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Abstract 32 

The amount of weight loss in obese children during lifestyle intervention differs strongly 33 

between individuals. The metabolic processes underlying this variability are largely 34 

unknown. We hypothesize that metabolomics analyses of serum samples might help to 35 

identify metabolic predictors of weight loss.  In this study, we investigated 80 obese 36 

children aged 6 to 15 years having completed the one-year lifestyle intervention program 37 

‘Obeldicks’, 40 that achieved a substantial reduction of their body mass index standard 38 

deviation score (BMI-SDS) during this intervention (defined as BMI-SDS reduction 39 

≥ 0.5), and 40 that did not improve their overweight status (BMI-SDS reduction < 0.1). 40 

Anthropometric and clinical parameters were measured and baseline fasting serum 41 

samples of all children were analyzed with a mass spectrometry-based metabolomics 42 

approach targeting 163 metabolites. Both univariate regression models and a 43 

multivariate least absolute shrinkage and selection operator (LASSO) approach 44 

identified lower serum concentrations of long-chain unsaturated phosphatidylcholines as 45 

well as smaller waist circumference as significant predictors of BMI-SDS reduction 46 

during intervention (p-values univariate models: 5.3E-03 to 1.0E-04). A permutation test 47 

showed that the LASSO model explained a significant part of BMI-SDS change (p = 48 

4.6E-03). Our results suggest a role of phosphatidylcholine metabolism and abdominal 49 

obesity in body weight regulation. These findings might lead to a better understanding 50 

of the mechanisms behind the large inter-individual variation in response to lifestyle 51 

interventions, which is a prerequisite for the development of individualized intervention 52 

programs. 53 

 54 

Key words: Childhood obesity; weight loss prediction; overweight reduction; metabolomics; BMI-SDS 55 

reduction; LASSO 56 
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1 Introduction 57 

Lifestyle intervention programs based on physical activity, nutrition and behaviour modification lead to a 58 

moderate weight loss in overweight and obese children (Oude Luttikhuis et al., 2009; Reinehr, 2011). However, 59 

the degree of overweight reduction during such programs largely differs between individuals. Furthermore, not 60 

all participating children reduce their overweight to a degree that is sufficient for an improvement of 61 

cardiovascular risk factors (Reinehr and Andler, 2004; Reinehr et al., 2004; Ford et al., 2010). For instance, 62 

during the lifestyle intervention program ‘Obeldicks’, about twenty percent of the children achieved a body mass 63 

index standard deviation score (BMI-SDS) reduction of at least 0.5, which is associated with improvements of 64 

insulin sensitivity, blood lipid profile and blood pressure (Reinehr and Andler, 2004; Reinehr et al., 2004). A 65 

similar success rate was observed during other programs (Sabin et al., 2007; Ford et al., 2010). 66 

The search for factors predicting a child’s response to a lifestyle intervention is of great interest. With the 67 

knowledge of such factors, lifestyle based therapeutic options could be focused on the children that are likely to 68 

benefit most (Reinehr et al., 2003). In addition, a thorough understanding of the metabolic processes underlying 69 

the large inter-individual variability in weight loss is essential for the development of personalized intervention 70 

strategies. 71 

So far, few determinants have been identified that reliably predict the response to lifestyle intervention. Both 72 

environmental and genetic factors are likely to play a role. Familial environment, socio-economic status and 73 

psychosocial factors affect a child’s adaptation of behaviour changes (Reinehr, 2011). At the same time, weight 74 

change in response to hypo- or hypercaloric challenge has a considerable heritable component, as observed in 75 

twin studies (Bouchard et al., 1990; Bouchard et al., 1994). Also, genetic (Ghosh et al., 2011; Reinehr, 2011) and 76 

epigenetic (Campión et al., 2009) factors showed an association with the amount of weight loss in children. 77 

Furthermore, metabolic factors have been linked to weight loss in both adults and children, most prominently 78 

serum leptin concentration (Fleisch et al., 2007; Reinehr et al., 2009).  79 

In the search for weight loss predictors, the potential of high-throughput -omics techniques such as 80 

metabolomics or transcriptomics has merely been exploited (Ghosh et al., 2011; Pathmasiri et al., 2012; Wang et 81 

al., 2012). Earlier metabolomics studies have shown that childhood obesity is associated with characteristic 82 

changes in the serum metabolome (Mihalik et al., 2012; Wahl et al., 2012). We therefore hypothesize that the 83 

serum metabolite profile might also be reflective of metabolic processes involved in weight loss regulation. In 84 

this study, we aimed to identify serum metabolites, anthropometric and clinical variables associated with weight 85 
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loss in obese children during the lifestyle intervention program “Obeldicks”. Going a step further, we used a 86 

regularized regression approach, the least absolute shrinkage and selection operator (LASSO), to build a 87 

predictive model for BMI-SDS change (Δ BMI-SDS) during intervention. 88 

 89 

 90 

2 Materials and Methods 91 

 92 

2.1 Subjects 93 

‘Obeldicks’ is a one-year weight loss program based on physical activity, nutritional education and behaviour 94 

therapy that includes individual psychological care of the child and his/her family. The program is tailored to 95 

obese children aged 6 to 15 years and is conducted at the outpatient clinic for obesity of the Vestische Kinder- 96 

und Jugendklinik Datteln, Germany. All participating children were born in Germany. Children with syndromal 97 

obesity, psychiatric or endocrine disorders including type 2 diabetes mellitus were excluded. A detailed 98 

description of the program can be found elsewhere (Reinehr et al., 2006). Written informed consent was obtained 99 

from all parents and all children from the age of 12 years. The study was approved by the Ethics Committee of 100 

the University of Witten/Herdecke. 101 

Of the children who had completed the ‘Obeldicks’ program in 2008 or 2009, we randomly selected 40 children 102 

who had reduced their BMI-SDS substantially during their one-year participation, as defined by a BMI-SDS 103 

reduction of ≥ 0.5, and 40 with a BMI-SDS reduction of < 0.1 and a similar distribution of sex, pubertal stage 104 

and age. The cut-off at a BMI-SDS of 0.5 was chosen based on the finding of previous studies that this amount 105 

of BMI-SDS reduction leads to a considerable improvement of the cardiovascular risk profile (Reinehr et al., 106 

2004; Ford et al., 2010). Compliance was given for all 80 children by participation in at least 90% of the 107 

meetings.  108 

 109 

2.2 Anthropometric measures 110 

Body height was measured to the nearest centimetre using a rigid stadiometer. Undressed body weight was 111 

measured to the nearest 0.1 kilogram (kg) using a calibrated balance scale. Body mass index (BMI) was 112 
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calculated as body weight divided by squared body height in m
2
. BMI percentiles as well as BMI-SDS were 113 

calculated according to Cole’s LMS-method (Cole, 1990), applied to German reference data (Kromeyer-114 

Hauschild et al., 2001). All children’s BMI was above the 97
th

 percentile. 115 

Waist circumference was measured half-way between lower rib and iliac crest (Kromeyer-Hauschild et al., 116 

2008). Pubertal stage was assessed according to Marshall and Tanner (1969; 1970) and categorized into three 117 

stages based on pubic hair and genital stages: prepubertal = boys / girls with pubic hair stage I and gonadal / 118 

breast stage I; pubertal/postpubertal = boys / girls with pubic hair stage ≥ II and gonadal / breast stage ≥ II and 119 

boys with change of voice and girls with menarche. Systolic and diastolic blood pressure was measured twice 120 

according to a validated protocol and the two measurements were averaged (National High Blood Pressure 121 

Education Program Working Group on High Blood Pressure in Children and Adolescents, 2004).  122 

 123 

2.3 Sampling and biochemical measurements 124 

Blood samples were taken at 8 a.m. after overnight fasting for at least 10 hours. Following coagulation at room 125 

temperature, blood samples were centrifuged for 10 min at 8000 rpm and aliquoted. Biochemical measurements 126 

were conducted directly on the fresh serum samples. Triglyceride, total cholesterol and glucose concentrations 127 

were determined with a colorimetric test using the Vitro
TM

 analyzer (Ortho Clinical Diagnostics, 128 

Neckargemuend, Germany). Low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol 129 

were measured with an enzymatic test using the LDL-C and HDL-C-Plus
TM 

assays
 
(Roche Diagnostics, 130 

Mannheim, Germany), respectively. Insulin concentrations were determined with a microparticle-enhanced 131 

immunometric assay (MEIA
TM

, Abbott, Wiesbaden, Germany). Intra- and interassay coefficients of variation 132 

were < 5% for all tests. As a measure of insulin resistance, the homeostasis model assessment of insulin 133 

resistance (HOMA-IR) was calculated as serum insulin (mU/l) * serum glucose (mmol/l) / 22.5 (Matthews et al., 134 

1985). This index has been validated in healthy children (Gungor et al., 2004). Aliquoted serum samples were 135 

stored at -80 °C and thawed only once at room temperature for the metabolomics assay. 136 

 137 

2.4 Targeted metabolomics 138 

For the quantification of 163 metabolites, the AbsoluteIDQ
TM

 kit p150 (Biocrates Life Sciences AG, Innsbruck, 139 

Austria) was used, following the instructions described in the manufacturer`s manual. Liquid handling of serum 140 
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samples was performed with a Hamilton Microlab STAR
TM

 robot (Hamilton Bonaduz AG, Bonaduz, 141 

Switzerland). Samples were analyzed on an API4000 LC/MS/MS system (AB Sciex Deutschland GmbH, 142 

Darmstadt, Germany). The whole procedure has been described in detail elsewhere (Illig et al., 2010; Römisch-143 

Margl et al., 2011).  144 

Measurements took place in two batches. To ensure data quality, metabolites that failed in two or more of the 145 

following criteria for measurement stability were excluded from the analysis: (i) The concentration of the 146 

metabolite should be above the limit of detection specified by the manufacturer in at least 60% of the samples. 147 

(ii) The Pearson’s correlation coefficient of the metabolite concentrations in 43 samples that were measured on 148 

both batches should be at least 0.5. (iii) For each batch, the coefficient of variation for the metabolite 149 

concentration in a reference sample that was measured five times should not be higher than 0.2. In total, 130 150 

metabolites passed the quality control. Most of the 33 excluded metabolites were characterized by concentrations 151 

below or marginally above the limit of detection. Potential batch effects were corrected by multiplying all values 152 

by a metabolite- and batch-specific correction factor, calculated as the overall geometric mean divided by the 153 

batch-specific geometric mean of metabolite concentrations of the 43 repeatedly measured samples. 154 

 155 

 156 

2.5 Statistical Analysis 157 

 158 

2.5.1 Baseline comparisons 159 

Baseline differences in anthropometric variables between children with and without substantial BMI-SDS 160 

reduction were assessed using Wilcoxon rank-sum tests and chi-squared tests for continuous and binary traits, 161 

respectively. Age and BMI-SDS distributions in the two groups of children were additionally compared using 162 

Kolmogorov-Smirnov tests. Changes in anthropometric and clinical variables during the intervention were 163 

investigated using Wilcoxon signed-rank tests. 164 

  165 

2.5.2 Univariate regression models 166 

To identify pre-intervention variables associated with successful weight loss, two approaches were applied. First, 167 

univariate regression models were fit for each of the pre-intervention metabolites, anthropometric or clinical 168 
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variables (in total 144 variables) with the binary outcome “Substantial BMI-SDS reduction” and the continuous 169 

outcome Δ BMI-SDS. Second, Δ BMI-SDS was further examined by a multivariate LASSO regression approach 170 

described below. Missing values (20 in waist circumference and two in LDL and HDL cholesterol concentration) 171 

were assumed to be missing completely at random, and therefore all analyses could be performed with the 172 

available observations only. 173 

Univariate logistic regression models with the outcome “Substantial BMI-SDS reduction” were adjusted for sex 174 

and baseline age, pubertal stage and BMI-SDS. To correct for multiple testing, the false discovery rate was 175 

controlled at 5% using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). Assuming an 176 

increased power when replacing dichotomized by continuous Δ BMI-SDS as outcome, linear regression models 177 

were used to identify pre-intervention variables associated with the continuous outcome Δ BMI-SDS. Since the 178 

distribution of the outcome Δ BMI-SDS, per design, did not follow a normal distribution (Fig. S1 in the Online 179 

Resource), empirical p-values obtained from a permutation test rather than p-values based on asymptotic theory 180 

are reported (Moore et al., 2003). The idea behind permutation tests is that the distribution of a test statistic 181 

obtained with randomly resampled outcome vectors resembles its distribution under the null hypothesis that 182 

there is no effect. The proportion of resampling folds where the test statistic is at least as extreme as the test 183 

statistic of the original data, can therefore be interpreted as a p-value. Here, we used 10,000 random 184 

permutations of the outcome vector. Permutation p-values were subjected to Benjamini-Hochberg correction.  185 

2.5.3 LASSO regression 186 

Δ BMI-SDS was further investigated using a multivariate approach. In contrast to univariate modeling, 187 

multivariate approaches consider interdependencies between variables, allowing for the formation of predictive 188 

models and the assessment of their prediction accuracy. Due to the fact that the number of variables (p = 144) is 189 

larger than the number of subjects (n = 80), a classical multivariate regression model could not be fit to the data 190 

at hand including all 144 variables (Hastie et al., 2009). Therefore, we chose a regularized regression approach, 191 

the LASSO (Tibshirani, 1996), using the R package glmnet (Friedman et al., 2010). Briefly, a penalization term 192 

is added to the least squares criterion, yielding coefficient estimates shrunk towards zero, dependent on the size 193 

of a penalization parameter λ. We favored this precise approach over other supervised statistical learning 194 

approaches for its intrinsic variable selection property: The most predictive variables are selected into the model, 195 

while the coefficients of the remaining variables are shrunk to zero. The coefficients of the selected variables can 196 

be interpreted as effect strengths (Hastie et al., 2009). 197 
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To obtain prediction accuracy measures that are unbiased estimates of the true measures in independent data, we 198 

chose a nested cross-validation (CV) approach (Varma and Simon, 2006) in order to tune the penalization 199 

parameter λ in the inner CV loop and estimate the prediction accuracy of the model in the outer 10-fold CV loop 200 

(Ambroise and McLachlan, 2002) (Fig. S2 in the Online Resource). This procedure was repeated randomly 10 201 

times to improve its stability (Braga-Neto and Dougherty, 2004). 202 

As measures of prediction accuracy, we calculated the R
2
 and Q

2
 values, defined as 1 minus the residual sum of 203 

squares divided by the total sum of squares, for the total data set, and within CV, respectively. Although these 204 

values cannot, unlike in unregularized regression models, be interpreted as the percentage of total variance of the 205 

outcome explained by the model, they might serve as goodness-of-fit measures with respect to the fit of the 206 

present dataset and to the prediction of independent data, respectively. A permutation test with 10,000 207 

permutations was applied to assess model significance (Radmacher et al., 2002), regarding permutation-based p-208 

values < 0.05 as significant. The precise CV and permutation scheme is illustrated in Fig. S2 in the Online 209 

Resource. 210 

To visualize how variables selected by LASSO regression represent groups of variables showing also a 211 

univariate association with BMI-SDS reduction, the matrix of pairwise Pearson’s correlation coefficients was 212 

subjected to agglomerative hierarchical clustering using the R package Heatplus (Ploner, 2011). Cluster distance 213 

was defined through complete linkage and distance between pairs of variables defined as (1-ρ)/2, where ρ is the 214 

Pearson’s correlation coefficient. All calculations were performed using R, version 2.14.2 (R Development Core 215 

Team, 2012). 216 

 217 

218 
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3 Results 219 

 220 

3.1 Study characteristics at baseline and changes upon lifestyle intervention 221 

By design, baseline age, sex, and pubertal stage, but also weight, BMI and BMI-SDS distribution did not differ 222 

significantly between the 40 children who substantially reduced their BMI-SDS (Δ BMI-SDS ≤ -0.5) and the 40 223 

who did not (Δ BMI-SDS > 0.1) (Table 1; Fig. S3 in the Online Resource).  224 

During the intervention, Δ BMI-SDS ranged from -1.49 to +0.49 and differed significantly between children 225 

with and without substantial BMI-SDS reduction, with a mean (sd) Δ BMI-SDS of -0.68 (0.27) and +0.07 (0.15), 226 

respectively (p = 1.4E-14).  227 

Children with substantial BMI-SDS reduction significantly improved their waist circumference (-6.0 (15.2) cm, 228 

p = 5.8E-03) as well as their metabolic risk profile (fasting insulin -5.3 (9.3) mU/l, p = 2.2E-04; HOMA-IR -0.5 229 

(4.9) mU/l*mmol/l, p = 4.8E-04; HDL +3.9 (10.2) mg/dl, p = 4.8E-02; triglycerides -17.9 (34.4) mg/dl, p = 230 

5.3E-03; systolic blood pressure -7.6 (19.5) mmHg, p = 2.3-E-03). In contrast, children without substantial BMI-231 

SDS reduction mostly did not (Table S1 in the Online Resource).  232 

 233 

3.2 Pre-intervention variables associated with weight loss 234 

In total, 144 pre-intervention variables, including 130 metabolites and 14 anthropometric or clinical traits, were 235 

subjected to univariate logistic regression with the binary outcome “Substantial BMI-SDS reduction”. None of 236 

the variables reached significance after correction for multiple testing.  237 

Next, linear regression models were fit with the continuous outcome Δ BMI-SDS. 18 variables showed a 238 

significant positive association with Δ BMI-SDS after correction for multiple testing (permutation p-values 239 

ranging from 5.3E-03 to 1.0E-04) (Fig. 1, Table S2 in the Online Resource). These variables included waist 240 

circumference, arginine and LPC a C18:0 serum concentrations, as well as serum concentrations of 13 diacyl 241 

PCs and two acyl-alkyl PCs, which were all long-chained and unsaturated. Most of these variables were also 242 

nominally associated with substantial BMI-SDS reduction (Fig. 1). By trend, a positive association was observed 243 

for all measured diacyl PCs (Table S2 in the Online Resource). None of the baseline clinical traits (blood 244 

pressure, blood lipid and insulin resistance parameters) was significantly associated with Δ BMI-SDS after 245 

correction for multiple testing. 246 
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 247 

3.3 Prediction of weight loss 248 

In order to investigate associations between the 144 pre-intervention variables and Δ BMI-SDS in a multivariate 249 

manner, thereby building a predictive model for Δ BMI-SDS and assessing its predictive potential, we employed 250 

a regularized regression approach, the LASSO.  251 

Three out of the 144 variables were selected into the predictive model (see Material and Methods), namely waist 252 

circumference, PC aa C36:5, and PC aa C32:2. Fig. 2 shows coefficient paths and variable stability for these 253 

variables. The strongest effect and highest stability, that is, the highest selection frequency across the CV folds, 254 

was observed for PC aa C36:5 (β = 0.0152, selection frequency 100%). Of note, LASSO coefficients are not 255 

comparable with the coefficients of the univariate linear regression models due to the shrinkage behavior of the 256 

LASSO (see Materials and Methods).  257 

In terms of prediction accuracy, the model had R
2
 and Q

2
 values of 0.267 and 0.116, respectively (Fig. 3). The 258 

significance of the prediction was assessed using a permutation test with the null hypothesis stating that a Q
2
 259 

value of 0.116 would be observed by chance. The corresponding p-value was 4.6E-03 so that this hypothesis was 260 

rejected. Thus, we were able to show that our predictive model comprising three metabolic variables explains a 261 

significant part of Δ BMI-SDS in obese children during one-year lifestyle intervention.  262 

The three variables selected into the LASSO model were also univariately associated with Δ BMI-SDS (Fig. 1), 263 

with the exception of PC aa C32:2, for which a univariate association was observed only by trend. The selected 264 

variables represented groups of correlated variables significantly associated with Δ BMI-SDS in the univariate 265 

regression analysis, as can be seen from the correlation and clustering results (Fig. 4).  266 

267 
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4 Discussion 268 

Applying a targeted metabolomics approach combined with clinical and anthropometric measurements, we 269 

investigated pre-intervention factors determining response to lifestyle intervention in obese children. The factors 270 

that showed the strongest association as well as the most stable predictive potential for weight loss were serum 271 

concentrations of diacyl phosphatidylcholines (PCs), and waist circumference. 272 

 273 

4.1 Phosphatidylcholines and weight loss 274 

Children with substantial BMI-SDS reduction had lower pre-intervention serum concentrations in several PC 275 

species compared to children without substantial BMI-SDS reduction. PCs are produced in most mammalian 276 

cells via the cytidine diphosphate (CDP)-choline pathway (DeLong et al., 1999). In the liver, 30% of PC 277 

synthesis occurs via the phosphatidylethanolamine methyltransferase (PEMT) pathway (Li and Vance, 2008). 278 

The enzyme PEMT methylates phosphatidylethanolamine to produce PCs, which constitutes the only 279 

endogenous pathway of choline synthesis. The PC species derived from both pathways differ in chain length and 280 

degree of saturation (DeLong et al., 1999).  281 

The long-chain unsaturated PCs C34:1, C34:3, C36:2, C36:3, C36:5, C38:5 and C40.6 were negatively 282 

associated with BMI-SDS reduction in this study and have recently been shown to be down-regulated in livers of 283 

PEMT-/- mice (Jacobs et al., 2010). Also, total serum PC concentration was reduced in PEMT-/- mice. Most 284 

interestingly, PEMT-/- mice were protected from high-fat diet-induced obesity, having an increased energy 285 

expenditure and normal peripheral insulin sensitivity. These effects were prevented by choline supplementation. 286 

Thus, they are attributable to reduced choline availability upon diminished choline de novo production via 287 

PEMT, and an increased consumption of choline by increased compensatory PC production via the CDP-choline 288 

pathway (Jacobs et al., 2010). A protective effect of low plasma choline levels on body mass has also been 289 

observed in a human population-based study (Konstantinova et al., 2008). Low choline levels could increase 290 

energy expenditure via several mechanisms, one being the attenuation of acetylcholine signaling in the brain 291 

(Gautam et al., 2006; Jacobs et al., 2010).  292 

We therefore hypothesize that the PC signature that we observed in children with substantial weight loss may 293 

reflect a reduced PEMT activity. Once these children change their nutritional habits, and thereby reduce the 294 

dietary intake of choline, they might have a greater potential to reduce their weight. This assumption is supported 295 
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by a dietary intervention study in overweight adults, where a PC species that is likely PEMT-derived was 296 

negatively associated with body fat reduction (Smilowitz et al., 2009).  297 

 298 

4.2 Abdominal adipose tissue and weight loss 299 

Waist circumference is an established marker of abdominal obesity in children (Taylor et al., 2000; Schwandt et 300 

al., 2008). In this study, a higher waist circumference was inversely associated with BMI-SDS reduction. This 301 

observation is consistent with the negative link between markers of abdominal fat mass and weight loss success 302 

as well as improvement of insulin sensitivity observed upon lifestyle intervention in adults (Teixeira et al., 2004; 303 

Thamer et al., 2007). However, the opposite association has been reported (Wabitsch et al., 1992; Carmichael et 304 

al., 1998).  305 

There is biological evidence for a role of abdominal adipose tissue in weight regulation. It is well recognized that 306 

abdominal adipose tissue is an endocrine organ that contributes to the subclinical inflammation associated with 307 

obesity by secreting a range of bioactive molecules called adipokines (Wajchenberg, 2000). Of note, an 308 

increasing number of studies in both children (Fleisch et al., 2007; Reinehr et al., 2009; Murer et al., 2011) and 309 

adults (Verdich et al., 2001; Shih et al., 2006) showed higher serum levels of the adipokine leptin to be 310 

associated with weight gain or poor response to lifestyle intervention. Although leptin exerts anorexigenic 311 

functions, suppressing food intake and increasing energy expenditure, these negative associations might be 312 

explained by the presence of leptin resistance or central leptin insufficiency (Kalra, 2008; Reinehr et al., 2009).  313 

Further, high baseline levels of the adipokine adiponectin predicted weight gain over four years in adults (Hivert 314 

et al., 2011) and promoter methylation of the tumor necrosis factor-α (TNF-α) gene, which positively regulated 315 

circulating TNF-α concentration, was negatively associated with weight loss success (Campión et al., 2009).  316 

A further line of evidence connects abdominal obesity with resistance to weight loss during lifestyle intervention 317 

via the central action of insulin. Abdominal adipose tissue has been reported to associate with cerebral insulin 318 

resistance (Tschritter et al., 2009), which was related to impaired body fat loss during lifestyle intervention 319 

(Tschritter et al., 2012).  320 

Together, these findings concerning adipokines corroborate a complex role of abdominal fat in weight regulation 321 

and might contribute to the explanation why higher waist circumference is associated with poorer weight loss 322 

success during lifestyle intervention in our study. Adipokine measurement was not subject of our study, so it 323 

could not be investigated whether the observed association was mediated by these factors. 324 
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 325 

4.3 Predictive potential of the LASSO model and comparison to other studies 326 

Widely used multivariate approaches in metabolomics data analysis are Partial Least Squares (PLS) related 327 

methods. They have, however, the disadvantage, that variable effect strengths are not readily obtained and sparse 328 

models containing only a few important predictor variables for assessment in future studies cannot be derived 329 

easily. We therefore chose to use a LASSO regression approach, which provides, besides measures of prediction 330 

accuracy for the whole model, measures of effect strength and variable stability for the selected variables. Using 331 

this approach, we obtained a model comprising three pre-intervention variables that explained a significant part 332 

of Δ BMI-SDS. Although no hard cut-offs exist for R
2
 and Q

2
 values in this regularized regression setting, the 333 

prediction accuracy of the presented model seemed rather moderate (R
2 

= 0.267, Q
2 

= 0.116). A recent 334 

investigation of urinary metabolite traits predictive of substantial BMI change in a 3-week treatment camp for 335 

adolescents reported higher values of prediction accuracy (Pathmasiri et al., 2012). A direct comparison is 336 

difficult since their study differed from ours in terms of statistical methods, length and characteristics of 337 

intervention as well as metabolomics technique and investigated biofluids. Overweight change over the course of 338 

one year in an outpatient intervention program might be more strongly influenced by environmental and 339 

psychosocial factors and therefore be less predictable by the here investigated metabolic variables. Also, 340 

Pathmasiri et al. included post-intervention metabolite levels in their prediction model, which we did not, aiming 341 

to obtain a model with prognostic applicability. Results of both studies require external validation in larger 342 

independent data sets. 343 

Other studies searching for metabolic predictors of weight loss success investigated single parameters and found 344 

better insulin sensitivity (i.e. lower HOMA-IR, lower fasting insulin or absence of type 2 diabetes) (Harden et 345 

al., 2007; Madsen et al., 2009; Ford et al., 2010) as well as lower serum triglyceride levels (Harden et al., 2007; 346 

Madsen et al., 2009) as predictors of weight loss. In our study, these parameters were not identified as significant 347 

predictors. However, HOMA-IR and serum triglycerides showed a borderline significant negative association 348 

with Δ BMI-SDS. 349 

350 



15 
 

 351 

4.4 Strengths and limitations 352 

This is one of the first studies applying a metabolomics approach to identify metabolic predictors of overweight 353 

reduction in obese children upon lifestyle intervention. In addition to the univariate identification of pre-354 

intervention variables associated with overweight reduction, we used a carefully validated LASSO approach to 355 

build a predictive model for BMI-SDS change.  356 

As a limitation of this study, we investigated a small group of children. Larger studies might allow for the 357 

development of sex-, age- and maturity-specific predictive models. The underlying study population did not 358 

represent a random group of obese children. Therefore, the predictive potential of the variables on which the 359 

children were matched (sex, age, and pubertal stage) could not be assessed (Sabin et al., 2007; Danielsson et al., 360 

2012). Moreover, weight loss success is not only determined by compliance regarding participation at meetings, 361 

but also by implementation of the recommendations into daily life. This might be strongly influenced by 362 

environmental and psychosocial factors, which were not obtained in this study. Furthermore, our analysis was 363 

limited to changes in BMI-SDS as outcome. Further investigations should aim at identifying predictors for 364 

secondary outcomes such as changes in body fat distribution and insulin sensitivity. In addition, studies 365 

investigating metabolite changes during lifestyle intervention might give additional information about the 366 

mechanisms underlying weight change. 367 

 368 

5 Conclusions 369 

Our results confirm a role of phosphatidylcholine metabolism for human energy regulation and success in 370 

overweight reduction as has previously been observed in animal studies. They further corroborate the connection 371 

between abdominal obesity and impaired overweight reduction. These are both important aspects for 372 

understanding the large inter-individual variation in response to lifestyle interventions, which is a prerequisite for 373 

the development of individualized intervention programs.  374 

 375 

6 Acknowledgement 376 



16 
 

This work was supported by the following grants from the German Federal Ministry of Education and Research 377 

(BMBF): Grant numbers 01GS0820 and 01GS0823 of the National Genome Research Network (NGFNplus), 378 

grant number 01GI0839 of the German Competence Network Obesity (consortium LARGE), grant number 379 

0315494A of the Systems Biology of Metabotypes project (SysMBo), and grant number 03IS206IB of the 380 

Gani_Med project to WRM and the German Center for Diabetes Research (DZD e.V.). It was further supported 381 

by funding from the University of Witten/Herdecke and from the Helmholtz Zentrum München. I.K. and C.F. 382 

were supported by the European Union within the ERC grant LatentCauses. The funders had no role in study 383 

design, data collection and analysis, decision to publish, or preparation of the manuscript.  384 

We offer our sincere thanks to the participants of the study as well as their parents. We are grateful to Petra 385 

Nicklowitz for conducting the biochemical measurements. We thank Julia Scarpa, Werner Römisch-Margl, 386 

Katharina Sckell and Arsin Sabunchi for metabolomics measurements performed at the Helmholtz Zentrum 387 

München, Genome Analysis Center, Metabolomics Core Facility, Neuherberg, Germany. 388 

389 



17 
 

7 References 390 

Ambroise, C., & McLachlan, G.J. (2002). Selection bias in gene extraction on the basis of microarray gene-391 

expression data. Proc Natl Acad Sci U S A, 99, 6562–6566. 392 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful 393 

Approach to Multiple Testing. J R Stat Soc, 57, 289–300. 394 

Bouchard, C., Tremblay, A., Després, J.P., et al. (1990). The response to long-term overfeeding in identical 395 

twins. N Engl J Med, 322, 1477–1482. 396 

Bouchard, C., Tremblay, A., Després, J.P., et al. (1994). The response to exercise with constant energy intake in 397 

identical twins. Obes Res, 2, 400–410. 398 

Braga-Neto, U.M., & Dougherty, E.R. (2004). Is cross-validation valid for small-sample microarray 399 

classification? Bioinformatics, 20, 374–380. 400 

Campión, J., Milagro, F.I., Goyenechea, E., & Martínez, J.A. (2009). TNF-alpha promoter methylation as a 401 

predictive biomarker for weight-loss response. Obesity, 17, 1293–1297. 402 

Carmichael, H.E., Swinburn, B.A., & Wilson, M.R. (1998). Lower fat intake as a predictor of initial and 403 

sustained weight loss in obese subjects consuming an otherwise ad libitum diet. J Am Diet Assoc, 98, 35–39. 404 

Cole, T.J. (1990). The LMS method for constructing normalized growth standards. Eur J Clin Nutr, 44, 45–60. 405 

Danielsson, P., Svensson, V., Kowalski, J., Nyberg, G., Ekblom, O., & Marcus, C. (2012). Importance of age for 406 

3-year continuous behavioral obesity treatment success and dropout rate. Obes Facts, 5, 34–44. 407 

DeLong, C.J., Shen, Y.J., Thomas, M.J., & Cui, Z. (1999). Molecular distinction of phosphatidylcholine 408 

synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J Biol Chem, 409 

274, 29683–29688. 410 

Fleisch, A.F., Agarwal, N., Roberts, M.D., et al. (2007). Influence of serum leptin on weight and body fat growth 411 

in children at high risk for adult obesity. J Clin Endocrinol Metab, 92, 948–954. 412 



18 
 

Ford, A.L., Hunt, L.P., Cooper, A., & Shield, J.P.H. (2010). What reduction in BMI SDS is required in obese 413 

adolescents to improve body composition and cardiometabolic health? Arch Dis Child, 95, 256–261. 414 

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models via 415 

Coordinate Descent. J Stat Softw, 33, 1–22. 416 

Gautam, D., Gavrilova, O., Jeon, J., et al. (2006). Beneficial metabolic effects of M3 muscarinic acetylcholine 417 

receptor deficiency. Cell Metab, 4, 363–375. 418 

Ghosh, S., Dent, R., Harper, M.E., Stuart, J., & McPherson, R. (2011). Blood gene expression reveal pathway 419 

differences between diet-sensitive and resistant obese subjects prior to caloric restriction. Obesity, 19, 457–463. 420 

Gungor, N., Saad, R., Janosky, J., & Arslanian, S. (2004). Validation of surrogate estimates of insulin sensitivity 421 

and insulin secretion in children and adolescents. J Pediatr, 144, 47–55. 422 

Harden, K.A., Cowan, P.A., Velasquez-Mieyer, P., & Patton, S.B. (2007). Effects of lifestyle intervention and 423 

metformin on weight management and markers of metabolic syndrome in obese adolescents. J Am Acad Nurse 424 

Pract, 19, 368–377. 425 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, 426 

and Prediction (2nd edition). Springer. 427 

Hivert, M.-F., Sun, Q., Shrader, P., Mantzoros, C.S., Meigs, J.B., & Hu, F.B. (2011). Higher adiponectin levels 428 

predict greater weight gain in healthy women in the Nurses’ Health Study. Obesity, 19, 409–415. 429 

Illig, T., Gieger, C., Zhai, G., et al. (2010). A genome-wide perspective of genetic variation in human 430 

metabolism. Nat Genet, 42, 137–141. 431 

Jacobs, R.L., Zhao, Y., Koonen, D.P.Y., et al. (2010). Impaired de novo choline synthesis explains why 432 

phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity. J Biol 433 

Chem, 285, 22403–22413. 434 

Kalra, S.P. (2008). Central leptin insufficiency syndrome: an interactive etiology for obesity, metabolic and 435 

neural diseases and for designing new therapeutic interventions. Peptides, 29, 127–138. 436 



19 
 

Konstantinova, S.V., Tell, G.S., Vollset, S.E., Nygård, O., Bleie, Ø., & Ueland, P.M. (2008). Divergent 437 

associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly 438 

men and women. J Nutr, 138, 914–920. 439 

Kromeyer-Hauschild, K., Gläßer, N., & Zellner, K. (2008). Waist Circumference Percentile in Jena Children 440 

(Germany) 6- to 18-Years of Age. Aktuel Ernaehr Med, 33, 116–122. 441 

Kromeyer-Hauschild, K., Wabitsch, M., Kunze, D., et al. (2001). Perzentile für den Body-mass-Index für das 442 

Kindes-und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd, 443 

149, 807–818. 444 

Li, Z., & Vance, D.E. (2008). Phosphatidylcholine and choline homeostasis. J Lipid Res, 49, 1187–1194. 445 

Madsen, K.A., Garber, A.K., Mietus-Snyder, M.L., et al. (2009). A clinic-based lifestyle intervention for 446 

pediatric obesity: efficacy and behavioral and biochemical predictors of response. J Pediatr Endocrinol Metab, 447 

22, 805–814. 448 

Marshall, W.A., & Tanner, J.M. (1969). Variations in pattern of pubertal changes in girls. Arch Dis Child, 44, 449 

291–303. 450 

Marshall, W.A., & Tanner, J.M. (1970). Variations in the pattern of pubertal changes in boys. Arch Dis Child, 451 

45, 13–23. 452 

Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., & Turner, R.C. (1985). Homeostasis 453 

model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin 454 

concentrations in man. Diabetologia, 28, 412–419. 455 

Mihalik, S.J., Michaliszyn, S.F., De Las Heras, J., et al. (2012). Metabolomic Profiling of Fatty Acid and Amino 456 

Acid Metabolism in Youth With Obesity and Type 2 Diabetes: Evidence for enhanced mitochondrial oxidation. 457 

Diabetes Care, 35, 605–611. 458 

Moore, D.S., McCabe, G.P., Duckworth, W.M., & Sclove, S.L. (2003). Bootstrap Methods and Permutation 459 

Tests. In The Practice of Business Statistics Companion. W. H. Freeman. 460 



20 
 

Murer, S.B., Knöpfli, B.H., Aeberli, I., et al. (2011). Baseline leptin and leptin reduction predict improvements 461 

in metabolic variables and long-term fat loss in obese children and adolescents: a prospective study of an 462 

inpatient weight-loss program. Am J Clin Nutr, 93, 695–702. 463 

National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and 464 

Adolescents (2004). The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in 465 

children and adolescents. Pediatrics, 114, 555–576. 466 

Oude Luttikhuis, H., Baur, L., Jansen, H., et al. (2009). Interventions for treating obesity in children. Cochrane 467 

Database Syst Rev CD001872. 468 

Pathmasiri, W., Pratt, K.J., Collier, D.N., Lutes, L.D., McRitchie, S., & Sumner, S.C.J. (2012). Integrating 469 

metabolomic signatures and psychosocial parameters in responsivity to an immersion treatment model for 470 

adolescent obesity. Metabolomics, 8, 1037–1051. 471 

Ploner, A. (2011). Heatplus: Heatmaps with row and/or column covariates and colored clusters. R Package 472 

Version 2.1.0. 473 

R Development Core Team (2012). R: A language and environment for statistical computing. Vienna, Austria: R 474 

Foundation for Statistical Computing. 475 

Radmacher, M.D., McShane, L.M., & Simon, R. (2002). A paradigm for class prediction using gene expression 476 

profiles. J Comput Biol, 9, 505–511. 477 

Reinehr, T. (2011). Effectiveness of lifestyle intervention in overweight children. Proc Nutr Soc, 70, 494–505. 478 

Reinehr, T., & Andler, W. (2004). Changes in the atherogenic risk factor profile according to degree of weight 479 

loss. Arch Dis Child, 89, 419–422. 480 

Reinehr, T., Brylak, K., Alexy, U., Kersting, M., & Andler, W. (2003). Predictors to success in outpatient 481 

training in obese children and adolescents. Int J Obes Relat Metab Disord, 27, 1087–1092. 482 

Reinehr, T., Kiess, W., Kapellen, T., & Andler, W. (2004). Insulin sensitivity among obese children and 483 

adolescents, according to degree of weight loss. Pediatrics, 114, 1569–1573. 484 



21 
 

Reinehr, T., Kleber, M., De Sousa, G., & Andler, W. (2009). Leptin concentrations are a predictor of overweight 485 

reduction in a lifestyle intervention. Int J Pediatr Obes, 1–9. 486 

Reinehr, T., De Sousa, G., Toschke, A.M., & Andler, W. (2006). Long-term follow-up of cardiovascular disease 487 

risk factors in children after an obesity intervention. Am J Clin Nutr, 84, 490–496. 488 

Römisch-Margl, W., Prehn, C., Bogumil, R., Röhring, C., Suhre, K., & Adamski, J. (2011). Procedure for tissue 489 

sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics, 8, 133–490 

142. 491 

Sabin, M.A., Ford, A., Hunt, L., Jamal, R., Crowne, E.C., & Shield, J.P.H. (2007). Which factors are associated 492 

with a successful outcome in a weight management programme for obese children? J Eval Clin Pract, 13, 364–493 

368. 494 

Schwandt, P., Kelishadi, R., & Haas, G.-M. (2008). First reference curves of waist circumference for German 495 

children in comparison to international values: the PEP Family Heart Study. World J Pediatr, 4, 259–266. 496 

Shih, L.-Y., Liou, T.-H., Chao, J.C.-J., et al. (2006). Leptin, superoxide dismutase, and weight loss: initial leptin 497 

predicts weight loss. Obesity, 14, 2184–2192. 498 

Smilowitz, J.T., Wiest, M.M., Watkins, S.M., et al. (2009). Lipid metabolism predicts changes in body 499 

composition during energy restriction in overweight humans. J Nutr, 139, 222–229. 500 

Taylor, R.W., Jones, I.E., Williams, S.M., & Goulding, A. (2000). Evaluation of waist circumference, waist-to-501 

hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray 502 

absorptiometry, in children aged 3–19 y. Am J Clin Nutr, 72, 490 –495. 503 

Teixeira, P.J., Going, S.B., Houtkooper, L.B., et al. (2004). Pretreatment predictors of attrition and successful 504 

weight management in women. Int J Obes Relat Metab Disord, 28, 1124–1133. 505 

Thamer, C., Machann, J., Stefan, N., et al. (2007). High visceral fat mass and high liver fat are associated with 506 

resistance to lifestyle intervention. Obesity, 15, 531–538. 507 

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. J R Stat Soc, 58, 267–288. 508 



22 
 

Tschritter, O., Preissl, H., Hennige, A.M., et al. (2009). The insulin effect on cerebrocortical theta activity is 509 

associated with serum concentrations of saturated nonesterified Fatty acids. J Clin Endocrinol Metab, 94, 4600–510 

4607. 511 

Tschritter, O., Preissl, H., Hennige, A.M., et al. (2012). High cerebral insulin sensitivity is associated with loss of 512 

body fat during lifestyle intervention. Diabetologia, 55, 175–182. 513 

Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. BMC 514 

Bioinformatics, 7, 91. 515 

Verdich, C., Toubro, S., Buemann, B., et al. (2001). Leptin levels are associated with fat oxidation and dietary-516 

induced weight loss in obesity. Obes Res, 9, 452–461. 517 

Wabitsch, M., Hauner, H., Böckmann, A., Parthon, W., Mayer, H., & Teller, W. (1992). The relationship 518 

between body fat distribution and weight loss in obese adolescent girls. Int J Obes Relat Metab Disord, 16, 905–519 

911. 520 

Wahl, S., Yu, Z., Kleber, M., et al. (2012). Childhood Obesity Is Associated with Changes in the Serum 521 

Metabolite Profile. Obes Facts, 5, 660–670. 522 

Wajchenberg, B.L. (2000). Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. 523 

Endocr Rev, 21, 697–738. 524 

Wang, P., Holst, C., Astrup, A., et al. (2012). Blood profiling of proteins and steroids during weight maintenance 525 

with manipulation of dietary protein level and glycaemic index. Br J Nutr, 107, 106–119. 526 

 527 

528 



23 
 

Figure Legends 529 

 530 

Fig. 1 Pre-intervention variables associated with overweight reduction. Effects on (a) the binary outcome 531 

“Substantial BMI-SDS reduction” and (b) continuous Δ BMI-SDS are shown for the 18 variables significantly 532 

associated with Δ BMI-SDS after correction for multiple testing. (a) Odds ratios (OR) with 95% confidence 533 

interval (CI). (b) β estimates with 95% CI and permutation-based p-values. All effects are derived from 534 

univariate regression models adjusted for sex and baseline age, pubertal stage and BMI-SDS. The unit of 535 

variables is µmol/l, if not indicated otherwise. *Significant after correction for multiple testing. BMI-SDS, body 536 

mass index standard deviation score; Cx:y, acyl-group with chain length x and y double bonds; LPC a, 537 

lysophosphatidylcholine with acyl chain; PC aa, diacyl phosphatidylcholine; PC ae, acyl-alkyl 538 

phosphatidylcholine 539 

540 
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 541 

 542 

Fig. 2 LASSO regression results. Pre-intervention variables selected as predictors for Δ BMI-SDS. (a) 543 

Coefficient paths truncated at the optimal penalization parameter λopt = 0.0875 (vertical dashed line). β estimates 544 

are plotted against a sequence of the penalization parameter λ ranging from the λ threshold, beyond which no 545 

variables are retained in the model, to λopt, β estimates are displayed for λopt. (b) Variable stability, defined as the 546 

frequency with which a variable was selected by the LASSO approach across the 100 outer cross-validation 547 

loops, for the chosen variables. Cx:y, acyl-group with chain length x and y double bonds; PC aa, diacyl 548 

phosphatidylcholine 549 

550 
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 551 

 552 

Fig. 3 Permutation test results for the LASSO approach. Data for the first 1000 permutations are shown. R
2
 553 

(green squares) and Q
2
 (black crosses) values are plotted against the Pearson’s correlation between original and 554 

permuted outcome vector. R
2
 is limited to ≥ 0, whereas Q

2 
is not. At correlation = 1, R

2 
and Q

2
 values of the 555 

original data are plotted. Permutation-based p-value for Q
2 

is given, which is defined as the proportion of 556 

permutation folds where the Q
2
 value was larger than the Q

2
 value of the original data. Cor, Pearson’s correlation 557 

coefficient; perm, permutation 558 

559 
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 560 

 561 

Fig. 4 Correlation among variables associated with overweight reduction. Heatmap of the matrix of pairwise 562 

Pearson’s correlation coefficients and hierarchical clustering dendrogram are shown. Variables selected in the 563 

LASSO model are written in bold font. Dendrogram was cut vertically at correlation = 0.4, resulting clusters are 564 

framed. Cx:y, acyl-group with chain length x and y double bonds; LPC a, lysophosphatidylcholine with acyl 565 

chain; PC aa, diacyl phosphatidylcholine; PC ae, acyl-alkyl phosphatidylcholine 566 

567 
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Tables 568 

 569 

Table 1 Baseline characteristics of the study population 570 

Variable 

Children with substantial 

overweight reduction  

(n = 40) 

Children without 

substantial overweight 

reduction (n = 40) p-value
a
 

Age (years) 10.9 (2.3) 10.9 (2.0) 0.969 

Sex (% male) 50 55 0.751 

Pubertal stage (% prepubertal) 52.5 50 1.000 

Weight (kg) 64.1 (16.3) 66.3 (18.8) 0.641 

BMI (kg/m
2
) 27.3 (3.3) 28.0 (4.6) 0.749 

BMI-SDS 2.35 (0.43) 2.37 (0.45) 0.837 

Waist circumference (cm) 83.8 (10.5) 92.4 (12.7) 0.009 

Data are shown as mean (standard deviation) if not indicated otherwise. 
a
p-values were derived from Wilcoxon 571 

rank-sum test and chi-squared test for continuous and binary variables, respectively. “With substantial BMI-SDS 572 

reduction” was defined as BMI-SDS reduction ≥ 0.5, “without substantial BMI-SDS reduction” as BMI-SDS 573 

reduction < 0.1. BMI, body mass index; BMI-SDS, BMI standard deviation score. 574 

575 
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Online Resource 576 

 577 

Fig. S1 Distribution of the continuous outcome variable „Change in body mass index standard deviation score 578 

(BMI-SDS) during the intervention“ (Δ BMI-SDS). (a) Histogram. (b) Normal quantile-quantile plot. The 579 

distribution is not normal according to Shapiro-Wilk test (p-value = 0.0019) 580 

 581 

Fig. S2 Repeated nested cross-validation and permutation scheme. CV, cross-validation; MSEP, mean squared 582 

error of prediction 583 

 584 

Fig. S3 Boxplots of (a) age and (b) BMI-SDS before the intervention in children with and without substantial 585 

weight loss during the intervention. P-values from Kolmogorov-Smirnov tests  are shown. Age and BMI-SDS 586 

distribution did not differ significantly between children with and without substantial weight loss 587 

 588 

Table S1 Anthropometric and clinical traits at baseline and at the end of the 1-year lifestyle intervention  589 

 590 

Table S2 Results of univariate regression analyses. 144 baseline metabolites, anthropometric and clinical traits 591 

were subjected to logistic regression with the outcome "Substantial BMI-SDS reduction" (body mass index 592 

standard deviation score (BMI-SDS) reduction during the intervention ≥ 0.5 vs. < 0.1), adjusted for sex and 593 

baseline age, pubertal stage and BMI-SDS. Mean (standard deviation) of baseline values in the two groups of 594 

children are shown in columns 2 and 3; Odds Ratio (OR) with 95% Confidence Interval (CI), p-value and 595 

Benjamini-Hochberg-corrected p-value are reported in columns 4-6. Similarly, linear regression models were fit 596 

with the continuous outcome "Change in BMI-SDS during the intervention" (Δ BMI-SDS). β coefficient with 597 

95% CI, Wald test-derived p-value, permutation-based p-value and Benjamini-Hochberg-corrected permutation-598 

based p-value are reported in columns 7-11. Associations with corrected p-value < 0.05 were regarded as 599 

significant. 600 


