

Integrating Genetic, Transcriptional, and Functional Analyses to Identify Five Novel Genes for Atrial Fibrillation

Moritz F. Sinner, Nathan R. Tucker, Kathryn L. Lunetta, Kouichi Ozaki, J. Gustav Smith, Stella Trompet, Joshua C. Bis, Honghuang Lin, Mina K. Chung, Jonas B. Nielsen, Steven A. Lubitz, Bouwe P. Krijthe, Jared W. Magnani, Jiangchuan Ye, Michael H. Gollob, Tatsuhiko Tsunoda, Martina Müller-Nurasyid, Peter Lichtner, Annette Peters, Elena Dolmatova, Michiaki Kubo, Jonathan D. Smith, Bruce M. Psaty, Nicholas L. Smith, J. Wouter Jukema, Daniel I. Chasman, Christine M. Albert, Yusuke Ebana, Tetsushi Furukawa, Peter MacFarlane, Tamara B. Harris, Dawood Darbar, Marcus Dörr, Anders G. Holst, Jesper H. Svendsen, Albert Hofman, Andre Uitterlinden, Vilmundur Gudnason, Mitsuaki Isobe, Rainer Malik, Martin Dichgans, Jonathan Rosand, David R. Van Wagoner, METASTROKE Consortium, AFGen Consortium, Emelia J. Benjamin, David J. Milan, Olle Melander, Susan Heckbert, Ian Ford, Yongmei Liu, John Barnard, Morten S. Olesen, Bruno H.C. Stricker, Toshihiro Tanaka, Stefan Kääb and Patrick T. Ellinor

Circulation. published online August 14, 2014;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circ.ahajournals.org/content/early/2014/08/13/CIRCULATIONAHA.114.009892

Data Supplement (unedited) at: http://circ.ahajournals.org/content/suppl/2014/08/14/CIRCULATIONAHA.114.009892.DC1.html

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at: http://circ.ahajournals.org//subscriptions/

Integrating Genetic, Transcriptional, and Functional Analyses to Identify Five Novel Genes for Atrial Fibrillation

Running title: Sinner et al.; Five Novel Loci for Atrial Fibrillation

Moritz F. Sinner, MD, MPH^{1*}; Nathan R. Tucker, PhD^{2*}; Kathryn L. Lunetta, PhD^{3,4*}; Kouichi Ozaki, PhD^{5*}; J. Gustav Smith, MD, PhD^{6,7*}; Stella Trompet, PhD^{8*}; Joshua C. Bis, PhD^{9,10*}; Honghuang Lin, PhD^{4,11*}; Mina K. Chung, MD^{12,13*}; Jonas B. Nielsen, MD^{14,15*}; Steven A. Lubitz, MD, MPH^{2,16*}; Bouwe P. Krijthe, PhD^{17,18*}; Jared W. Magnani, MD^{19*}; Jiangchuan Ye, MD, PhD²; Michael H. Gollob, MD²⁰; Tatsuhiko Tsunoda, PhD²¹; Martina Müller-Nurasyid, PhD^{1,22,23}; Peter Lichtner, PhD²⁴; Annette Peters, PhD^{25,26}; Elena Dolmatova, MD²; Michiaki Kubo, MD, PhD²⁷; Jonathan D. Smith, PhD^{12,28}; Bruce M. Psaty, MD, PhD^{9,10,29,30,31}; Nicholas L. Smith, PhD^{9,29,30,32}; J. Wouter Jukema, MD, PhD^{8,33}; Daniel I. Chasman, PhD³⁴; Christine M. Albert, MD, MPH^{34,35}; Yusuke Ebana, MD, PhD³⁶; Tetsushi Furukawa, MD, PhD³⁶, Peter MacFarlane, DSe³⁷; Tamara B. Harris, MD, MS³⁸; Dawood Darbar, MD³⁹; Marcus Dörr, MD⁴⁰; Anders G. Holst, MD, PhD^{14,15}; Jesper H. Svendsen, MD, DMSc^{14,15,41}; Albert Hofman, MD, PhD^{17,18}; Andre G. Uitterlinden, MD, PhD^{17,18,42}; Vilmundur Gudnason, MD^{43,44}; Mitsuaki Isobe, MD, PhD⁴⁵; Rainer Malik, PhD⁴⁶; Martin Dichgans, MD^{46,47}; Jonathan Rosand, MD, MSc^{48,49,50}; David R. Van Wagoner, PhD^{12,13}; METASTROKE Consortium; AFGen Consortium; Emelia J. Benjamin, MD, ScM^{4,19,51,52,**}; David J. Milan, MD^{2,16,**}; Olle Melander, MD, PhD^{55,**}; Susan R. Heckbert, MD, PhD^{9,29,30,**}; Ian Ford, PhD^{54,**}; Yongmei Liu, MD, PhD^{55,**}; John Barnard, PhD^{56,**}; Morten S. Olesen, MSc, PhD^{14,15,**}; Bruno H.C. Stricker, MB, PhD^{17,18,42,57,58,**}; Toshihiro Tanaka, MD, PhD^{5,59,**}; Stefan Kääb, MD, PhD^{1,25,**}; Patrick T. Ellinor, MD, PhD^{2,16,48**}

¹Dept of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians-University, Munich, Germany; ²Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA; ³Dept of Biostatistics, Boston University School of Public Health, Boston, MA; ⁴National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA; ⁵Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; ⁶Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA; ⁷Dept of Cardiology, Lund University, Lund, Sweden; ⁸Dept of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; ⁹Cardiovascular Health Research Unit, University of Washington, Seattle, WA; ¹⁰Dept of Medicine, University of Washington, Seattle, WA; ¹¹Computational Biomedicine Section, Dept of Medicine, Boston University School of Medicine, Boston, MA; ¹²Dept of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH; ¹³Dept of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; ¹⁴Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark; ¹⁵Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; ¹⁶Cardiac Arrhythmia Service, Masschusetts General Hospital, Boston, MA; ¹⁷Dept of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; ¹⁸Netherlands Consortium for Healthy Aging (NCHA), Netherlands; ¹⁹Cardiology Section, Dept of Medicine, Boston University School of Medicine, Boston, MA; ²⁰Arrhythmia Research Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; ²¹Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; ²²Institute of Genetic Epidemiology, Helmholtz Zentrum München -German Research Center for Environmental Health, Neuherberg, Germany; ²³Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany; ²⁴Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; ²⁵Deutsches Zentrum für Herz- Kreislaufforschung e.V. (DZHK), partner site

Munich Heart Alliance, Munich, Germany; ²⁶Institute of Epidemiology II, Helmholtz Zentrum München -German Research Center for Environmental Health, Neuherberg, Germany; ²⁷Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; ²⁸Dept of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; ²⁹ Group Health Research Institute, Group Helath Cooperative, Seattle, WA; ³⁰Dept of Epidemiology, University of Washington, Seattle, WA; ³¹Dept of Health Services, University of Washington, Seattle, WA; ³²Epidemiologic Research and Information Center of the Department of Veterans Affairs Office of Research and Development, Seattle, WA; ³³Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands; 34Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; ³⁵Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; ³⁶Dept of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; ³⁷Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK; ³⁸Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD; ³⁹Dept of Medicine, Vanderbilt University School of Medicine, Nashville, TN; ⁴⁰Dept of Internal Medicine B, Ernst Moritz Arndt University Greifswald, Greifswald, Germany; ⁴¹Dept of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; ⁴²Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands; ⁴³Icelandic Heart Association Research Institute, Kopavogur, Iceland; 44University of Iceland, Reykjavik, Iceland; 45Dept of Cardiovascular Medicine, Tokyo Medical and Dental University, Japan; ⁴⁶Institute for Stroke and Dementia Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany; ⁴⁷Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; ⁴⁸Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA; ⁴⁹Dept of Neurology, Massachusetts General Hospital, Boston, MA; ⁵⁰Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA; ⁵¹Dept of Epidemiology, Boston University School of Public Health, Boston, MA; ⁵²Preventive Medicine Section, Dept of Medicine, Boston University School of Medicine, Boston, MA; ⁵³Dept of Clinical Sciences, Lund University, Malmo, Sweden; ⁵⁴Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK; 55 Dept of Epidemiology & Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston Salem, NC; ⁵⁶Dept of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; ⁵⁷Inspectorate for Health Care, the Hague, The Netherlands; ⁵⁸Dept of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands; ⁵⁹Dept of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences,

Tokyo Medical and Dental University, Tokyo, Japan *Contributed equally; **Jointly supervised this work

Address for Correspondence:

Patrick T. Ellinor, MD, PhD Cardiovascular Research Center Massachusetts General Hospital 149 13th Street Charlestown, MA

Tel: +1-617-724-8729 Fax: 617-726-5806

E-mail: ellinor@mgh.harvard.edu

Journal Subject Codes: Basic science research:[132] Arrhythmias - basic studies, Basic science research:[130] Animal models of human disease, Etiology:[109] Clinical genetics, Stroke:[55] Genetics of stroke, Etiology:[5] Arrhythmias, clinical electrophysiology, drugs

Abstract

Background—Atrial fibrillation (AF) affects over 30 million individuals worldwide and is associated with an increased risk of stroke, heart failure, and death. AF is highly heritable, yet the genetic basis for the arrhythmia remains incompletely understood.

Methods and Results—To identify new AF-related genes, we utilized a multifaceted approach, combining large-scale genotyping in two ethnically distinct populations, cis-eQTL mapping, and functional validation. Four novel loci were identified in individuals of European descent near the genes NEURL (rs12415501, RR=1.18, 95%CI 1.13 - 1.23, p=6.5x10⁻¹⁶), GJA1 (rs13216675, RR=1.10, 95%CI 1.06 - 1.14, p=2.2x10⁻⁸), TBX5 (rs10507248, RR=1.12, 95%CI 1.08 - 1.16, p=5.7x10⁻¹¹), and CAND2 (rs4642101, RR=1.10, 95%CI 1.06 - 1.14, p=9.8x10⁻⁹). In Japanese, novel loci were identified near NEURL (rs6584555, RR=1.32, 95%CI 1.26-1.39, p=2.0x10⁻²⁵) and CUX2 (rs6490029, RR=1.12, 95%CI 1.08-1.16, p=3.9x10⁻⁹). The top SNPs or their proxies were identified as cis-eQTLs for the genes CAND2 (p=2.6x10⁻¹⁹), GJA1 (p=2.66x10⁻⁶), and TBX5 (p=1.36x10⁻⁰⁵). Knockdown of the zebrafish orthologs of NEURL and CAND2 resulted in prolongation of the atrial action potential duration (17% and 45%, respectively).

Conclusions—We have identified five novel loci for AF. Our results further expand the diversity of genetic pathways implicated in AF and provide novel molecular targets for future biological and pharmacological investigation.

Key words: atrial fibrillation, Genome Wide Association Study, genetics, association studies, genetics, knockout models, expression experiments, zebrafish

Introduction

Atrial fibrillation (AF) is a common arrhythmia with major public health implications due to its high prevalence, significant morbidity and considerable associated healthcare costs. Currently, there are nearly 3 million individuals in the United States and over 8.8 million individuals in Europe affected by AF. With an aging population, the prevalence of AF is expected to dramatically increase. In addition to conventional risk factors, a genetic predisposition has been shown to contribute to AF risk. Over the last several years, numerous AF associated mutations, candidate genes, and risk loci have been identified; however, much of the heritability of AF remains unexplained.

Genome wide association studies (GWAS) have identified thousands of genetic loci associated with a wide range of conditions and traits. Most studies employ a stringent threshold of genome wide significance which, while minimizing false-positive associations, often fails to identify many disease associated loci. Increasing the sample size of a GWAS will enhance power, but for many diseases large numbers of affected individuals are unavailable and genotyping remains expensive. Since we have a limited understanding of the pathophysiology of AF, genetic discovery provides an important tool to identify novel pathways and therapeutic targets for the arrhythmia. Given these challenges, we sought to identify AF susceptibility loci using a combination of genotyping, eQTL mapping, and functional validation.

Methods

Overall study design

We have used available genome-wide association datasets for AF in Europeans and Japanese, respectively, and have identified selected genetic variants for additional replication in independent

individuals. Following separate analyses in each replication cohort, we meta-analyzed the novel findings with the respective prior derivation stages. Variants that reached genome-wide significance for association with AF were subjected to additional analyses. First, we performed eQTL mapping in publicly available domains and left atrial tissue samples to identify gene expression changes depending on the identified genotypes. Second, we applied implicated loci pathway and gene enrichment analyses to better characterize novel candidate genes. Third, we performed candidate gene knockdown in an embryonic zebrafish model to test for morphologic and functional changes due to gene expression changes. Fourth, we conducted co-immunoprecipitation of candidate genes to inform protein-based interactions of our novel candidate genes. Last, we looked-up our association findings in a large consortial dataset of patients with ischemic stroke, a major consequence of AF. The study design including main results is summarized in Figure 1.

Study samples

Potential novel AF susceptibility signals in Europeans and Japanese were selected from a discovery sample consisting of cohorts with incident and prevalent AF, which has been previously described.⁴ To replicate variants from the discovery sample, we recruited additional samples and cohorts with available DNA for direct genotyping, or existing GWAS data for *in-silico* analysis. European replication samples included 6,691 independent AF cases and 17,144 controls. In Japanese, an additional 1,618 AF cases and 17,190 controls were analyzed; in a second replication stage, another 5,912 AF cases were added, totaling 8,373 AF cases. A detailed description of replication cohorts is available in the Supplemental Methods. Institutional Review Boards or Ethics Committees approved each contributing site. All participants provided written informed consent for participation in the cohorts, particularly allowing the analysis of DNA for genetic studies.

Selection of SNPs for replication

To identify SNPs for replication analyses in Europeans, we used the meta-analysis dataset from the GWAS performed by the AFGen consortium, ⁴ and performed several selection steps: (1) We selected all SNPs (n=195) that demonstrated suggestive associations with the arrhythmia as defined by a meta-analysis p-value <5x10⁻⁵. This significance threshold for SNP inclusion was based on the expected power given an estimated independent validation sample size. (2) We then subjected SNPs within 1 Mb of the published genome-wide significant loci to further selection: all SNPs with a linkage disequilibrium measure r²>0.1 with the published top-signals were omitted to avoid the inclusion of SNPs tagging the published results. (3) Finally we selected all SNPs with a minor allele frequency (MAF) \geq 5%. SNPs with a MAF \leq 5% were included if they were located in exons or the 3' untranslated region (3'UTR) of known genes. Finally, we selected 49 variants. Given the smaller initial sample size of the GWAS in Japanese, a more extensive list of SNPs was considered for replication based on genotyping platform availability and cost. Balancing our statistical power and genotyping considerations, we thus selected the top 500 SNPs at 350 independent loci from a prior meta-analysis for successive rounds of genotyping as described in the supplemental methods.⁴

Genotyping

Cohorts of European descent were directly genotyped using the iPlex matrix assisted laser desorption / ionization time-of-flight (MALDI-TOF) mass spectrometry technique based on Sequenom platforms. All genotypes were analyzed using dedicated calling software applying the manufacturer's recommendations. In Ottawa, TaqMan assays (Applied Biosystems, Inc., Foster City, CA) were used. For *in-silico* replication cohorts, genotypes from commercially available Affymetrix and Illumina genotyping arrays were used. Each cohort used genotyping results

imputed to >2.5 million HapMap SNPs based on the HapMap CEU panel. Cohort-specific details are described in **Supplemental Table 1**. For genotyping in Japanese cases, the multiplex PCR-based Invader Assay (Third Wave Technologies) was used according to the manufacturer's recommendations. Quality control for all genotyping results required a call rate \geq 99% in both cases and controls, and deviations from the Hardy-Weinberg equilibrium were accepted to a p-value $>1.0 \times 10^{-6}$ in controls.

Statistical methods in Europeans

For genetic associations, studies from the GWAS discovery stage were calculated as described earlier. In the replication cohorts, we used logistic regression models to assess the associations between SNPs and AF; to achieve higher statistical power in smaller replication cohorts, we combined prevalent and incident AF cases. All models were adjusted for age at DNA draw and sex. Cohorts with multiple study centers further adjusted for site. Associations derived from GWAS datasets were also adjusted for principle components to account for population structure. Each cohort contributing *in-silico* replicated SNPs used significant principle components specific to their dataset. We assumed an additive model of inheritance. Associations were restricted to SNPs selected according to the description above. Directly genotyped SNPs were used following standard genotyping quality control. For imputed SNPs from GWAS cohorts, we used the observed to expected variance of the imputed SNP genotype count (r²) to adjudicate the imputation quality, and we only included SNPs with r²≥0.3 (range 0-1; 0: random imputation; 1: perfect imputation).

We meta-analyzed study-specific association results using METAL, applying a fixed effects approach weighted for the inverse of variance. Association effects are presented as relative risks (RR). For significant SNPs, we also computed tests of heterogeneity among the

study effects; the p-values for the 4 SNPs in Table 1 were all >0.05 and thus not significant. We considered novel loci significantly associated when they exceeded the commonly accepted threshold of genome-wide significance at $p=5x10^{-8}$ after meta-analyzing our GWAS discovery cohorts with the replication cohorts. For novel loci, we drew regional association plots using LocusZoom considering up to ± 1000 kb around the respective topSNP.

Statistical methods in Japanese

The associations of all SNPs were assessed with the Cochran-Armitage trend test. To further validate the results of the discovery-stage analysis, we selected the 500 SNPs with the most significant Cochran-Armitage trend p values for follow-up analyses in additional 1,618 Japanese AF cases and 17,190 AF-free controls. Of the selected 500 SNPs, 150 showed evidence of strong linkage disequilibrium with other selected markers as assessed by the Haploview software. We thus selected 350 SNPs for further genotyping. We combined the genotype data of both the first and second stage for meta-analysis using the Mantel-Haenszel method. We also assessed heterogeneity of our results for all significantly associated SNPs calculating Breslow-Day tests. All tests yielded p-values >0.05 and were thus non-significant: rs6584555, p=0.90; rs6490029, p=014; rs639652, p=0.46; rs1906599, p=0.77; rs6466579, p=0.27; rs12932445, p=0.98.

Analysis of eQTLs

We performed eQTL analyses from two sources: the Cleveland Clinic Atrial Tissue Bank and the publicly available Genotype-Tissue Expression Portal (GTEx) of the Broad Institute of Harvard and MIT. We first searched for all 49 SNPs considered for replication analysis in Europeans as well as the 2 SNPs identified in Japanese. Second, for those SNPs exceeding or approaching genome-wide significance after replication (**Table 1**), we additionally searched for all proxy SNPs defined as those with at least moderate linkage disequilibrium (r2≥0.5) with the sentinel

SNPs. Detailed methods are provided in the supplement.

Implicated loci pathways

We also performed gene enrichment analyses at our implicated loci to determine known functional interactions between the 5 newly discovered loci and the 9 previously reported AF loci, 4 in addition to 6 genes from eQTL analysis. The web-based tool GRAIL analyzes the connectivity between genetic loci using information retrieved from text mining. 5 Here, we combined 20 loci, including the 14 AF loci and 6 eQTL genes as both the query and seed regions. The search was performed on the abstracts in PubMed published before August 2012. Out of the 20 queried loci, 10 showed an excess of connectivity (P_{GRAIL}<0.05 after multiple testing correction). These loci were connected by keywords such as "cardiac", "heart", "channels", "atrial", or similar. In addition, we used the Ingenuity Pathway Analysis (IPA) tool to examine functional enrichment of the 14 AF loci. For each locus, we searched genes within 1Mb of the top SNP. A total of 275 genes were found. These genes were then analyzed by IPA, and the most significant canonical pathways were reported.

Knockdown of candidate genes in zebrafish

Zebrafish of the Tübingen/AB strain were maintained according to standard methods.

Morpholino oligonucleotides (MOs) designed to disrupt the proper splicing or translation of zebrafish genes *neurla*, *cand2*, *cand1*, and *cux2b* were obtained from Genetools LLC (Corvallis, OR, USA). Measurements of heart rate, contractile function and optical mapping were obtained as previously described; detailed methods are provided in the supplement.

Co-immunoprecipitation in COS7 cells

For co-immunoprecipitation in COS7 cells, we transfected an expression plasmid of Myc- or FLAG-tagged target genes into COS7 cells (HSRRB; JCRB9127) using Fugene 6 (Roche). At

24h post transfection, immunoprecipitations were performed in lysis buffer (20mM Tris pH 7.5, with 150mM NaCl, 0.4% Nonidet P-40 containing 5μg/ml of MG-132 and protease inhibitor tablet EDTA- Roche) using anti-Myc tagged (Santa Cruz) or anti-FLAG tagged M2 agarose (Sigma). We visualized targets using HRP-conjugated anti-FLAG (Sigma) or anti-Myc antibodies (Santa Cruz).

Results

Study design

The overall design of the study is illustrated in **Figure 1**. In Europeans, the AFGen discovery sample comprised 16 studies that included 6,707 AF cases and 52,426 AF free controls.⁴ There were 195 single nucleotide polymorphisms (SNPs) with p values between 1x10⁻⁵ and 5x10⁻⁸ in the AFGen discovery sample. Based on *a priori* power calculations, we then selected 49 SNPs that were not in strong linkage disequilibrium with previously identified loci (r²<0.1). The SNPs were directly genotyped in 6 studies and *in-silico* replication was performed in 3 studies together consisting of 6,691 independent AF cases and 17,144 controls (**Supplemental Tables 1 & 2**). The mean age in the AF cases was 64.2±8.3 years versus 66.1±7.9 years in controls.

Following meta-analysis of the replication cohorts with the discovery stage results from the AFGen Consortium, four SNPs exceeded the threshold of genome-wide significance in Europeans; three further signals were near genome-wide significance (p<5x10⁻⁸). Results for the top 4 variants are shown in **Table 1**; full results for all 49 SNPs are provided in **Supplemental Tables 3 & 4**. Regional association plots for the top four associations in Europeans are shown in **Figure 2**.

In Japanese, the GWAS discovery sample consisted of 843 AF cases and 3,350 AF free controls.⁴ A total of 500 SNPs from 350 loci were genotyped in a replication sample consisting of 1,618 AF cases and 17,190 controls, and the results were meta-analyzed with the Japanese GWAS discovery data. Six novel SNPs reaching p<1x10⁻⁷ were genotyped in 5,912 additional AF cases of Japanese ancestry, expanding the total number of AF cases to 8,373 (**Supplemental Table 5**); two SNPs remained significantly associated with AF (**Table 1**). Regional association plots for the two novel variants in Japanese are shown in **Figure 2**.

Five novel AF risk loci in Europeans and Japanese

The most significantly associated novel variants in both Europeans and Japanese were intronic to the gene *NEURL* on chromosome 10q24.33 (Europeans: rs12415501, relative risk for the AF risk allele (RR) 1.18, 95% confidence interval (CI) 1.13–1.23, p=6.5x10⁻¹⁶; Japanese: rs6584555, RR 1.32, 95% CI 1.26-1.39, p=2.0x10⁻²⁵). Fine mapping of ten additional SNPs at the *NEURL* locus in the Japanese population did not reveal any independent susceptibility signals for AF at this locus (**Supplemental Table 6**).

The second locus identified in Europeans is intronic to *TBX5* on chromosome 12q24 (rs10507248, RR 1.12, 95% CI 1.08–1.16, p=5.7x10⁻¹¹). The third locus identified in Europeans is on chromosome 3p25.2 intronic to *CAND2* (rs4642101, RR 1.10, 95% CI 1.06-1.14, p=9.8x10⁻⁹). The SNP rs4642101 is in moderate to strong linkage disequilibrium (r²=0.64) with the non-synonymous SNP rs2305398 that results in an amino acid substitution from glutamine to arginine (p.Q315R). The fourth locus identified in Europeans is on chromosome 6q22.31 in a large intergenic region (rs13216675, RR 1.10, 95% CI 1.06–1.14, p=2.2x10⁻⁸). The closest gene is *GJA1*; rs13216675 is located approximately 670kb downstream of the gene. Interestingly, each of the variants identified in Europeans at the *TBX5*, *CAND2*, and *GJA1*, were also

associated with AF in Japanese (**Supplemental Table 7**). The fifth locus which, was identified only in Japanese individuals, is located intronic to CUX2 (rs6490029, RR 1.12, 95% CI 1.08-1.16, p=3.9x10⁻⁹) on chromosome 12q24.11-12; we did not observe evidence of an association at the CUX2 locus in Europeans (**Supplemental Figure 1 and Supplemental Table 7**).

Expression quantitative trait loci mapping

We assessed the influence of novel susceptibility signals on the expression of candidate genes by investigating eQTLs using two sources. First, accessing the publicly available Genotype-Tissue Expression Portal (GTEx), we found several significant associations between gene expression and novel susceptibility loci (**Supplemental Table 8**). The AF risk allele of the top SNP at the *CAND2* locus, rs4642101, was significantly associated with a higher expression of *CAND2* in skeletal muscle (p=2.6x 10⁻⁹). A proxy SNP for rs4642101 also had a significant eQTL with *CAND2* (rs9877049, p=2.6x10⁻¹⁹, r²=0.64). No eQTLs were identified in the GTEx database at the four other novel loci.

Second, we associated SNP genotypes with gene expression levels in a large repository of left atrial tissue samples (n=289; **Supplemental Table 8**). AF was present at the time of tissue acquisition in 136 patients, 70 had no history of AF, and 80 patients were women. Among SNPs at the novel loci for AF, we found significant cis-eQTL associations where the AF risk allele correlated with a decreased expression of *GJA1* (rs13216675, p=9.84x10⁻⁵) and the AF risk allele correlated with an increased expression of *TBX5* (rs10507248, p=2.14 x10⁻⁴). At both loci, we identified SNPs in linkage disequilibrium with the index SNPs, but with statistically stronger effects on gene expression: rs2176990 (r^2 =0.54 with rs13216675, p=2.66x10⁻⁶, 0.93 fold (0.90-0.95) decreased expression per AF risk allele) and rs1946295 (r^2 =0.87 with rs10507248, p=1.36x10⁻⁵, 1.12 fold (1.08-1.18) increased expression per AF risk allele).

Among the 49 SNPs initially tested for an association with AF in Europeans, we also observed significant eQTLs for SNPs at five other genes. These loci were only marginally associated with AF, but exceeded the threshold of significance at p<2.03x10⁻⁴ for eQTL analyses. The respective loci were found for SNPs in or around the candidate genes *CEP68*, *LINC00467*, *NKX2.5*, *TMEM116*, and *WIPF1*. In more detail, rs2723065 (association with AF p=7.6x10⁻⁸), and in particular rs2540950 ($\rm r^2$ =0.93 with rs2723065) were strongly associated with the expression of *CEP68* (p=9.70x10⁻¹⁷). The four other SNPs had a weaker association with AF, but a significant cis-eQTL association with the candidate genes LINC00467 (rs12733930, p value for association with AF = 8.2x10⁻⁴, p value for eQTL =1.59x10⁻²⁴), *NKX2.5* (p for AF=1.0x10⁻⁶, p for eQTL=8.78x10⁻⁶), *TMEM116* (rs6490029, p for AF=3.9x10⁻⁹, p for eQTL=4.28x10⁻⁰⁶), and *WIPF1* (rs2358891, p for AF=2.0x10⁻⁶, p for eQTL=8.87x10⁻¹⁰) (**Supplemental Table 4**).

Zebrafish knockdown studies of NEURL, CAND2 and CUX2

For the novel AF risk loci identified in our genetic analyses, we sought to determine the potential role of these genes in cardiovascular function through morpholino-mediated knockdown of orthologues in zebrafish embryos (**Supplemental Table 9**). Since *TBX5* and *GJA1* have well-described roles in cardiovascular physiology, our zebrafish studies focused on the three novel candidate genes: *NEURL*, *CAND2*, and *CUX2*.

Zebrafish have a single ortholog of the *NEURL* and *CUX2* genes, *neurla* and *cux2b*, but have two putative orthologs for the *CAND2* gene, *cand1* and *cand2*. We assessed the efficacy and morphologic consequences of gene knockdown, and the effect on resting heart rate, ventricular contractility, and atrial action potential duration (APD₈₀). Knockdown efficacy was sufficient for all four genes (**Supplemental Table 9**). Morphologically, embryonic development was only slightly affected by knockdown of *neurla* and *cand1*, which showed mild

developmental delay, whereas *cand2* and *cux2b* morphants were indistinguishable from controls (**Figure 3A**). There were no significant effects on resting ventricular contractile function (**Figure 3B**) or heart rate (**Figure 3C**) for any knockdowns. We determined the atrial APD₈₀ by analyzing optical mapping data as described earlier. For *neurla* knockdown embryos, the atrial APD₈₀ was significantly lengthened by 17%, 34% and 19% for the three *neurla*-targeting morpholinos (**Figure 3D**, **Supplemental Table 10**). Knockdown of the zebrafish *cand1* gene resulted in a prolongation of the atrial APD₈₀ by 45% (Replication morpholino=31% APD₈₀ increase) Knockdown of *cand2* or *cux2b* did not significantly alter the APD₈₀ (**Figure 3D**, **Supplemental Table 10**). Representative optical mapping recordings for all four gene knockdowns are presented in **Figure 3E**.

Interaction between Neurl and Pitx2

NEURL encodes an E3 ubiquitin ligase with a putative RING finger domain. E3 ubiquitin ligases have been shown to interact with several types of transcription factors. Since a number of AF GWAS loci reside at or near transcription factors (PITX2, ZFHX3, PRRX1, TBX5, and CUX2), we tested the direct interaction between NEURL and AF-associated transcription factors. NEURL was co-expressed in COS7 cells with each transcription factor using myc- or FLAG-tagged NEURL and myc-tagged PRRX1, ZFHX3, and TBX5 or FLAG-tagged PITX2 and CUX2. By co-immunoprecipitation, we demonstrated a NEURL-PITX2 protein interaction (Supplemental Figure 2a). We did not find evidence of a direct interaction between NEURL and PRRX1, CUX2, or TBX5; studies on ZFHX3 were unsuccessful (Supplemental Figure 2b, 2c, 2d).

Implicated loci pathways

To integrate our novel SNP and eQTL findings with the previously described 9 susceptibility loci

for AF,⁴ we employed systems biology based gene enrichment analyses. Using the web-based tool GRAIL, 10 of the total 20 loci showed an excess of connectivity (p<0.05) involving keywords such as "cardiac", "heart", "channels", and "atrial" (**Supplemental Figure 3**). The most significantly enriched pathways by an Ingenuity analysis were those involving "calcium signaling" (p= 5.3×10^{-5}), "L-serine degradation" (p= 4.1×10^{-4}), and "geranylgeranyldiphosphate biosynthesis" (p= 8.1×10^{-4}).

Relation between novel AF risk loci and stroke

AF is strongly associated with an increased risk of stroke. We therefore determined whether the top 5 novel loci from our genetic analyses were associated with ischemic stroke in the METASTROKE collaboration of the International Stroke Genetics Consortium, a meta-analysis of GWAS combining 12,389 ischemic stroke patients and 62,004 controls (**Table 2**). For rs6490029, we detected an association with any type of ischemic stroke (*CUX2*, odds ratio 0.95, 95% CI 0.91–0.98, p=0.0034). Interestingly, the coded allele was hazardous for AF, but protective for ischemic stroke. Restricting our analyses to 2365 individuals with cardioembolic stroke, we also found associations for rs13216675 (*GJA1*; odds ratio 1.11, 95% CI 1.04–1.19, p=0.002) and rs10507248 (*TBX5*; odds ratio 1.13, 95% CI 1.05–1.21, p=0.0013). Consistent with findings from the METASTROKE collaboration, different subtypes of stroke show limited overlap in genetic associations.

Discussion

In the present study, we sought to integrate multiple parallel techniques to identify novel AF susceptibility loci. Large-scale genotyping in Europeans and Japanese identified novel AF risk loci at or near the genes *NEURL*, *TBX5*, *CAND2*, *GJA1*, and *CUX2*. Expression quantitative trait

loci mapping in left atrial tissue analyses identified associations between AF SNPs at the *CAND2*, *TBX5*, *GJA1*, *CEP68*, *LINC00467*, *NKX2.5*, *TMEM116*, and *WIPF1* loci. Functional characterization of NEURL and CAND2 orthologs in embryonic zebrafish demonstrated that knockdown of these genes resulted in a significant lengthening of the atrial action potential duration. Further, we found that NEURL and PITX2c physically interacted in a cellular overexpression model. Finally, AF-associated SNPs at the *GJA1*, *TBX5*, and *CUX2* loci were also significantly associated with ischemic stroke.

The most significantly associated novel AF locus that we identified is intronic to the gene *NEURL*, which encodes an E3 ubiquitin ligase. *NEURL* has been reported to be a tumor-suppressor gene in malignant astrocytic tumors, and rat and mouse homologs of the gene are highly expressed in muscle tissue. ¹⁰ The most consistent cellular abnormalities noted in AF are a calcium overload state and shortening of the atrial action potential duration. ¹¹ Using embryonic zebrafish, we found that knockdown of the NEURL ortholog specifically altered atrial action potential duration without affecting cardiac contractile function or heart rate. While it is unclear whether the AF-associated SNPs at the locus are associated with an increase or decrease in NEURL expression, our results provide compelling support for the role of NEURL in atrial repolarization and in turn, AF. ¹²

In 2007, a genetic locus was described for AF on chromosome 4q25, upstream from the gene encoding the transcription factor *PITX2*;²² in the ensuing years, the association between AF and variants at this locus has been widely replicated. Although the role of *PITX2* in AF has not yet been fully understood, it is critical for the left-right symmetry of the heart during embryogenesis and the formation of myocardial sleeves in the pulmonary veins.¹³ Further, loss of one isoform, PITX2c, has been associated with an increased susceptibility to AF in murine

models. Given the *in vitro* interaction between NEURL and PITX2 that we observed, it is interesting to speculate that NEURL may mediate a susceptibility to AF by ubiquitin–mediated alteration of PITX2 activity.

The second novel locus we identified resides at *TBX5*, a transcription factor that is critically involved in the development of the cardiac conduction system. ¹⁴ We also found that SNPs at this locus modulate the expression of *TBX5* in human atrial tissue. Mutations in *TBX5* underlie Holt-Oram syndrome, features of which include atrial and ventricular septum secundum defects and conduction abnormalities including atrioventricular node block. In an atypical form of Holt-Oram syndrome with a high prevalence of AF, a *TBX5* gain-of-function mutation was identified, findings that are consistent with our eQTL results. ¹⁵ Two recent GWAS associated the electrocardiographic PR interval with variants intronic to or in proximity with *TBX5*. ^{16, 17} In the study by Holm et al., the top SNP (rs3825214, r²=0.76 with rs10507248) also showed association with AF (p=4.0x10⁻⁵), but failed to reach genome-wide significance. ¹⁶ In the study by Pfeufer et al., rs1896312 is independent of rs10507248 (r²=0) and showed no association with AF (p=0.72). ¹⁷ Interestingly, we also found expression levels of *NKX2*.5 vary by SNP genotypes in our dataset. Together, *TBX5* and *NKX2*.5 are known to play critical roles in both the differentiation of cardiomyocytes and the specialization of conduction and nodal tissue. ¹⁴

At the third novel locus, *CAND2* encodes a TATA-binding protein, TIP120b, which is muscle-specific and critical for myogenesis. We found that the AF associated SNP at this locus is associated with reduced CAND2/TIP120b expression in striated muscle tissue. While the specific role of CAND2/TIP120b in AF is currently unclear, we observed atrial action potential prolongation by morpholino-mediated gene knockdown in the zebrafish. Additionally, our eQTL analyses indicate that the risk allele is associated with increased expression of CAND2.

Extrapolating our findings in the zebrafish, increased CAND2 levels would be predicted to shorten the atrial action potential duration, as has been widely observed in AF.

GJA1, a strong candidate gene at our fourth AF locus, encodes the gap junction protein connexin 43 on chromosome 6q22.31 which is abundantly expressed in the heart. We found that AF-associated SNPs influenced the transcription of GJA1 in both left atrial tissue and the whole heart. Connexin 43 is the predominant cardiac gap junction protein and facilitates coordinated electrical activity between adjacent myocytes. Germline mutations in GJA1 have been associated with syndromic diseases such as hypoplastic left heart syndrome, atrioventricular canal defects, or oculo-dento-digital dysplasia. Interestingly, a somatic, loss-of-function mutation in connexin 43 has been found to underlie AF in humans. Further, mice with 60% reduced atrial Gja1 expression showed an increased susceptibility to induced AF and atrial tachycardia. Two independent swine models with an AF induced reduction of GJA1 expression demonstrated that restoration of GJA1 expression ameliorated AF burden. More recently, SNPs in proximity of GJA1 have been reported to be associated with resting heart rate; however, the

At the fifth locus, *CUX2*, cut-like homeobox 2, is a transcription factor implicated in cell-cycle progression relevant for spinal cord development, ²⁴ and has been investigated for its contribution to bipolar disorder. More recently, the Wellcome Trust Case Control Consortium identified variants at *CUX2* as a significant susceptibility marker for type 1 diabetes. ²⁵ Yet, the reported SNP rs1265564 only displays weak linkage disequilibrium (r²=0.17) with the AF SNP rs6490029. In another GWAS of Koreans and Japanese for coronary artery disease, *CUX2* was suggested as a susceptibility locus, but failed to replicate. ²⁶ The *CUX2* association was Japanese specific as we did not find evidence for an association in the region among Europeans

(**Supplemental Figure 1**). The specificity of the *CUX2* association in Japanese was in contrast to other four loci that were all associated with AF to varying degrees (**Table 1 and Supplemental Table 7**). The variability in the association between individuals of European and Japanese ancestry may be due to differences in allele frequency, sample size or another intrinsic difference between the populations.

Clinically, AF confers a five-fold increased risk of stroke. We found that the AF SNPs at the *CUX2*, *GJA1*, and *TBX5* loci were associated with ischemic stroke in the METASTROKE collaboration. Interestingly, we found that the AF risk allele at the *CUX2* locus was associated with a decreased risk of ischemic stroke, whereas the AF risk alleles at the two other loci conferred an increased risk of cardioembolic stroke. Given that two of the strongest associations for stroke are at the *PITX2* and *ZFHX3* loci for AF,^{27,28} it is possible that the associations we observed at the *GJA1* and *TBX5* loci are due to occult AF among the stroke cases. At present, it remains unclear why variants at *CUX2* would be associated with a decreased risk of ischemic stroke.

Strengths of our work include the investigation of two large samples of AF cases in Europeans and Japanese, eQTL analyses in atrial tissue, functional studies supporting the role for *NEURL* and *CAND2* in AF pathophysiology, and the association of three of the novel AF loci with stroke. However, our study was also subject to a number of limitations. We studied individuals of European and Japanese ancestry, thus extrapolation of our findings to other races and ethnicities may be limited. Although AF often occurs in association with other risk factors, we included all individuals with AF both to increase the generalizability and the statistical power of the current analyses. We acknowledge that the NEURL:PITX2 interaction that we observed was *in vitro* and further *in vivo* studies will be necessary. As with other GWAS, the AF

associated SNPs are unlikely to be the causal variants; rather they are likely to be a marker of disease risk. Although we believe that our eQTL, co-immunoprecipitation, and zebrafish studies were important initial analyses, ultimately, further fine mapping, sequencing, and functional studies will be required to identify the specific role of these genes in the pathogenesis of AF.

In summary, using a combination of genetic association, eQTL analyses and functional mapping of novel genes, we have identified 5 susceptibility loci for AF. Functional analyses of NEURL and CAND2 via zebrafish knockdown resulted in alterations in atrial electrophysiology, and protein interaction analysis demonstrated an *in vitro* interaction between NEURL and PITX2. Finally, our findings indicate that the novel AF signals at *GJA1*, *TBX5*, and *CUX2* were significantly associated with ischemic stroke or its subtypes. In aggregate, our studies further expand our understanding of the molecular pathways and clinical implications of this common and morbid arrhythmia.

Funding Sources: This work was funded by the following: AGES: NIH contract N01- AG-12100, NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). AFNET/KORA S4: German National Genome Research Network NGFN 01GS0838, 01GR0803, BMBF-01EZ0874, 01GR0803, NGFN 01GI0204, 01GR0103, NGFN-2, NGFNPlus 01GS0823, and NGFNPlus 01GS0834; German Federal Ministry of Education and Research (BMBF) 01EZ0874; German Competence Network on AF (AFNET) 01 GI 0204/N; Leducq Foundation 07-CVD 03, BMBF Spitzen cluster personalized medicine m4 (01 EX1021E), LMU Excellence Initiative (42595-6); Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. The KORA platform is funded by the BMBF and by the State of Bavaria. German Heart Foundation (Sinner). Supported by the DZHK (German Centre for Cardiovascular Research) and by the BMBF (German Ministry of Education and Research). ARIC: NHLBI contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022, R01HL087641, R01HL59367, R01HL086694 and U10HL054512; NHGRI contract U01HG004402; and NIH contract

HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. Additional support by grants RC1-HL-099452 from the NHLBI and 09SDG2280087 from the AHA. BioBank Japan: This study was supported by the Ministry of Education, Culture, Sports, Science, and Technology, Japan and by SENSIN Medical Research Foundation, Japan. **DANFIB:** Danish National Research Foundation Centre for Cardiac Arrhythmia, The John and Birthe Meyer Foundation, The Research Foundation of the Heart Centre Rigshospitalet, Lægernes Forsikringsforening af 1891, The Arvid Nilsson Foundation, and the Director Henrik Ibsens Foundation, the Villadsen Family Foundation, the Stock Broker Henry Hansen Wife Karla Hansen, Born Westergaard, Grant and The Danish Heart Foundation (grant no. 07-10-R60-A1815-B573-22398). Cleveland Clinic: R01 HL090620 from the NHLBI (Chung, Barnard, J. Smith, Van Wagoner); NIH/NCRR, CTSA 1UL-RR024989 (Chung, Van Wagoner); Heart and Vascular Institute, Department of Cardiovascular Medicine, Cleveland Clinic (Chung); Leducq Foundation 07-CVD 03 (Van Wagoner, Chung); Atrial Fibrillation Innovation Center, State of Ohio (Van Wagoner, Chung). CHS: NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL105756 with additional contribution from the NINDS. Additional support was provided through AG023629 from the NIA. A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. FHS: NHLBI and Boston University School of Medicine based on analyses by Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. NHLBI's Framingham Heart Study (Contract No. N01-HC-25195) and its contract with Affymetrix, Inc for genotyping services (Contract No.N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. Other support came from 1R01 HL092577 1RO1

HL076784, 1R01 AG028321, Evans Center for Interdisciplinary Biomedical Research ARC on Atrial Fibrillation at Boston University (Benjamin), 6R01-NS 17950 and AHA 09FTF2190028. Health ABC: NIA contracts N01AG62101, N01AG62103, and N01AG62106. The genomewide association study was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the NIH to The Johns Hopkins University, contract number HHSN268200782096C. This research was supported in part by the Intramural Research Program of the NIH, NIA. HVH: NHLBI R01 HL 068986, R01 HL085251, and R01 HL073410. MAC: The Malmö Diet and Cancer study was made possible by grants from the Malmö city council. J. Gustav Smith was supported by the Swedish Heart-Lung foundation and the Thorsten Westerström Foundation. Olle Melander was supported by the Swedish Heart-Lung foundation, the Swedish Medical Research Council, the Medical Faculty of Lund University, Malmö University Hospital, the Albert Påhlsson Research Foundation, the Crafoord Foundation, the Region Skane, the Hulda and Conrad Mossfelt Foundation, the King Gustaf V and Queen Victoria Fund, the Lennart Hanssons Memorial Fund, and the Wallenberg Foundation. MGH: NIH grants K23HL114724 (Lubitz), T32HL007208 (Tucker), R01HL092577 (Ellinor and Benjamin), R01HL104156 and K24HL105780 (Ellinor), and an American Heart Association Established Investigator Award 13EIA14220013 (Ellinor). Ottawa: Heart and Stroke Foundations of Ontario (Gollob), and the Canadian Institutes for Health Research (Gollob). Dr. Gollob is supported by the Early Researcher Award program from the Government of Ontario and from the Heart and Stroke Foundation of Ontario Clinician-Scientist Award. PROSPER: Supported by an investigator initiated grant obtained from Bristol-Myers Squibb. Prof. Dr. J. W. Jukema is an Established Clinical Investigator of the Netherlands Heart Foundation (grant 2001 D 032). Support for genotyping was provided by the seventh framework program of the European commission (grant 223004) and by the Netherlands Genomics Initiative (Netherlands Consortium for Healthy Aging grant 050-060-810). **RS-I / RS-**II: RS-I is supported by the Erasmus Medical Center and Erasmus University Rotterdam; The Netherlands Organization for Scientific Research; The Netherlands Organization for Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly; The Netherlands Heart Foundation; the Ministry of Education, Culture and Science; the Ministry of Health Welfare and Sports; the European Commission; and the Municipality of Rotterdam.

Support for genotyping was provided by The Netherlands Organization for Scientific Research (NWO) (175.010.2005.011, 911.03.012) and Research Institute for Diseases in the Elderly (RIDE). This study was supported by The Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) project nr. 050-060-810. SHIP: SHIP is part of the Community Medicine Research Network of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania. This work supported partly by the research project Greifswald Approach to Individualized Medicine (GANI MED). The GANI MED consortium is funded by the BMBF and the Ministry of Cultural Affairs of the Federal State of Mecklenburg-West Pomerania (03IS2061A). Generation of genome-wide data has been supported by the BMBF (grant no. 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg-West Pomerania. The University of Greifswald is a member of the 'Center of Knowledge Interchange' program of the Siemens AG. WGHS: NHLBI HL 043851 (Buring) and HL69757 (Buring) and NCI CA 047988 (Buring), the Donald W. Reynolds Foundation and the Fondation Leducq (Ridker), with collaborative scientific support and funding for genotyping provided by Amgen. Atrial fibrillation endpoint confirmation was supported by HL-093613 (Albert) and a grant from the Harris Family Foundation (Tedrow). METASTROKE: Dr. Dichgans is supported by the Vascular Dementia Research Foundation. Dr. Rosand is supported by the National Institute of Neurological Disorders and Stroke U01-NS069208. Role of the Sponsors: None of the funding agencies had any role in the study design, data collection or analysis, interpretation of the data, writing of the manuscript, or in the decision to submit the manuscript for publication.

Conflict of Interest Disclosures: None.

References:

1. Wann LS, Curtis AB, January CT, Ellenbogen KA, Lowe JE, Estes NA, 3rd, Page RL, Ezekowitz MD, Slotwiner DJ, Jackman WM, Stevenson WG, Tracy CM, Fuster V, Ryden LE, Cannom DS, Le Heuzey JY, Crijns HJ, Olsson SB, Prystowsky EN, Halperin JL, Tamargo JL, Kay GN, Jacobs AK, Anderson JL, Albert N, Hochman JS, Buller CE, Kushner FG, Creager MA, Ohman EM, Ettinger SM, Guyton RA, Tarkington LG, Yancy CW. 2011 accf/aha/hrs

- focused update on the management of patients with atrial fibrillation (updating the 2006 guideline): A report of the american college of cardiology foundation/american heart association task force on practice guidelines. *Heart Rhythm.* 2011;8:157-176.
- 2. Benjamin EJ, Levy D, Vaziri SM, D'Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The framingham heart study. *Jama*. 1994;271:840-844.
- 3. Lubitz SA, Yin X, Fontes JD, Magnani JW, Rienstra M, Pai M, Villalon ML, Vasan RS, Pencina MJ, Levy D, Larson MG, Ellinor PT, Benjamin EJ. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. *Jama*. 2010;304:2263-2269.
- 4. Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Ritchie MD, Smith AV, Arking DE, Muller-Nurasyid M, Krijthe BP, Lubitz SA, Bis JC, Chung MK, Dorr M, Ozaki K, Roberts JD, Smith JG, Pfeufer A, Sinner MF, Lohman K, Ding J, Smith NL, Smith JD, Rienstra M, Rice KM, Van Wagoner DR, Magnani JW, Wakili R, Clauss S, Rotter JI, Steinbeck G, Launer LJ, Davies RW, Borkovich M, Harris TB, Lin H, Volker U, Volzke H, Milan DJ, Hofman A, Boerwinkle E, Chen LY, Soliman EZ, Voight BF, Li G, Chakravarti A, Kubo M, Tedrow UB, Rose LM, Ridker PM, Conen D, Tsunoda T, Furukawa T, Sotoodehnia N, Xu S, Kamatani N, Levy D, Nakamura Y, Parvez B, Mahida S, Furie KL, Rosand J, Muhammad R, Psaty BM, Meitinger T, Perz S, Wichmann HE, Witteman JC, Kao WH, Kathiresan S, Roden DM, Uitterlinden AG, Rivadeneira F, McKnight B, Sjogren M, Newman AB, Liu Y, Gollob MH, Melander O, Tanaka T, Stricker BH, Felix SB, Alonso A, Darbar D, Barnard J, Chasman DI, Heckbert SR, Benjamin EJ, Gudnason V, Kaab S. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. *Nat Genet*. 2012;44:670-675.
- 5. Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, Purcell SM, Sklar P, Scolnick EM, Xavier RJ, Altshuler D, Daly MJ. Identifying relationships among genomic disease regions: Predicting genes at pathogenic snp associations and rare deletions. *PLoS genetics*. 2009;5:e1000534.
- 6. Milan DJ, Kim AM, Winterfield JR, Jones IL, Pfeufer A, Sanna S, Arking DE, Amsterdam AH, Sabeh KM, Mably JD, Rosenbaum DS, Peterson RT, Chakravarti A, Kaab S, Roden DM, MacRae CA. Drug-sensitized zebrafish screen identifies multiple genes, including gins3, as regulators of myocardial repolarization. *Circulation*. 2009;120:553-559.
- 7. Pavlopoulos E, Trifilieff P, Chevaleyre V, Fioriti L, Zairis S, Pagano A, Malleret G, Kandel ER. Neuralized1 activates cpeb3: A function for nonproteolytic ubiquitin in synaptic plasticity and memory storage. *Cell.* 2011;147:1369-1383.
- 8. Zou W, Chen X, Shim JH, Huang Z, Brady N, Hu D, Drapp R, Sigrist K, Glimcher LH, Jones D. The e3 ubiquitin ligase wwp2 regulates craniofacial development through monoubiquitylation of goosecoid. *Nat Cell Biol*. 2011;13:59-65.
- 9. Traylor M, Farrall M, Holliday EG, Sudlow C, Hopewell JC, Cheng YC, Fornage M, Ikram MA, Malik R, Bevan S, Thorsteinsdottir U, Nalls MA, Longstreth W, Wiggins KL, Yadav S, Parati EA, Destefano AL, Worrall BB, Kittner SJ, Khan MS, Reiner AP, Helgadottir A,

- Achterberg S, Fernandez-Cadenas I, Abboud S, Schmidt R, Walters M, Chen WM, Ringelstein EB, O'Donnell M, Ho WK, Pera J, Lemmens R, Norrving B, Higgins P, Benn M, Sale M, Kuhlenbaumer G, Doney AS, Vicente AM, Delavaran H, Algra A, Davies G, Oliveira SA, Palmer CN, Deary I, Schmidt H, Pandolfo M, Montaner J, Carty C, de Bakker PI, Kostulas K, Ferro JM, van Zuydam NR, Valdimarsson E, Nordestgaard BG, Lindgren A, Thijs V, Slowik A, Saleheen D, Pare G, Berger K, Thorleifsson G, Hofman A, Mosley TH, Mitchell BD, Furie K, Clarke R, Levi C, Seshadri S, Gschwendtner A, Boncoraglio GB, Sharma P, Bis JC, Gretarsdottir S, Psaty BM, Rothwell PM, Rosand J, Meschia JF, Stefansson K, Dichgans M, Markus HS. Genetic risk factors for ischaemic stroke and its subtypes (the metastroke collaboration): A meta-analysis of genome-wide association studies. *Lancet Neurol*. 2012;11:951-962.
- 10. Timmusk T, Palm K, Belluardo N, Mudo G, Neuman T. Dendritic localization of mammalian neuralized mrna encoding a protein with transcription repression activities. *Mol Cell Neurosci*. 2002;20:649-668.
- 11. Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002;415:219-226.
- 12. Wakili R, Voigt N, Kaab S, Dobrev D, Nattel S. Recent advances in the molecular pathophysiology of atrial fibrillation. *J Clin Invest*. 2011;121:2955-2968.
- 13. Mommersteeg MT, Brown NA, Prall OW, de Gier-de Vries C, Harvey RP, Moorman AF, Christoffels VM. Pitx2c and nkx2-5 are required for the formation and identity of the pulmonary myocardium. *Circ Res.* 2007;101:902-909.
- 14. Moskowitz IP, Kim JB, Moore ML, Wolf CM, Peterson MA, Shendure J, Nobrega MA, Yokota Y, Berul C, Izumo S, Seidman JG, Seidman CE. A molecular pathway including id2, tbx5, and nkx2-5 required for cardiac conduction system development. *Cell.* 2007;129:1365-1376.
- 15. Postma AV, van de Meerakker JB, Mathijssen IB, Barnett P, Christoffels VM, Ilgun A, Lam J, Wilde AA, Lekanne Deprez RH, Moorman AF. A gain-of-function tbx5 mutation is associated with atypical holt-oram syndrome and paroxysmal atrial fibrillation. *Circ Res.* 2008;102:1433-1442.
- 16. Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G, Stefansdottir H, Gudjonsson SA, Jonasdottir A, Mathiesen EB, Njolstad I, Nyrnes A, Wilsgaard T, Hald EM, Hveem K, Stoltenberg C, Lochen ML, Kong A, Thorsteinsdottir U, Stefansson K. Several common variants modulate heart rate, pr interval and qrs duration. *Nat Genet*. 2010;42:117-122.
- 17. Pfeufer A, van Noord C, Marciante KD, Arking DE, Larson MG, Smith AV, Tarasov KV, Muller M, Sotoodehnia N, Sinner MF, Verwoert GC, Li M, Kao WH, Kottgen A, Coresh J, Bis JC, Psaty BM, Rice K, Rotter JI, Rivadeneira F, Hofman A, Kors JA, Stricker BH, Uitterlinden AG, van Duijn CM, Beckmann BM, Sauter W, Gieger C, Lubitz SA, Newton-Cheh C, Wang TJ, Magnani JW, Schnabel RB, Chung MK, Barnard J, Smith JD, Van Wagoner DR, Vasan RS, Aspelund T, Eiriksdottir G, Harris TB, Launer LJ, Najjar SS, Lakatta E, Schlessinger D, Uda M,

- Abecasis GR, Muller-Myhsok B, Ehret GB, Boerwinkle E, Chakravarti A, Soliman EZ, Lunetta KL, Perz S, Wichmann HE, Meitinger T, Levy D, Gudnason V, Ellinor PT, Sanna S, Kaab S, Witteman JC, Alonso A, Benjamin EJ, Heckbert SR. Genome-wide association study of pr interval. *Nat Genet*. 2010;42:153-159.
- 18. Aoki T, Okada N, Ishida M, Yogosawa S, Makino Y, Tamura TA. Tip120b: A novel tip120-family protein that is expressed specifically in muscle tissues. *Biochem Biophys Res Commun*. 1999;261:911-916.
- 19. Li JY, Hou XE, Dahlstrom A. Gap-43 and its relation to autonomic and sensory neurons in sciatic nerve and gastrocnemius muscle in the rat. *J Auton Nerv Syst.* 1995;50:299-309.
- 20. Thibodeau IL, Xu J, Li Q, Liu G, Lam K, Veinot JP, Birnie DH, Jones DL, Krahn AD, Lemery R, Nicholson BJ, Gollob MH. Paradigm of genetic mosaicism and lone atrial fibrillation: Physiological characterization of a connexin 43-deletion mutant identified from atrial tissue. *Circulation*. 2010;122:236-244.
- 21. Tuomi JM, Tyml K, Jones DL. Atrial tachycardia/fibrillation in the connexin 43 g60s mutant (oculodentodigital dysplasia) mouse. *Am J Physiol Heart Circ Physiol*. 2011;300:H1402-1411.
- 22. Bikou O, Thomas D, Trappe K, Lugenbiel P, Kelemen K, Koch M, Soucek R, Voss F, Becker R, Katus HA, Bauer A. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. *Cardiovasc Res.* 2011;92:218-225.
- 23. Eijgelsheim M, Newton-Cheh C, Sotoodehnia N, de Bakker PI, Muller M, Morrison AC, Smith AV, Isaacs A, Sanna S, Dorr M, Navarro P, Fuchsberger C, Nolte IM, de Geus EJ, Estrada K, Hwang SJ, Bis JC, Ruckert IM, Alonso A, Launer LJ, Hottenga JJ, Rivadeneira F, Noseworthy PA, Rice KM, Perz S, Arking DE, Spector TD, Kors JA, Aulchenko YS, Tarasov KV, Homuth G, Wild SH, Marroni F, Gieger C, Licht CM, Prineas RJ, Hofman A, Rotter JI, Hicks AA, Ernst F, Najjar SS, Wright AF, Peters A, Fox ER, Oostra BA, Kroemer HK, Couper D, Volzke H, Campbell H, Meitinger T, Uda M, Witteman JC, Psaty BM, Wichmann HE, Harris TB, Kaab S, Siscovick DS, Jamshidi Y, Uitterlinden AG, Folsom AR, Larson MG, Wilson JF, Penninx BW, Snieder H, Pramstaller PP, van Duijn CM, Lakatta EG, Felix SB, Gudnason V, Pfeufer A, Heckbert SR, Stricker BH, Boerwinkle E, O'Donnell CJ. Genome-wide association analysis identifies multiple loci related to resting heart rate. *Hum Mol Genet*. 2010;19:3885-3894.
- 24. Iulianella A, Sharma M, Durnin M, Vanden Heuvel GB, Trainor PA. Cux2 (cutl2) integrates neural progenitor development with cell-cycle progression during spinal cord neurogenesis. *Development*. 2008;135:729-741.
- 25. Huang J, Ellinghaus D, Franke A, Howie B, Li Y. 1000 genomes-based imputation identifies novel and refined associations for the wellcome trust case control consortium phase 1 data. *Eur J Hum Genet*. 2012;20:801-805.
- 26. Lee JY, Lee BS, Shin DJ, Woo Park K, Shin YA, Joong Kim K, Heo L, Young Lee J,

Kyoung Kim Y, Jin Kim Y, Bum Hong C, Lee SH, Yoon D, Jung Ku H, Oh IY, Kim BJ, Lee J, Park SJ, Kim J, Kawk HK, Lee JE, Park HK, Lee JE, Nam HY, Park HY, Shin C, Yokota M, Asano H, Nakatochi M, Matsubara T, Kitajima H, Yamamoto K, Kim HL, Han BG, Cho MC, Jang Y, Kim HS, Euy Park J, Lee JY. A genome-wide association study of a coronary artery disease risk variant. *J Hum Genet*.. 2013;58:120-126.

27. Gretarsdottir S, Thorleifsson G, Manolescu A, Styrkarsdottir U, Helgadottir A, Gschwendtner A, Kostulas K, Kuhlenbaumer G, Bevan S, Jonsdottir T, Bjarnason H, Saemundsdottir J, Palsson S, Arnar DO, Holm H, Thorgeirsson G, Valdimarsson EM, Sveinbjornsdottir S, Gieger C, Berger K, Wichmann HE, Hillert J, Markus H, Gulcher JR, Ringelstein EB, Kong A, Dichgans M, Gudbjartsson DF, Thorsteinsdottir U, Stefansson K. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. *Ann Neurol*. 2008;64:402-409.

28. Gudbjartsson DF, Holm H, Gretarsdottir S, Thorleifsson G, Walters GB, Thorgeirsson G, Gulcher J, Mathiesen EB, Njolstad I, Nyrnes A, Wilsgaard T, Hald EM, Hveem K, Stoltenberg C, Kucera G, Stubblefield T, Carter S, Roden D, Ng MC, Baum L, So WY, Wong KS, Chan JC, Gieger C, Wichmann HE, Gschwendtner A, Dichgans M, Kuhlenbaumer G, Berger K, Ringelstein EB, Bevan S, Markus HS, Kostulas K, Hillert J, Sveinbjornsdottir S, Valdimarsson EM, Lochen ML, Ma RC, Darbar D, Kong A, Arnar DO, Thorsteinsdottir U, Stefansson K. A sequence variant in zfhx3 on 16q22 associates with atrial fibrillation and ischemic stroke. *Nat Genet*. 2009;41:876-878

JOVANAL OF YOU AMERICAN HUART AMERICATION

Table 1. Meta-analyses of SNP-Associations with AF, by origin of study.

SNP	Chr	AF Risk allele	Closest gene	Relative location	Original GWAS dataset ⁴			Replication			Overall Meta-analysis		
					RAF	RR (95% CI)	p	RAF	RR (95% CI)	p	RAF	RR (95% CI)	p
Europeans													
rs12415501	10q24	T	NEURL	Intronic	0.16	1.15 (1.10 - 1.22)	9.0x10 ⁻⁸	0.16	1.22 (1.14 - 1.29)	6.0 x 10 ⁻¹⁰	0.16	1.18 (1.13 - 1.23)	6.5x10 ⁻¹⁶
rs10507248	12q24	T	TBX5	Intronic	0.73	1.13 (1.08 - 1.18)	8.5x10 ⁻⁸	0.73	1.11 (1.05 - 1.17)	0.0001	0.73	1.12 (1.08 - 1.16)	5.7x10 ⁻¹¹
rs4642101	3p25	G	CAND2	Intronic	0.65	$ \begin{array}{c} 1.11 \\ (1.06 - 1.15) \end{array} $	4.2x10 ⁻⁶	0.65	1.09 (1.04 – 1.15)	0.0006	0.65	$ \begin{array}{c} 1.10 \\ (1.06 - 1.14) \end{array} $	9.8x10 ⁻⁹
rs13216675	6q22	T	GJA1	Intergenic	0.69	1.10 (1.05 - 1.15)	5.0x10 ⁻⁵	0.68	1.10 (1.05 - 1.16)	0.0001	0.69	1.10 (1.06 - 1.14)	2.2x10 ⁻⁸
Japanese													
rs6584555	10q24	С	NEURL	Intronic	0.12	1.33 (1.14-1.55)	2.8x10 ⁻⁴	0.12	1.32 (1.25-1.39	1.6x10 ⁻²²	0.12	1.32 (1.26-1.39)	2.0x10 ⁻²⁵
rs6490029		A	CUX2	Intronic	0.65	1.22 (1.09-1.37)	6.3x10 ⁻⁴	0.64	1.11 (1.07-1.16)	5.0x10 ⁻⁷	0.64	1.12 (1.08-1.16)	3.9x10 ⁻⁹

In both the discovery and replication stages, each cohort provided cohort-specific results, which were subsequently meta-analyzed. In the overall meta-analysis, the summary results of each stage were meta-analyzed treating each stage as a cohort. In Ottawa, we used rs3825214 as a proxy SNP for rs12415501 (r^2 =0.76). SNP – single nucleotide polymorphism; AF – atrial fibrillation; Chr – chromosome; RAF – risk allele frequency; RR – relative risk; CI – confidence interval.

Table 2. Association of Novel AF Loci in the METASTROKE Consortium⁹

Phenotype	Cases	Controls	SNP	AF Risk Allele	Closest gene	RAF	OR (95% CI)	P
	12,389	62,004	rs12415501	Т	NEURL	0.16	1.03 (0.99 – 1.08)	0.20
			rs10507248	T	TBX5	0.73	$ \begin{array}{c} 1.05 \\ (1.01 - 1.08) \end{array} $	0.01
Overall ischemic stroke			rs4642101	G	CAND2	0.65	0.95 $(0.93 - 0.99)$	0.95
			rs13216675	T	GJA1	0.69	$ \begin{array}{c} 1.04 \\ (1.01 - 1.08) \end{array} $	0.02
			rs6490029	A	CUX2	0.23	0.95 $(0.91 - 0.98)$	0.0034
			rs12415501	T	NEURL	0.16	$ \begin{array}{c} 1.10 \\ (1.01 - 1.20) \end{array} $	0.03
	2,365	56,140	rs10507248	Т	TBX5	0.73	1.11 (1.04 – 1.19)	0.0027
Cardioembolic stroke			rs4642101	G	CAND2	0.65	$ \begin{array}{c} 1.04 \\ (0.97 - 1.11) \end{array} $	0.23
			rs13216675	Т	GJA1	0.69	1.13 (1.05 – 1.21)	0.0013
			rs6490029	A	CUX2	0.23	$0.98 \\ (0.91 - 1.05)$	0.55

JOURNAL OF YOR AMERICAN BUART ARESOLATION

Figure Legends:

Figure 1. Flow-chart illustrating the study design and major results. Novel chromosomal loci associated with AF were identified independently in cohorts of European and Japanese descent by means of GWAS and subsequent replication. Signals in or around *NEURL*, *TBX5*, *CAND2*, *GJA1*, and *CUX2* were detected. Additional studies revealed increased atrial action potential durations after knockdown of *NEURL* and *CAND2*, an interaction between NEURL and PITX2, an association of *GJA1*, *TBX5*, and *CUX2* with stroke, and eQTL associations with *CAND2*, *GJA1*,

TBX5, CEP68, LINC00467, NKX2.5, TMEM116, and WIPF1 in left atrial and other tissues. APD – action potential duration.

Figure 2. Regional plots for novel atrial fibrillation susceptibility loci in Europeans and Japanese. Panels A-D (A: NEURL, B: TBX5, C: GJA1, D: CAND2) show 4 novel loci detected in Europeans, panels E (NEURL) and F (CUX2) show 2 novel loci detected in Japanese. At each novel locus (p≤5x10⁻⁸), SNPs are plotted using the genomic position (NCBI Build 36) and discovery stage P values. In each panel, the sentinel SNP is labeled in purple. Each dot represents a SNP. The strength of the linkage disequilibrium of SNPs with the sentinel-SNP is indicated by a color gradient according to the legend in each panel, where red indicates strong, and blue indicates weak linkage disequilibrium. Estimated recombination rates are shown by the blue line, and spikes indicate locations of frequent recombination. Below each panel, the chromosomal positions of the SNPs and regional candidate genes are annotated. Linkage disequilibrium and recombination rates in panels A-F are based on the CEU HapMap release 22 (European) and JPT + CHB HapMap release 22 (Japanese), respectively. All regional association plots prepared using LocusZoom.

Figure 3. Analysis of *neurla*, *cand1*, *cand2*, and *cux2b* knockdown in zebrafish. **A**: Brightfield micrographs of anesthetized 72hpf embryos injected with morpholinos. Scale bar = 500μm. **B**: Measurement of ventricular fractional shortening. **C**: Analysis of resting heart rate. **D**: Atrial action potential durations as assayed by optical mapping in zebrafish hearts. *Represents p<0.05 when compared to control. **E**: Representative traces of atrial action potentials from optical mapping. All numbers within bars indicate which morpholino was used for the presented data.

Where no labels are shown, data represent pooled data obtained from all effective morpholinos.

CN – control. n=number of biological replicates for a given experiment.

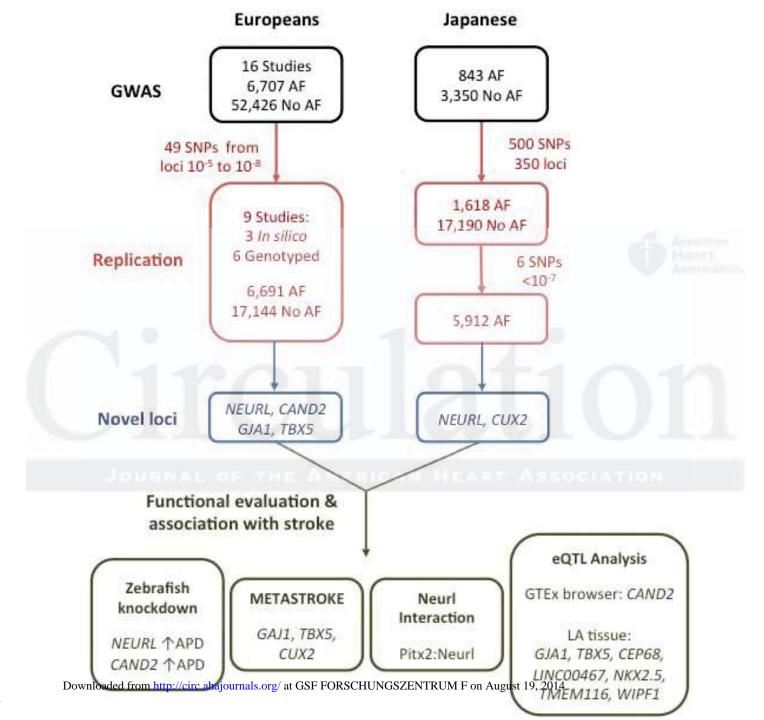


Figure 1

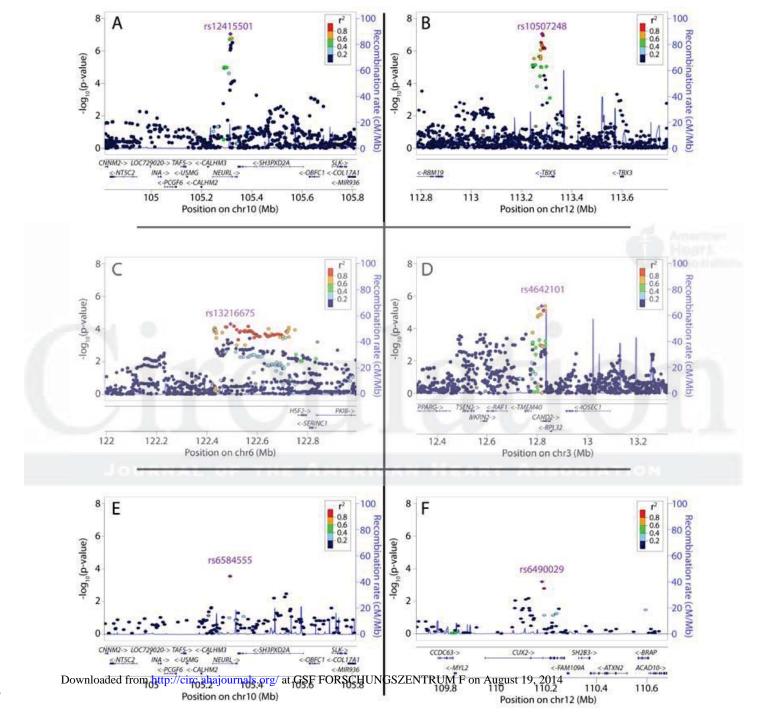


Figure 2

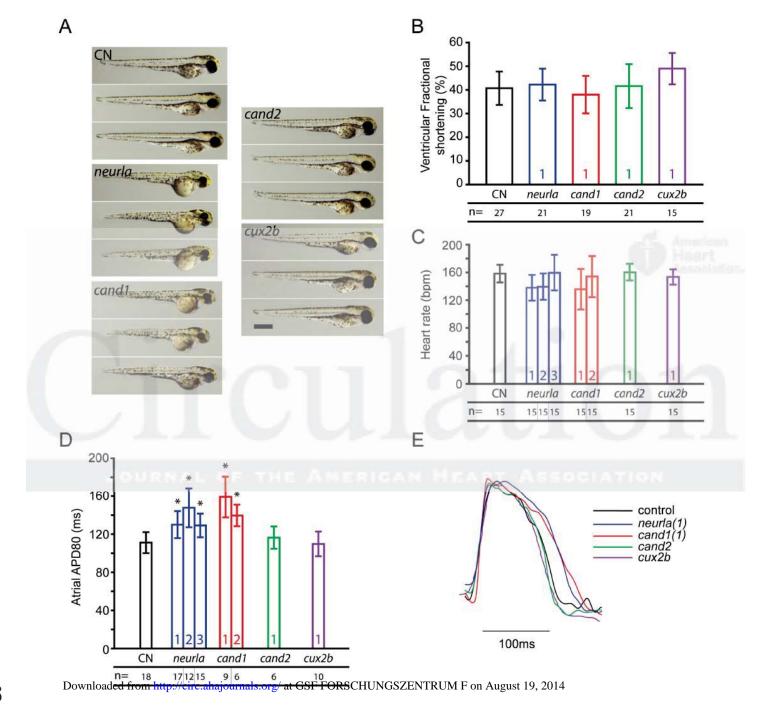


Figure 3

Supplemental material for:

Integrating Genetic, Transcriptional, and Functional Analyses to Identify Five Novel Genes for Atrial Fibrillation

Moritz F. Sinner, MD, MPH^{1,2}, Nathan R. Tucker, PhD^{1,3}, Kathryn L. Lunetta, PhD^{1,4,5}, Kouichi Ozaki, PhD^{1,6}, J. Gustav Smith, MD, PhD^{1,7,8}, Stella Trompet, PhD^{1,9}, Joshua C. Bis, PhD^{1,10,11}, Honghuang Lin, PhD^{1,5,12}, Mina K. Chung, MD^{1,13,14}, Jonas B. Nielsen, MD^{1,15,16}, Steven A. Lubitz, MD, MPH^{1,3,17}, Bouwe P. Krijthe, PhD^{1,18,19}, Jared W. Magnani, MD^{1,20}, Jiangchuan Ye, MD, PhD³, Michael H. Gollob, MD²¹, Tatsuhiko Tsunoda, PhD²², Martina Müller-Nurasyid, PhD^{2,23,24}, Peter Lichtner, PhD²⁵, Annette Peters, PhD^{26,27}, Elena Dolmatova, MD³, Michiaki Kubo, MD, PhD²⁸, Jonathan D. Smith, PhD^{13,29}, Bruce M. Psaty, MD, PhD^{10,11,30,31,32}, Nicholas L. Smith, PhD^{10,30,31,33}, J. Wouter Jukema, MD, PhD^{9,34}, Daniel I. Chasman, PhD^{35,36}, Christine M. Albert, MD, MPH^{35,36}, Yusuke Ebana, MD, PhD³⁷, Tetsushi Furukawa, MD, PhD³⁷, Peter MacFarlane, DSc³⁸, Tamara B. Harris, MD, MS³⁹, Dawood Darbar, MD⁴⁰, Marcus Dörr, MD⁴¹, Anders G. Holst, MD, PhD^{15,16}, Jesper H. Svendsen, MD, DMSc^{15,16,42}, Albert Hofman, MD, PhD^{18,19}, Andre G. Uitterlinden, MD, PhD^{18,19,43}, Vilmundur Gudnason, MD^{44,45}, Mitsuaki Isobe, MD, PhD⁴⁶, Rainer Malik, PhD⁴⁷, Martin Dichgans, MD^{47,48}, Jonathan Rosand, MD, MSc^{49,50,51}, David R. Van Wagoner, PhD^{13,14}, METASTROKE Consortium, AFGen Consortium, Emelia J. Benjamin, MD, ScM^{5,20,52,53,61}, David J. Milan, MD^{3,17,61}, Olle Melander, MD, PhD^{54,61}, Susan R. Heckbert, MD, PhD^{10,30,31,61}, Ian Ford, PhD^{55,61}, Yongmei Liu, MD, PhD^{56,61}, John Barnard, PhD^{57,61}, Morten S. Olesen, MSc, PhD^{15,16,61}, Bruno H.C. Stricker, MB, PhD^{18,19,43,58,59,61}, Toshihiro Tanaka, MD, PhD^{6,60,61}, Stefan Kääb, MD, PhD^{2,26,61}, Patrick T. Ellinor, MD, PhD^{3,17,49,61}

Address for correspondence:

Stefan Kääb, MD, PhD, Department of Medicine I, University Hospital Munich, Campus Innenstadt, Ludwig Maximilians University Munich, Ziemssenstr. 1, 80336 Munich, Germany. Phone: +49-89-5160-2295; Fax: +49-89-5160-2258; Email: skaab@med.lmu.de

Patrick T. Ellinor, MD, PhD, Cardiovascular Research Center, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, USA. Phone: +1-617-724-8729; +1-617-726-5806; Email: ellinor@mgh.harvard.edu

Affiliations

- 1. These authors contributed equally to this work.
- 2. Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians-University, Munich, Germany.
- 3. Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- 4. Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- 5. National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- 6. Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan

- 7. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- 8. Department of Cardiology, Lund University, Lund, Sweden
- 9. Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- 10. Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.
- 11. Department of Medicine, University of Washington, Seattle, WA, USA
- 12. Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- 13. Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
- 14. Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- 15. Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark
- 16. Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- 17. Cardiac Arrhythmia Service, Masschusetts General Hospital, Boston, MA, USA
- 18. Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
- 19. Netherlands Consortium for Healthy Aging (NCHA), Netherlands
- 20. Cardiology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
- 21. Arrhythmia Research Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
- 22. Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- 23. Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.
- 24. Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany.
- 25. Institute of Human Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.
- 26. Deutsches Zentrum für Herz- Kreislaufforschung e.V. (DZHK), partner site Munich Heart Alliance, Munich, Germany
- 27. Institute of Epidemiology II, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.
- 28. Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- 29. Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- 30. Group Health Research Institute, Group Helath Cooperative, Seattle, WA, USA
- 31. Department of Epidemiology, University of Washington, Seattle, WA, USA
- 32. Department of Health Services, University of Washington, Seattle, WA, USA
- 33. Epidemiologic Research and Information Center of the Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
- 34. Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
- 35. Harvard Medical School, Boston, MA, USA
- 36. Division of Preventive Medicine, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
- 37. Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- 38. Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
- 39. Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.

- 40. Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- 41. Department of Internal Medicine B, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
- 42. Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- 43. Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- 44. Icelandic Heart Association Research Institute, Kopavogur, Iceland
- 45. University of Iceland, Reykjavik, Iceland
- 46. Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Japan
- 47. Institute for Stroke and Dementia Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- 48. Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- 49. Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
- 50. Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- 51. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA. USA
- 52. Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
- 53. Preventive Medicine Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
- 54. Department of Clinical Sciences, Lund University, Malmo, Sweden.
- 55. Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
- 56. Department of Epidemiology & Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston Salem, NC, USA.
- 57. Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- 58. Inspectorate for Health Care, the Hague, The Netherlands
- 59. Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
- 60. Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- 61. These authors jointly supervised this work.

Table of Contents

	Page
Supplemental Methods	5
Supplemental Table 1. Characteristics of the study cohorts	13
Supplemental Table 2. <i>In-silico</i> replication genotyping information.	14
Supplemental Table 3. SNP replication results in Europeans, by cohort	15
Supplemental Table 4. Meta-analysis association results in Europeans	17
Supplemental Table 5. Six genome-wide significant AF loci in Japanese	19
Supplemental Table 6. Fine mapping of the NEURL locus in Japanese.	20
Supplemental Table 7. Comparison of AF association results between individuals of European and Japanese ancestry	21
Supplemental Table 8. eQTL analyses using the Genotype-Tissue Expression Portal (GTEx) and Cleveland Clinic Atrial Tissue Bank	22
Supplemental Table 9. Nucleotide sequences used for morpholinos and PCR analyses, morpholino efficacy.	31
Supplemental Table 10. Atrial action potential durations following morpholino microinjection.	32
Supplemental Figure 1. Regional plots for the associations with atrial fibrillation in the respective other ethic group.	33
Supplemental Figure 2. Protein interaction analyses in COS7 cells.	34
Supplemental Figure 3. Pathway analysis for 14 atrial fibrillation loci.	35
References	36

Supplemental methods

Study samples: Europeans

Cohorts contributing to the discovery sample included the Age, Gene / Environment Susceptibility (AGES) study from Reykjavik, Iceland, the German Competence Network on Atrial Fibrillation (AFNET) with controls from the Cooperative Health Research in the Region of Augsburg (KORA) S4 study, the Atherosclerosis Risk in Communities (ARIC) study, the Cleveland Clinics Lone Atrial Fibrillation GeneBank Study (CC), the Cardiovascular Health Study (CHS), the Framingham Heart Study (FHS), the Heart and Vascular Health (HVH) Study, the Massachusetts General Hospital (MGH) and controls from the MIGEN study, the Rotterdam Study I (RS-I), the Study of Health in Pomerania (SHIP), the Vanderbilt Lone Atrial Fibrillation Registry, and the Women's Genome Health Study (WGHS). Details describing the cohorts in the discovery sample can be found elsewhere.1

For the replication stage, we included cohorts providing in-silico data derived from prior genome-wide genotyping, and cohorts providing data from direct genotyping. The following cohorts contributed in-silico results:

The Health Aging and Body Composition (Health ABC) Study is an ongoing cohort study of factors contributing to incident disability and the decline in function of healthier older persons. A particular emphasis is on changes in body composition in senescence. The study is sponsored by the National Institute of Aging. Between April 1997 and June 1998, Health ABC enrolled well-functioning, community-dwelling black (n=1,281) and white (n=1,794) men and women age 70-79 years. Recruited from a random sample, participants were white and all black Medicare eligible residents in the Pittsburgh, PA, and Memphis, TN, metropolitan areas. All participants received a baseline exam, annual follow-up clinical exams, and phone contacts every 6 months to identify major health events and document functional status between clinic visits.

The PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) study has been described elsewhere. In brief, PROSPER is a prospective, multicenter, randomized, placebocontrolled trial to determine if treatment with pravastatin reduces the risk of major vascular events in elderly. From December 1997 to May 1999, individuals were screened and enrolled in Glasgow (Scotland), Cork (Ireland), and Leiden (Netherlands). To be recruited, men and women had to be 70-82 years of age, had to have pre-existing vascular disease or had to be at increased risk of such disease because of smoking, hypertension, or diabetes. Overall, 5,804 participants were randomized to receive pravastatin or placebo. At enrollment, bio-samples were stored and measurement of cognitive function was performed. Upon completion of the clinical trial, stored DNA samples of 5,763 participants were genotyped using the Illumina 660K beadchip (PHASE substudy).

The Rotterdam Study II (RS-II), a community-based study of elderly individuals from a suburb of Rotterdam, focused on identifying determinants of health and cardiovascular, neurogeriatric, bone, and eye diseases. The study started in 2000-2001. Participants ≥55 years of age were examined triennially and up to 3 times. Atrial fibrillation (AF) was diagnosed based on electrocardiograms at study visit, and upon review of hospital discharge information and general practitioner diagnoses. AF was verified by two physicians and disagreements settled by review of a cardiologist.

The following cohorts provided direct genotyping results:

We recruited AF cases from the **German Competence Network for Atrial Fibrillation (AFNET)** national registry. Additional AF cases were recruited from the Department of Medicine I of the University Hospital Munich, Campus Großhadern of the Ludwig-Maximilians University Munich. We enriched for patients with AF onset before 60 years of age. The diagnosis of AF was made based on electrocardiograms analyzed by trained physicians. We excluded with moderate to severe heart failure, moderate to severe valve disease, or hyperthyroidism. Control individuals were enrolled in the **Cooperative Health Research in the Region of Augsburg (KORA) S4** study, which was conducted

between 1999 and 2001. All participants were 25-74 years old. Those with a history of AF, signs or symptoms of AF on physical examination, or AF on electrocardiograms, which all participants received, were excluded. Initially, 4261 participants were included, and 4073 had full data available for analysis.

From the **Danish Study of Genetic Causes of Atrial Fibrillation (DANFIB)**, 7-9 396 consecutive patients with AF were included between 2003 and 2011. All enrolled individuals originate from the region of Copenhagen in Denmark. From the same area, a control cohort (n=750) free of AF was recruited. Additional cardiologic evaluation was performed to adjudicate concomitant cardiovascular conditions including, diabetes mellitus, myocardial infarction and heart failure. All enrolled participants provided written informed consent.

The Heart and Vascular Health Study (HVH) is a study of incident AF in the setting of Group Health Cooperative, a large integrated healthcare system in Washington State, USA. All plan members assigned a new ICD-9 code of 427.31 or 427.32 in the inpatient or outpatient setting between October 1st, 2001 and December 31st, 2004 were identified. Incident AF was verified by review of medical records with the requirement that the AF be documented by 12-lead electrocardiogram and clinically recognized by a physician, with no previous evidence of AF in the medical record. Control subjects were identified from the Group Health membership, and had no history of AF. Included in the HVH replication sample for this analysis were atrial fibrillation cases of ≥66 years of age or below age 66 but with clinically recognized structural heart disease at atrial fibrillation diagnosis, and referent subjects without atrial fibrillation, who were frequency matched to atrial fibrillation cases on the basis of age, sex, hypertension and year of identification.¹⁰

The Malmö AF cohort (MAC) consists of cases with prevalent or incident AF recruited from two large population-based cohorts in Malmö, Sweden (Malmö Diet and Cancer Study;¹¹ reexamination of the Malmö Preventive Project¹²). All AF cases were identified from national registers as previously described,¹¹ and then matched in a 1:1 fashion to controls from the same

cohort by sex, age (±1 year), and date of baseline exam (±1 year). Also, controls required a follow-up exceeding that of the corresponding AF case.

From the Massachusetts General Hospital Atrial Fibrillation Study (MGH) in Boston, MA, we enrolled additional AF cases that were not available for genome-wide genotyping. Enrollment took place at the hospital's arrhythmia service from 2001 to 2008, and individuals had to be ≤65 years of age at the AF diagnosis, and present without structural heart disease, hyperthyroidism, myocardial infarction, or heart failure. Control patients were also recruited from the MIGEN study, which was composed of healthy patients recruited at MGH, particularly free of AF and myocardial infarction.

The Ottawa Heart AF study (Ottawa) consists of patients with lone AF, or AF and hypertension, recruited from the Arrhythmia Clinic at the University of Ottawa Heart Institute (UOHI), Ottawa, Ontario, Canada. Enrollment required at least one episode of electrocardiographically documented AF characterized by erratic atrial activity without distinct P waves and irregular QRS intervals. Exclusion criteria consisted of a history of coronary artery disease, left ventricular ejection fraction <50%, or significant valvular disease on echocardiography. Control subjects were drawn from the control arm of the Ottawa Heart Genomics Study (OHGS), an ongoing case control study for coronary artery disease at the UOHI. Male control participants were ≥ 65 years, while female controls were ≥ 70 years of age. Controls with a documented history of AF were excluded from this study. All cases and controls were of Western European ancestry and provided written informed consent under a protocol approved by the Human Research Ethics Board at UOHI.

Study samples: Japanese

Japanese samples examined in this study had been investigated earlier. In brief, all AF cases and AFfree controls in the first stage, as well as almost all cases and controls of the second stages were obtained from BioBank Japan. BioBank Japan is a hospital-based disease cohort of 47 common diseases including AF, in which 66 clinical hospitals in Japan participated. Cases in this study are participants of BioBank Japan enrolled between 2003 and 2006. We also enrolled AF samples from

Tokyo Medical and Dental University as part of the second stage. Control individuals for GWAS included participants free of AF who presented with at least one of the following 11 diseases registered in BioBank Japan: hepatic cirrhosis, osteoporosis, colorectal cancer, breast cancer, prostate cancer, lung cancer, uterine myoma, amyotrophic lateral sclerosis, drug eruption, gallbladder and bile duct cancer, and pancreatic cancer. Additional 906 healthy volunteers were recruited from Osaka-Midosuji Rotary Club. The controls in the replication study comprised 17,190 different participants enrolled from Biobank Japan as individuals suffering from one of the following diseases: liver cancer, uterine cervical cancer, chronic type B hepatitis, esophageal cancer, hematological malignancy, uterine endometrial cancer, ovarian cancer, pulmonary tuberculosis, keloid, febrile seizure, rheumatoid arthritis, gastric cancer, and adverse reaction to chemotherapy.

Description of cohorts used at the discovery stage can be found in detail elsewhere.

Analysis of eQTLs

We accessed the publicly available Genotype-Tissue Expression Portal (GTEx) of the Broad Institute of Harvard and MIT (available at: http://www.broadinstitute.org/gtex/#; accessed September 1st, 2013) for significant findings in various tissues including subcutaneous adipose tissue, tibial artery, whole blood, cardiac left ventricle, lung, skeletal muscle, tibial nerve, sun-exposed skin, and thyroid. We first searched GTEx for all 49 SNPs considered for replication analysis in Europeans as well as the 2 SNPs identified in Japanese. Second, for those SNPs exceeding or approaching genome-wide significance after replication (Table 1), we additionally searched for all proxy SNPs defined as those with at least moderate linkage disequilibrium (r2≥0.5) with the sentinel SNPs.

For the analysis of human atrial tissue we obtained samples from the Cleveland Clinic Atrial Tissue Bank (ATB), which consists of atrial tissue samples from consented surgical and transplant donor patients of self-identified European descent obtained between 2001-2011 at the Cleveland Clinic. Samples were processed on the Illumina Human Hap550v3 or Hap610v1 chips and Illumina

HumanHT-12v3 or -v4 chips to obtain genotype and RNA expression data, respectively. Genotypes were called with the GenCall algorithm using the Illumina BeadStudio software; bead-level expression data were extracted using the R package beadarray.

SNP genotype data were filtered for Hardy-Weinberg equilibrium and call rate. Samples were filtered for excess heterozygosity, genetic relatedness, sex mismatch, call rate and genetic population outliers. Genotypes were subsequently passed to SHAPEIT v2 and IMPUTE v2 to generate imputed variant dosage data based on the 1000 Genomes cosmopolitan phase 1 integrated v3 reference panel. Imputed variants with a imputation information score <0.5 were dropped, as were variants with a MAF <0.01.

Natural logarithm (In)-transformed bead-level expression data were averaged to obtain probe-level measurements for each sample. Probes common to the Illumina Human HT-12v3/v4 chips were subset; missing data were imputed using a KNN method from the R package impute. Probe data were unlogged, background adjusted using a normal-gamma deconvolution method from the R package NormalGamma, In-transformed with an offset of 10, and then quantile normalized using the R package beadarray. MDS plots were used to filter samples with aberrant expression profiles. Filtered and normalized data were then batch corrected at the chip level using the ComBat empirical-Bayes approach. Validity of the correction was assessed by examining duplicate samples run on multiple chips across batches. We dropped probes not uniquely mapping to the human Ensembl71 transcriptome and the IlluminaHumanv4 R annotation package, not mapping to automosomes, containing imputed variants with MAF ≥0.01, and those that had <5 samples with a detection p-value ≤0.05 or an interquartile range <In(1.2).

We conducted a genome-wide cis eQTL analysis using the R package MatrixEQTL. For each probe and corresponding variant within 250kb of the probe's mapped gene boundaries (cis probevariant pair), we linearly regressed the probe's expression values against the variant's imputed dosages along with sex, tissue location (LAA vs. PVT), the top 4 principal coordinates from a MDS

analysis of the genetic-relatedness matrix calculated from a subsample of the filtered genotyped SNPs, and 35 expression surrogate variables. The expression surrogate variables were included to reduce expression heterogeneity and improve power to detect eQTLs; they were calculated using the R package sva on the filtered expression data with a model including sex, principal coordinates and tissue location. For each cis probe-variant pair, we obtained the variant's linear regression coefficient and corresponding p-value under the null of no dosage effect. False discovery rate (FDR) values were calculated from the p-values using the Benjamini and Hochberg method. Cis probevariant pairs with an FDR value <0.05 were considered genome-wide significant.

Knockdown of candidate genes in zebrafish

Zebrafish of the Tübingen/AB strain were maintained according to standard methods. Morpholino oligonucleotides (MOs) designed to disrupt the proper splicing or translation of zebrafish genes *neurla* (Exon1/Intron1 (1), Exon2/Intron2 (2), 5'UTR (3)), *cand2* (Exon1/Intron1), *cand1* (Exon3/Intron3 (1), Exon10/Intron10 (2), and *cux2b* (Exon12/Intron12)) were obtained from Genetools LLC (Corvallis, OR, USA). A non-targeting MO of equal length was utilized as a control for non-specific toxicity. MOs were diluted in injection buffer (0.4 mM MgSO₄, 0.6 mM CaCl₂, 0.7 mMKCl, 58 mMNaCl, 25 mM HEPES pH 7.1) and microinjected into the yolks of single cell stage embryos at a final concentration of 0.2 mM in a standardized volume. Consistent injection volumes were confirmed by measurement of 100 μm droplet diameters after injection into mineral oil. Post injection, all embryos were maintained at 28°C in E3 embryo media supplemented with 0.0005% methylene blue and 0.003% phenylthiourea. Effective knockdown was confirmed by RT-PCR analysis of neurla(1) and *cand2*, and by semi-quantitative PCR of *cand1*(1,2), *neurla*(2), and *cux2b*. In brief, mRNA was extracted from 72 hours post fertilization (hpf) embryos using Trizol according to manufacturer's instructions, followed by cDNA production by iScript (BioRad). RT-PCR analysis was conducted using SYBR green supermix (BioRad) on a BioRad CFX384 Real-Time System. *ef-1α* and *6*-

actin were utilized as reference genes for $\Delta\Delta$ ct analysis of relative gene expression. All MOs and primers sequences are listed in **Supplemental Table 8**.

Color brightfield images of morpholino-injected embryos were obtained on an Olympus SZX16 microscope at 72 hpf. Heart rate measurement was accomplished at 72 hpf by phase contrast imaging on a Nikon Eclipse Ti base equipped with a Hamamatsu Orca-Flashcam 2.8. Effective frame rate of acquisition was 45 fps. Heart rate was determined manually using ImageJ version 1.47. Measurements of cardiac contractility were conducted according to methods published previously, ¹³ although with slight modifications. In brief, 72 hpf embryos were anesthetized in 0.016% MS222 (Sigma Aldrich) and positioned for viewing of the ventral surface in 1% agarose dissolved in E3 medium. Ventricular contractility was assayed by measuring the change in inner wall diameter through 3 cardiac cycles when measured perpendicular to the blood flow. Optical mapping was performed to assay action potential durations at 72hpf as previously described. ¹⁴

Supplemental Table 1. Characteristics of the study cohorts

Europeans									
Cohorts used for	replication b	y direct g	enotyping						
		n	Age, years	Men, %	HTN, %	BMI, kg/m ²	Diabetes, %	MI, %	CHF, %
AFNET / KORA	Cases	1,780	61.6 ± 12.5	71	60	27.5 ± 4.3	9	4	6
	Controls	3,604	48.3 ± 14.3	49	18	27.1 ± 4.7	4	2	3
DANFIB	Cases	396	43.4 ± 2.1	77	22	26.9 ± 4.8	4	4	6
	Controls	750	61.5 ± 17.4	52	58	26.7 ± 4.4	4	2	0
HVH	Cases	647	74.0 ± 9.1	39	76	30.3 ± 7.1	16	9	7
	Controls	1,076	72.5 ± 8.2	36	77	29.0 ± 5.8	13	6	3
MAC	Cases	2,316	64.8 ± 7.4	63	83	27.3 ± 4.4	8	7	4
	Controls	2,322	64.8 ± 7.4	63	72	26.3 ± 3.9	5	-	-
MGH	Cases	181	59.7 ± 11.3	75	55	28.7 ± 5.8	8	4	8
	Controls	362	68.9 ± 11.6	53	61	27.0 ± 5.0	-	-	-
Ottawa	Cases	301	47.2 ± 11.4	80	22	-	-	-	-
	Controls	1,517	75.1 ± 5.4	48	43	26.4 ± 4.1	-	-	-
Cohorts used for	<i>in-silico</i> repl	ication							
		n	Age, years	Men, %	HTN, %	BMI, kg/m ²	Diabetes, %	MI, %	CHF, %
HealthABC	Cases	434	74.1 ± 2.9	61	66	27.2 ± 4.3	20	26	3
	Controls	1,100	73.6 ± 2.8	49	60	26.4 ± 4.1	16	16	1
PROSPER	Cases	505	76.0 ± 3.5	58	64	27.1 ± 4.3	11	19	0
	Controls	4,739	75.3 ± 3.3	47	62	26.8 ± 4.2	10	13	0
RS-II	Cases	131	71.9 ± 9.6	55	76	27.3 ± 3.6	18	8	5
	Controls	1,674	64.6 ± 7.8	55	60	27.3 ± 4.3	10	3	1
Japanese		•							
GWAS	Cases	843	67.3 ± 10.4	69	78	23.9 ± 3.6	45	20	-
	Controls	3,350	52.4 ± 15.2	54	33	22.5 ± 3.7	8	2	-
Second stage	Cases	1,618	67.8± 10.2	72	71	23.3 ± 3.6	20	12.9	-
	Controls	17,190	61.1± 12.8	44	42	22.2 ± 3.7	0	0	-
Third stage	Cases	5,912	68.2± 10.4	70	74	23.5 ± 3.4	14	18	-

HTN – hypertension, defined as systolic blood pressure >140 mmHg, or diastolic blood pressure >90 mmHg, or antihypertensive treatment. BMI – body mass index; Diabetes – diabetes mellitus; MI – myocardial infarction; CHF – heart failure. "-" – data not available.

Supplemental Table 2. II	n-silico replication g	enotyping informa	tion.
Study	HealthABC	PROSPER	RS-II
Reference	-	4	5
Genotyping platform	Illumina	Illumina	Illumina550K
	Human1M-Duo	Human660K	Duo, 610KQuad
Calling Software	BeadChip	Beadstudio	GenomeStudio
Callrate / SNP	<97%	<97.5%	<98%
HWE p-value	<10 ⁻⁶	NA	<10 ⁻⁶
Mendelian Errors	NA	NA	NA
			Excluded F-
Excess heterozygosity	NA	NA	values < mean-
			4SD (F<-0.055)
MAF	<1%	NA	<5%
SNP for imputation	914,263	557,192	537,405
Total SNPs	2,543,887	2,543,887	2,541,494
Imputation software	MACH v1.0.16	MACH	Mach v1.0.16
Imputation backbone	Build 36	Build 36	Build 36
Inflation factor λ	1.004	-	1.006
Analysis software	R	ProbABEL	ProbABEL, R

Supplem	ental T	able 3. SNF	replicati	ion results	in Europ	eans, by co	hort												
• •	AF		<u> </u>				Direct ger	notyping								<i>In-silico</i> Re	plication		
	Risk	AFNI	ET	DAN	FIB	HVI	1	MAG	С	MG	Н	Ottav	<i>r</i> a	Health	ABC	PROSE	ER	RS-	-II
SNP	Allele	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value
rs10137710	Т	1.02 (0.89 - 1.16)	7.8x10 ⁻⁰¹	1.18 (0.90 - 1.54)	2.4x10 ⁻⁰¹	0.97 (0.80 - 1.17)	7.2x10 ⁻⁰¹	1.08 (0.97 - 1.21)	1.7x10 ⁻⁰¹	1.16 (0.91 - 1.47)	2.4x10 ⁻⁰¹	-	-	1.01 (0.83 - 1.23)	9.3x10 ⁻⁰¹	0.88 (0.73 - 1.05)	1.6x10 ⁻⁰¹	0.91 (0.64 - 1.30)	5.9x10 ⁻⁰¹
rs10212121	Α	0.90 (0.82 – 1.00)	4.7x10 ⁻⁰²	1.21 (0.95 - 1.53)	1.2x10 ⁻⁰¹	1.03 (0.89 - 1.19)	7.2x10 ⁻⁰¹	0.97 (0.89 - 1.06)	5.2x10 ⁻⁰¹	1.01 (0.83 - 1.23)	9.1x10 ⁻⁰¹	-	-	1.03 (0.88 - 1.21)	6.9x10 ⁻⁰¹	0.91 (0.79 - 1.05)	2.2x10 ⁻⁰¹	1.09 (0.84 - 1.42)	525x10 ⁻⁰¹
rs10267684	Т	0.99 (0.89 - 1.10)	8.6x10 ⁻⁰¹	1.16 (0.92 - 1.45)	2.1x10 ⁻⁰¹	0.95 (0.82 - 1.10)	5.1x10 ⁻⁰¹	1.03 (0.94 - 1.13)	5.3x10 ⁻⁰¹	1.31 (1.08 - 1.59)	6.6x10 ⁻⁰³	-	-	1.05 (0.89 - 1.23)	5.7x10 ⁻⁰¹	0.97 (0.84 - 1.12)	6.8x10 ⁻⁰¹	1.04 (0.79 - 1.38)	7.3x10 ⁻⁰¹
rs10507248	Т	1.23 (1.10 - 1.37)	1.5x10 ⁻⁰⁴	1.06 (0.83 - 1.35)	6.2x10 ⁻⁰¹	1.02 (0.88 - 1.19)	7.9x10 ⁻⁰¹	1.14 (1.03 - 1.25)	9.0x10 ⁻⁰³	1.10 (0.89 - 1.35)	3.8x10 ⁻⁰¹	-	-	1.00 (0.85 - 1.18)	9.9x10 ⁻⁰¹	1.05 (0.91 - 1.22)	5.1x10 ⁻⁰¹	1.04 (0.78 - 1.37)	8.0x10 ⁻⁰¹
rs10762941	А	1.03 (0.93 - 1.14)	5.3x10 ⁻⁰¹	0.91 (0.73 - 1.12)	3.7x10 ⁻⁰¹	1.15 (1.00 - 1.32)	5.3x10 ⁻⁰²	0.97 (0.89 - 1.05)	4.2x10 ⁻⁰¹	0.89 (0.74 - 1.07)	2.0x10 ⁻⁰¹	-	-	1.04 (0.89 - 1.20)	6.4x10 ⁻⁰¹	1.01 (0.88 - 1.15)	9.3x10 ⁻⁰¹	0.80 (0.61 - 1.06)	1.1x10 ⁻⁰¹
rs10800507	С	1.14 (1.03 - 1.27)	1.0x10 ⁻⁰²	1.12 (0.91 - 1.39)	2.9x10 ⁻⁰¹	1.01 (0.88 - 1.16)	9.2x10 ⁻⁰¹	1.08 (0.99 - 1.18)	8.5x10 ⁻⁰²	1.15 (0.96 - 1.37)	1.4x10 ⁻⁰¹	-	-	1.00 (0.86 - 1.16)	9.7x10 ⁻⁰¹	0.95 (0.83 - 1.09)	4.9x10 ⁻⁰¹	1.08 (0.83 - 1.39)	6.1x10 ⁻⁰¹
rs10849152	Т	0.93 (0.83 - 1.02)	1.01x10 ⁻⁰¹	1.08 (0.86 - 1.33)	5.1x10 ⁻⁰¹	1.08 (0.93 - 1.23)	3.1x10 ⁻⁰¹	0.99 (0.91 - 1.08)	8.3x10 ⁻⁰¹	1.05 (0.88 - 1.27)	5.4x10 ⁻⁰¹	-	-	0.85 (0.73 - 0.98)	3.0x10 ⁻⁰²	1.20 (1.05 - 1.37)	7.3x10 ⁻⁰³	1.19 (0.92 - 1.54)	2.0x10 ⁻⁰¹
rs10919369	Т	1.13 (1.00 - 1.27)	4.3x10 ⁻⁰²	1.03 (0.82 - 1.31)	7.8x10 ⁻⁰¹	0.87 (0.74 - 1.03)	1.2x10 ⁻⁰¹	1.08 (0.98 - 1.19)	1.0x10 ⁻⁰¹	1.25 (1.00 - 1.55)	4.5x10 ⁻⁰²	-	-	1.06 (0.89 - 1.25)	5.4x10 ⁻⁰¹	1.04 (0.88 - 1.22)	6.7x10 ⁻⁰¹	0.84 (0.61 - 1.17)	3.1x10 ⁻⁰¹
rs10947261	G	1.2 (1.01 - 1.43)	3.7x10 ⁻⁰²	1.45 (0.93 - 2.22)	1.0x10 ⁻⁰¹	1.15 (0.88 - 1.49)	3.1x10 ⁻⁰¹	1.01 (0.87 - 1.16)	9.4x10 ⁻⁰¹	1.14 (0.82 - 1.59)	4.4x10 ⁻⁰¹	-	-	0.93 (0.71 - 1.20)	5.7x10 ⁻⁰¹	0.93 (0.70 - 1.20)	5.5x10 ⁻⁰¹	0.93 (0.58 - 1.47)	7.5x10 ⁻⁰¹
rs11466656	С	-	-	-	-	-	-	-	-	-	-	-	-	10.00 (0.01 -)	5.3x10 ⁻⁰¹	0.23 (0.00 - 50.00)	6.0x10 ⁻⁰¹	0.29 (0.00 -)	8.1x10 ⁻⁰¹
rs12370365	G	1.11 (0.99 - 1.25)	7.3x10 ⁻⁰²	0.99 (0.76 - 1.30)	9.4x10 ⁻⁰¹	1.28 (1.09 - 1.54)	4.0x10 ⁻⁰³	1.06 (0.96 - 1.18)	2.3x10 ⁻⁰¹	1.12 (0.91 - 1.39)	3.0x10 ⁻⁰¹	-	-	1.05 (0.88 - 1.25)	5.8x10 ⁻⁰¹	1.02 (0.87 - 1.20)	7.8x10 ⁻⁰¹	1.16 (0.83 - 1.61)	3.7x10 ⁻⁰¹
rs12406668	Т	1.00 (0.84 - 1.19)	9.9x10 ⁻⁰¹	1.17 (0.78 - 1.75)	4.6x10 ⁻⁰¹	0.86 (0.66 - 1.13) 1.05	2.8x10 ⁻⁰¹	1.07 (0.91 - 1.26) 1.27	4.2x10 ⁻⁰¹	1.16 (0.83 - 1.62)	3.9x10 ⁻⁰¹	1.11	-	0.97 (0.75 - 1.26) 1.03	8.2x10 ⁻⁰¹	0.9 (0.69 - 1.17)	4.3x10 ⁻⁰¹	0.86 (0.5 - 1.50) 1.30	6.1x10 ⁻⁰¹
rs12415501	Т	1.31 (1.16 - 1.49)	2.0x10 ⁻⁰⁵	0.95	-	(0.88 - 1.26) 1.09	5.7x10 ⁻⁰¹	(1.14 - 1.41) 1.05	2.0x10 ⁻⁰⁵	1.12	-	(0.87 – 1.41)	4.0x10 ⁻¹	(0.85 - 1.24) 0.94	7.6x10 ⁻⁰¹	1.31 (1.07 - 1.60) 1.04	9.0x10 ⁻⁰³	(0.93 - 1.82) 1.00	1.3x10 ⁻⁰¹
rs12733930	С	0.90 (0.80 - 1.02) 1.09	1.1x10 ⁻⁰¹	(0.74 - 1.23) 1.02	7.3x10 ⁻⁰¹	(0.91 - 1.30) 0.90	3.6x10 ⁻⁰¹	(0.94 - 1.16) 0.97	3.5x10 ⁻⁰¹	(0.89 - 1.41) 1.12	3.1x10 ⁻⁰¹	-	-	(0.79 - 1.12) 1.11	5.2x10 ⁻⁰¹	(0.89 - 1.23) 0.99	5.8x10 ⁻⁰¹	(0.72 - 1.39) 0.90	1.0×10 ⁻⁰⁰
rs12991989	С	(0.99 - 1.20) 1.02	9.3x10 ⁻⁰²	(0.83 - 1.27) 1.10	8.5x10 ⁻⁰¹	(0.78 - 1.04) 1.01	1.5x10 ⁻⁰¹	(0.89 - 1.05) 0.95	4.3x10 ⁻⁰¹	(0.94 - 1.35) 1.19	1.9x10 ⁻⁰¹	-	-	(0.95 - 1.28) 1.23	1.8x10 ⁻⁰¹	(0.86 - 1.12) 1.11	8.3x10 ⁻⁰¹	(0.69 - 1.18) 1.43	4.5x10 ⁻⁰¹
rs13169864	G	(0.91 - 1.15) 1.19	7.4x10 ⁻⁰¹	(0.85 - 1.45) 1.11	4.6x10 ⁻⁰¹	(0.85 - 1.19) 0.97	9.0x10 ⁻⁰¹	(0.85 - 1.05) 1.06	3.4x10 ⁻⁰¹	(0.96 - 1.47) 1.02	1.2x10 ⁻⁰¹	-	-	(1.00 - 1.52) 1.03	5.4x10 ⁻⁰²	(0.93 - 1.33) 1.2	2.6x10 ⁻⁰¹	(0.93 - 2.22) 1.16	1.0x10 ⁻⁰¹
rs13216675	Т	(1.08 - 1.33)	1.0x10 ⁻⁰³	(0.88 - 1.41)	3.5x10 ⁻⁰¹	(0.83 - 1.13) 1.63	6.7x10 ⁻⁰¹	(0.98 - 1.16)	1.4x10 ⁻⁰¹	(0.83 - 1.25) 1.27	8.5x10 ⁻⁰¹	-	-	(0.88 - 1.20)	6.9x10 ⁻⁰¹	(1.04 - 1.39) 0.74	1.4x10 ⁻⁰²	(0.87 - 1.54) 0.61	3.1x10 ⁻⁰¹
rs1324739	G	(0.87 - 1.90) 1.29	2.0x10 ⁻⁰¹	(0.53 - 1.94) 0.86	9.6x10 ⁻⁰¹	(1.08 - 2.47)	2.1x10 ⁻⁰²	(0.77 - 1.23) 0.81	8.3x10 ⁻⁰¹	(0.70 - 2.30) 1.01	4.3x10 ⁻⁰¹	-	-	(0.43 - 1.17) 1.31	1.8x10 ⁻⁰¹	(0.47 - 1.17) 0.79	2.0x10 ⁻⁰¹	(0.21 - 1.78)	3.7x10 ⁻⁰¹
rs13396611	Т	(0.99 - 1.67) 1.00	5.5x10 ⁻⁰²	(0.47 - 1.58) 1.04	6.2x10 ⁻⁰¹	(0.50 - 1.11) 1.25	1.5x10 ⁻⁰¹	(0.64 - 1.03) 0.98	7.9x10 ⁻⁰²	(0.65 - 1.58) 1.01	9.7x10 ⁻⁰¹	-	-	(0.91 - 1.88)	1.4x10 ⁻⁰¹	(0.51 - 1.23) 1.00	3.0x10 ⁻⁰¹	(0.32 - 1.59) 1.16	4.1x10 ⁻⁰¹
rs2118254	С	(0.91 - 1.09)	9.5x10 ⁻⁰¹	(0.85 - 1.28)	7.0x10 ⁻⁰¹	(1.10 - 1.42)	1.0x10 ⁻⁰³	(0.91 - 1.06)	6.4x10 ⁻⁰¹	(0.85 - 1.19)	9.5x10 ⁻⁰¹	-	-	(0.87 - 1.17) 1.00	9.1x10 ⁻⁰¹	(0.87 - 1.14) 0.91	9.5x10 ⁻⁰¹	(0.89 - 1.50) 1.1	2.7x10 ⁻⁰¹
rs2204224	Т	0.92	01	1.00	01	0.99	01	1.03	01	1.04	01	-	-	(0.79 - 1.27) 1.15	9.8x10 ⁻⁰¹	(0.73 - 1.13) 0.99	3.9x10 ⁻⁰¹	(0.72 - 1.69)	6.6x10 ⁻⁰¹
rs2249965	A	(0.82 - 1.02) 1.12	1.0x10 ⁻⁰¹	(0.80 - 1.24) 1.08	9.7x10 ⁻⁰¹	(0.86 - 1.15) 1.06	9.1x10 ⁻⁰¹	(0.94 - 1.12) 1.09	5.1x10 ⁻⁰¹	(0.87 - 1.26) 0.93	6.4x10 ⁻⁰¹	-	-	(0.99 - 1.35) 0.97	7.5x10 ⁻⁰²	(0.86 - 1.14) 1.04	8.7x10 ⁻⁰¹	(0.69 - 1.22) 0.99	5.6x10 ⁻⁰¹
rs2305398	G	(1.02 - 1.25)	2.3x10 ⁻⁰²	(0.86 - 1.33)	5.2x10 ⁻⁰¹	(0.93 - 1.23)	3.7x10 ⁻⁰¹	(1.00 - 1.19)	4.7x10 ⁻⁰²	(0.76 - 1.11)	4.0x10 ⁻⁰¹	-	-	(0.83 - 1.12) 1.19	6.6x10 ⁻⁰¹	(0.91 - 1.19)	5.5x10 ⁻⁰¹	(0.75 - 1.30) 1.23	9.2x10 ⁻⁰¹
rs2358891	G -	1.10	5.1x10 ⁻⁰²	0.78	3.8x10 ⁻⁰²	1.09	2.5x10 ⁻⁰¹	1.12	01	1.03	01	-	-	(1.00 - 1.41) 0.99	5.3x10 ⁻⁰²	(0.88 - 1.20) 0.92	6.8x10 ⁻⁰¹	(0.89 - 1.69) 1.18	2.1x10 ⁻⁰¹
rs2532144	T	(1.00 - 1.22) 1.02		(0.62 - 0.99)		(0.94 - 1.25) 1.04		(0.98 - 1.28) 0.98	1.0x10 ⁻⁰¹	(0.86 - 1.22) 1.01	7.4x10 ⁻⁰¹	-	-	(0.85 - 1.15) 1.05	9.0x10 ⁻⁰¹	(0.79 - 1.05) 1.06	2.2x10 ⁻⁰¹	(0.88 - 1.56) 1.03	2.5x10 ⁻⁰¹
rs2685217 rs2723065	T A	(0.91 - 1.14) 1.05	7.4x10 ⁻⁰¹ 3.0x10 ⁻⁰¹	(0.67 - 1.12) 0.90	2.8x10 ⁻⁰¹ 3.4x10 ⁻⁰¹	(0.88 - 1.22) 1.12	6.8x10 ⁻⁰¹	(0.89 - 1.08) 1.01	7.0x10 ⁻⁰¹ 8.1x10 ⁻⁰¹	(0.82 - 1.24) 1.22	9.3x10 ⁻⁰¹ 4.7x10 ⁻⁰²	-	-	(0.88 - 1.26) 1.14	5.6x10 ⁻⁰¹ 1.1x10 ⁻⁰¹	(0.90 - 1.24) 1.15	5.1x10 ⁻⁰¹ 4.6x10 ⁻⁰²	(0.75 - 1.41) 0.91	8.8x10 ⁻⁰¹ 4.8x10 ⁻⁰¹
132/23003	_ ^	1.03	3.0710	0.50	3.4410	1.14	1.2110	1.01	3.1710	1.22	4./ 110			1.14	1.1710	1.13	4.0410	0.31	4.0710

	AF						Direct ger	notyping								In-silico Rep	plication		
	Risk	AFNE	T	DANE	IB .	HVI	1	MAG	C	MG	Н	Ottaw	<i>r</i> a	Health	ABC	PROSP	ER	RS-	·II
		(0.95 - 1.16)		(0.72 - 1.12)		(0.97 - 1.30)		(0.93 - 1.10)		(1.00 - 1.47)				(0.97 - 1.32)		(1.00 - 1.32)		(0.70 - 1.19)	
rs276857	G	1.15 (0.99 - 1.34)	6.6x10 ⁻⁰²	0.93 (0.67 - 1.28)	6.4x10 ⁻⁰¹	0.95 (0.78 - 1.17)	6.4x10 ⁻⁰¹	1.08 (0.96 - 1.21)	2.0x10 ⁻⁰¹	1.14 (0.86 - 1.51)	3.5x10 ⁻⁰¹	-	-	1.06 (0.85 - 1.33)	6.0x10 ⁻⁰¹	1.08 (0.86 - 1.35)	5.2x10 ⁻⁰¹	0.81 (0.50 - 1.33)	4.2x10 ⁻⁰¹
rs3780190	G	1.18 (1.06 - 1.30)	1.0x10 ⁻⁰³	0.85 (0.68 - 1.05)	1.3x10 ⁻⁰¹	1.00 (0.88 - 1.15)	9.7x10 ⁻⁰¹	1.03 (0.94 - 1.12)	4.9x10 ⁻⁰¹	1.01 (0.85 - 1.20)	8.7x10 ⁻⁰¹	-	-	1.05 (0.91 - 1.22)	5.0x10 ⁻⁰¹	1.05 (0.93 - 1.20)	4.4x10 ⁻⁰¹	1.16 (0.89 - 1.54)	2.6x10 ⁻⁰¹
rs3922843	А	1.02 (0.92 - 1.15)	6.7x10 ⁻⁰¹	1.02 (0.79 - 1.31)	9.0x10 ⁻⁰¹	0.96 (0.82 - 1.12)	6.1x10 ⁻⁰¹	1.10 (1.00 - 1.21)	4.3x10 ⁻⁰²	1.17 (0.96 - 1.42)	1.2×10 ⁻⁰¹	-	1	1.13 (0.96 - 1.33)	1.5x10 ⁻⁰¹	1.06 (0.92 - 1.24)	4.2x10 ⁻⁰¹	0.89 (0.65 - 1.21)	4.6x10 ⁻⁰¹
rs4238314	А	1.04 (0.94 - 1.14)	4.8x10 ⁻⁰¹	1.21 (0.97 - 1.52)	8.9x10 ⁻⁰²	1.00 (0.87 - 1.16)	9.5x10 ⁻⁰¹	1.01 (0.93 - 1.09)	8.6x10 ⁻⁰¹	1.08 (0.91 - 1.28)	3.9x10 ⁻⁰¹	-	1	0.96 (0.83 - 1.12)	6.3x10 ⁻⁰¹	0.98 (0.85 - 1.12)	7.4x10 ⁻⁰¹	1.00 (0.76 - 1.31)	9.9x10 ⁻⁰¹
rs4642101	G	1.16 (1.05 - 1.30)	4.2x10 ⁻⁰³	-	-	1.15 (0.99 - 1.33)	6.4x10 ⁻⁰²	1.11 (1.01 - 1.20)	2.4x10 ⁻⁰²	-	-	1.19 (0.83 - 1.45)	8.5x10 ⁻²	0.96 (0.83 - 1.18)	6.3x10 ⁻⁰¹	1.03 (0.89 - 1.18)	7.1x10 ⁻⁰¹	0.85 (0.65 - 1.10)	2.2x10 ⁻⁰¹
rs4824051	С	1.09 (0.97 - 1.20)	1.6x10 ⁻⁰¹	1.12 (0.87 - 1.47)	3.6x10 ⁻⁰¹	1.22 (1.03 - 1.45)	2.3x10 ⁻⁰²	1.00 (0.90 - 1.10)	9.3x10 ⁻⁰¹	0.93 (0.75 - 1.16)	5.4x10 ⁻⁰¹	-	-	1.05 (0.88 - 1.27)	5.8x10 ⁻⁰¹	1.05 (0.89 - 1.23)	5.3x10 ⁻⁰¹	1.10 (0.81 - 1.52)	5.4x10 ⁻⁰¹
rs56235003		0.56 (0.41 - 0.76)	9.2x10 ⁻⁰⁵	0.96 (0.31 - 2.94)	9.5x10 ⁻⁰¹	0.89 (0.40 - 1.95)	7.7x10 ⁻⁰¹	-	-	0.94 (0.44 - 2.01)	8.7x10 ⁻⁰¹	-	-	-	-	-	-	-	-
rs6062468	С	1.03 (0.94 - 1.14)	5.3x10 ⁻⁰¹	1.04 (0.84 - 1.28)	7.5x10 ⁻⁰¹	0.99 (0.86 - 1.14)	8.8x10 ⁻⁰¹	0.97 (0.89 - 1.05)	4.3x10 ⁻⁰¹	1.03 (0.85 - 1.24)	7.9x10 ⁻⁰¹	-	-	0.98 (0.85 - 1.13)	8.1x10 ⁻⁰¹	1.16 (1.01 - 1.34)	4.2x10 ⁻⁰²	1.31 (0.98 - 1.74)	6.7x10 ⁻⁰²
rs6540690	С	1.11 (0.98 - 1.25)	1.1x10 ⁻⁰¹	0.95 (0.74 - 1.22)	7.1x10 ⁻⁰¹	0.89 (0.75 - 1.05)	1.9x10 ⁻⁰¹	0.98 (0.88 - 1.09)	7.2x10 ⁻⁰¹	1.12 (0.91 - 1.41)	2.8x10 ⁻⁰¹	-	-	0.99 (0.83 - 1.18)	9.2x10 ⁻⁰¹	0.85 (0.72 - 1.01)	6.8x10 ⁻⁰²	0.92 (0.65 - 1.28)	560x10 ^{-0:}
rs6749773	Α	0.93 (0.85 - 1.03)	1.8x10 ⁻⁰¹	0.91 (0.73 - 1.13)	3.9x10 ⁻⁰¹	1.06 (0.92 - 1.22)	4.1x10 ⁻⁰¹	1.01 (0.93 - 1.09)	2.0x10 ⁻⁰¹	0.95 (0.79 - 1.14)	6.1x10 ⁻⁰¹	-	-	1.13 (0.98 - 1.31)	9.9x10 ⁻⁰²	1.00 (0.88 - 1.14)	9.9x10 ⁻⁰¹	1.13 (0.87 - 1.48)	3.61x10 ⁻⁰
rs6882776	Α	0.95 (0.85 - 1.06)	3.9x10 ⁻⁰¹	1.02 (0.81 - 1.29)	8.7x10 ⁻⁰¹	0.83 (0.71 - 0.97)	1.8x10 ⁻⁰²	0.91 (0.83 – 1.00)	3.9x10 ⁻⁰²	0.83 (0.68 - 1.01)	6.4x10 ⁻⁰²	-	-	0.99 (0.84 - 1.16)	8.8x10 ⁻⁰¹	1.02 (0.89 - 1.18)	7.5x10 ⁻⁰¹	0.97 (0.72 - 1.30)	8.4x10 ⁻⁰¹
rs6884185	С	1.08 (0.97 - 1.18)	1.8x10 ⁻⁰¹	1.11 (0.88 - 1.39)	3.7x10 ⁻⁰¹	0.98 (0.85 - 1.14)	8.1x10 ⁻⁰¹	1.01 (0.93 - 1.10)	7.8x10 ⁻⁰¹	1.08 (0.90 - 1.28)	4.3x10 ⁻⁰¹	-	-	0.97 (0.82 - 1.15)	7.3x10 ⁻⁰¹	1.11 (0.95 - 1.28)	2.0x10 ⁻⁰¹	0.91 (0.68 - 1.22)	5.2x10- ⁰¹
rs6968408	С	0.98 (0.83 - 1.15)	7.8x10 ⁻⁰¹	1.35 (0.93 - 1.96)	1.2x10 ⁻⁰¹	0.79 (0.63 - 1.00)	4.7x10 ⁻⁰²	1.02 (0.89 - 1.18)	7.3x10 ⁻⁰¹	1.11 (0.83 - 1.49)	4.7x10 ⁻⁰¹	-	-	0.88 (0.69 - 1.14)	3.2x10 ⁻⁰¹	0.76 (0.62 - 0.94)	1.3x10 ⁻⁰²	0.88 (0.57 - 1.35)	5.6x10 ⁻⁰¹
rs7160770	Т	0.94 (0.85 - 1.04)	2.8x10 ⁻⁰¹	0.88 (0.71 - 1.11)	2.9x10 ⁻⁰¹	1.02 (0.88 - 1.18)	7.8x10 ⁻⁰¹	0.96 (0.88 - 1.04)	3.4x10 ⁻⁰¹	0.98 (0.82 - 1.18)	8.4x10 ⁻⁰¹	-	-	1.08 (0.93 - 1.25)	3.6x10 ⁻⁰¹	1.05 (0.93 - 1.20)	4.4x10 ⁻⁰¹	1.28 (0.98 - 1.67)	7.0x10 ⁻⁰²
rs7295704	Т	1.01 (0.90 - 1.14)	8.8x10 ⁻⁰¹	1.40 (1.07 - 1.83)	1.4x10 ⁻⁰²	1.20 (1.01 - 1.42)	4.2x10 ⁻⁰²	0.99 (0.89 - 1.10)	8.2x10 ⁻⁰¹	0.92 (0.75 - 1.12)	4.0x10 ⁻⁰¹	-	-	1.03 (0.87 - 1.23)	7.2x10 ⁻⁰¹	1.06 (0.90 - 1.25)	4.6x10 ⁻⁰¹	1.01 (0.73 - 1.38)	9.6x10 ⁻⁰¹
rs752282	Т	1.01 (0.85 - 1.19)	9.3x10 ⁻⁰¹	1.00 (0.69 - 1.44)	1.0x10 ⁻⁰⁰	0.87 (0.69 - 1.11)	2.6x10 ⁻⁰¹	1.02 (0.89 - 1.16)	8.2x10 ⁻⁰¹	1.19 (0.87 - 1.62)	2.8x10 ⁻⁰¹	-	-	-	-	1.49 (0.17 - 13.18)	7.2x10 ⁻⁰¹	-	-
rs7682872	G	0.97 (0.88 - 1.08)	6.1x10 ⁻⁰¹	0.94 (0.76 - 1.19)	6.4x10 ⁻⁰¹	0.96 (0.83 1.12)	6.3x10 ⁻⁰¹	1.14 (1.04 - 1.23)	4.0x10 ⁻⁰³	1.11 (0.93 - 1.33)	2.6x10 ⁻⁰¹	-	-	0.93 (0.80 - 1.09)	4.0x10 ⁻⁰¹	0.92 (0.80 - 1.04)	1.9x10 ⁻⁰¹	0.79 (0.60 - 1.03)	8.6x10 ⁻⁰²
rs768347	Т	1.03 (0.90 - 1.17)	6.8x10 ⁻⁰¹	0.91 (0.68 - 1.22)	5.2x10 ⁻⁰¹	1.01 (0.84 - 1.21)	9.2x10 ⁻⁰¹	1.00 (0.89 - 1.12)	9.8x10 ⁻⁰¹	0.94 (0.76 - 1.18)	6.1x10 ⁻⁰¹	-	-	1.01 (0.83 - 1.22)	9.3x10 ⁻⁰¹	1.01 (0.86 - 1.19)	8.9x10 ⁻⁰¹	1.09 (0.78 - 1.51)	6.2x10 ⁻⁰¹
rs7835679	С	1.12 (0.92 - 1.39)	2.6x10 ⁻⁰¹	0.93 (0.58 - 1.47)	7.4x10 ⁻⁰¹	1.54 (1.11 - 2.08)	9.0x10 ⁻⁰³	1.00 (0.82 - 1.22)	9.9x10 ⁻⁰¹	0.88 (0.63 - 1.25)	4.9x10 ⁻⁰¹	-	-	1.23 (0.91 - 1.67)	1.7x10 ⁻⁰¹	1.04 (0.79 - 1.37)	7.6x10 ⁻⁰¹	0.76 (0.48 - 1.22)	2.6x10 ⁻⁰¹
rs7987944	С	1.01 (0.92 - 1.12)	8.0x10 ⁻⁰¹	1.19 (0.94 - 1.50)	1.4x10 ⁻⁰¹	0.98 (0.84 - 1.13)	7.6x10 ⁻⁰¹	1.03 (0.95 - 1.13)	4.7x10 ⁻⁰¹	1.21 (1.01 - 1.45)	4.2x10 ⁻⁰²	-	-	0.99 (0.85 - 1.16)	9.3x10 ⁻⁰¹	1.01 (0.88 - 1.16)	8.5x10 ⁻⁰¹	0.89 (0.67 - 1.17)	4.0x10 ⁻⁰¹
rs9267992	G	1.16 (1.01 - 1.33)	3.7x10 ⁻⁰²	0.91 (0.68 - 1.22)	5.3x10 ⁻⁰¹	1.26 (1.04 - 1.53)	1.8x10 ⁻⁰²	0.99 (0.88 - 1.11)	8.3x10 ⁻⁰¹	1.17 (0.91 - 1.51)	2.3x10 ⁻⁰¹	-	-	0.92 (0.74 - 1.14)	4.3x10 ⁻⁰¹	1.03 (0.87 - 1.22)	7.4x10 ⁻⁰¹	1.03 (0.71 - 1.47)	8.9x10 ⁻⁰¹
rs9284844	G	1.03 (0.90 - 1.18)	6.6x10 ⁻⁰¹	1.08 (0.79 - 1.47)	6.3x10 ⁻⁰¹	1.19 (0.98 - 1.45)	7.3x10 ⁻⁰²	1.08 (0.94 - 1.22)	2.7x10 ⁻⁰¹	0.86 (0.68 - 1.11)	2.5x10 ⁻⁰¹	-	-	0.83 (0.69 - 1.01)	6.6x10 ⁻⁰²	0.98 (0.83 - 1.18)	8.7x10 ⁻⁰¹	1.08 (0.74 - 1.56)	7.0x10 ⁻⁰¹

	AF Risk	Risk Allele	Original GWAS datas	set¹	Direct genot	yping	<i>In-silico</i> replic	ation	Combined repl	ication	Overall Meta-analy	
SNP	Allele	Frequency	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value
rs10137710	Т	0.16	1.13 (1.08 - 1.19)	1.8x10 ⁻⁰⁶	1.06 (0.99 - 1.14)	1.2x10 ⁻⁰¹	0.93 (0.82 - 1.06)	2.6x10 ⁻⁰¹	1.03 (0.96 - 1.09)	4.2x10 ⁻⁰¹	1.09 (1.05 - 1.13)	2.9x10 ⁻⁰⁵
rs10212121	Α	0.67	1.10 (1.05 - 1.14)	1.8x10 ⁻⁰⁵	1.03 (0.97 - 1.09)	3.3x10 ⁻⁰¹	1.02 (0.93 - 1.12)	7.1x10 ⁻⁰¹	1.03 (0.98 - 1.08)	3.0x10 ⁻⁰¹	1.06 (1.03 - 1.10)	9.9x10 ⁻⁰⁵
rs10267684	Т	0.31	1.10 (1.06 - 1.15)	4.1x10 ⁻⁰⁶	1.04 (0.98 - 1.10)	2.4x10 ⁻⁰¹	1.01 (0.91 - 1.11)	8.7x10 ⁻⁰¹	1.03 (0.98 - 1.08)	2.7x10 ⁻⁰¹	1.07 (1.04 - 1.11)	2.2x10 ⁻⁰⁵
rs10507248	T	0.73	1.13 (1.08 - 1.18)	8.5x10 ⁻⁰⁸	1.14 (1.06 - 1.20)	4.0x10 ⁻⁰⁵	1.03 (0.93 - 1.14)	5.9x10 ⁻⁰¹	1.11 (1.05 - 1.17)	1.3x10 ⁻⁰⁴	1.12 (1-08 - 1.16)	5.7x10 ⁻¹¹
rs10762941	Α	0.40	1.09 (1.04 - 1.13)	3.9x10 ⁻⁰⁵	1.00 (0.95 - 1.05)	9.8x10 ⁻⁰¹	0.99 (0.90 - 1.09)	8.5x10 ⁻⁰¹	1.00 (0.95 - 1.05)	9.1x10 ⁻⁰¹	1.05 (1.02 - 1.08)	2.2x10 ⁻⁰³
rs10800507	С	0.50	1.11 (1.06 - 1.15)	8.8x10 ⁻⁰⁷	1.10 (1.03 - 1.15)	1.2x10 ⁻⁰³	0.98 (0.90 - 1.08)	7.4x10 ⁻⁰¹	1.06 (1.02 - 1.12)	8.7x10 ⁻⁰³	1.09 (1.05 - 1.12)	5.7x10 ⁻⁰⁸
rs10849152	T	0.55	1.09 (1.04 - 1.13)	4.9x10 ⁻⁰⁵	0.99 (0.94 - 1.05)	7.9x10 ⁻⁰¹	1.05 (0.95 - 1.15)	3.3x10 ⁻⁰¹	1.01 (0.96 - 1.05)	8.0x10 ⁻⁰¹	1.05 (1.02 - 1.09)	1.2x10 ⁻⁰³
rs10919369	Т	0.22	1.12 (1.07 - 1.17)	2.6x10 ⁻⁰⁶	1.07 (1.01 - 1.14)	2.8x10 ⁻⁰²	1.02 (0.91 - 1.14)	7.2x10 ⁻⁰¹	1.06 (1.00 - 1.12)	3.6x10 ⁻⁰²	1.09 (1.06 - 1.13)	8.9x10 ⁻⁰⁷
rs10947261	G	0.92	1.18 (1.09 - 1.27)	2.7x10 ⁻⁰⁵	1.11 (1.01 - 1.22)	3.0x10 ⁻⁰²	0.93 (0.78 - 1.10)	3.8x10 ⁻⁰¹	1.06 (0.98 - 1.16)	1.4x10 ⁻⁰¹	1.12 (1.06 - 1.19)	3.8x10 ⁻⁰⁵
rs11466656	С	0.01	7.25 (3.14 - 16.78)	3.6x10 ⁻⁰⁶	-	-	1.29 (0.02 - 72.45)	9.0x10 ⁻⁰¹	1.29 (0.02 - 72.45)	9.0x10 ⁻⁰¹	6.75 (2.97 - 15.34)	5.1x10 ⁻⁰⁶
rs12370365	G	0.77	1.10 (1.05 - 1.15)	4.4x10 ⁻⁰⁵	1.11 (1.04 - 1.18)	1.9x10 ⁻⁰³	1.05 (0.93 - 1.18)	4.0x10 ⁻⁰¹	1.09 (1.03 - 1.15)	1.8x10 ⁻⁰³	1.10 (1.06 - 1.14)	2.8x10 ⁻⁰⁷
rs12406668	Т	0.08	1.16 (1.08 - 1.24)	4.9x10 ⁻⁰⁵	1.03 (0.93 - 1.14)	6.0x10 ⁻⁰¹	0.93 (0.78 - 1.11)	4.0x10 ⁻⁰¹	1.00 (0.92 - 1.09)	9.7x10 ⁻⁰¹	1.09 (1.04 - 1.15)	1.3x10 ⁻⁰³
rs12415501	Т	0.16	1.15 (1.10 - 1.22)	9.0x10 ⁻⁰⁸	1.27 (1.18 - 1.37)	6.5x10 ⁻¹⁰	1.17 (1.03 - 1.33)	1.4x10 ⁻⁰²	1.22 (1.14 - 1.29)	6.0x10 ⁻¹⁰	1.18 (1.14 - 1.23)	6.5x10 ⁻¹⁶
rs12733930	С	0.78	1.11 (1.06 - 1.16)	3.2x10 ⁻⁰⁵	1.01 (0.94 - 1.08)	7.6x10 ⁻⁰¹	1.00 (0.89 - 1.11)	9.8x10 ⁻⁰¹	1.01 (0.95 - 1.06)	8.1x10 ⁻⁰¹	1.06 (1.03 - 1.10)	8.2x10 ⁻⁰⁴
rs12991989	С	0.51	1.10 (1.06 - 1.15)	1.5x10 ⁻⁰⁶	1.01 (0.94 - 1.06)	7.5x10 ⁻⁰¹	1.02 (0.93 - 1.12)	6.8x10 ⁻⁰¹	1.01 (0.96 - 1.06)	6.3x10 ⁻⁰¹	1.06 (1.03 - 1.10)	7.7x10 ⁻⁰⁵
rs13169864	G	0.82	1.13 (1.06 - 1.19)	4.5x10 ⁻⁰⁵	1.01 (0.94 - 1.08)	7.8x10 ⁻⁰¹	1.19 (1.04 - 1.35)	1.2x10 ⁻⁰²	1.04 (0.98 - 1.10)	1.7x10 ⁻⁰¹	1.09 (1.04 - 1.12)	1.1x10 ⁻⁰⁴
rs13216675	T	0.69	1.10 (1.05 - 1.15)	5.0x10 ⁻⁰⁵	1.10 (1.03 - 1.16)	1.7x10 ⁻⁰³	1.12 (1.02 - 1.25)	2.2x10 ⁻⁰²	1.10 (1.05 - 1.16)	1.1x10 ⁻⁰⁴	1.10 (1.06 - 1.14)	2.2x10 ⁻⁰⁸
rs1324739	G	0.04	1.40 (1.22 - 1.61)	1.6x10 ⁻⁰⁶	1.14 (0.97 - 1.35)	1.2x10 ⁻⁰¹	0.72 (0.52 - 0.99)	4.2x10 ⁻⁰²	1.03 (0.89 - 1.20)	6.5x10 ⁻⁰¹	1.22 (1.10 - 1.35)	1.4x10 ⁻⁰⁴
rs13396611	T	0.04	1.27 (1.14 - 1.42)	1.2x10 ⁻⁰⁵	0.95 (0.82 - 1.10)	5.3x10 ⁻⁰¹	1.03 (0.79 - 1.34)	8.5x10 ⁻⁰¹	0.97 (0.85 - 1.10)	6.4x10 ⁻⁰¹	1.14 (1.05 - 1.23)	2.3x10 ⁻⁰³
rs2118254	С	0.42	1.09 (1.04 - 1.13)	3.5x10 ⁻⁰⁵	1.03 (0.98 - 1.08)	2.9x10 ⁻⁰¹	1.02 (0.93 - 1.12)	6.8x10 ⁻⁰¹	1.03 (0.98 - 1.07)	2.6x10 ⁻⁰¹	1.06 (1.03 - 1.09)	1.2x10 ⁻⁰⁴
rs2204224	Т	0.71	1.19 (1.09 - 1.29)	3.6x10 ⁻⁰⁵	-	-	1.03 (0.88 - 1.20)	6.8x10 ⁻⁰¹	1.03 (0.88 - 1.20)	6.8x10 ⁻⁰¹	1.15 (1.08 - 1.23)	1.3x10 ⁻⁰⁴
rs2249965	Α	0.36	1.11 (1.07 - 1.16)	5.7x10 ⁻⁰⁷	0.99 (0.94 - 1.05)	7.2x10 ⁻⁰¹	1.04 (0.94 - 1.15)	4.2x10 ⁻⁰¹	1.00 (0.95 - 1.05)	9.3x10 ⁻⁰¹	1.06 (1.03 - 1.10)	1.2x10 ⁻⁰⁴
rs2305398	G	0.60	1.10 (1.05 - 1.16)	4.2x10 ⁻⁰⁶	1.08 (10.2 - 1.14)	5.7x10 ⁻⁰³	1.01 (0.92 - 1.10)	9.1x10 ⁻⁰¹	1.06 (1.01 - 1.11)	1.5x10 ⁻⁰²	1.09 (1.05 - 1.12)	3.9x10 ⁻⁰⁷
rs2358891	G	0.74	1.11 (1.06 - 1.16)	1.5x10 ⁻⁰⁵	-	-	1.11 (1.00 - 1.23)	5.3x10 ⁻⁰²	1.11 (1.00 - 1.23)	5.3x10 ⁻⁰²	1.11 (1.06 - 1.16)	2.0x10 ⁻⁰⁶
rs2532144	T	0.51	1.10 (1.05 - 1.14)	3.0x10 ⁻⁰⁵	1.06 (1.00 - 1.14)	3.9x10 ⁻⁰²	0.97 (0.89 - 1.08)	5.9x10 ⁻⁰¹	1.04 (0.99 - 1.10)	1.4x10 ⁻⁰¹	1.08 (1.04 - 1.11)	3.4x10 ⁻⁰⁵
rs2685217	T	0.24	1.11 (1.06 - 1.17)	2.6x10 ⁻⁰⁵	1.00 (0.94 - 1.06)	8.8x10 ⁻⁰¹	1.05 (0.94 - 1.17)	3.8x10 ⁻⁰¹	1.01 (0.96 - 1.06)	7.7x10 ⁻⁰¹	1.06 (1.03 - 1.10)	9.3x10 ⁻⁰⁴
rs2723065	Α	0.60	1.10 (1.06 - 1.15)	9.7x10 ⁻⁰⁷	1.05 (0.99 - 1.11)	9.7x10 ⁻⁰²	1.11 (1.01 - 1.22)	3.3x10 ⁻⁰²	1.06 (1.01 - 1.11)	1.2x10 ⁻⁰²	1.09 (1.05 - 1.12)	7.6x10 ⁻⁰⁸
rs276857	G	0.13	1.16 (1.08 - 1.23)	1.0x10 ⁻⁰⁵	1.07 (0.99 - 1.16)	7.5x10 ⁻⁰²	1.04 (0.90 - 1.21)	5.9x10 ⁻⁰¹	1.07 (1.00 - 1.14)	6.7x10 ⁻⁰²	1.11 (1.06 - 1.17)	7.5x10 ⁻⁰⁶
rs3780190	G	0.54	1.11 (1.06 - 1.15)	6.3x10 ⁻⁰⁶	1.05 (1.00 - 1.11)	6.0x10 ⁻⁰²	1.06 (0.97 - 1.16)	1.8x10 ⁻⁰¹	1.05 (1.01 - 1.11)	2.1x10 ⁻⁰²	1.09 (1.05 - 1.11)	1.1x10 ⁻⁰⁶
rs3922843	Α	0.26	1.10 (1.06 - 1.15)	9.7x10 ⁻⁰⁶	1.06 (1.00 - 1.12)	6.5x10 ⁻⁰²	1.07 (0.96 - 1.18)	2.2x10 ⁻⁰¹	1.06 (1.01 - 1.12)	2.7x10 ⁻⁰²	1.09 (1.05 - 1.12)	1.5x10 ⁻⁰⁶
rs4238314	Α	0.50	1.09 (1.05 - 1.13)	2.7x10 ⁻⁰⁵	1.03 (0.98 - 1.09)	2.3x10 ⁻⁰¹	0.97 (0.89 - 1.07)	5.9x10 ⁻⁰¹	1.02 (0.97 - 1.07)	4.3x10 ⁻⁰¹	1.06 (1.03 - 1.09)	2.2x10 ⁻⁰⁴
rs4642101	G	0.65	1.11 (1.06 - 1.15)	4.2x10 ⁻⁰⁶	1.12 (1.05 - 1.19)	3.9x10 ⁻⁰⁴	0.98 (0.88 - 1.08)	6.2x10 ⁻⁰¹	1.09 (1.04 - 1.15)	5.6x10 ⁻⁰⁴	1.10 (1.06 - 1.14)	9.8x10 ⁻⁰⁹
rs4824051	С	0.75	1.11 (1.06 - 1.16)	4.6x10 ⁻⁰⁵	1.05 (0.99 - 1.12)	1.1x10 ⁻⁰¹	1.06 (0.94 - 1.19)	3.2x10 ⁻⁰¹	1.05 (1.00 - 1.11)	6.0x10 ⁻⁰²	1.09 (1.04 - 1.12)	1.8x10 ⁻⁰⁵

Suppleme	ntal Tab	le 4. Meta	-analysis associa	tion resul	ts in Europeans	•						
	AF Risk	Risk Allele	Original GWAS data	_	Direct genot	yping	<i>In-silico</i> replic	cation	Combined repl	lication	Overall Meta-anal	
SNP	Allele	Frequency	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value	RR (95% CI)	P value
rs6062468	С	0.51	1.10 (1.05 - 1.15)	4.7x10 ⁻⁰⁵	1.00 (0.95 - 1.05)	9.3x10 ⁻⁰¹	1.09 (0.99 - 1.20)	7.1x10 ⁻⁰²	1.02 (0.97 - 1.07)	4.2x10 ⁻⁰¹	1.06 (1.03 - 1.09)	4.9x10 ⁻⁰⁴
rs6540690	С	0.76	1.12 (1.06 - 1.18)	3.6x10 ⁻⁰⁵	1.01 (0.95 - 1.08)	7.2x10 ⁻⁰¹	0.92 (0.82 - 1.03)	1.3x10 ⁻⁰¹	0.99 (0.93 - 1.04)	6.7x10 ⁻⁰¹	1.05 (1.01 - 1.10)	6.9x10 ⁻⁰³
rs6749773	Α	0.47	1.08 (1.04 - 1.13)	4.9x10 ⁻⁰⁵	0.98 (0.93 - 1.03)	4.8x10 ⁻⁰¹	1.06 (0.97 - 1.17)	1.8x10 ⁻⁰¹	1.00 (0.96 - 1.05)	9.5x10 ⁻⁰¹	1.05 (1.02 - 1.08)	1.7x10 ⁻⁰³
rs6882776	Α	0.71	1.10 (1.05 - 1.16)	3.7x10 ⁻⁰⁵	1.10 (1.04 - 1.16)	1.4x10 ⁻⁰³	1.00 (0.90 - 1.10)	9.6x10 ⁻⁰¹	1.08 (1.02 - 1.12)	6.2x10 ⁻⁰³	1.09 (1.05 - 1.12)	1.0x10 ⁻⁰⁶
rs6884185	С	0.54	1.10 (1.05 - 1.15)	4.5x10 ⁻⁰⁵	1.03 (0.98 - 1.10)	2.0x10 ⁻⁰¹	1.02 (0.92 - 1.14)	6.6x10 ⁻⁰¹	1.03 (0.97 - 1.09)	1.8x10 ⁻⁰¹	1.06 (1.03 - 1.10)	8.9x10 ⁻⁰⁵
rs6968408	С	0.91	1.16 (1.09 - 1.25)	1.8x10 ⁻⁰⁵	1.00 (0.91 - 1.09)	9.3x10 ⁻⁰¹	0.82 (0.70 - 0.95)	9.9x10 ⁻⁰³	0.95 (0.88 - 1.02)	1.7x10 ⁻⁰¹	1.06 (1.01 - 1.11)	2.5x10 ⁻⁰²
rs7160770	T	0.50	1.09 (1.04 - 1.13)	5.0x10 ⁻⁰⁵	0.96 (0.91 - 1.01)	1.6x10 ⁻⁰¹	1.09 (0.99 - 1.19)	7.9x10 ⁻⁰²	0.99 (0.94 - 1.04)	7.3x10 ⁻⁰¹	1.04 (1.01 - 1.08)	4.4x10 ⁻⁰³
rs7295704	Т	0.21	1.10 (1.05 - 1.16)	4.9x10 ⁻⁰⁵	1.04 (0.97 - 1.11)	2.9x10 ⁻⁰¹	1.04 (0.93 - 1.17)	4.5x10 ⁻⁰¹	1.04 (0.98 - 1.10)	2.0x10 ⁻⁰¹	1.08 (1.04 - 1.12)	7.7x10 ⁻⁰⁵
rs752282	Т	0.02	2.91 (1.82 - 4.63)	7.5x10 ⁻⁰⁶	1.00 (0.92 - 1.10)	9.3x10 ⁻⁰¹	1.77 (0.22 - 14.2)	5.9x10 ⁻⁰¹	1.01 (0.92 - 1.10)	9.1x10 ⁻⁰¹	1.04 (0.96 - 1.14)	3.4x10 ⁻⁰¹
rs7682872	G	0.61	1.09 (1.05 - 1.14)	2.8x10 ⁻⁰⁵	1.04 (0.99 - 1.10)	1.0x10 ⁻⁰¹	0.91 (0.82 - 1.00)	4.0x10 ⁻⁰²	1.01 (0.96 - 1.06)	7.0x10 ⁻⁰¹	1.05 (1.02 - 1.09)	6.1x10 ⁻⁰⁴
rs768347	T	0.19	1.11 (1.06 - 1.17)	1.4x10 ⁻⁰⁵	1.00 (0.93 - 1.07)	9.5x10 ⁻⁰¹	1.02 (0.91 - 1.15)	7.5x10 ⁻⁰¹	1.00 (0.94 - 1.07)	9.1x10 ⁻⁰¹	1.07 (1.03 - 1.11)	5.3x10 ⁻⁰⁴
rs7835679	С	0.93	1.20 (1.10 - 1.30)	2.2x10 ⁻⁰⁵	1.08 (0.96 - 1.01)	2.1x10 ⁻⁰¹	1.06 (0.88 - 1.28)	5.4x10 ⁻⁰¹	1.08 (0.97 - 1.19)	1.7x10 ⁻⁰¹	1.15 (1.08 - 1.22)	3.4x10 ⁻⁰⁵
rs7987944	С	0.34	1.09 (1.05 - 1.14)	4.9x10 ⁻⁰⁵	1.04 (0.99 - 1.10)	1.4x10 ⁻⁰¹	0.99 (0.90 - 1.09)	8.3x10 ⁻⁰¹	1.03 (0.98 - 1.08)	2.5x10 ⁻⁰¹	1.06 (1.03 - 1.10)	1.2x10 ⁻⁰⁴
rs9267992	G	0.15	1.12 (1.06 - 1.18)	4.0x10 ⁻⁰⁵	1.08 (1.00 - 1.17)	3.7x10 ⁻⁰²	0.99 (0.87 - 1.12)	8.7x10 ⁻⁰¹	1.06 (0.99 - 1.13)	8.7x10 ⁻⁰²	1.09 (1.05 - 1.14)	2.1x10 ⁻⁰⁵
rs9284844	G	0.84	1.12 (1.06 - 1.18)	2.7x10 ⁻⁰⁵	1.05 (0.98 - 1.14)	1.7x10 ⁻⁰¹	0.93 (0.82 - 1.05)	2.4x10 ⁻⁰¹	1.02 (0.95 - 1.09)	5.9x10 ⁻⁰¹	1.08 (1.03 - 1.12)	3.2x10 ⁻⁰⁴
rs9857326	Α	0.23	1.09 (1.05 - 1.14)	3.9x10 ⁻⁰⁵	0.99 (0.94 - 1.05)	7.9x10 ⁻⁰¹	1.01 (0.91 - 1.11)	9.0x10 ⁻⁰¹	1.00 (0.95 - 1.05)	8.7x10 ⁻⁰¹	1.05 (1.02 - 1.08)	2.3x10 ⁻⁰³
In Ottawa, we	used rs382	25214 as a prox	y SNP for rs12415501 ((r2=0.76). SNF	– single nucleotide p	olymorphism;	; RR – relative risk; CI –	- confidence in	iterval.			

Supplemental Table 5.	Six genome-wide signification	ant AF loci in Japanese.

					Original GWAS ¹ Stage 1		Replica Stag		Meta-analysis Stages 1-3		
SNP	Chr	AF Risk Allele	Closest gene	Relative location	RR 95% CI	P value	RR 95% CI	P value	RR 95% CI	P value	
rs639652	1q24	G	PRRX1	Intronic	1.21 1.08-1.35	6.6x10 ⁻⁴	1.21 1.13-1.30	3.2x10 ⁻⁷	1.18 1.12-1.21	2.7x10 ⁻¹⁵	
rs1906599	4q25	Т	PITX2	Intergenic	1.75 1.54-1.98	9.0 x10 ⁻¹⁸	2.05 1.87-2.25	1.9x10 ⁻⁵⁴	1.78 1.71-1.86	6.9 x10 ⁻¹⁵¹	
rs6466579	7q31	С	CAV1/2	Intronic	1.24 1.09-1.40	7.6 x10 ⁻⁴	1.23 1.13-1.34	2.5x10 ⁻⁶	1.16 1.11-1.21	7.8 x10 ⁻¹²	
rs6584555	10q25	С	NEURL	Intronic	1.33 1.14-1.55	2.8x10 ⁻⁴	1.36 1.23-1.50	3.3x10 ⁻⁹	1.32 1.26-1.39	2.0x10 ⁻²⁵	
rs6490029	12q24	Α	CUX2	Intronic	1.22 1.09-1.37	6.3x10 ⁻⁴	1.11 1.12-1.30	2.6x10 ⁻⁶	1.12 1.08-1.16	3.9x10 ⁻⁹	
rs12932445	16q22	С	ZFHX3	Intronic	1.26 1.13-1.40	3.1 x10 ⁻⁵	1.38 1.28-1.49	1.8x10 ⁻¹⁷	1.26 1.22-1.31	4.4 x10 ⁻³⁴	

 $SNP-single\ nucleotide\ polymorphism;\ AF-atrial\ fibrillation;\ Chr-chromosome;\ RR-relative\ risk;\ CI-confidence\ interval.$

Supplemental 1	Table 6. Fi	ne mapping of the	NEURL locus in Jap	anese			
				First s	tage	Confirr	mation
SNP	AF Risk Allele	r ² with rs6584555	D Prime with rs6584555	OR 95% CI	P value	OR 95% CI	P value
rs6584555	С	_	_	1.27 1.07-1.52	7.2x10 ⁻³	1.34 1.24-1.45	3.1x10 ⁻¹⁴
rs117577689	Т	0.01	0.99	1.00 0.75-1.35	9.9x10 ⁻¹		
rs141902653	С	<0.01	1.00	1.18 0.73-1.91	5.0x10 ⁻¹		
rs180924020	G	<0.01	0.14	1.04 0.56-1.93	9.1x10 ⁻¹		
rs75733446	А	<0.01	0.79	1.46 0.95-2.25	8.9x10 ⁻²		
rs80065416	Т	0.49	1.00	1.55 1.23-1.97	1.8x10 ⁻⁴	1.65 1.48-1.84	3.1x10 ⁻¹⁹
rs2208322	G	0.39	1.00	1.09 0.95-1.24	2.3x10 ⁻¹		
rs72848976	А	0.01	1.00	1.01 0.85-1.20	9.0x10 ⁻¹		
rs6584558	А	0.18	0.62	1.17 1.02-1.34	3.2x10 ⁻²		
rs74154533	А	0.65	1.00	1.46 1.20-1.78	1.3x10 ⁻⁴	1.51 1.39-1.65	1.6x10 ⁻²⁰

Linkage disequilibrium reported as r2 and DPrime relative to the Sentinel SNP rs658455, determined based on the HapMap CHB+JPT panel.

Supplemental Table 7. Comparison of AF association results between individuals of European and Japanese ancestry

				European ancestry			Japanese ancestry				
SNP	Chr	AF risk allele	Closest gene	RAF	RR (95% CI)	p	RAF	RR (95% CI)	р		
rs10507248	12q24	Т	TBX5	0.73	1.12 (1.08 - 1.16)	5.7x10 ⁻¹¹	0.44	1.16 (1.10-1.22)	2.7x10 ^{-8†}		
rs4642101	3p25	G	CAND2	0.65	1.10 (1.06 – 1.14)	9.8x10 ⁻⁹	0.31	1.08 (1.02-1.14)	9.1x10 ^{-3†}		
rs13216675	6q22	Т	GJA1	0.69	1.10 (1.06 - 1.14)	2.2x10 ⁻⁸	0.70	1.11 (1.05-1.17)	3.2x10 ^{-4†}		
rs6490029	12q24	А	CUX2	0.22	1.02 (0.97-1.07)	0.412*	0.64	1.12 (1.08-1.16)	3.9x10 ⁻⁹		

Abbreviations: SNP, single nucleotide polymorphism; RAF, risk allele frequency; RR, relative risk; CI, confidence intervals.

[†]The results for *TBX5*/rs10507248, *CAND2*/rs4642101, and *GJA1*/rs13216675 were obtained by directly genotyping these SNPs in the Japanese samples in a total of 8,220 AF cases and 4,657 controls.

^{*}The results for CUX2/rs6490029 in Europeans was obtained from Ellinor et al.1

Sentinel SNP	AF Risk Allele	Proxy SNP	Distanc e from Sentine I SNP	r2	DPrime	eQTL Yes/No	Tissue	Gene	fold change per AF risk allele	Direction of expressio n change	P value
40407740	<u> </u>	40407740	(bp)							ii ciialige	
rs10137710 rs10212121	T A	rs10137710 rs10212121	0	1	1	No No					
rs10267684	T	rs10267684	0	1	1	No					
rs10507248	T	rs10507248	0	1	1	Yes	Heart, LA	TBX5	1.10 (1.05-1.15)	increase	2.14x10 ⁻⁰⁴
	G	rs7955405	213	1	1	Yes	Heart, LA	TBX5	1.10 (1.05-1.15)	increase	2.14x10 ⁻⁰⁴
	A	rs7312625	2881	1	1	Yes	Heart, LA	TBX5	1.11 (1.06-1.16)	increase	3.93x10 ⁻⁰⁵
	G	rs4767237	3720	0.96 0.92	1	Yes	Heart, LA Heart, LA	TBX5	1.12 (1.08-1.18) 1.10 (1.06-1.15)	increase increase	1.47x10 ⁻⁰⁵ 9.37x10 ⁻⁰⁵
	A	rs883079 rs7135659	3853 4679	0.92	1	Yes Yes	Heart, LA	TBX5 TBX5	1.10 (1.06-1.15)	increase	9.37X10 9.12X10 ⁻⁰⁵
	T	rs1946293	5667	0.92	1	Yes	Heart, LA	TBX5	1.11 (1.06-1.16)	increase	9.04x10 ⁻⁰⁵
	С	rs3825215	7805	0.92	1	Yes	Heart, LA	TBX5	1.12 (1.08-1.18)	increase	1.41x10 ⁻⁰⁵
	С	rs1895583	9792	0.92	1	Yes	Heart, LA	TBX5	1.12 (1.08-1.18)	increase	2.26x10 ⁻⁰⁵
	С	rs1895585	5045	0.87	0.96	Yes	Heart, LA	TBX5	1.12 (1.08-1.18)	increase	1.46x10 ⁻⁰⁵
	С	rs1946295	5268	0.87	0.96	Yes	Heart, LA	TBX5	1.12 (1.08-1.18)	increase	1.36x10 ⁻⁰⁵
	Т	rs10850315 rs1895582	30358 9942	0.83	0.91 0.91	No Yes	Heart, LA	TBX5	1.12 (1.08-1.18)	inarana	1.74x10 ⁻⁰⁵
	-	rs10744823	989	0.76	1	No	neart, LA	TBAS	1.12 (1.06-1.16)	increase	1.74X10
	1	rs3825214	1650	0.76	1	No					
		rs10744824	11545	0.76	1	No					
		rs5015007	7990	0.72	1	No					
		rs1895597	6209	0.72	0.95	No					
	1	rs7964303	17193	0.68	0.82	No		 	1		
	 	rs12367410 rs7977083	405 6593	0.67 0.67	0.9 0.9	No No		-			
	 	rs7308120	8047	0.67	0.9	No		 	1		
	1	rs4767239	19455	0.64	0.94	No			1		
		rs7964836	30373	0.64	0.94	No					
		rs1862909	9988	0.64	0.94	No					
		rs2891503	7283	0.64	0.85	No					
		rs1895596	5565	0.62	1	No					
	1	rs7309910 rs6489955	10839 11814	0.62 0.62	1	No No					
	1	rs6489953	32331	0.61	0.94	No					
		rs6489956	4857	0.6	0.89	No					
		rs7316919	5638	0.6	0.89	No					
		rs2384409	7615	0.6	0.89	No					
		rs1895587	27564	0.57	0.94	No					
		rs10774752	28781	0.57	0.94	No					
		rs10744820 rs10744819	28966 35263	0.57 0.57	0.94 0.94	No No					
		rs8181627	35329	0.57	0.94	No					
		rs8181683	35375	0.57	0.94	No					
		rs10744818	35408	0.57	0.94	No					
		rs8181608	35510	0.57	0.94	No					
		rs1895593	36278	0.57	0.94	No					
		rs933748	36437	0.57 0.54	0.94 0.93	No No					
		rs11067054 rs7966567	24536 35613	0.54	0.93	No					
	1	rs7307520	32394	0.53	0.88	No					
rs10762941	А	rs10762941	0	1	1	No			1		
rs10800507	С	rs10800507	0	1	1	No					
		rs4656206	6577	0.7	0.96	No					
	<u> </u>	rs10919327	14127	0.57	1	No			1		
rs10849152	Т	rs10753800 rs10849152	4406 0	0.55 1	0.95 1	No No		 	+		
rs10919369	T	rs10919369	0	1	1	No			1		
rs10947261	G	rs10947261	0	1	1	No			1		
rs11466656	С	rs11466656	0	1	1	No					
rs12370365	G	rs12370365	0	1	1	No					
	1	rs12828578	3073	1	1	No		ļ			
	1	rs73142614	14693	1	1	No		 			
	1	rs12367127 rs11177719	17951 22504	0.95 0.95	1	No No		 	+		
	 	rs11177730	42852	0.95	1	No		 			
	1	rs11177731	42976	0.95	1	No			1		
		rs11177732	45010	0.95	1	No					
		rs11177733	46753	0.95	1	No					
		rs1043434	50687	0.95	1	No					
	1	rs11177738	51835	0.95	1	No			-		
	1	rs35956654	51990	0.95	1	No		 	1		
	+	rs11832926 rs4761246	55559 56347	0.95 0.95	1	No No		 	+		
	 	rs7200	59172	0.95	1	No		 	1		
	1	rs3177122	59246	0.95	1	No		<u> </u>	1		
		rs35232489	61181	0.95	1	No					
		rs4761247	62214	0.95	1	No					
		rs11177748	63964	0.95	1	No					

			Distanc							Dia	
	AF		e from							Direction	
Sentinel SNP	Risk	Proxy SNP	Sentine	r2	DPrime	eQTL	Tissue	Gene	fold change per	of	P value
Schanci Siti	Allele	1 TOXY SIG	I SNP		Di illic	Yes/No	113340	dene	AF risk allele	expressio	, varac
	Allele		(bp)							n change	
		rs727948	64417	0.95	1	No				1	
				0.95		No					
42270255 ()		rs11177751	66387		1						
rs12370365 (cont.)		rs10784788	72658	0.95	1	No					
		rs11177710	1513	0.95	1	No					
		rs11177699	28499	0.95	1	No					
		rs11829505	30972	0.95	1	No					
	Α	rs11177695	40356	0.95	1	No					
		rs35612761	16274	0.9	1	No					
		rs12319536	42522	0.9	1	No					
		rs73140582	30361	0.9	1	No					
		rs11177694	42127	0.9	1	No				+	
		rs12371904	55142	0.9	1	No				_	
			13299		0.95						
		rs4761243		0.89		No					
		rs3759202	41243	0.89	0.95	No					
		rs12370028	43037	0.89	0.95	No					
		rs11177752	69433	0.89	0.95	No					
		rs3858594	49351	0.85	0.95	No					
		rs73140585	29559	0.84	1	No					
		rs11177742	58938	0.84	0.94	No					
		rs11177726	32909	0.82	1	No					
		rs34929418	77222	0.67	0.88	No					
rs12406668	Т	rs12406668	0	1	1	No		1	İ		
rs12415501	T	rs1240508	0	1	1	No			H	 	—
1312-13301	- '	rs12253987	6173	0.75	1	No		1	 	\vdash	
					0.83			1	 	\vdash	
		rs7893473	15172	0.56		No		ļ	 	 	
		rs7904046	24868	0.56	0.83	No				├	
		rs6584557	24888	0.56	0.83	No					
		rs6584555	25163	0.56	0.83	No				<u> </u>	
		rs6584554	25298	0.56	0.83	No					
		rs11191727	2401	0.53	0.76	No					
rs12733930	С	rs12733930	0	1	1	Yes	Heart, LA	LINC00467	0.81 (0.78-0.83)	decrease	1.59x10 ⁻²⁴
rs12991989	С	rs12991989	0	1	1	No	,		, ,		
rs13169864	G	rs13169864	0	1	1	No					
rs13216675	T	rs13216675	0	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	9.84x10 ⁻⁰⁵
1313210073	T	rs9482226	4700	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	9.90x10 ⁻⁰⁵
	T	rs35492344	5176	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	9.93x10 ⁻⁰⁵
	T	rs12664873	10862	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.24x10 ⁻⁰⁵
	G	rs2315817	13289	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	1.48x10 ⁻⁰⁴
	С	rs6914962	20494	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	5.53x10 ⁻⁰⁵
	Т	rs6929586	24286	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	5.72x10 ⁻⁰⁵
	С	rs6907053	24366	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.60x10 ⁻⁰⁵
	С	rs13194963	33998	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	5.59x10 ⁻⁰⁵
	G	rs13195388	34163	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.57x10 ⁻⁰⁵
	Т	rs12662754	35466	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.36x10 ⁻⁰⁵
	G	rs12661247	35634	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	7.10x10 ⁻⁰⁵
	C	rs13216068	38739	1	1			GJA1	0.93 (0.91-0.96)		4.11x10 ⁻⁰⁵
			46175			Yes	Heart, LA		0.93 (0.91-0.96)	decrease	3.93x10 ⁻⁰⁵
	С	rs34247913		1	1	Yes	Heart, LA	GJA1	` ′	decrease	
	С	rs12662023	48074	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.02x10 ⁻⁰⁵
	G	rs17084326	53264	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.02x10 ⁻⁰⁵
	Т	rs7772537	54213	1	1	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	3.40x10 ⁻⁰⁵
	С	rs17084333	56081	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.95)	decrease	2.65x10 ⁻⁰⁵
	Α	rs35735278	56368	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.95)	decrease	2.65x10 ⁻⁰⁵
	Т	rs34379825	56661	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.95)	decrease	2.69x10 ⁻⁰⁵
	G	rs1456696	58558	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	7.01x10 ⁻⁰⁵
	G	rs13197292	74258	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	5.74x10 ⁻⁰⁵
	С	rs1531187	76146	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.54x10 ⁻⁰⁵
	T	rs12664347	79887	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.48x10 ⁻⁰⁵
	G	rs12662844	79944	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.48x10 ⁻⁰⁵
											6.48x10 6.48x10
	T	rs6905707	85458	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	
	T	rs1379090	87053	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.46x10 ⁻⁰⁵
	G	rs13204964	88784	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	7.41x10 ⁻⁰⁵
	G	rs12664221	93989	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.36x10 ⁻⁰⁵
	С	rs1350228	94808	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.34x10 ⁻⁰⁵
	Α	rs2316267	95710	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.33x10 ⁻⁰⁵
	G	rs786101	100364	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.27x10 ⁻⁰⁵
	С	rs1456694	102250	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.24x10 ⁻⁰⁵
	T	rs12661882	103760	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.22x10 ⁻⁰⁵
	T	rs17084362	107847	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.17x10 ⁻⁰⁵
	С	rs786100	110424	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.13x10 ⁻⁰⁵
	G	rs2770118	117395	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.02x10 ⁻⁰⁵
	Α	rs2606593	120794	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	5.20x10 ⁻⁰⁵
	С	rs2606592	121483	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	5.20x10 ⁻⁰⁵
	Α	rs2770119	121627	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	5.19x10 ⁻⁰⁵
	Α	rs35099519	125942	1	1	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	2.97x10 ⁻⁰⁵
			126727	1	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.69x10 ⁻⁰⁵
	Α	rs225089	120/2/						(0.02 0.00)		
	A G	rs225089 rs6916464			1	Yec	Heart I∆	GIA1	0.93 (0.91-0.96)	decrease	3.72x10 ⁻⁰⁵
	G	rs6916464	13897	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	3.72x10 ⁻⁰⁵ 2 90x10 ⁻⁰⁵
	G A	rs6916464 rs12665325	13897 15783	0.96 0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	2.90x10 ⁻⁰⁵
	G	rs6916464	13897	0.96							

			Distanc					1		Direction	
Counting of CNID	AF Dist	Durana CNID	e from		DD-t	eQTL	Ti	6	fold change per	of	D
Sentinel SNP	Risk Allele	Proxy SNP	Sentine I SNP	r2	DPrime	Yes/No	Tissue	Gene	AF risk allele	expressio	P value
	Allele		(bp)							n change	
	G	rs7450267	36705	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.95)	decrease	2.78x10 ⁻⁰⁵
	С	rs1456699	37617	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.95)	decrease	2.72x10 ⁻⁰⁵
rs13216675 (cont.)	С	rs2316266	44298	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.95)	decrease	2.67x10 ⁻⁰⁵
		rs71571139	68131	0.96	1	Yes	Heart, LA	GJA1			4.43x10 ⁻⁰⁵
	A	rs35085009	74725	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.51x10 ⁻⁰⁵
	C	rs12661091	75488	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	5.19x10 ⁻⁰⁵
	A T	rs1379088	92575 102299	0.96 0.96	1	Yes	Heart, LA	GJA1	0.93 (0.90-0.96) 0.93 (0.91-0.96)	decrease	4.29x10 ⁻⁰⁵ 4.20x10 ⁻⁰⁵
	A	rs1456693 rs1456692	102299	0.96	1	Yes Yes	Heart, LA Heart, LA	GJA1 GJA1	0.93 (0.91-0.96)	decrease decrease	4.20x10 4.20x10 ⁻⁰⁵
	C	rs1585127	102914	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.19x10 ⁻⁰⁵
	C	rs12660649	104268	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.18x10 ⁻⁰⁵
	Α	rs1870005	115810	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.32x10 ⁻⁰⁵
	G	rs2085400	117016	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.05x10 ⁻⁰⁵
	Α	rs2770117	117281	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.07x10 ⁻⁰⁵
	Α	rs12661260	123757	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	3.46x10 ⁻⁰⁵
	G	rs12662551	39193	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.14x10 ⁻⁰⁵
	T	rs12665385	57279	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.74x10 ⁻⁰⁵
	T	rs1947540	59846	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	7.01x10 ⁻⁰⁵
	G G	rs7738124	70512	0.96 0.96	1	Yes Yes	Heart, LA Heart, LA	GJA1 GJA1	0.93 (0.91-0.96) 0.93 (0.91-0.96)	decrease	6.93x10 ⁻⁰⁵ 7.27x10 ⁻⁰⁵
	A	rs1085381 rs225090	113181 127148	0.96	1	Yes	Heart, LA	GJA1 GJA1	0.93 (0.91-0.96)	decrease decrease	4.68x10 ⁻⁰⁵
	G	rs225072	133807	0.96	1	Yes	Heart, LA	GJA1 GJA1	0.93 (0.91-0.96)	decrease	4.56x10
	C	rs225075	137551	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	T	rs225076	138042	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	С	rs12663999	142878	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
·	Α	rs225084	143880	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	T	rs225086	146040	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	Α	rs12660540	151433	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.51x10 ⁻⁰⁵
	G	rs13212529	153658	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	T	rs12663673	153812	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	A	rs34528281 rs2066121	154554	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	A G	rs80080630	157547 167729	0.96 0.96	1	Yes Yes	Heart, LA Heart, LA	GJA1 GJA1	0.93 (0.91-0.96) 0.93 (0.90-0.96)	decrease decrease	4.52x10 ⁻⁰⁵ 5.34x10 ⁻⁰⁵
	G	rs1840763	169446	0.96	1	Yes	Heart, LA	GJA1 GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	T	rs1011654	172940	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.45x10 ⁻⁰⁵
	G	rs1339527	177975	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	T	rs517442	188091	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	С	rs509860	193433	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	5.37x10 ⁻⁰⁵
	Α	rs35622021	201279	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.53x10 ⁻⁰⁵
	T	rs17662069	201879	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.53x10 ⁻⁰⁵
	G	rs13204922	206664	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	G	rs589593	208468	0.96	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	7.40x10 ⁻⁰⁵
	C	rs1456697	41438	0.92	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	3.72x10 ⁻⁰⁵
	T C	rs6569253 rs1870006	81488 115649	0.92 0.92	1	Yes Yes	Heart, LA Heart, LA	GJA1 GJA1	0.93 (0.91-0.96) 0.93 (0.91-0.96)	decrease decrease	4.35x10 ⁻⁰⁵ 4.06x10 ⁻⁰⁵
	G	rs1870006	115897	0.92	1	Yes	Heart, LA	GJA1 GJA1	0.93 (0.91-0.96)	decrease	4.06x10 4.06x10 ⁻⁰⁵
	G	rs1870004	116308	0.92	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.98x10 ⁻⁰⁵
	T	rs2085401	116906	0.92	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.03x10 ⁻⁰⁵
	C	rs35461771	15518	0.92	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	5.58x10 ⁻⁰⁵
	C	rs587465	167728	0.92	1	Yes	Heart, LA	GJA1	0.93 (0.90-0.96)	decrease	5.89x10 ⁻⁰⁵
	Т	rs13209385	168730	0.92	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.52x10 ⁻⁰⁵
	G	rs620105	209281	0.92	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.42x10 ⁻⁰⁵
	G	rs6569252	67844	0.92	0.96	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.70x10 ⁻⁰⁵
	T	rs7757343	105976	0.92	0.96	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	6.20x10 ⁻⁰⁵
	T	rs225073	133909	0.92	0.96	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	4.56x10 ⁻⁰⁵
	G G	rs761955 rs536165	149047 167986	0.92 0.92	0.96 0.96	Yes Yes	Heart, LA Heart, LA	GJA1 GJA1	0.93 (0.91-0.96) 0.93 (0.91-0.96)	decrease decrease	4.52x10 ⁻⁰⁵ 4.52x10 ⁻⁰⁵
	G	rs536165 rs537456	199007	0.92	0.96	Yes	Heart, LA Heart, LA	GJA1 GJA1	0.93 (0.91-0.96)	decrease	4.52X10 3.83X10 ⁻⁰⁵
	A	rs528991	211128	0.92	0.96	Yes	Heart, LA	GJA1 GJA1	0.93 (0.91-0.96)	decrease	4.84x10 ⁻⁰⁵
	G	rs1456698	41435	0.88	0.96	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	2.58x10 ⁻⁰⁵
	T	rs35859246	58146	0.88	1	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	7.46x10 ⁻⁰⁵
	T	rs225078	163096	0.88	0.96	Yes	Heart, LA	GJA1	0.93 (0.91-0.96)	decrease	3.80x10 ⁻⁰⁵
	С	rs59472001	216442	0.87	0.96	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	2.38x10 ⁻⁰⁵
	Α	rs6929685	216461	0.87	0.96	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	2.37x10 ⁻⁰⁵
	G	rs10499118	221398	0.87	0.96	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.28x10 ⁻⁰⁵
	G	rs34607745	223006	0.87	0.96	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	2.52x10 ⁻⁰⁵
	G	rs3968436	223803	0.87	0.96	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.21x10 ⁻⁰⁵
	T	rs13192258	224748	0.87	0.96	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.16x10 ⁻⁰⁵
	G	rs1610023	225035	0.87	0.96	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.14x10 ⁻⁰⁵ 1.36x10 ⁻⁰⁵
	A C	rs117131686 rs35347829	227756 229401	0.87 0.87	0.96 0.96	Yes Yes	Heart, LA Heart, LA	GJA1 GJA1	0.93 (0.90-0.95) 0.93 (0.90-0.95)	decrease decrease	1.36x10 1.47x10 ⁻⁰⁵
	С	rs12661045	230466	0.87	0.96	Yes	Heart, LA	GJA1 GJA1	0.93 (0.90-0.95)	decrease	1.47x10 1.44x10 ⁻⁰⁵
	G	rs34531455	230466	0.83	0.96	Yes	Heart, LA	GJA1 GJA1	0.93 (0.90-0.95)	decrease	1.44x10 1.38x10 ⁻⁰⁵
	G	rs1416731	256357	0.83	0.91	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	2.06x10 ⁻⁰⁵
	C	rs13218584	227314	0.83	0.95	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.04x10 ⁻⁰⁵
	C	rs61379124	19087	0.8	0.95	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.32x10 ⁻⁰⁵
	Т	rs11758026	20300	0.8	0.95	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	8.08x10 ⁻⁰⁶
	T	rs71571147	224205	0.79	0.95	Yes	Heart, LA	GJA1	0.92 (0.88-0.94)	decrease	8.23x10 ⁻⁰⁶
		rs7741444	231629	0.79	0.91	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.16x10 ⁻⁰⁵

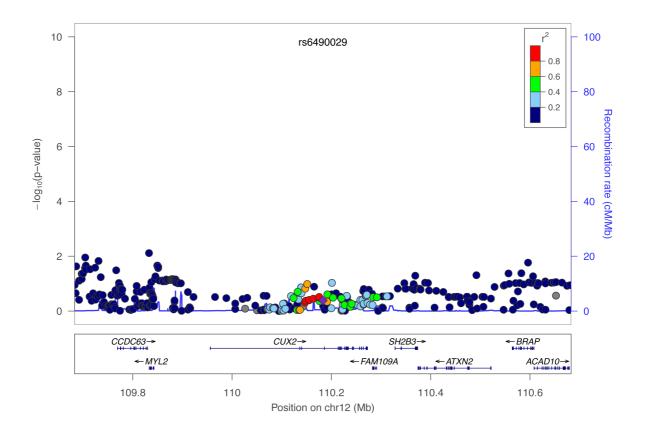
Sentinel SNP	AF Risk Allele	Proxy SNP	Distanc e from Sentine I SNP (bp)	r2	DPrime	eQTL Yes/No	Tissue	Gene	fold change per AF risk allele	Direction of expressio n change	P value
	T	rs7761904	231727	0.79	0.91	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.14x10 ⁻⁰⁵ 9.93x10 ⁻⁰⁶
##1221667E (cont.)	A G	rs7742289	232136	0.79	0.91 0.91	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	9.93X10 2.34X10 ⁻⁰⁵
rs13216675 (cont.)	C	rs2316672 rs7773091	245634 57695	0.79 0.76	1	Yes Yes	Heart, LA Heart, LA	GJA1 GJA1	0.93 (0.90-0.95) 0.93 (0.90-0.95)	decrease decrease	1.08x10 ⁻⁰⁵
	C	rs75033796	226772	0.75	0.95	No	neart, LA	GJA1	0.53 (0.50-0.53)	decrease	1.06X10
	Α	rs1379096	19917	0.72	0.87	Yes	Heart, LA	GJA1	0.93 (0.89-0.94)	decrease	2.76x10 ⁻⁰⁶
	C	rs34070579	7770	0.72	0.95	Yes	Heart, LA	GJA1	0.92 (0.89-0.95)	decrease	2.45x10 ⁻⁰⁵
	C	rs12665212	196287	0.7	0.91	No	ricard B1	337.12	0.32 (0.03 0.33)	decireuse	2.15/10
	A	rs9490444	260048	0.67	0.9	No					
	Α	rs939601	62686	0.66	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	3.43x10 ⁻⁰⁶
	T	rs17084191	33248	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.80x10 ⁻⁰⁵
	С	rs13219206	38172	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.74x10 ⁻⁰⁵
	Α	rs34483874	42367	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.73x10 ⁻⁰⁵
	С	rs6928224	44347	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.53x10 ⁻⁰⁵
	T	rs6907870	44485	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.53x10 ⁻⁰⁵
	С	rs72966339	54088	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	4.12x10 ⁻⁰⁶
	С	rs6930575	56329	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	4.21x10 ⁻⁰⁶
	C C	rs6930219	56465	0.63	0.86 0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95) 0.93 (0.90-0.95)	decrease	4.15x10 ⁻⁰⁶ 4.71x10 ⁻⁰⁶
	С	rs6901617 rs6938223	56860 58057	0.63 0.63	0.86	Yes Yes	Heart, LA Heart, LA	GJA1 GJA1	0.93 (0.90-0.95)	decrease decrease	4.71x10 3.93x10 ⁻⁰⁶
	С	rs17084158	58687	0.63	0.86	Yes	Heart, LA	GJA1 GJA1	0.93 (0.90-0.95)	decrease	3.83x10 3.83x10
	С	rs17084154	58885	0.63	0.86	Yes	Heart, LA	GJA1 GJA1	0.93 (0.90-0.95)	decrease	3.80x10 ⁻⁰⁶
	G	rs2816099	59647	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.05x10 ⁻⁰⁵
	C	rs2259327	60584	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	3.56x10 ⁻⁰⁶
	Α	rs1357050	61194	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	3.50x10 ⁻⁰⁶
·	Α	rs868153	62374	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	4.90x10 ⁻⁰⁶
	С	rs868154	62389	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	3.43x10 ⁻⁰⁶
	G	rs868155	62423	0.63	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	3.43×10 ⁻⁰⁶
	G	rs1357051	61245	0.6	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	1.02x10 ⁻⁰⁵
	С	rs1402538	63478	0.6	0.86	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	9.90x10 ⁻⁰⁶
	A G	rs2684249 rs2816098	59818 59622	0.59 0.58	0.9 0.81	Yes Yes	Heart, LA Heart, LA	GJA1 GJA1	0.93 (0.91-0.96) 0.93 (0.90-0.95)	decrease decrease	8.36x10 ⁻⁰⁵ 3.75x10 ⁻⁰⁶
	A	rs2816097	56682	0.57	0.85	Yes	Heart, LA	GJA1 GJA1	0.93 (0.90-0.95)	decrease	3.88x10 ⁻⁰⁶
	T	rs17199931	278629	0.57	0.83	Yes	Heart, LA	GJA1	0.93 (0.90-0.96)	decrease	1.43x10 ⁻⁰⁴
	G	rs3799545	283289	0.57	0.77	No	ricart, Di	OJ/11	0.55 (0.50 0.50)	decrease	1.43/10
	G	rs17201852	339761	0.57	0.77	No					
	G	rs13199730	431186	0.57	0.77	No					
	Α	rs36084496	52438	0.55	0.85	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	4.10x10 ⁻⁰⁶
	G	rs2176990	58611	0.54	0.77	Yes	Heart, LA	GJA1	0.93 (0.90-0.95)	decrease	2.66x10 ⁻⁰⁶
		rs3823188	291357	0.54	0.73	No			0.93 (0.91-0.96)	decrease	
rs1324739	G	rs1324739	0	1	1	No					
rs13396611	T C	rs13396611	0	1	1	No					
rs2118254 rs2204224	T	rs2118254 rs2204224	0	1	1	No No					
rs2249965	A	rs2249965	0	1	1	No					
rs2305398	G	rs2305398	0	1	1	Yes	Skeletal Muscle	CAND2		decrease	1.91x10 ⁻¹¹
						Yes	Skeletal Muscle	KRT18P17		decrease	7.07x10 ⁻⁵
rs2358891	G	rs2358891	0	1	1	Yes	Heart, LA	WIPF1	0.88 (0.85-0.91)	decrese	8.87x10 ⁻¹⁰
rs2532144	T	rs2532144	0	1	1	No					
rs2685217	T	rs2685217	0	1	1	No					
rs2723065	Α	rs2723065	0	1	1	Yes	Tibial Artery	CEP68	4.00/4 := : = :	decrese	1.66x10 ⁻⁰⁷
		2540054	2670			Yes	Heart, LA	CEP68	1.22 (1.18-1.27)	increase	2.45x10 ⁻¹⁶
	A	rs2540951	2678	1	1	Yes Yes	Tibial Artery Heart, LA	CEP68	1.22 (1.18-1.27)	incresse	2.22x10 ⁻⁰⁷ 2.39x10 ⁻¹⁶
	Т	rs1009358	2962	1	1	Yes	Tibial Artery	CEP68	1.44 (1.10-1.47)	increase	2.39X10 2.31X10 ⁻⁰⁷
				_		Yes	Heart, LA	CEP68	1.22 (1.18-1.27)	increase	2.38x10 ⁻¹⁶
	Α	rs2540949	4817	1	1	Yes	Tibial Artery	CEP68	1.22 (1.10 1.27)		1.64x10 ⁻⁰⁷
			1			Yes	Heart, LA	CEP68	1.22 (1.17-1.27)	increase	1.10x10 ⁻¹⁵
	T	rs2540948	5209	1	1	Yes	Tibial Artery	CEP68			5.58x10 ⁻⁰⁶
<u> </u>						Yes	Heart, LA	CEP68	1.22 (1.17-1.27)	increase	5.52x10 ⁻¹⁶
	Т	rs2723064	391	0.96	1	Yes	Tibial Artery	CEP68			1.65x10 ⁻⁰⁷
						Yes	Heart, LA	CEP68	1.22 (1.18-1.27)	increase	2.74x10 ⁻¹⁶
	Т	rs74181299	4558	0.96	1	Yes	Tibial Artery	CEP68	1 22 /4 40 1 27	inc	2.21x10 ⁻⁰⁷
	С	rs2540950	191	0.93	1	Yes Yes	Heart, LA Tibial Artery	CEP68	1.22 (1.18-1.27)	increase	1.04x10 ⁻¹⁵ 4.88x10 ⁻⁰⁶
	·	132340330	131	0.53	1	Yes	Heart, LA	CEP68	1.22 (1.18-1.27)	increase	9.70x10 ⁻¹⁷
	G	rs2723062	806	0.93	1	Yes	Tibial Artery	CEP68	1.22 (1.10-1.27)		4.88x10 ⁻⁰⁶
						Yes	Heart, LA	CEP68	1.22 (1.18-1.27)	increase	1.44×10 ⁻¹⁶
	Α	rs2249105	8482	0.93	0.96	Yes	Tibial Artery	CEP68			4.81x10 ⁻⁰⁶
•						Yes	Heart, LA	CEP68	1.22 (1.18-1.27)	increase	2.08x10 ⁻¹⁵
	Α	rs2540945	10411	0.93	0.96	Yes	Tibial Artery	CEP68			4.81x10 ⁻⁰⁶
						Yes	Heart, LA	CEP68	1.23 (1.18-1.28)	increase	1.90x10 ⁻¹⁵
	Т	rs2723066	93	0.89	1	Yes	Tibial Artery	CEP68	1 22 /4 40 1 27	inc	4.88x10 ⁻⁰⁶
	-	rc22E2067	16000	0.00	0.06	Yes	Heart, LA	CEP68	1.22 (1.18-1.27)	increase	1.11x10 ⁻¹⁶
	Т	rs2252867	16866	0.86	0.96	Yes Yes	Tibial Artery Heart, LA	CEP68	1.22 (1.18-1.27)	increase	4.81x10 ⁻⁰⁶ 2.09x10 ⁻¹⁵
	l		18272	0.86	0.96	Yes	Heart, LA Heart, LA	CEP68	1.22 (1.18-1.27)	increase	6.03x10 ⁻¹⁶
	r	rs2723086									
	С	rs2723086 rs2723087	18868	0.86	0.96	165	Tibial Artery	CEP68	1.25 (1.10 1.27)	increase	9.39x10 ⁻⁰⁵

Sentinel SNP	AF Risk	Proxy SNP	Distanc e from Sentine	r2	DPrime	eQTL Yes/No	Tissue	Gene	fold change per AF risk allele	Direction of expressio	P value
	Allele		l SNP (bp)							n change	
						Yes	Heart, LA	CEP68	1.22 (1.18-1.27)	increase	2.42x10 ⁻¹⁵
rs2723065 (cont.)	Α	rs2723063	771	0.84	1	Yes	Tibial Artery	CEP68			3.86x10 ⁻⁰⁵ 5.15x10 ⁻⁰⁵
152723003 (COIIL.)						Yes Yes	Heart, LV Heart, LA	CEP68 CEP68	1.19 (1.14-1.24)	increase	4.51x10 ⁻¹²
	Т	rs1009360	3365	0.84	1	Yes	Tibial Artery	CEP68	1113 (1111 1121)	mer case	8.25x10 ⁻⁰⁵
						Yes	Heart, LA	CEP68	1.18 (1.13-1.23)	increase	1.52x10 ⁻¹⁰
	С	rs2723082	10209	0.82	0.96	Yes	Tibial Artery	CEP68			1.88x10 ⁻⁰⁵
	-	2722005	47045	0.02	0.00	Yes	Heart, LA	CEP68	1.22 (1.18-1.27)	increase	8.83x10 ⁻¹⁶
	С	rs2723085	17945	0.82	0.96	Yes Yes	Tibial Artery Heart, LA	CEP68 CEP68	1.22 (1.18-1.27)	increase	1.93x10 ⁻⁰⁵ 8.93x10 ⁻¹⁶
	Α	rs1420185	36489	0.79	0.96	Yes	Tibial Artery	CEP68	1.22 (1.10-1.27)	iliciease	2.64x10 ⁻⁰⁶
						Yes	Heart, LA	CEP68	1.22 (1.17-1.27)	increase	3.18x10 ⁻¹³
	Α	rs12472718	48206	0.79	0.96	Yes	Tibial Artery	CEP68			5.80x10 ⁻⁰⁶
	_					Yes	Heart, LA	CEP68	1.22 (1.17-1.27)	increase	3.19x10 ⁻¹³
	Α	rs13421845	56619	0.79	0.96	Yes	Tibial Artery	CEP68	1.22 (1.17-1.27)	inarana	5.80x10 ⁻⁰⁶ 8.93x10 ⁻¹³
	С	rs58342673	68170	0.79	0.96	Yes Yes	Heart, LA Tibial Artery	CEP68 CEP68	1.22 (1.17-1.27)	increase	8.30x10 ⁻⁰⁶
		13303 12073	00170	0.73	0.50	Yes	Heart, LA	CEP68	1.21 (1.16-1.26)	increase	1.28x10 ⁻¹²
	Α	rs2723067	1463	0.79	0.92	Yes	Heart, LA	CEP68	1.16 (1.12-1.21)	increase	6.50x10 ⁻⁰⁹
	Α	rs11893423	71535	0.76	0.96	Yes	Heart, LA	CEP68	1.23 (1.18-1.28)	increase	9.75x10 ⁻¹⁴
	С	rs2241161	11428	0.74	0.96	Yes	Heart, LA	CEP68	1.19 (1.14-1.24)	increase	1.08x10 ⁻¹¹
	A T	rs2241160 rs6736728	12132 26085	0.74 0.73	0.96 0.96	Yes Yes	Heart, LA Tibial Artery	CEP68 CEP68	1.19 (1.14-1.24)	increase	3.16x10 ⁻¹¹ 1.17x10 ⁻⁰⁴
	'	150/30/28	20085	0.73	0.96	Yes	Heart, LA	CEP68	1.23 (1.18-1.28)	increase	5.86x10 ⁻¹⁴
	Т	rs6741255	27491	0.73	0.96	Yes	Tibial Artery	CEP68	1.23 (1.10-1.20)	inci case	1.06x10 ⁻⁰⁴
						Yes	Heart, LA	CEP68	1.23 (1.18-1.28)	increase	5.94x10 ⁻¹⁴
	С	rs1420183	30574	0.73	0.96	Yes	Tibial Artery	CEP68			1.06x10 ⁻⁰⁴
						Yes	Heart, LA	CEP68	1.23 (1.18-1.28)	increase	6.07x10 ⁻¹⁴
	Т	rs1228	32141	0.73	0.96	Yes	Tibial Artery	CEP68	1 22 /1 10 1 20)	inarana	9.40x10 ⁻⁰⁵ 6.08x10 ⁻¹⁴
	С	rs1420184	36466	0.73	0.96	Yes Yes	Heart, LA Tibial Artery	CEP68 CEP68	1.23 (1.18-1.28)	increase	1.06x10
	- Č	131420104	30400	0.75	0.50	Yes	Heart, LA	CEP68	1.23 (1.18-1.28)	increase	6.07x10 ⁻¹⁴
	С	rs6713746	45078	0.73	0.96	Yes	Tibial Artery	CEP68	, ,		1.06x10 ⁻⁰⁴
						Yes	Heart, LA	CEP68	1.23 (1.18-1.28)	increase	6.01x10 ⁻¹⁴
	Α	rs17040050	47628	0.73	0.96	Yes	Tibial Artery	CEP68			1.06x10 ⁻⁰⁴
	G	**2202624	52245	0.73	0.96	Yes	Heart, LA	CEP68 CEP68	1.23 (1.18-1.28)	increase	6.00x10 ⁻¹⁴ 1.06x10 ⁻⁰⁴
	G	rs2302631	32243	0.73	0.90	Yes Yes	Tibial Artery Heart, LA	CEP68	1.22 (1.17-1.28)	increase	2.02x10 ⁻¹³
	С	rs9797989	57115	0.73	0.96	Yes	Heart, LA	CEP68	1.22 (1.17-1.28)	increase	2.02x10 ⁻¹³
	С	rs11126028	58736	0.73	0.96	Yes	Heart, LA	CEP68	1.22 (1.17-1.28)	increase	2.02x10 ⁻¹³
	T	rs11126029	58850	0.73	0.96	Yes	Heart, LA	CEP68	1.22 (1.17-1.28)	increase	2.44x10 ⁻¹³
	Α	rs60136636	59008	0.73	0.96	Yes	Tibial Artery	CEP68			6.82x10 ⁻⁰⁷
	Δ.	#0C7FCF0F	COCEC	0.72	0.96	Yes	Heart, LA	CEP68	1.22 (1.17-1.27)	increase	8.91x10 ⁻¹³ 2.02x10 ⁻¹³
	A A	rs6756585 rs2052261	60656 75856	0.73 0.73	0.96	Yes Yes	Heart, LA Tibial Artery	CEP68 CEP68	1.22 (1.17-1.28)	increase	9.40x10 ⁻⁰⁵
		132032201	75050	0.75	0.50	Yes	Heart, LA	CEP68	1.23 (1.18-1.28)	increase	6.01x10 ⁻¹⁴
	Т	rs10185243	76330	0.73	0.96	Yes	Tibial Artery	CEP68	,		1.56x10 ⁻⁰⁵
						Yes	Heart, LA	CEP68	1.22 (1.17-1.27)	increase	6.78x10 ⁻¹³
	С	rs12713532	77138	0.73	0.96	Yes	Tibial Artery	CEP68			1.16x10 ⁻⁰⁴
	С	#s2722001	22602	0.7	0.95	Yes	Heart, LA	CEP68	1.23 (1.17-1.28)	increase	7.63x10 ⁻¹⁴
	· ·	rs2723091	22603	0.7	0.95	Yes Yes	Tibial Artery Heart, LA	CEP68 CEP68	1.23 (1.18-1.28)	increase	1.04x10 ⁻⁰⁴ 5.63x10 ⁻¹⁴
	Т	rs1050676	31417	0.69	0.91	Yes	Tibial Artery	CEP68	1.23 (1.10 1.20)	mercuse	1.06x10 ⁻⁰⁴
						Yes	Heart, LA	CEP68	1.23 (1.18-1.28)	increase	6.08x10 ⁻¹⁴
<u> </u>	T	rs6730986	74135	0.69	0.91	Yes	Tibial Artery	CEP68			9.40x10 ⁻⁰⁵
		CE46422	24150	0.55	0.01	Yes	Heart, LA	CEP68	1.23 (1.18-1.28)	increase	6.02x10 ⁻¹⁴
	С	rs6546123	24168	0.65	0.81	Yes Yes	Tibial Artery Heart, LA	CEP68 CEP68	1.22 (1.17-1.27)	increase	5.92x10 ⁻⁰⁶ 6.18x10 ⁻¹³
	Α	rs1894875	84165	0.64	0.95	Yes	Tibial Artery	CEP68	1.22 (1.1/-1.2/)	increase	9.75x10 ⁻⁰⁶
	<u> </u>					Yes	Heart, LA	CEP68	1.17 (1.12-1.22)	increase	9.97x10 ⁻⁰⁹
	G	rs2422441	91352	0.64	0.95	Yes	Tibial Artery	CEP68			4.44x10 ⁻⁰⁶
						Yes	Heart, LA	CEP68	1.16 (1.11-1.22)	increase	3.59x10 ⁻⁰⁸
	Т	rs10205598	99837	0.64	0.95	Yes	Tibial Artery	CEP68	4 47 /4 12 1 25		2.27x10 ⁻⁰⁶
	С	rs7559813	1391	0.62	1	Yes Yes	Heart, LA Heart, LA	CEP68 CEP68	1.17 (1.12-1.22) 1.17 (1.12-1.23)	increase increase	3.03x10 ⁻⁰⁸ 6.00x10 ⁻⁰⁸
	G	rs71424153	1480	0.62	1	Yes	Heart, LA	CEP68	1.17 (1.12-1.23)	increase	6.00x10 6.05x10 ⁻⁰⁸
	С	rs12990465	1987	0.62	1	Yes	Heart, LA	CEP68	1.17 (1.12-1.23)	increase	5.69x10 ⁻⁰⁸
	G	rs6728523	3294	0.62	1	Yes	Heart, LA	CEP68	1.17 (1.12-1.23)	increase	6.07x10 ⁻⁰⁸
	G	rs2302647	3760	0.62	1	Yes	Heart, LA	CEP68	1.17 (1.12-1.23)	increase	6.07x10 ⁻⁰⁸
	T	rs2422437	78915	0.61	0.95	Yes	Heart, LA	CEP68	1.19 (1.13-1.24)	increase	1.07x10 ⁻⁰⁹
	G	rs10197530 rs6748462	76190 79868	0.6 0.6	0.83	No Yes	Tibial Artery	CEP68	-		3.56x10 ⁻⁰⁵
	G	130740402	73008	0.0	U.3	Yes	Heart, LA	CEP68	1.17 (1.12-1.23)	increase	6.93x10 ⁻⁰⁹
	Т	rs3732096	78669	0.58	0.95	Yes	Heart, LA	CEP68	1.19 (1.14-1.24)	increase	1.05x10 ⁻⁰⁹
	Т	rs12713533	85288	0.58	0.95	Yes	Heart, LA	CEP68	1.19 (1.14-1.24)	increase	1.17x10 ⁻⁰⁹
	Α	rs6705891	88681	0.58	0.95	Yes	Heart, LA	CEP68	1.19 (1.13-1.24)	increase	1.62x10 ⁻⁰⁹
	G	rs11678917	88800	0.58	0.95	Yes	Heart, LA	CEP68	1.18 (1.13-1.24)	increase	2.28x10 ⁻⁰⁹
	С	rs113605762	89254	0.58	0.95	No	Tibial Artam	CEP68			6.58x10 ⁻⁰⁵
	L	rs984748	90550	0.58	0.95	Yes	Tibial Artery	CEPOS	i .	1	0.36X1U

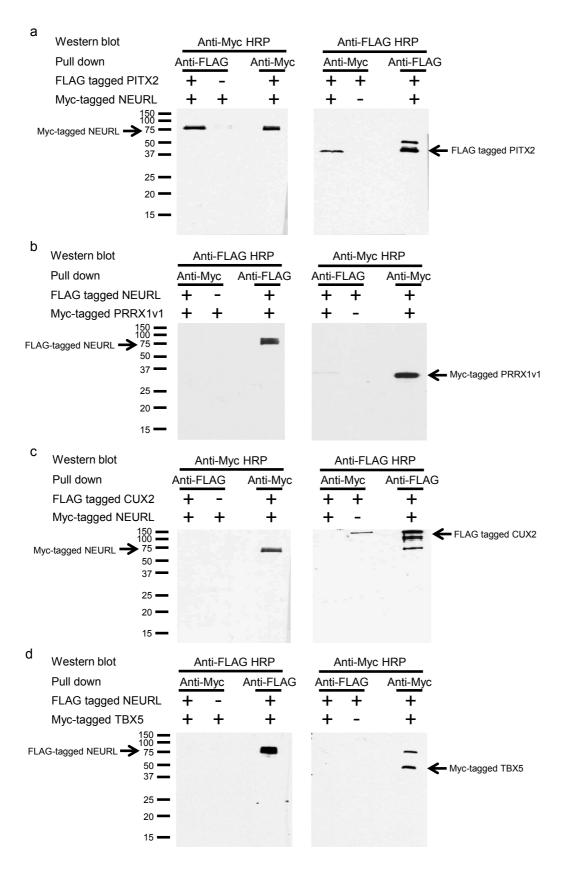
			Distanc					1		Direction	1
Sentinel SNP	AF Risk Allele	Proxy SNP	e from Sentine I SNP (bp)	r2	DPrime	eQTL Yes/No	Tissue	Gene	fold change per AF risk allele	of expressio n change	P value
			(55)			Yes	Heart, LA	CEP68	1.18 (1.13-1.24)	increase	3.11x10 ⁻⁰⁹
	T	rs10173422	92137	0.58	0.95	Yes	Heart, LA	CEP68	1.18 (1.13-1.24)	increase	2.24x10 ⁻⁰⁹
rs2723065 (cont.)	Α	rs10173678	92243	0.58	0.95	Yes	Heart, LA	CEP68	1.19 (1.13-1.24)	increase	2.21x10 ⁻⁰⁹
	С	rs7585500	92923	0.58	0.95	Yes	Heart, LA	CEP68	1.18 (1.13-1.24)	increase	2.83x10 ⁻⁰⁹
	Α	rs6546128	94713	0.58	0.95	Yes	Heart, LA	CEP68	1.19 (1.13-1.24)	increase	1.93×10 ⁻⁰⁹
	T	rs6751786	95181	0.58	0.95	Yes	Tibial Artery	CEP68			7.00x10 ⁻⁰⁵
	-	rs6722972	05403	0.50	0.05	Yes	Heart, LA	CEP68	1.19 (1.13-1.24)	increase	5.15x10 ⁻⁰⁹
	Т	rs6/229/2	95182	0.58	0.95	Yes Yes	Tibial Artery Heart, LA	CEP68 CEP68	1.19 (1.13-1.24)	increase	7.56x10 ⁻⁰⁵ 6.34x10 ⁻⁰⁹
	С	rs7603736	96064	0.58	0.95	Yes	Tibial Artery	CEP68	1.19 (1.15-1.24)	ilicrease	6.58x10 ⁻⁰⁵
	ŭ	137003730	30001	0.50	0.55	Yes	Heart, LA	CEP68	1.19 (1.13-1.24)	increase	2.68x10 ⁻⁰⁹
	Α	rs11888531	97727	0.58	0.95	Yes	Heart, LA	CEP68	1.19 (1.14-1.24)	increase	1.98x10 ⁻⁰⁹
	С	rs6546131	98717	0.58	0.95	Yes	Tibial Artery	CEP68			4.54x10 ⁻⁰⁵
						Yes	Heart, LA	CEP68	1.19 (1.13-1.24)	increase	2.79x10 ⁻⁰⁹
	С	rs7563881	106178	0.58	0.95	Yes	Heart, LA	CEP68	1.17 (1.12-1.23)	increase	1.52x10 ⁻⁰⁷
	G	rs4671119	82797	0.57	0.9	Yes	Heart, LA	CEP68	1.19 (1.14-1.24)	increase	9.33x10 ⁻¹⁰
	G	rs11684110	88876	0.56	0.86	Yes	Tibial Artery	CEP68			1.66×10 ⁻⁰⁵
						Yes	Heart, LA	CEP68	1.17 (1.12-1.22)	increase	1.53x10 ⁻⁰⁸
	T	rs11126031	100943	0.56	0.82	Yes	Heart, LA	CEP68	1.19 (1.13-1.24)	increase	2.89x10 ⁻⁰⁹
	T	rs4671638	32803	0.55	0.94	Yes	Heart, LA	CEP68	1.18 (1.12-1.23)	increase	1.26x10 ⁻⁰⁸
	Т	rs9989843	102847	0.54	0.89	Yes Yes	Tibial Artery Heart, LA	CEP68 CEP68	1.17 (1.12-1.23)	increase	3.78x10 ⁻⁰⁵ 3.52x10 ⁻⁰⁸
	G	rs6750146	104794	0.54	0.89	Yes	Tibial Artery	CEP68	1.1/ (1.14=1.43)	moredse	1.02x10 ⁻⁰⁴
		.50,50140	10.754	3.57	5.65	Yes	Heart, LA	CEP68	1.18 (1.12-1.23)	increase	4.66x10 ⁻⁰⁸
	С	rs4671118	82755	0.54	0.89	Yes	Heart, LA	CEP68	1.19 (1.14-1.24)	increase	9.35x10 ⁻¹⁰
	G	rs12472873	95907	0.54	0.89	Yes	Tibial Artery	CEP68			6.58x10 ⁻⁰⁵
						Yes	Heart, LA	CEP68	1.19 (1.13-1.24)	increase	2.67x10 ⁻⁰⁹
	T	rs2540970	24315	0.54	0.89	Yes	Thyroid	AC008074.4			1.15x10 ⁻⁰⁴
						Yes	Heart, LA	CEP68	1.13 (1.08-1.18)	increase	3.53x10 ⁻⁰⁶
		rs2540971	27029	0.54	0.89	No					OE .
	G	rs2080385	13348	0.52	0.94	Yes	Whole Blood	CEP68			1.10×10 ⁻⁰⁵
	^	**4671130	01600	0.5	0.05	Yes	Heart, LA	CEP68	1.18 (1.12-1.23)	increase	2.50x10 ⁻⁰⁸
	A T	rs4671120 rs10195785	91698 104113	0.5 0.5	0.85 0.72	Yes	Heart, LA	CEP68 CEP68	1.18 (1.13-1.24)	increase	2.34x10 ⁻⁰⁹ 4.42x10 ⁻⁰⁷
rs276857	G	rs276857	0	1	1	Yes No	Heart, LA	CEP68	1.15 (1.10-1.21)	increase	4.42X1U-
rs3780190	G	rs3780190	0	1	1	No					
rs3922843	A	rs3922843	0	1	1	Yes	Skeletal Muscle	XIPR1		decrease	7.15x10 ⁻⁵
rs4238314	Α	rs4238314	0	1	1	No					
rs4642101	G	rs4642101	0	1	1	Yes	Skeletal Muscle	CAND2		increase	2.57x10 ⁻⁰⁹
						Yes	Skeletal Muscle	KRT18P17		increase	3.46x10 ⁻⁰⁶
		rs7650482	419	1	1	Yes	Skeletal Muscle	CAND2			1.74x10 ⁻¹⁰
						Yes	Skeletal Muscle	KRT18P17			5.32x10 ⁻⁰⁶
		rs6810325	1289	0.88	1	Yes	Skeletal Muscle	CAND2			3.25x10 ⁻⁰⁹
		11710000	CEOO	0.00		Yes	Skeletal Muscle	KRT18P17			5.96x10 ⁻⁰⁶
		rs11718898	6599	0.88	1	Yes	Skeletal Muscle Skeletal Muscle	CAND2 KRT18P17			1.63x10 ⁻¹⁰ 2.99x10 ⁻⁰⁶
		rs9873475	3199	0.86	1	Yes Yes	Skeletal Muscle	CAND2			4.04x10 ⁻¹⁴
		133073473	3133	0.00		Yes	Thyroid	CAND2			1.22x10 ⁻⁰⁴
						Yes	Skeletal Muscle	KRT18P17			2.43x10 ⁻⁰⁹
		rs9836128	3203	0.86	1	Yes	Skeletal Muscle	CAND2			4.04x10 ⁻¹⁴
						Yes	Thyroid	CAND2			1.22x10 ⁻⁰⁴
						Yes	Skeletal Muscle	KRT18P17			2.43x10 ⁻⁰⁹
		rs9820977	709	0.82	1	Yes	Skeletal Muscle	CAND2			4.09x10 ⁻¹⁴
						Yes	Thyroid	CAND2			1.22x10 ⁻⁰⁴
						Yes	Skeletal Muscle	KRT18P17			2.24x10 ⁻⁰⁹
	-	rs9825233	1145	0.82	1	Yes	Skeletal Muscle	CAND2	 		4.08x10 ⁻¹⁴
						Yes Yes	Thyroid Skeletal Muscle	CAND2 KRT18P17	-		1.22x10 ⁻⁰⁴ 2.27x10 ⁻⁰⁹
	-	rs11717013	1639	0.82	1	Yes	Skeletal Muscle	CAND2	1		4.07x10 ⁻¹⁴
		1311/1/013	1033	0.02	1	Yes	Thyroid	CAND2	1		1.22x10 ⁻⁰⁴
						Yes	Skeletal Muscle	KRT18P17			2.31x10 ⁻⁰⁹
		rs3889514	1849	0.82	1	Yes	Skeletal Muscle	CAND2			4.06x10 ⁻¹⁴
						Yes	Thyroid	CAND2			1.22x10 ⁻⁰⁴
						Yes	Skeletal Muscle	KRT18P17			2.33x10 ⁻⁰⁹
		rs3889515	1889	0.82	1	Yes	Skeletal Muscle	CAND2			4.06x10 ⁻¹⁴
						Yes	Thyroid	CAND2			1.22x10 ⁻⁰⁴
						Yes	Skeletal Muscle	KRT18P17	ļ		2.34x10 ⁻⁰⁹
	ļ	rs9835677	2935	0.82	1	Yes	Skeletal Muscle	CAND2	ļ		4.04x10 ⁻¹⁴
	-					Yes	Thyroid	CAND2	1		1.22x10 ⁻⁰⁴
		rc00[2222	6260	0.03	1	Yes	Skeletal Muscle	KRT18P17	1		2.43x10 ⁻⁰⁹
		rs9852222	6268	0.82	1	Yes Yes	Skeletal Muscle Thyroid	CAND2 CAND2	1		4.12x10 ⁻¹⁴ 1.21x10 ⁻⁰⁴
						Yes	Skeletal Muscle	KRT18P17	1		2.42x10 ⁻⁰⁹
	 	rs3889513	1847	0.79	1	Yes	Skeletal Muscle	CAND2	1		4.06x10 ⁻¹⁴
				5.75	-		Thyroid	CAND2	 	1	1.22x10 ⁻⁰⁴
						Yes	111010101				1.22XJU
		100000				Yes Yes	Skeletal Muscle	KRT18P17			2.33x10 ⁻⁰⁹
	Т	rs56082700	8390	0.79	1		· · · · · · · · · · · · · · · · · · ·				
	Т		8390 9619	0.79 0.79	1 1	Yes	· · · · · · · · · · · · · · · · · · ·				

Sentinel SNP	AF Risk Allele	Proxy SNP	Distanc e from Sentine I SNP (bp)	r2	DPrime	eQTL Yes/No	Tissue	Gene	fold change per AF risk allele	Direction of expressio n change	P value
		rs12714880	10122	0.79	1	Yes Yes	Skeletal Muscle Skeletal Muscle	CAND2 KRT18P17			3.12x10 ⁻¹² 1.66x10 ⁻⁰⁵
rs4642101 (cont.)		rs6799179	13128	0.79	1	Yes	Skeletal Muscle	CAND2			3.13x10 ⁻¹²
, ,						Yes	Skeletal Muscle	KRT18P17			2.37x10 ⁻⁰⁵
		rs6763619	20076	0.79	1	Yes	Skeletal Muscle	CAND2			2.82x10 ⁻¹⁰
		rs13320486	20154	0.79	1	Yes Yes	Skeletal Muscle Skeletal Muscle	KRT18P17 CAND2			1.14x10 ⁻⁰⁵ 2.82x10 ⁻¹⁰
				-		Yes	Skeletal Muscle	KRT18P17			1.13x10 ⁻⁰⁵
		rs9870269	11227	0.77	1	Yes	Skeletal Muscle	CAND2			9.19x10 ⁻¹³
		rs1985428	12908	0.77	1	Yes Yes	Skeletal Muscle Skeletal Muscle	KRT18P17 CAND2			3.47x10 ⁻⁰⁵ 8.66x10 ⁻¹¹
		131303420	12300	0.77	<u> </u>	Yes	Skeletal Muscle	KRT18P17			1.83x10 ⁻⁰⁵
		rs9871991	14698	0.77	1	Yes	Skeletal Muscle	CAND2			1.02x10 ⁻¹⁰
		rs9872103	14771	0.77	1	Yes Yes	Skeletal Muscle Skeletal Muscle	KRT18P17 CAND2			5.63x10 ⁻⁰⁵ 1.40x10 ⁻¹⁰
		133672103	14//1	0.77		Yes	Skeletal Muscle	KRT18P17			7.48x10 ⁻⁰⁶
		rs6791647	15798	0.77	1	Yes	Skeletal Muscle	CAND2			1.18x10 ⁻¹¹
		2722675	45005	0.77	- 1	Yes	Skeletal Muscle	KRT18P17			6.18x10 ⁻⁰⁶ 4.84x10 ⁻¹³
		rs3732675	15805	0.77	1	Yes Yes	Skeletal Muscle Skeletal Muscle	CAND2 KRT18P17			2.69x10 ⁻⁰⁵
		rs4321514	16322	0.77	1	Yes	Skeletal Muscle	CAND2			2.91x10 ⁻¹⁰
		2004.555	47640		<u> </u>	Yes	Skeletal Muscle	KRT18P17			1.29x10 ⁻⁰⁵
		rs3901665	17613	0.77	1	Yes Yes	Skeletal Muscle Skeletal Muscle	CAND2 KRT18P17			2.91x10 ⁻¹⁰ 1.29x10 ⁻⁰⁵
		rs9877165	13726	0.74	1	Yes	Skeletal Muscle	CAND2			8.73x10 ⁻¹¹
						Yes	Skeletal Muscle	KRT18P17			1.87x10 ⁻⁰⁵
		rs6767504	15556	0.74	1	Yes Yes	Skeletal Muscle Skeletal Muscle	CAND2 KRT18P17			2.90x10 ⁻¹⁰ 1.29x10 ⁻⁰⁵
		rs4299468	16664	0.74	1	Yes	Skeletal Muscle	CAND2			3.01x10 ⁻¹⁰
						Yes	Skeletal Muscle	KRT18P17			1.32x10 ⁻⁰⁵
		rs4447735	16710	0.74	1	Yes Yes	Skeletal Muscle Skeletal Muscle	CAND2 KRT18P17			3.44x10 ⁻¹² 7.12x10 ⁻⁰⁵
		rs12631514	3930	0.69	0.95	Yes	Skeletal Muscle	CAND2			2.87x10 ⁻¹⁶
						Yes	Thyroid	CAND2			2.92x10 ⁻⁰⁵
						Yes	Skeletal Muscle	KRT18P17			1.07x10 ⁻⁰⁸
		rs13085726	9551	0.69	1	Yes Yes	Skeletal Muscle Thyroid	CAND2 CAND2			1.56x10 ⁻¹⁶ 1.08x10 ⁻⁰⁵
						Yes	Skeletal Muscle	KRT18P17			6.82x10 ⁻⁰⁸
		rs9822382	13395	0.69	1	Yes	Skeletal Muscle	CAND2			8.73x10 ⁻¹¹
		rs6442330	21722	0.68	0.91	Yes Yes	Skeletal Muscle Skeletal Muscle	KRT18P17 CAND2			1.87x10 ⁻⁰⁵ 7.29x10 ⁻¹²
		130442330	21/22	0.00	0.51	Yes	Skeletal Muscle	KRT18P17			3.82x10 ⁻⁰⁵
		rs7626609	36143	0.68	0.91	Yes	Skeletal Muscle	CAND2			2.84x10 ⁻⁰⁷
		rs1467026	11448	0.67	0.87	Yes Yes	Thyroid Skeletal Muscle	CAND2 CAND2			1.10x10 ⁻⁰⁵ 7.76x10 ⁻¹²
		131407020	11440	0.07	0.67	Yes	Skeletal Muscle	KRT18P17			4.48x10 ⁻⁰⁵
		rs4034942	5431	0.66	1	Yes	Skeletal Muscle	CAND2			1.82x10 ⁻¹⁸
						Yes	Thyroid	CAND2			3.92x10 ⁻⁰⁵ 4.16x10 ⁻⁰⁷
		rs9874893	9144	0.66	1	Yes Yes	Skeletal Muscle Skeletal Muscle	KRT18P17 CAND2			3.15x10 ⁻¹⁶
						Yes	Thyroid	CAND2			3.32x10 ⁻⁰⁵
		40C04F4	12067	0.00	-	Yes	Skeletal Muscle	KRT18P17			6.35x10 ⁻⁰⁸
		rs1969154	13067	0.66	1	Yes Yes	Skeletal Muscle Skeletal Muscle	CAND2 KRT18P17			3.13x10 ⁻¹² 2.37x10 ⁻⁰⁵
		rs3901664	17563	0.66	1	Yes	Skeletal Muscle	CAND2			1.76x10 ⁻¹⁶
						Yes	Thyroid	CAND2			4.64x10 ⁻⁰⁵
		rs9840766	20353	0.66	1	Yes Yes	Skeletal Muscle Skeletal Muscle	KRT18P17 CAND2			6.23x10 ⁻⁰⁸ 4.67x10 ⁻¹⁶
				2.00		Yes	Thyroid	CAND2			3.54x10 ⁻⁰⁵
			0.000			Yes	Skeletal Muscle	KRT18P17			1.14x10 ⁻⁰⁷
		rs57411588	21839	0.66	1	Yes Yes	Skeletal Muscle Thyroid	CAND2 CAND2		-	9.96x10 ⁻¹⁷ 1.29x10 ⁻⁰⁴
				<u> </u>	<u> </u>	Yes	Skeletal Muscle	KRT18P17		<u> </u>	2.13x10 ⁻⁰⁸
-		rs3732678	16781	0.64	0.95	Yes	Skeletal Muscle	CAND2			2.47x10 ⁻¹¹
		rs7629354	14477	0.64	0.87	Yes Yes	Skeletal Muscle Skeletal Muscle	CAND2 KRT18P17		 	7.76x10 ⁻¹² 4.48x10 ⁻⁰⁵
		rs2305398	14633	0.64	0.87	Yes	Skeletal Muscle	CAND2			1.91x10 ⁻¹¹
						Yes	Skeletal Muscle	KRT18P17			7.07x10 ⁻⁰⁵
	<u> </u>	rs12629398	15424	0.64	1	Yes	Skeletal Muscle	CAND2			1.73x10 ⁻¹⁶
	1		1	 	 	Yes Yes	Thyroid Skeletal Muscle	CAND2 KRT18P17		 	4.76x10 ⁻⁰⁵ 5.44x10 ⁻⁰⁸
		rs731646	15600	0.64	1	Yes	Skeletal Muscle	CAND2			5.68x10 ⁻¹⁸
						Yes	Thyroid	CAND2			3.11x10 ⁻⁰⁵
	-	rs3901666	17860	0.64	0.87	Yes Yes	Skeletal Muscle Skeletal Muscle	KRT18P17 CAND2			5.14x10 ⁻⁰⁹ 7.76x10 ⁻¹²
		133331000	1,000	0.04	0.07	Yes	Skeletal Muscle	KRT18P17			4.48x10 ⁻⁰⁵
		rs9877049	20992	0.64	1	Yes	Skeletal Muscle	CAND2			2.64x10 ⁻¹⁹
						Yes	Thyroid	CAND2			1.00x10 ⁻⁰⁵
	1	l	1	I .	I .	Yes	Skeletal Muscle	KRT18P17	l	ı	2.19x10 ⁻⁰⁸

Sentinel SNP	AF Risk Allele	Proxy SNP	Distanc e from Sentine I SNP (bp)	r2	DPrime	eQTL Yes/No	Tissue	Gene	fold change per AF risk allele	Direction of expressio n change	P value
	_	rs9870433	11343	0.64	0.86	Yes	Skeletal Muscle	CAND2			9.12x10 ⁻¹³
rs4642101 (cont.)	Т	rs1003080	30595	0.63	0.82	Yes Yes	Skeletal Muscle Skeletal Muscle	KRT18P17 CAND2			3.48x10 ⁻⁰⁵ 1.77x10 ⁻⁰⁷
134042101 (COIIC.)		131003080	30393	0.03	0.62	Yes	Thyroid	CAND2			2.50x10 ⁻⁰⁶
		rs13086564	9370	0.62	1	Yes	Skeletal Muscle	CAND2			6.36x10 ⁻¹⁷
						Yes	Thyroid	CAND2			3.78x10 ⁻⁰⁵
						Yes	Skeletal Muscle	KRT18P17			6.97x10 ⁻⁰⁸
		rs9877079	20936	0.62	1	Yes	Skeletal Muscle	CAND2			7.75x10 ⁻¹⁷
						Yes Yes	Thyroid Skeletal Muscle	CAND2 KRT18P17			5.97x10 ⁻⁰⁵ 2.77x10 ⁻⁰⁸
		rs7612317	21665	0.62	1	Yes	Skeletal Muscle	CAND2			3.67x10 ⁻¹⁴
						Yes	Skeletal Muscle	KRT18P17			2.83x10 ⁻⁰⁷
		rs60270583	21883	0.62	1	Yes	Skeletal Muscle	CAND2			1.55x10 ⁻¹⁶
						Yes	Thyroid	CAND2			7.00x10 ⁻⁰⁵
		rs11128614	23011	0.63	1	Yes	Skeletal Muscle	KRT18P17 CAND2			2.49x10 ⁻⁰⁸ 9.14x10 ⁻¹⁸
		1511126014	23011	0.62	1	Yes Yes	Skeletal Muscle Thyroid	CAND2 CAND2			7.36x10 ⁻⁰⁶
						Yes	Skeletal Muscle	KRT18P17			1.23x10 ⁻⁰⁷
		rs6442331	21587	0.61	0.86	Yes	Skeletal Muscle	CAND2			1.25x10 ⁻¹¹
						Yes	Skeletal Muscle	KRT18P17			5.41x10 ⁻⁰⁵
		rs2305397	15270	0.6	1	Yes	Skeletal Muscle	CAND2			1.02x10 ⁻¹⁷
	1		1			Yes Yes	Thyroid Skeletal Muscle	CAND2 KRT18P17			2.74x10 ⁻⁰⁵ 2.38x10 ⁻⁰⁸
		rs9865624	19437	0.6	1	Yes	Skeletal Muscle	CAND2			9.67x10 ⁻⁰⁷
		rs9839769	20818	0.6	1	Yes	Skeletal Muscle	CAND2			7.75x10 ⁻¹⁷
						Yes	Thyroid	CAND2			5.97x10 ⁻⁰⁵
						Yes	Skeletal Muscle	KRT18P17			2.77x10 ⁻⁰⁸
		rs9839768	20820	0.6	1	Yes	Skeletal Muscle	CAND2			7.75x10 ⁻¹⁷
						Yes	Thyroid	CAND2 KRT18P17			5.97x10 ⁻⁰⁵
		rs12638595	22942	0.6	1	Yes Yes	Skeletal Muscle Skeletal Muscle	CAND2			2.77x10 ⁻⁰⁸ 3.60x10 ⁻¹⁸
		1312030333	LLJTL	0.0	-	Yes	Thyroid	CAND2			3.92x10 ⁻⁰⁶
						Yes	Skeletal Muscle	KRT18P17			1.04x10 ⁻⁰⁷
		rs6799544	29244	0.59	0.78	Yes	Skeletal Muscle	CAND2			6.69x10 ⁻⁰⁶
						Yes	Thyroid	CAND2			3.04x10 ⁻⁰⁶
		rs7641959	31468	0.56	0.78	Yes	Skeletal Muscle Thyroid	CAND2 CAND2			7.15x10 ⁻⁰⁶ 3.60x10 ⁻⁰⁶
		rs4560285	33157	0.56	0.78	Yes Yes	Skeletal Muscle	CAND2 CAND2			1.32x10 ⁻⁰⁵
		134300283	33137	0.50	0.78	Yes	Thyroid	CAND2			9.07x10 ⁻⁰⁵
		rs7638333	36081	0.56	0.78	Yes	Skeletal Muscle	CAND2			5.15x10 ⁻⁰⁶
						Yes	Thyroid	CAND2			6.55x10 ⁻⁰⁶
		rs9831765	36289	0.56	0.78	Yes	Skeletal Muscle	CAND2			5.15x10 ⁻⁰⁶
		#s0013144	26212	0.56	0.78	Yes	Thyroid Skeletal Muscle	CAND2 CAND2			6.55x10 ⁻⁰⁶ 5.15x10 ⁻⁰⁶
		rs9812144	36313	0.50	0.78	Yes Yes	Thyroid	CAND2 CAND2			6.55x10
		rs6766744	40380	0.56	0.78	Yes	Skeletal Muscle	CAND2			5.16x10 ⁻⁰⁶
						Yes	Thyroid	CAND2			1.56x10 ⁻⁰⁶
		rs4535210	2606	0.56	0.86	Yes	Skeletal Muscle	CAND2			2.57x10 ⁻¹²
						Yes	Skeletal Muscle	KRT18P17			3.86x10 ⁻⁰⁵
		rs11719501	18020	0.54	1	Yes	Skeletal Muscle	CAND2 KRT18P17			7.98x10 ⁻¹⁶ 6.14x10 ⁻⁰⁵
		rs34871776	26854	0.54	1	Yes Yes	Skeletal Muscle Skeletal Muscle	CAND2			6.14x10 6.11x10 ⁻¹²
		1334071770	20034	0.54	-	Yes	Skeletal Muscle	KRT18P17			5.19x10 ⁻⁰⁵
		rs4997708	2620	0.54	0.85	No					
		rs55692304	2166	0.54	0.85	Yes	Skeletal Muscle	CAND2			6.25x10 ⁻¹⁸
						Yes	Thyroid	CAND2			2.47x10 ⁻⁰⁵
	1	rs13316229	34852	0.53	0.78	Yes Yes	Skeletal Muscle Skeletal Muscle	KRT18P17 CAND2			1.47x10 ⁻⁰⁸ 5.15x10 ⁻⁰⁶
		1515510229	34632	0.55	0.78	Yes	Thyroid	CAND2 CAND2			6.55x10 ⁻⁰⁶
		rs12629892	23303	0.51	0.85	Yes	Skeletal Muscle	CAND2			3.74x10 ⁻¹⁶
						Yes	Thyroid	CAND2	<u> </u>	<u> </u>	1.36x10 ⁻⁰⁵
•						Yes	Skeletal Muscle	KRT18P17			7.90x10 ⁻⁰⁷
·		rs9813960	24018	0.51	0.85	Yes	Skeletal Muscle	CAND2			3.74x10 ⁻¹⁶
	-		-			Yes	Thyroid	CAND2 KRT18P17			1.36x10 ⁻⁰⁵ 7.90x10 ⁻⁰⁷
	1	rs9809596	1710	0.51	0.85	Yes Yes	Skeletal Muscle Skeletal Muscle	CAND2			7.90x10 5.42x10 ⁻¹⁸
	†	135009590	1/10	0.31	0.00	Yes	Thyroid	CAND2			2.71x10 ⁻⁰⁵
		İ				Yes	Skeletal Muscle	KRT18P17			1.72x10 ⁻⁰⁸
rs4824051	С	rs4824051	0	1	1	No					
rs6062468	С	rs6062468	0	1	1	No					
rs6540690	C	rs6540690	0	1	1	No	Thurst	0004034		in out	2.00-40-06
rs6749773 rs6882776	A A	rs6749773 rs6882776	0	1	1	Yes Yes	Thyroid Heart, LA	PPP1R21 NKX2-5	0.93 (0.90-0.95)	increase decrease	3.80x10 ⁻⁰⁶ 8.78x10 ⁻⁰⁶
rs6884185	C	rs6884185	0	1	1	No Yes	riedit, LA	14NAZ-3	0.33 (0.50-0.33)	uetredse	0.70X1U
rs6968408	С	rs6968408	0	1	1	No	1				
rs7160770	T	rs7160770	0	1	1	No	<u> </u>		<u> </u>	<u> </u>	<u> </u>
rs7295704	T	rs7295704	0	1	1	No					
rs752282	T	rs752282	0	1	1	No	ļ				
rs7682872	G	rs7682872	0	1	1	No	İ			Ì	<u> </u>

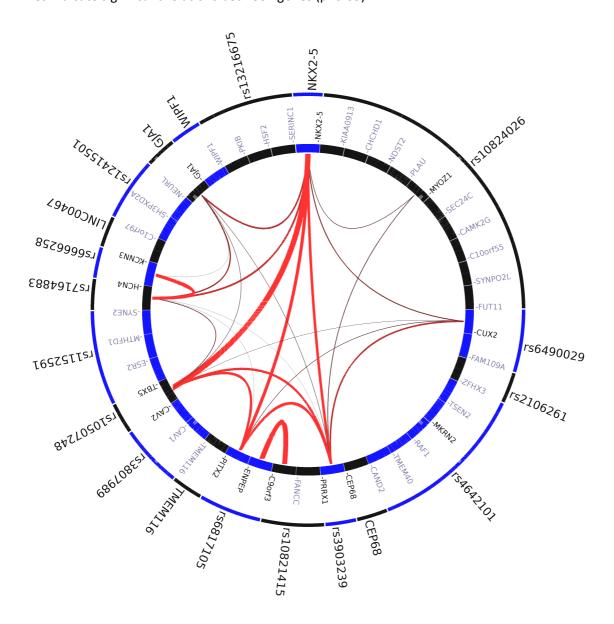

Supplemental Table 8. eQTL analyses using the Genotype-Tissue Expression Portal (GTEx) and **Cleveland Clinic Atrial Tissue Bank. Europeans** Direction AF Risk Allele e from Sentine I SNP fold change per AF risk allele of expressio n change eQTL Sentinel SNP Proxy SNP r2 DPrime Tissue P value Gene Yes/No (bp) rs768347 rs768347 0 No No rs7987944 rs7987944 0 1 No rs9267992 G rs9267992 0 1 No rs9284844 rs9284844 G 0 1 No No rs9857326 rs9857326 **Japanese** rs6584555 rs6584555 No Heart, LA TMEM116 1.12 (1.08-1.17) increase 0 rs6490029 rs6490029

Supplemental Table 9. Nucleotide sequences used for morpholinos and PCR analyses, morpholino efficacy.


	Sequence	Morpholino efficacy (72 hpf)
Control MO	5'-ATCCTCTTGAGGCGAACAAAGAGTC-3'	
Anti-neurla E1I1 MO	5'-ATTGGAGATCAGTTGCTCACCGTAC-3'	81.4 ± 6.9%
Anti-neurla E2I2 MO	5'-CCGTCTTTCCTTGTTCTTACCTTTA-3'	56.1 ± 1.1%
Anti- <i>neurla</i> 5'UTR	5'-TCCAGAGAGCGATAATTCCACACCG-3'	Not measureable
Anti-cand1 E3I3 MO	5'-AGCAGGAAAGGATGTTTTACCACT-3'	70.7 ± 16.3%
Anti-cand1 E10I10 MO	5'-AGCAGAAATGGACATTAACCTGATA-3'	70.2 ± 2.4%
Anti-cand2 MO	5'-GCGTCTCTAAAATACTCTTACCTAA-3'	98.1 ± 1.2%
Anti-cux2b E12I12 MO	5'- AGGGTTTGTTCATCACTCACCTCTC-3'	53.1 ± 20.8%
neurla E1I1 qRT-PCR	5'-CTCTGGACCTTTGAGAAATAAACG-3' 5'-ACACTGATGCAAGGGCAAAC-3'	
neurla E2I2 semi-q PCR	5'-CTCTGGACCTTTGAGAAATAAACG-3' 5'-TCATTTGCAAACTCCTCTGGTAG-3'	
cand1 E3I3 semi-q PCR	5'-AAACACACACACAGTGGTTTTC-3' 5'-AAGAGGCGAACTACATCATTCTG-3'	
cand1 E10I10 semi-q PCR	5'-GGAGAAGTCGGTCATCATGTTG-3' 5'-TTAACAGCTGTAACTACCGAGC-3'	
cand2 qRT-PCR	5'-AAAAATGACATCCACTGACAAAG-3' 5'-ACATAGTCACGACTTTCCTCTCG-3'	
cux2b E12I12 semi-q PCR	5'- CATCAGCCAATGGAAGTTCGTC-3' 5'- CTGACCCAGTTTCCGGAGTTC-3'	
ef-1α qRT-PCR	5'-TTGAGAAGAAAATCGGTGGTGCTG-3' 5'-GGAACGGTGTGATTGAGGGAAATTC-3'	
<i>ef-1α</i> semi-q PCR	5'-AAGAGAACCATCGAGAAGTTCG-3' 5'-CTCAATCTTCCATCCCTTGAAC-3'	
β-actin qRT-PCR	5'-CGAGCAGGAGATGGGAACC-3' 5'-CAACGGAAACGCTCATTGC-3'	

Supplemental Table 10. Atrial action potential durations following morpholino microinjection												
Morpholino	Average atrial action potential duration (ms)	Standard Deviation	n	p-value								
Control	110.1	8.8	18	N.A.								
neurla E1I1	128.9	14.5	17	5.0x10 ⁻⁵								
neurla E2I2	147.0	15.8	12	6.4x10 ⁻⁹								
neurla 5'UTR	130.9	12.3	15	3.5x10 ⁻⁶								
cand1 E3I3	159.1	21.5	9	8.3x10 ⁻⁹								
cand1 E10I10	143.7	11.1	6	1.4x10 ⁻⁷								
cand2 E1I1	113.3	10.3	6	0.48								
cux2b E12I12	109.1	13.0	10	0.79								

Supplemental Figure 1. Regional plot for the association of *CUX2* with atrial fibrillation in Europeans. SNPs are plotted using the genomic position (NCBI Build 36) and discovery stage *P* values. The sentinel SNP from the Japanese analysis is labeled in purple. Each dot represents a SNP. The strength of the linkage disequilibrium of SNPs with the sentinel-SNP is indicated by a color gradient according to the legend. Estimated recombination rates are shown by the blue line, and spikes indicate locations of frequent recombination. Below, the chromosomal positions of the SNPs and regional candidate genes are annotated. Linkage disequilibrium and recombination rates are based on the CEU HapMap release 22. Plots prepared using LocusZoom.¹⁵


Supplemental Figure 2. Protein interaction analyses in COS7 cells. Interactions between NEURL and PITX2 (a), PRRX1 (b), CUX2 (c), or TBX5 (d) in COS7 cells.

Page 34 of 37

Supplemental Figure 3. Pathway analysis for 14 atrial fibrillation loci

The outer circle marks the 5 novel and 9 previously reported susceptibility loci for AF,¹ as well as 6 genes implicated by our eQTL analysis. The inner circle shows the genes encoded at each locus. Connecting lines in the center represent relations between these genes that were reported in the literature. Red lines indicate significant relations between genes (p<0.05).

References

- Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Ritchie MD, Smith AV, Arking DE, Muller-Nurasyid M, Krijthe BP, Lubitz SA, Bis JC, Chung MK, Dorr M, Ozaki K, Roberts JD, Smith JG, Pfeufer A, Sinner MF, Lohman K, Ding J, Smith NL, Smith JD, Rienstra M, Rice KM, Van Wagoner DR, Magnani JW, Wakili R, Clauss S, Rotter JI, Steinbeck G, Launer LJ, Davies RW, Borkovich M, Harris TB, Lin H, Volker U, Volzke H, Milan DJ, Hofman A, Boerwinkle E, Chen LY, Soliman EZ, Voight BF, Li G, Chakravarti A, Kubo M, Tedrow UB, Rose LM, Ridker PM, Conen D, Tsunoda T, Furukawa T, Sotoodehnia N, Xu S, Kamatani N, Levy D, Nakamura Y, Parvez B, Mahida S, Furie KL, Rosand J, Muhammad R, Psaty BM, Meitinger T, Perz S, Wichmann HE, Witteman JC, Kao WH, Kathiresan S, Roden DM, Uitterlinden AG, Rivadeneira F, McKnight B, Sjogren M, Newman AB, Liu Y, Gollob MH, Melander O, Tanaka T, Stricker BH, Felix SB, Alonso A, Darbar D, Barnard J, Chasman DI, Heckbert SR, Benjamin EJ, Gudnason V, Kaab S. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet. 2012;44:670-675
- 2. Shepherd J, Blauw GJ, Murphy MB, Cobbe SM, Bollen EL, Buckley BM, Ford I, Jukema JW, Hyland M, Gaw A, Lagaay AM, Perry IJ, Macfarlane PW, Meinders AE, Sweeney BJ, Packard CJ, Westendorp RG, Twomey C, Stott DJ. The design of a prospective study of pravastatin in the elderly at risk (prosper). Prosper study group. Prospective study of pravastatin in the elderly at risk. *The American journal of cardiology*. 1999;84:1192-1197
- 3. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, Ford I, Gaw A, Hyland M, Jukema JW, Kamper AM, Macfarlane PW, Meinders AE, Norrie J, Packard CJ, Perry IJ, Stott DJ, Sweeney BJ, Twomey C, Westendorp RG. Pravastatin in elderly individuals at risk of vascular disease (prosper): A randomised controlled trial. *Lancet*. 2002;360:1623-1630
- 4. Trompet S, de Craen AJ, Postmus I, Ford I, Sattar N, Caslake M, Stott DJ, Buckley BM, Sacks F, Devlin JJ, Slagboom PE, Westendorp RG, Jukema JW. Replication of Idl gwas hits in prosper/phase as validation for future (pharmaco)genetic analyses. *BMC medical genetics*. 2011;12:131
- 5. Hofman A, van Duijn CM, Franco OH, Ikram MA, Janssen HL, Klaver CC, Kuipers EJ, Nijsten TE, Stricker BH, Tiemeier H, Uitterlinden AG, Vernooij MW, Witteman JC. The rotterdam study: 2012 objectives and design update. *European journal of epidemiology*. 2011;26:657-686
- 6. Nabauer M, Gerth A, Limbourg T, Schneider S, Oeff M, Kirchhof P, Goette A, Lewalter T, Ravens U, Meinertz T, Breithardt G, Steinbeck G. The registry of the german competence network on atrial fibrillation: Patient characteristics and initial management. Europace:

 European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2009;11:423-434
- 7. Henningsen KM, Olesen MS, Ravn LS, Dixen U, Haunsoe S, Bruunsgaard H, Svendsen JH. Inflammatory single nucleotide polymorphisms and the risk of atrial fibrillation: A case control study. *Inflammation research : official journal of the European Histamine Research Society ...* [et al.]. 2011;60:209-211
- 8. Olesen MS, Bentzen BH, Nielsen JB, Steffensen AB, David JP, Jabbari J, Jensen HK, Haunso S, Svendsen JH, Schmitt N. Mutations in the potassium channel subunit kcne1 are associated with early-onset familial atrial fibrillation. *BMC medical genetics*. 2012;13:24
- 9. Olesen MS, Holst AG, Jabbari J, Nielsen JB, Christophersen IE, Sajadieh A, Haunso S, Svendsen JH. Genetic loci on chromosomes 4q25, 7p31, and 12p12 are associated with onset of lone atrial fibrillation before the age of 40 years. *The Canadian journal of cardiology*. 2012;28:191-195

- 10. Heckbert SR, Wiggins KL, Glazer NL, Dublin S, Psaty BM, Smith NL, Longstreth WT, Jr., Lumley T. Antihypertensive treatment with ace inhibitors or beta-blockers and risk of incident atrial fibrillation in a general hypertensive population. *Am J Hypertens*. 2009;22:538-544
- 11. Smith JG, Platonov PG, Hedblad B, Engstrom G, Melander O. Atrial fibrillation in the malmo diet and cancer study: A study of occurrence, risk factors and diagnostic validity. *European journal of epidemiology*. 2010;25:95-102
- 12. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L. Clinical risk factors, DNA variants, and the development of type 2 diabetes. *The New England journal of medicine*. 2008;359:2220-2232
- 13. Shin JT, Pomerantsev EV, Mably JD, MacRae CA. High-resolution cardiovascular function confirms functional orthology of myocardial contractility pathways in zebrafish. *Physiological genomics*. 2010;42:300-309
- 14. Milan DJ, Kim AM, Winterfield JR, Jones IL, Pfeufer A, Sanna S, Arking DE, Amsterdam AH, Sabeh KM, Mably JD, Rosenbaum DS, Peterson RT, Chakravarti A, Kaab S, Roden DM, MacRae CA. Drug-sensitized zebrafish screen identifies multiple genes, including gins 3, as regulators of myocardial repolarization. *Circulation*. 2009;120:553-559
- 15. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ. Locuszoom: Regional visualization of genome-wide association scan results. *Bioinformatics*. 2010;26:2336-2337