic profiling when
reconstructing from a limited number of 1- or 10-cell samples.
We anticipated that low expression frequencies would be par-
ticularly difficult for single-cell methods to characterize because
of uncertainty in reliably capturing the rare regulatory state.
To compare single-cell profiling with stochastic profiling, we

repeatedly simulated 1- or 10-cell measurements of gene clusters
with similar characteristics to those previously examined (Figs. 3
F and G and 5A and Methods). The three 12-gene clusters varied
in their expression fraction—infrequent (F = 25%), rare (F =
10%), and very rare (F = 5%)—and the very rare cluster was
simulated as an LN–LN mixture or an EXP–LN mixture. When
the number of observations was limited to 16 (as in the actual
data), we found that maximum-likelihood inference provided su-
perior estimates of F when using 10-cell groups (Table 2). Esti-
mates from simulated observations of 16 single cells showed
substantially higher mean squared error (MSE) for all gene clusters
compared with 16 10-cell observations. The larger MSE of one-cell
estimates was caused by increases in both the bias and variance of
the estimate, whose magnitudes depended on the cluster charac-
teristics and mixture model. These computational simulations
provide an upper bound on performance, because experimental
error from actual single-cell experiments (17, 19) should blur the
data much more. By collecting a greater total number of cells
when observations are limited, maximum-likelihood inference
of stochastic 10-cell profiles provides a more accurate picture
of the single-cell distribution than single-cell profiles.

Discussion
Maximum-likelihood inference of mixed regulatory states en-
ables accurate single-cell expression characteristics to be gleaned
from 10-cell measurements. For individual genes, the model
requires a large number of samples to obtain precise estimates,
and its advantage over explicit single-cell methods is debatable.
However, by extending the approach to coregulated gene clusters
(27, 39, 40), we can infer expression frequencies much more
robustly than single-cell methods when the extent of sampling is
limited. In fact, after identifying heterogeneously regulated genes
at the transcriptome-wide level by stochastic profiling (20, 27),
global inferences are achievable with the same number of ran-
dom 10-cell samples. Maximum-likelihood inference can thus be
immediately incorporated into stochastic profiling studies that
seek a further understanding of single-cell regulation (20, 39).
Multiple studies have demonstrated that heterogeneous phe-

notypes are primed by earlier regulatory nonuniformities in gene
expression (1–7). However, to date, these discoveries have relied
on either predefined intracellular circuits or a mix of screening
and serendipity. By combining stochastic profiling with maximum-
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Fig. 5. A unique, very rare regulatory state is marked by PIK3CD, which is
important for normal suppression of proliferation during breast-epithelial
acinar morphogenesis. (A) Heat map of clustered 10-cell transcriptional
profiles (27). Gray labels indicate the 10-cell sample numbers from Fig. 3B.
Maximum-likelihood estimate of expression frequency (red box) is shown
with 95% CI in brackets. (B) PIK3CD expression is up-regulated during 3D
morphogenesis. Relative PIK3CA (red), PIK3CB (blue), and PIK3CD (black)

expression was measured by qPCR at various time points during 3D mor-
phogenesis. Data are shown as mean expression ± SEM normalized to the
day-4 expression of PIK3CD of three independent experiments. PIK3CG was
not expressed in MCF10A-5E cells (SI Appendix, Fig. S11). (C) Representative
RNA FISH image of PIK3CD expression is shown with DRAQ5 counterstain to
visualize nuclei. Arrow shows ECM-attached cells with high expression of
PIK3CD. (Scale bar, 20 μm.) (D) Knockdown of p110δ by shRNA. MCF10A-5E
cells were infected with either shGFP (lane 1) or with one of two shRNA
sequences targeting p110δ (lanes 2 and 3). Lysates were analyzed by immu-
noblotting with tubulin used as the loading control. Densitometry of p110δ
abundance is shown relative to the shGFP control. (E and F) Disruption of
normal PIK3CD regulation elicits a hyperproliferative phenotype in 3D culture.
shGFP, shPIK3CD #1, and shPIK3CD #2 cells or shGFP cells + 20 μM p110δ in-
hibitor IC87114 were fixed at day 15 of 3D morphogenesis, stained for pRb
(red), and analyzed by confocal immunofluorescence. Cells were counter-
stained with DRAQ5 (blue) to label nuclei. Arrows in F highlight pRb-positive
cells. (Scale bars, 20 μm.) Quantification of proliferating acini in each condition
is shown in E as the mean ± SEM of eight independent experiments.
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likelihood inference, one can now examine the single-cell tran-
scriptome for expression frequencies or other regulatory patterns
that correlate with a downstream phenotype of interest. Such
programs are most likely to contain one or more triggers of the
heterogeneous phenotype. For example, our follow-on work with
PIK3CD suggests that it may enforce a quiescent phenotype in a
subpopulation of cells that would otherwise enter the cell cycle.
One day, it may be possible to measure the genome, tran-

scriptome, and proteome accurately and cheaply in single cells.
While progress is being made toward this goal (9, 16, 17, 35, 51),
in the meantime it is valuable to develop alternative methods
with less-stringent sample requirements. Our study shows that
a surprising amount of quantitative single-cell information can
be deconvolved mathematically from measurements with 10-fold
more starting material. The “average” cell might indeed be a
myth (52), but that does not mean that small-sample averages of
cells cannot point to the truth.

Methods
Single-Cell Model of Regulated Gene Expression. Distributions of transcripts
per cell were generated under the steady-state approximation as previously
described (30, 31). The basal lognormal regulatory state (Fig. 1A, blue) was
defined with the following model parameters: kbinding = 5, kunbinding = 10,
kelongation = 50, and kdegradation = 1.

The exponential regulatory state (Fig. 1B, blue) was defined with the fol-
lowing model parameters: kbinding = 0.5, kunbinding = 10, kelongation = 50, and
kdegradation = 1. Basal regulatory states were perturbed by increasing kbinding by
10-fold (lognormal) or 20-fold (exponential), decreasing kdegradation by 3.3-fold
(lognormal) or fivefold (exponential), or both. Probability densities were
compared with the lognormal and exponential test distributions by in-
tegrating over integer copy numbers to generate a representative observation

set. Observations and distributions were compared with the qqplot function in
MATLAB (The MathWorks).

Simulations of Random 10-Cell Samples. Simulated 10-cell expression profiles
were generated inMATLABwith the statistics toolbox or in R. The LN–LNmodel
assumes a binomial distribution for the two regulatory states and a lognormal
distribution of the transcripts within each state. For a random n-cell sampling
(here n = 10), the number of cells drawn from the high regulatory state (h) was
specified by a binomial distribution with parameters n and F. Next, h expres-
sion measurements were randomly drawn from a lognormal distribution with
log-mean μ1 and log-SD σ. The remaining n – h expression measurements were
also drawn from a lognormal distribution with log-mean μ2 and log-SD σ. The
sum of n measurements constituted one stochastic n-cell sample. In the EXP–
LN model, transcripts from the basal regulatory state were drawn from an
exponential distribution with rate parameter λ. This procedure was repeated
for the indicated number of random samples.

Derivation of LN–LN Maximum Likelihood Estimator. To derive the LN–LN
maximum-likelihood estimator, we began with a mixed population of cells
occupying one of two regulatory states. The basal regulatory state expresses
a transcript (g) at a low level with log-mean μðgÞ2 and log-SD σ. The induced
regulatory state expresses the transcript at a higher level with log-mean μðgÞ1
and log-SD σ. The probability of drawing a single cell from the high regu-
latory state is characterized by the parameter F.

According to the two-state model, the single-cell expression for transcript
g follows the pdf:

f ðgÞmixture ¼ F · f ðgÞ1 þ ð1− FÞ · f ðgÞ2 , [1]

where f ðgÞ1 and f ðgÞ2 are defined as

f ðgÞv ðxÞ ¼ 1ffiffiffiffiffiffi
2π

p
σx

·exp −

h
logðxÞ− μðgÞv

i2
2σ2

8><
>:

9>=
>;  for  x > 0  and  v ∈ f1,2g: [2]

The i th random sample of transcript g, Y ðgÞ
i , is the sum of n independent

single-cell expression measurements (here, n = 10):

Y ðgÞ
i ¼

Xn
j¼1

XðgÞ
ij , [3]

where XðgÞ
ij is the expression of transcript g in the j th cell of the i th random

sample. Together, the random sample Y ðgÞ
i describing the n-cell mixture has

the pdf

fn
�
yjF,  μðgÞ1 ,  μðgÞ2 ,  σ

�
¼

Xn
j¼0

�
n
j

�
  F j   ð1− FÞn−j f ðgÞðj,n− jÞðyÞ: [4]

�
n
j

�
    Fj   ð1−FÞn−j represents the binomial selection of cells from the basal or

induced regulatory states with probabilities F and 1 – F, respectively. f ðgÞðj,n−jÞ is

the density of a sum Z1 þ . . .þ Zn of independent random variables repre-
senting the n-cell draw from the mixture model:

Zc ~

8<
:

LN
�
μðgÞ1 , σ2

�
   if  1  ≤  c  ≤  j

LN
�
μðgÞ2 , σ2

�
  if  j<   c  ≤n

: [5]

The pdf for the sum of lognormally distributed random variables was ap-
proximated as previously described (53).

Table 1. Expression frequency estimates from alternative deconvolution methods

Stochastic-profiling cluster

Method Infrequent Rare Very rare

Erkkilä et al. (48)* 20% ∼0%† ∼0%†

Repsilber et al. (49) 22% 60% 25%
Tolliver et al. (50) 18, 40, 23, 19%‡ 59, 7.2, 11, 22% 30, 21, 19, 30%
Maximum-likelihood inference 25% [24%, 27%]§ 10% [8.6%, 12%] 2.3% [1.5%, 3.3%]
RNA FISH 25% [24%, 26%]§ 10% [9.4%, 12%] 5.6% [4.7%, 7.3%]

*Bayesian priors were set to 25%, 10%, and 5% for the infrequent, rare, and very rare clusters, respectively.
†The estimated frequency was 2 × 10−12%.
‡A minimum of four subpopulations must be estimated with this deconvolution method.
§Bracket denotes 95% CI.

Table 2. Expression frequency estimates from repeated
observations of 1 vs. 10 cells

Maximum-likelihood estimate of F

True F Mixture Cells MSE × 10−2 Bias × 10−2 Variance × 10−2

25%* LN–LN 1 4.32 −20.76 0.01
10 0.30 −3.40 0.19

10%† LN–LN 1 2.35 −2.83 2.27
10 0.19 1.37 0.17

5%‡ LN–LN 1 19.73 29.09 11.27
10 0.16 1.73 0.13

5%§ EXP–LN 1 57.18 75.09 0.79
10 4.50 0.80 1.77

MSE, bias, and variance were calculated across 100 simulations of 16
observations. F is defined from 0 to 100 × 10−2. MSE = bias2 + variance.
*Parameter set: μ1 = [0.7–2.0], μ2 = [-1.5 – -0.3], σ = 0.5.
†Parameter set: μ1 = [-1.5 – -0.2], μ2 = [-3.8 – -2.0], σ = 0.5.
‡Parameter set: μ1 = [-2.0 – -0.9], μ2 = [–3.8 – -3.1], σ = 0.5.
§Parameter set: μ1 = [-0.9 – -2.0], λ = [11–145], σ = 2.3.
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When expanded to a cluster of m transcripts, the log-likelihood function
for the model parameters given k random n-cell samples is

ℓ
�
F, μ1 , μ2 , σ

� ¼Xm
g¼1

Xk
i¼1

log
h
fn
�
yðgÞi jF, μðgÞ1 , μðgÞ2 , σ

�i
, [6]

where μ1 and μ2 are vectors containing the transcript-specific log-means for
the two regulatory states: μ1 ¼ ðμð1Þ1 ,  . . .  , μðmÞ

1 Þ and μ2 ¼ ðμð1Þ2 ,  . . .  , μðmÞ
2 Þ.

The log-likelihood functions assume that the expression levels of each
transcript are independent as defined by the specific mixture model and
F. Derivation of all three maximum-likelihood estimators is included in SI
Appendix, Methods.

Maximum-Likelihood Parameter Estimation and Model Selection. The derived
log-likelihood functions in Eqs. 12–14 of SI Appendix, Methods are maxi-
mized by the most likely combination of parameters for the data Y ðgÞ

i .
To estimate the parameters for the LN–LN mixtures, we required that
μð1Þ1 > μð1Þ2 . This constraint ensured identifiability because ℓðF, μ1 , μ2 , σÞ ¼
ℓð1− F, μ2 , μ1 , σÞ. We also transformed F with the logit function and λ and
σ with the logarithm function to enable the use of faster, unconstrained
optimization algorithms.

Because the log-likelihood function was multimodal, it precluded the
straightforward use of gradient-based approaches to find globally optimal
parameter combinations. We solved the high-dimensional nonconvex global
optimization problemby combining genetic and simplex algorithms. First, the
log-likelihood function was computed at randomly drawn parameter com-
binations to identify high-likelihood regions in parameter space at compu-
tationally low cost. In the regions of highest log likelihood, we then used the
Nelder–Mead algorithm (54) to identify local maxima of the likelihood
function. We further localized the global optimum by repeating a random
search of parameter space around the optimum identified by the Nelder–
Mead algorithm. The resulting high-likelihood regions were used to seed
another Nelder–Mead optimization. The iterations of random search and
Nelder–Mead optimization continued until convergence.

For estimating model parameters from transcriptional clusters, we first
considered smaller subgroups of the cluster of interest. The best balance of
computational time and stability of the resulting parameter estimates was
achieved with four-gene subgroups (SI Appendix, Fig. S6). The log likelihood
of each subgroup was optimized by the algorithm described above to
identify the most-likely parameters for the transcripts in the subgroup.
Based on the subgroup estimate, we then kept fixed μ1 and μ2 (for the
LN–LN and relaxed LN–LN models) or μ (for the EXP–LN model) and globally
inferred F and σ (or F, σ1, and σ2 for the relaxed LN–LN model, or λ, F, and σ
for the EXP–LN model) by using the optimization algorithm described above.
To confirm that the global optimum for each model had been identified, we
pursued a constrained optimization in parallel, which required that the two
regulatory states be sufficiently distinct from each other. Specifically, the
density of the high regulatory state was constrained to be greater than the
low regulatory state in the domain between the mode of the high state and
the largest observation in the dataset. The likelihoods of the constrained
and unconstrained optimizations were compared, and the higher likelihood
inference was selected as the best parameterization for that mixture model.
Last, the three mixture models were compared according to their BIC score:

BIC ¼ − 2ℓ
�
θ̂
�þ c logðmkÞ, [7]

where θ̂ is the vector of inferred parameters, c is the number of inferred
parameters in the model, m is the number of transcripts in the cluster, and
k is the number of n-cell random samples for each transcript. The best
model predicted two distinct regulatory states with the lowest BIC score
(SI Appendix, Table S1).

Approximate 95% CIs for the best model were estimated by numerically
computing the inverse Hessian matrix of the negative log-likelihood function
evaluated at the optimal parameter combination. Each i th diagonal element (di)
of this matrix leads to the confidence in the i th inferred parameter (θ̂i) as follows:

95%CIi¼ θ̂i ± 1:96
ffiffiffiffiffi
di

p
: [8]

Source code for the maximum-likelihood parameter estimation can be
found at http://hmgu.de/icb/StochasticProfiling_ML.

Inference Comparisons of 1- and 10-Cell Random Samples. We simulated
measurements for various gene clusters as described above with either n = 1
or n = 10, m = 12, and k = 16 with the mixture model and F specified in
Table 1. Values of μ1, μ2, λ, μ, and σ were drawn randomly from the individual

transcripts comprising the inferences of Figs. 3 F and G and 4A. Model
parameters were inferred as described above with the correct value of n in
SI Appendix, Eqs. 12 and 14. The inference procedure was repeated 100 times,
yielding estimates θ̂

j
i ( j = 1, 2, ... 100) for each true parameter θi . This gives the

following Monte Carlo estimates of bias, variance, and mean-squared error:

Bias
�
θ̂i
� ¼ 1

100

X100
j¼1

θ̂
j
i − θi

Var
�
θ̂i
� ¼ 1

99

X100
j¼1

(
θ̂
j
i − θi

)2

MSE
�
θ̂i
� ¼ Bias

�
θ̂i
�2 þ Var

�
θ̂i
�
  :

[9]

Cell Lines and Culture Conditions. Cell lines and 3D culture conditions are
described in SI Appendix, Methods.

Stochastic Sampling. Stochastic samples of SOD2 were collected as previously
described (20, 27, 39). Briefly, 3D cultures were snap-frozen and sectioned at
day 10 of morphogenesis. Random 10-cell samples of ECM-attached acinar
cells were achieved by laser-capture microdissection from cryosections. The
RNA collected from these samples was amplified with a custom small-sample
mRNA amplification procedure and quantified by qPCR or microarray (20,
27, 39). Microarray-based expression clusters were identified based on cor-
related expression fluctuations as described (27, 39).

Image Aquisition and Processing. RNA FISH, immunofluorescence, confocal
microscopy, manual expression-frequency scoring, and image processing are
described in SI Appendix, Methods.

Digital Scoring of Expression-Frequency Index. Multicolor RNA FISH images
were acquired with wheat germ agglutinin (WGA), the riboprobe of in-
terest, and the loading-control riboprobes as described in SI Appendix,
Methods. Individual ECM-attached cells were manually segmented in ImageJ
using the WGA, riboprobe, and loading-control stains to determine cell
boundaries. The segmented regions of interest (ROIs) were saved as a single
ZIP file in ImageJ. The pixels within each ROI were extracted and compared
against a null pixel distribution composed of a random set of pixels from
segmented cells within the same image. The 85th–95th percentiles of the
cell ROI and the null distribution were compared after bootstrapping each
distribution 300 times. A cell was scored in the high regulatory state if the
bootstrapped 90% CI of the cell ROI was consistently greater than the boot-
strapped 90% CI of the null distribution when evaluated from the 85th–95th
percentile of pixels. Performing the same analysis on the loading-control
riboprobes showed that fewer than 1% of all cells segmented showed
detectable differences in total RNA expression. Therefore, the expression-
frequency index for a field of view was quantified as the number of cells
detected in the high regulatory state divided by the total number of cells
segmented. At least 18 fields of view with at least 10 cells per field were
acquired for each gene analyzed. Source code for image analysis can be
found at http://hmgu.de/icb/StochasticProfiling_ML.

shRNA Cloning and Lentiviral RNAi. shRNA sequences against PIK3CD were
cloned based on the targeting sequences suggested by the RNAi Consor-
tium, except that the XhoI restriction site in the shRNA loop was changed
to a PstI site for easier diagnosis during cloning. shGFP control was used as
previously described (55). Primers were annealed at 95 °C in annealing
buffer (10 mM Tris·HCl, 100 mM NaCl, and 1 mM EDTA) for 5 min on a
thermocycler and cooled slowly to room temperature by unplugging the
instrument. Annealed primers were phosphorylated in vitro with T4 poly-
nucleotide kinase (New England Biolabs) and then cloned into pLKO.1 puro
(56) that had been digested with EcoRI and AgeI. Lentiviruses were pack-
aged and transduced into MCF10A-5E cells as previously described (39).
Stable lines were screened for knockdown efficiency by immunoblotting.

Molecular Biology. Riboprobe synthesis, qPCR, immunoblotting, and valida-
tion of the IC87114 inhibitor are described in SI Appendix, Methods.
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