
1 3

Acta Neuropathol
DOI 10.1007/s00401-014-1329-4

Original Paper

C9orf72 FTLD/ALS‑associated Gly‑Ala dipeptide repeat proteins 
cause neuronal toxicity and Unc119 sequestration

Stephanie May · Daniel Hornburg · Martin H. Schludi · Thomas Arzberger · Kristin Rentzsch · 
Benjamin M. Schwenk · Friedrich A. Grässer · Kohji Mori · Elisabeth Kremmer ·  
Julia Banzhaf‑Strathmann · Matthias Mann · Felix Meissner · Dieter Edbauer 

Received: 13 March 2014 / Revised: 9 July 2014 / Accepted: 27 July 2014 
© The Author(s) 2014. This article is published with open access at Springerlink.com

to identify poly-GA co-aggregating proteins revealed a sig-
nificant enrichment of proteins of the ubiquitin–proteasome 
system. Among the other interacting proteins, we identified 
the transport factor Unc119, which has been previously 
linked to neuromuscular and axonal function, as a poly-
GA co-aggregating protein. Strikingly, the levels of soluble 
Unc119 are strongly reduced upon poly-GA expression in 
neurons, suggesting a loss of function mechanism. Similar 
to poly-GA expression, Unc119 knockdown inhibits den-
dritic branching and causes neurotoxicity. Unc119 over-
expression partially rescues poly-GA toxicity suggesting 
that poly-GA expression causes Unc119 loss of function. 
In C9orf72 patients, Unc119 is detectable in 9.5 % of GA 
inclusions in the frontal cortex, but only in 1.6  % of GA 
inclusions in the cerebellum, an area largely spared of neu-
rodegeneration. A fraction of neurons with Unc119 inclu-
sions shows loss of cytosolic staining. Poly-GA-induced 
Unc119 loss of function may thereby contribute to selective 

Abstract  Hexanucleotide repeat expansion in C9orf72 
is the most common pathogenic mutation in patients with 
amyotrophic lateral sclerosis (ALS) and frontotemporal 
lobar degeneration (FTLD). Despite the lack of an ATG 
start codon, the repeat expansion is translated in all read-
ing frames into dipeptide repeat (DPR) proteins, which 
form insoluble, ubiquitinated, p62-positive aggregates that 
are most abundant in the cerebral cortex and cerebellum. 
To specifically analyze DPR toxicity and aggregation, we 
expressed DPR proteins from synthetic genes containing a 
start codon but lacking extensive GGGGCC repeats. Poly-
Gly-Ala (GA) formed p62-positive cytoplasmic aggregates, 
inhibited dendritic arborization and induced apoptosis in 
primary neurons. Quantitative mass spectrometry analysis 
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vulnerability of neurons with DPR protein inclusions in the 
pathogenesis of C9orf72 FTLD/ALS.

Keywords  Neurodegeneration · C9orf72 · FTLD · ALS · 
Unc119 · Proteomics

Introduction

Amyotrophic lateral sclerosis (ALS) and frontotemporal 
lobar degeneration (FTLD) are severe neurodegenerative 
diseases with no effective treatment. Degeneration of the 
upper and lower motor neurons in ALS leads to progressive 
paralysis [42]. Depending on the affected regions, FTLD 
patients suffer from dementia, behavioral abnormalities, 
language impairment and personality changes [21]. Both 
diseases have overlapping clinical, neuropathological and 
genetic features and are often described as extreme ends of 
a disease spectrum [22].

Recently, a mutation in the non-coding region of the 
C9orf72 gene has been identified as the most common 
genetic cause of both ALS and FTLD [12, 20, 41]. Muta-
tion carriers have a GGGGCC hexanucleotide repeat 
expansion either in the first intron or the promoter region, 
depending on the isoform of the C9orf72 transcript [5]. 
Patients typically have several hundred or thousand repeats, 
whereas healthy controls show <33 repeats [5, 51]. C9orf72 
patients exhibit clinical symptoms similar to other FTLD or 
ALS subtypes, but suffer from an unusually high incidence 
of psychosis [13].

In addition to the common TDP-43 aggregates in FTLD 
and ALS, C9orf72 mutation carriers have abundant star-
shaped, TDP-43-negative neuronal cytoplasmic inclu-
sions (NCI) particularly in the cerebellum, hippocampus 
and frontal neocortex that stain positive for markers of 
the proteasome system (UPS) such as p62 or ubiquitin [1, 
7]. We and others discovered that these TDP-43-negative 
inclusions contain dipeptide repeat proteins (DPR) that are 
translated ATG-independent from both sense and antisense 
transcripts of the C9orf72 repeat in all reading frames [4, 
19, 33, 35, 36, 55]. Repeat translation results in five DPR 
species, poly-GA, poly-GR, poly-GP, poly-PR and poly-
PA. Nearly all TDP-43-negative inclusions contain poly-
GA, while the other DPR species co-aggregate to a lesser 
extent. The translation of the DPR proteins is initiated 
without an ATG start codon, a phenomenon that was ini-
tially discovered in other repeat expansion disorders such 
as myotonic dystrophy 1 and spinocerebellar ataxia type 8 
and was recently also found in fragile X-associated tremor/
ataxia syndrome (FXTAS) [48, 54].

Several possible disease mechanisms are discussed 
(reviewed in [18, 32]). First, DPR protein aggregates, 
or their precursors, may be toxic through binding or 

sequestration of cellular proteins. Second, both sense and 
antisense repeat transcripts accumulate in nuclear RNA foci 
and may cause the sequestration of specific RNA-binding 
proteins, which potentially impairs the physiological func-
tion of those proteins [15, 26, 43]. Third, C9orf72 mRNA 
expression is downregulated in patients with a hexanucleo-
tide repeat expansion, which may indicate a loss of func-
tion pathomechanism [12, 20]. Currently, the physiological 
function of C9orf72 and the relative importance of the three 
proposed disease mechanisms are still unclear.

The investigation of aggregation and toxicity of DPR 
proteins is essential to further elucidate their role in disease 
progression. Therefore, we developed a primary neuronal 
cell culture model to test the toxicity and aggregation prop-
erties of poly-GA, the most abundant of the five DPR spe-
cies in patient brain [35]. Our cell-based model reproduces 
key disease features, including formation of insoluble poly-
GA aggregates and co-aggregation with p62. Strikingly, 
poly-GA expression caused neurotoxicity, suggesting that 
our cell culture model is a valuable tool to study DPR pro-
teins in vitro. To elucidate the mechanism of GA-mediated 
neurotoxicity, we analyzed the proteome composition of 
poly-GA aggregates in our model using mass spectrometry-
based proteomics. Recently, we have developed a label-free 
workflow which allows multiple quantitative comparisons 
of cellular systems [9, 28] and enables an unbiased analy-
sis of protein aggregates from primary cells. Using this 
approach, we identified Unc119 as a potential new disease-
relevant protein, which is co-aggregating in DPR protein 
inclusions of C9orf72 patients.

Materials and methods

Antibodies and reagents

The following antibodies were used: Anti-GFP (mouse 
N86/8, Neuromab, Davis, CA, USA and rabbit, Clontech, 
Mountainview, CA, USA), anti-β-actin (Sigma Aldrich, St. 
Louis, MO, USA), anti-myc (mouse 9E10 and rabbit A-14, 
Santa Cruz biotechnology, Dallas, TX, USA), anti-p62 for 
immunoblotting (Cell Signaling, Danvers, MA, USA), anti-
p62 for immunofluorescence (MBL, Nagoya, Japan), anti-
HA (Sigma Aldrich), anti-V5 (Life technologies, Carlsbad, 
CA, USA), anti-TDP43 (Sigma Aldrich), anti-phospho-
TDP-43 (Ser409/Ser410, rat, clone 1D3) [38], anti-PSD-95 
(K28/43, Neuromab), anti-Unc119 (termed Unc119#2, 
ThermoFisher scientific, Pierce Biotechnology, Rockford, 
IL, USA), anti-poly-GA [29], anti-PSMC2 (Bethyl labo-
ratories, Montgomery, TX, USA), anti-PSMC4 (Bethyl 
laboratories), anti-MAP2 (AP-20, Sigma Aldrich), DAPI 
(Roche Applied Science, Penzberg, Germany). An Unc119 
specific antibody (Unc119#1) was raised and affinity 
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purified against full-length human Unc119 fused to GST 
in rabbits (Eurogentec, Seraing, Belgium) as described 
previously [36]. For competition experiments, the diluted 
Unc119 antibodies were preincubated with native or dena-
tured GST or GST-Unc119 (25 µg/ml) for 2 h at 37 °C. For 
denaturation, the concentrated GST fusion proteins were 
heated in 1 % SDS 50 mM Tris pH 8.0 at 95 °C for 5 min. 
We raised a poly-AP specific monoclonal antibody (clone 
14E2 of isotype IgG1) by immunizing rats with synthetic 
AP10 peptide as described previously [29].

DNA constructs and lentivirus production

Synthetic genes for DPR sequences with ATG start codon, 
reduced GC content and very few remaining GGGGCC 
repeats were made to order with C-terminal epitope tags 
(Life technologies, Geneart, Regensburg, Germany). For 
details and design rational see Fig. S1a. The full sequence 
information is available in the supplemental methods. Syn-
thetic genes and the original GGGCCG-based poly-GP con-
struct with an ATG start codon were subcloned into pEF6/
V5-His vector (Life technologies) or a lentiviral vector 
driven by human synapsin promoter (FhSynW2). To replace 
the ATG start codon in the GA149-myc construct with a TAG 
stop codon we cloned annealed oligonucleotides between 
an SgrAI site at the 5′ end of the open reading frame and 
the EcoRI site in the vector. As a negative control GFP from 
pEGFP-N1 (Clontech) was subcloned into pEF6/V5-His 
and FhSynW2. The GGGGCC repeat constructs without 
ATG start codon had been described previously [36]. Rat 
and human Unc119 cDNA was expressed from a lentiviral 
vector driven by human ubiquitin promoter containing an 
N-terminal HA-tag (FUW2-HA). We used shRNA targeting 
rat Unc119 (GAGAGGCACTACTTTCGAA) or a control 
targeting firefly luciferase (CGTACGCGGAATACTTCGA) 
driven by the H1 promoter in the vector FUW coexpressing 
TagRFP both for transfection and transduction. Lentivirus 
was produced in HEK293FT cells (Life Technologies) as 
described previously [17]. The Q102-GFP construct in pCS2 
vector was a gift from B. Schmid [44].

Cell culture, immunoblotting and immunofluorescence

HEK293FT cells were transfected using Lipofectamine 
2000 according to the manufacturer’s instructions. For 
immunoblotting, cells were harvested in RIPA buffer 
(137  mM NaCl, 20  mM Tris pH 7.5, 0.1  % SDS, 10  % 
Glycerol, 1  % Triton X-100, 0.5  % Deoxycholate, 2  mM 
EDTA) containing protease and phosphatase inhibitor cock-
tails (Sigma). Cells were lysed on ice for 20 min and cen-
trifuged at low speed to avoid pelleting of the DPR protein 
aggregates (1,000g for 10 min at 4 °C). The supernatant was 
mixed with 4  ×  loading buffer (0.4  M sodium phosphate 

pH 7.5, 8 % SDS, 40 % glycerol, 10 % 2-mercaptoethanol, 
bromphenol blue) and incubated at 95 °C for 5 min. Primary 
hippocampal or cortical neurons were cultured from embry-
onic day 19 rats and infected with lentiviruses as described 
previously [17, 47]. Primary cortical neurons infected with 
indicated lentiviruses were harvested with 2x loading buffer. 
Samples were run on 12.5 % SDS-PAGE gels or Novex 10–
20 % Tris-Tricine gels (Life technologies).

HEK293FT cells and primary neurons were fixed for 
10  min with 4  % paraformaldehyde and 4  % sucrose. 
Primary and secondary antibodies were diluted in GDB 
buffer (0.1 % gelatine, 0.3 % Triton X-100, 450 mM NaCl, 
16 mM sodium phosphate pH 7.4). Confocal images were 
obtained on a confocal laser scanning LSM710 system 
(Carl Zeiss, Jena) with a 40  ×  oil immersion objective. 
Sholl analysis was performed manually and blinded to 
the experimental conditions using MetaMorph software as 
described before [47].

Filter trap assay

To detect DPR aggregates, transfected HEK293FT cells or 
transduced neurons were harvested with 1 % Triton X-100, 
50 mM MgCl2 and 0.2 mg/ml DNase I in PBS. After cen-
trifugation (18,000g for 30  min at 4  °C) the pellet was 
resuspended in 2 % SDS in 100 mM Tris (pH 7.0). After 
1 h incubation at room temperature the homogenates were 
filtered through a Whatman cellulose acetate membrane 
with 0.2 µm pore size (Sigma Aldrich).

To detect Unc119 aggregates, brain samples were resus-
pended in RIPA buffer containing 0.2  mg/ml DNase I. 
After centrifugation (186,000g for 30 min at 4 °C) the pel-
let was resuspended in 1 % SDS in 100 mM Tris (pH 7.0) 
and treated as above.

Cellular assays

Viability of HEK293FT cells and primary neurons was 
analyzed according to the manufacturer’s instructions 
in 96 well plates: LDH Cytotox Non-Radioactive cyto-
toxicity assay (Promega), Caspase-glo 3/7 assay (Pro-
mega), TUNEL in situ cell death detection TMR red assay 
(Roche). For the TUNEL assay dead and living cells were 
counted manually with the Fiji cell counter plugin. At least 
400 cells per condition were counted per experiment in a 
total of three independent experiments. Proteasome activity 
was measured using the Proteasome-Glo kit according to 
the manufacturer’s instructions (Promega).

qPCR

RT-qPCR of primary cortical neurons was performed as 
described previously [39]. The following primers were 
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used for analysis of rat Unc119: GCGCTTTGTTCGATAC-
CAGT and TGTTCTTGCTGCTGGGAATG. GAPDH was 
used as a reference gene: CCGCATCTTCTTGTGCAGT-
GCC and AGACTCCACGACATACTCAGCACC.

Immunoprecipitation of poly‑GA aggregates

Transduced cortical neurons or transfected HEK293FT 
cells were harvested in RIPA buffer as described above, 
additionally adding Benzonase (67  U/ml). Samples were 
rotated for 30 min at 4  °C prior to centrifugation (1,000g 
for 15 min at 4 °C). 2 % of the input was kept and the rest 
of the supernatant was added to 50 µl protein G dynabeads 
(Life Technologies), that were preincubated with 10  µg 
GFP antibody. After incubation (3 h at 4 °C) the magnetic 
beads were washed three times (150  mM NaCl, 50  mM 
Tris pH 7.5, 5 % Glycerol). One-fifth of the bead-mix was 
denatured in 4× loading buffer (95 °C, 5 min) for western 
blot analysis and the rest was kept for mass spectrometry 
(MS) analysis. For co-immunoprecipitations from trans-
fected HEK293FT cells the whole samples were analyzed 
by western blot.

Sample preparation for MS

The bead-mix was resuspended in 50 µl 8 M Urea, 10 mM 
Hepes pH 8.0. Protein cysteines were reduced with DTT 
and alkylated with iodoacetamide (IAA), followed by 
quenching of IAA with thiourea. Proteins were digested 
with LysC for 4  h and the bead-mix was centrifuged for 
5 min at 16,000g. The supernatant was removed and diluted 
with 4 volumes of 50  mM ammonium bicarbonate. The 
pellet was resuspended in 1 volume 6  M urea, 2  M thio-
urea, 10 mM Hepes pH 8.0, 4 volumes 50 mM ammonium 
bicarbonate and LysC. Trypsin was added to both fractions 
and the final digest was carried out for 16 h. The resulting 
peptide mix was desalted on C18 StageTips [40] and ana-
lyzed in single shots. Notably, in the supernatant we quanti-
fied only 50 proteins (data not shown) whereas over-night 
digestion of the pellet with LysC and trypsin resulted in 
over 450 quantifications.

LC–MS/MS

Peptides were separated on a Thermo Scientific EASY-nLC 
1000 HPLC system (Thermo Fisher Scientific, Odense, 
Denmark) via in-house packed columns (75  μm inner 
diameter, 20 cm length, 1.9 μm C18 particles (Dr. Maisch 
GmbH, Germany)) in a 100  min gradient from 2  % ace-
tonitrile, 0.5 % formic acid to 80 % acetonitrile, 0.5 % for-
mic acid at 400 nl/min. The column temperature was set to 
50 °C. An Orbitrap mass spectrometer [34] (Orbitrap Elite, 
Thermo Fisher Scientific) was directly coupled to the LC 

via nano electrospray source. The Orbitrap Elite was oper-
ated in a data-dependent mode. The survey scan range was 
set from 300 to 1,650  m/z, with a resolution of 120,000. 
Up to the five most abundant isotope patterns with a charge 
≥2 were subjected to collision-induced dissociation frag-
mentation at a normalized collision energy of 35, an isola-
tion window of 2 Th and a resolution of 15,000 at m/z 200. 
Data was acquired using the Xcalibur software (Thermo 
Scientific).

MS data analysis and statistics

To process MS raw files, we employed the MaxQuant soft-
ware (v 1.4.0.4) [9] and Andromeda search engine [11], 
against the UniProtKB Rat FASTA database (06/2012) 
using default settings. Enzyme specificity was set to trypsin 
allowing cleavage N-terminally to proline and up to 2 mis-
cleavages. Carbamidomethylation was set as fixed modifi-
cation, acetylation (N-terminus) and methionine oxidation 
were set as variable modifications. A false discovery rate 
(FDR) cutoff of 1  % was applied at the peptide and pro-
tein level. ‘Match between runs’, which allows the trans-
fer of peptide identifications in the absence of sequenc-
ing, was enabled with a maximum retention time window 
of 1 min. Protein identification required at least one razor 
peptide. Data were filtered for common contaminants 
(n  =  247). Peptides only identified by site modification 
were excluded from further analysis. A minimum of two 
valid quantifications was required in either GA149-GFP or 
GFP quadruplicates.

For bioinformatic analysis as well as visualization, we 
used the open PERSEUS environment, which is part of 
MaxQuant and the R framework (Team, R Development 
Core, 2008). Imputation of missing values was performed 
with a normal distribution (width = 0.3; shift = 1.8). For 
pairwise comparison of proteomes and determination of 
significant differences in protein abundances, t test statis-
tics were applied with a permutation-based FDR of 2  % 
and S0 of 2 [50]. For GA-aggregate interacting proteins 1D 
annotation enrichment on the Welch-test difference using 
Uniprot Keywords with a Benjamini–Hochberg corrected 
FDR of 2 % showed a significant enrichment of the annota-
tions for the ubiquitin–proteasome system (gene ontology 
molecular function: “ubiquitin binding”, pfam: “ubiqui-
tin”, uniprot keywords: “proteasome”) (p value =  8.7−11, 
score = 0.77, 5.7-fold enrichment) [10].

Patient samples

All patient materials were provided by the Neurobiobank 
Munich, Ludwig-Maximilians-University (LMU) 
Munich and were collected and distributed accord-
ing to the guidelines of the local ethical committee. 
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Clinical data are listed in Table S1. Immunohistochemis-
try and immunofluorescence stainings were performed as 
described previously [35]. For competition experiments 
the Unc119#1 antibody was preincubated with 0.25 µg/µl 
native GST or GST-Unc119 for 2 h at 37 °C. To compare 
poly-GA aggregates from patient tissue with aggregates 
from neuronal culture, non-fixed brain-tissue sample of 
1  mm in diameter was smeared between two slides and 
fixed and stained like cultured neurons. For quantifica-
tion of Unc119 and GA co-aggregation in the different 
brain regions three patients were manually analyzed. In 
each region at least 300 GA aggregates were counted per 
patient.

Results

Poly‑GA forms p62‑positive SDS‑resistant aggregates 
in HEK293 cells

To investigate the characteristics of the five different DPR 
species in cell culture, we generated ATG-initiated epitope-
tagged expression constructs for all reading frames of the 
GGGGCC repeat (Fig. S1a). These synthetic constructs, 
encoding 149–175 repeats, contain a mixture of alterna-
tive codons with reduced GC content to prevent instabil-
ity observed with repetitive GGGGCC-based constructs in 
E. coli, while allowing for high expression in mammalian 
cells (Fig.  1). Moreover, changing the original hexanu-
cleotide repeat sequence, but maintaining the DPR protein 
sequence, allowed us to focus on protein toxicity rather 
than GGGGCC or CCCCGG RNA toxicity. Unfortunately, 
gene synthesis for poly-GP constructs repeatedly failed. 
Thus, we generated an ATG-initiated construct from the 
endogenous repeat sequence encoding about 80 GP repeats. 
Importantly, without an ATG start codon GGGGCC repeat 
constructs did not impair cell viability in HEK293 cells 
excluding overt RNA toxicity of the utilized constructs 
(Fig. S1b).

To verify protein expression, we transfected HEK293 
cells with the DPR constructs (Fig. S1c). We observed pro-
tein products of the expected size for GP80-V5 (21  kDa), 
but not for GA175-GFP (50  kDa), GFP-GR149 (68  kDa), 
PR175-GFP (71 kDa) and PA175-myc (31 kDa). Similar to 
immunoblots from patient brains [36], specific bands at the 
top of the gel for GA175-GFP, GFP-GR149, PR175-GFP and 
PA175-myc indicate formation of insoluble aggregates for 
these species (Fig. S1c).

To compare the localization and aggregation of the dif-
ferent DPR species we analyzed transfected HEK293 cells 
by immunofluorescence (Fig.  1, S2a/b). Strikingly, poly-
GA, the most abundant DPR species in patients [35, 36], 
predominantly formed distinct dot-like or star-shaped 

inclusions in the cytosol (Fig.  1) and occasionally in the 
nucleus (Fig. S2a). In contrast, GFP-GR149 showed mainly 
cytoplasmic staining. PR175-GFP was diffusely local-
ized, both in the cytosol and nucleus. Additionally, GFP-
GR149 and PR175-GFP expressing cells often showed large 
dot-like intranuclear inclusions and occasionally smaller 
cytoplasmic inclusions. In contrast, poly-PA was evenly 
distributed throughout the nucleus and cytoplasm without 
apparent aggregation. GP80-V5 was distributed through-
out the cytoplasm without forming compact inclusions 
(Fig. 1).

The poly-GA inclusions were strongly positive for p62 
(Fig. 1), suggesting that cytoplasmic poly-GA forms ubiq-
uitinated aggregates similar to the abundant poly-GA inclu-
sions found in C9orf72 FTLD/ALS [36]. Some GP80-V5 
expressing cells also showed increased p62 levels and co-
localization with GP80-V5. For the other DPR species no 
such co-localization was detected. Moreover, immunofluo-
rescence and immunoblotting showed overall increased p62 
levels only in GA175-GFP expressing cells (Fig. 1, S1c). In 
HEK293 none of the constructs induced cell death in an 
LDH release assay (Fig. S2c).

To confirm aggregation of the DPR proteins, we per-
formed a filter trap assay with HEK293 extracts in the 
presence of 2  % SDS. Insoluble GA175-GFP and GFP-
GR149 aggregates were readily detectable on the cellulose 
acetate filter even upon 125-fold dilution, but no signal was 
detected for GP80-V5, PR175-GFP and AP175-myc with spe-
cific antibodies under these conditions suggesting that they 
are less aggregation prone and can be solubilized at 2  % 
SDS in the filter trap assay, but not at 0.1 % SDS in poly-
acrylamide gels (compare Fig. S1c and S2d).

Taken together, GA175-GFP, GFP-GR 149 and PR175-GFP 
DPR proteins formed cytoplasmic or nuclear inclusions in 
HEK293 cells. Although the number of repeats was differ-
ent for the individual constructs, these data suggest differ-
ential solubility of the five DPR species, since AP175-myc, 
one of the longest constructs, apparently, remained soluble 
under these conditions even when omitting the GFP tag. 
However, we cannot exclude that longer repeats (on aver-
age 1,000–2,000) observed in patients may promote aggre-
gation of all DPR species. Importantly, poly-GA mimicked 
most closely the pathology in patient brain by forming com-
pact p62-positive cytoplasmic inclusions and SDS-resist-
ant aggregates and was therefore used for all subsequent 
experiments.

Poly‑GA forms inclusion in primary hippocampal 
and cortical neurons

Poly-GA expression in HEK293 cells recapitulates all 
known features of DPR inclusions seen in C9orf72 patients, 
without causing toxicity (Fig. S2c). However, DPR proteins 
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are almost exclusively expressed in neurons [4, 36] and the 
C9orf72 mutation leads to selective degeneration of neu-
rons. Thus, we analyzed the effects of long-term expres-
sion of poly-GA in post-mitotic neurons using lentiviral 
transduction.

Lentiviral expression of GA149-GFP in primary rat hip-
pocampal neuron cultures resulted in compact p62-pos-
itive poly-GA inclusions (Fig.  2a) similar to the results 
in HEK293 cells (Fig.  1) and patients [36]. Poly-GA/
p62-positive dot-like structures were most common in the 
cell soma, but were also detectable within dendrites. This 
finding is reminiscent of the poly-GA-positive dystrophic 
neurites seen in patient brains [29, 36]. Importantly, the 
DPR inclusions in transduced neurons and patient neurons 
showed comparable poly-GA staining intensities suggest-
ing that ATG-driven expression in neurons is a valid model 
to study DPR toxicity in vitro (Fig. S3). In immunoblots of 
neuronal extracts all poly-GA protein was retained at the 
top of the gel indicative of high molecular weight aggre-
gates (Fig. 2b). Consistent with the data in HEK293 cells 
(Fig.  1, S1c) and patient data [2, 49], p62 levels were 
strongly increased in poly-GA expressing cells. In contrast, 
TDP-43 levels were unaffected by GA149-myc expression 
(Fig.  2b) and pathological TDP-43 phosphorylation could 
not be detected (data not shown). Filter trap analysis fur-
ther corroborated the formation of SDS-resistant poly-GA 
aggregates in primary neurons (Fig. 2c).

Poly GA is toxic in primary hippocampal and cortical 
neurons

Whether DPR proteins contribute to neurodegeneration in 
C9orf72 patients is still unclear. In GA149-GFP express-
ing cultures, the neuron density appeared lower although 
the remaining cells maintained the typical neuronal mor-
phology. However, neurite branching as judged by MAP2 
staining appeared less complex (Fig.  2a). Therefore, we 
quantified dendritic complexity by Sholl analysis, which 
confirmed reduced branching in GA149-myc transfected 
neurons (Fig. 3a, b).

Furthermore, we quantified neuronal apoptosis in len-
tivirus transduced cells using several different methods. 
Compared to controls, GA149-myc expressing cortical neu-
rons showed a highly significant 2.0-fold increase in Cas-
pase 3/7 activity (Fig.  3c). Moreover, by analyzing apop-
totic DNA fragmentation in primary hippocampal neurons 
using TUNEL labeling, we detected a highly significant 
2.5-fold increase in the number of apoptotic cells (Fig. 3c, 
compare Fig. S4). Neurotoxicity was also associated with 
enhanced LDH release in GA149-myc expressing cells 
(Fig. 3e).

To exclude that the synthetic non-GGGGCC repeat 
sequence encoding GA149-myc in our constructs causes 
RNA-mediated toxicity we replace the ATG start codon 
with a stop codon (TAG-GA149-myc, compare Fig. S1a). 
Without a start codon we detected no poly-GA expres-
sion from the synthetic GA149-myc gene upon transduc-
tion of primary neurons (Fig. 3d) indicating that this non-
GGGGCC construct does not support RAN translation. 
Importantly, TAG-GA149-myc did not impair viability 
suggesting that the ATG-GA149-myc construct causes neu-
rotoxicity due to poly-GA expression and not due to RNA 
toxicity (Fig. 3e). Therefore, ATG-driven poly-GA expres-
sion constructs were used for the remainder of this study.

In summary, poly-GA formed p62-positive inclusions 
as seen in neurons of patients with C9orf72 mutation and 
induced apoptosis in primary cortical and hippocampal 
neurons, suggesting an important role of poly-GA in the 
pathogenesis of C9orf72 FTLD/ALS.

Poly‑GA co‑aggregates with components of the ubiquitin–
proteasome system and the cargo adaptor Unc119

Since DPRs are highly unusual proteins, we wondered if 
DPR inclusions sequester endogenous proteins and could 
thereby contribute to disease progression. To this end, 
we transduced primary cortical neurons with a lentivirus 
expressing GA149-GFP or GFP alone and immunoprecipi-
tated the interacting proteins with anti-GFP in quadrupli-
cates (Fig. S5a). To identify co-aggregating proteins by 
an unbiased approach we applied label-free quantitative 
proteomics. By comparing relative protein abundances in 
GA149-GFP and GFP samples we quantified 450 proteins, 
20 of which were strongly enriched in poly-GA aggregates 
(Fig. 4a, Table 1).

Importantly, p62/Sqstm1, a marker protein for DPR inclu-
sions [4, 33, 36, 55], showed strongest enrichment (Fig. 4a), 
which is consistent with p62 upregulation (Fig. 2b) and p62/
GA co-localization (Fig.  2a). Proteasomal subunits (e.g., 
PSMB6) and other ubiquitin-related proteins (e.g., Ubiqui-
lin 1 and 2) were 5.7-fold enriched in the poly-GA interac-
tome (p value = 8.7 × 10−11) (Fig. 4a; Table 1). However, 
chymotrypsin-like, trypsin-like and caspase-like protease 

Fig. 1   DPR species show differential aggregation properties in 
HEK293 cells. HEK293 cells were transfected with the five differ-
ent DPR constructs (GA175-GFP, GFP-GR149, PR175-GFP, PA175-
myc and GP80-V5) or GFP as a control and analyzed 2 days later 
by GFP fluorescence or in case of PA175-myc and GP80-V5 by 
immunofluorescence using specific antibodies. DAPI was used as a 
nuclear marker. Cytoplasmic inclusions (white arrows) and nuclear 
inclusions (magenta arrows) are seen for GA175-GFP, GFP-GR149 
and PR175-GFP. Many dot-like and star-shaped GA175-GFP inclu-
sions co-localize with p62 (second column from the left). Right pan-
els show close-ups of areas indicated in the merge column. Magnifi-
cations of intranuclear GA175-GFP inclusions are shown in Fig. S2a. 
Negative control stainings are shown in Fig. S2b. Scale bar repre-
sents 15 µm for overview and 5 µm for close-up

◂
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activities associated with the proteasome was not impaired 
in HEK293 cells expressing poly-GA (Fig. S5b). Moreover, 
the levels of two proteasomal proteins, PSMC2 and PSCM4, 
were unaffected by poly-GA expression in HEK293 cells 
and neurons (Fig. S5c/d). TDP-43 was not identified as poly-
GA co-aggregating protein which is in line with the lack of 

significant co-localization in patients [4, 33, 35, 36, 55]. Inter-
estingly, one of the interaction partners, Unc119, which was 
7.5-fold enriched in the GA149-GFP immunoprecipitates, was 
previously identified through severely impaired locomotion in 
a C. elegans mutant and is required for axon development and 
maintenance [23, 30], which warranted further analysis in the 
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Fig. 2   Poly-GA forms p62-positive aggregates in neurons. a Immu-
nofluorescence of primary hippocampal neurons transduced with 
GA149-GFP or GFP control lentivirus at day 6 in vitro for 15  days 
(DIV6  +  15). Immunostaining for p62 and the dendritic marker 
protein MAP2. DAPI was used a nuclear marker. Poly-GA forms 
p62-positive inclusions (arrow) in the soma and dendrites. Scale 
bar 15  µm. b Immunoblotting of primary cortical neurons trans-
duced with GA149-myc or GFP control lentivirus (DIV6 + 17) with 

the indicated antibodies. Poly-GA aggregates are stuck at the top of 
the gel (arrow). GA149-myc induces upregulation of p62, but levels 
of TDP-43 and the synaptic marker protein PSD-95 are not affected. 
Three separate transductions are shown. c Filter trap assay of primary 
cortical neurons transduced with GA149-myc or GFP (DIV6 +  17). 
Poly-GA aggregates are detected in the serial dilution of homogen-
ates using anti-GA
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context of ALS. Moreover, Unc119 binds to a myristoylated 
GAGASA motif of Transducin α (GNAT1), which bears 
strong resemblance to poly-GA [53]. To confirm that Unc119 
interacts and co-aggregates with poly-GA, we co-expressed 
HA-tagged Unc119 with GA175-GFP in HEK293 cells. This 
resulted in pronounced co-localization of HA-Unc119 with 
GA175-GFP inclusions, which is in contrast to the diffuse 
cytoplasmic localization of HA-Unc119 in GFP expressing 
cells (Fig.  4b, S6). Co-immunoprecipitation of HA-Unc119 
with both GA175-GFP and GA149-myc, but not GFP attests 
that the interaction is indeed mediated by poly-GA (Fig. S5e). 
In addition, upon co-expression in HEK293 cells, Unc119 did 
not co-aggregate with the other DPR species (GFP-GR149, 

PR175-GFP, GP80-V5 and PA175-myc) or Q102-GFP, an unre-
lated aggregating protein [44], supporting a specific interac-
tion of Unc119 and poly-GA (Fig. 4c).

Lentiviral co-expression of Unc119 with GA149-GFP in 
hippocampal neurons further corroborated the specific co-
aggregation of Unc119 with poly-GA (Fig.  5a). Neurons 
with poly-GA aggregates showed bright Unc119 inclusions, 
suggesting that a large fraction of cellular Unc119 becomes 
sequestered in poly-GA inclusions.

In summary, identification of the poly-GA interactome pro-
vides proteomic evidence for involvement of the ubiquitin–
proteasome system and suggests additional molecular targets 
of poly-GA toxicity through co-aggregation or sequestration.
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vector as control (Ctrl) or GA149-myc together with GFP to outline 
cell morphology (DIV7  +  4). Scale bars represent 40  µm. b Den-
dritic complexity was measured using Sholl analysis by manually 
counting the number of dendrites crossing concentric circles around 
the soma. Poly-GA expression leads to significant reduction of den-
dritic branching. N = 3 with 40 cells analyzed per condition in each 
experiment, mean ± SEM. p < 0.001 for 12.5 µm radius, p < 0.0001 
from 25 to 50 µm radius, p < 0.001 for 62.5 µm radius, p < 0.01 for 
75 µm radius and p < 0.05 from 87.5 to 112.5 µm radius (two-way 
ANOVA). c Apoptosis in transduced neurons was analyzed using 
a fluorogenic assay to detect caspase 3/7 activation and a TUNEL 
assay to detect apoptotic DNA fragmentation (DIV6 + 17). Caspase 
3/7 activity was increased 2.0-fold in GA149-myc transduced cortical 

neurons. TUNEL-positive apoptotic cells (manually counted using 
the Fiji cell count plug-in) were increased by 2.5-fold in GA149-
myc transduced hippocampal neurons compared to control cells. 
Representative images of TUNEL stainings are shown in Fig. S2. 
DIV6 + 17. n = 3 experiments with 6 replicates each; mean ± SD, 
Student’s t test, ***p  <  0.001. d Immunoblots of cortical neurons 
transduced with GA149-myc constructs with or without start codon 
(DIV8 + 10). Replacing the ATG start codon in the synthetic GA149-
myc gene with a TAG stop codon prevents poly-GA expression and 
aggregation. Arrow indicates top of the gel. e LDH release assay 
detected neurotoxicity of GA149-myc only in the presence of an ATG 
start codon in transduced cortical neurons (DIV8  +  14). One-way 
ANOVA with Tukey’s post-test. ***p < 0.001, n = 3 with six repli-
cates in each experiment
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Unc119 sequestration contributes to poly‑GA toxicity

To analyze how poly-GA inclusions affect endogenous 
Unc119 we raised a polyclonal antibody against full-length 
human Unc119 (termed Unc119#1) and tested a commer-
cially available antibody (termed Unc119#2). Both antibod-
ies detected overexpressed rat and human Unc119 (Fig. S7a). 
To validate both antibodies on endogenous protein, we used 
RNAi to knockdown Unc119. Lentiviral expression of an 

Unc119 specific shRNA in neurons strongly reduced Unc119 
mRNA levels compared to control cells (Fig. S7b). Both 
Unc119 antibodies detected robust knockdown of endoge-
nous Unc119 protein by immunoblotting and immunofluores-
cence, thus confirming their specificity (Fig. S7c–e).

Although Unc119 was enriched in the poly-GA immu-
noprecipitation (Fig.  4a), almost no Unc119 could be 
detected at the regular size (27 kDa) in extracts of GA149-
myc expressing neurons by immunoblotting compared to 
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Fig. 4   Unc119 specifically co-aggregates with poly-GA. a Quan-
titative proteomics of GFP immunoprecipitations from primary cor-
tical neurons transduced with GFP or GA149-GFP (DIV6  +  17). 
p62/Sqstm1 shows highest enrichment and statistical significance. 
Unc119 was identified by two unique peptides (GGGGTGP-
GAEPVPGASNR and LGPLQGK) and one peptide (YQFTPAFLR) 
shared with its homolog Unc119b. Full protein names are listed in 
Table  1. Upper panel illustrates  distribution of quantified protein 
abundances binned for enrichment factors (x-axis below). Enrich-
ment of ubiquitin-related and proteasomal proteins in the poly-GA 
interactome is highlighted in green. Lower panel depicts volcano plot 
showing poly-GA interacting proteins. False discovery rate (FDR) 
controlled statistical analysis identified 20 poly-GA interacting pro-
teins compared to control (red dots). Dotted line depicts threshold for 

statistical significance. b Immunofluorescence of HEK293 cells co-
transfected with GFP or GA175-GFP and HA-Unc119 or empty vec-
tor control (ctrl). Staining with HA and GFP antibodies and DAPI as 
nuclear marker. Many GA175-GFP inclusions show co-aggregation 
of HA-Unc119 (examples marked with arrows). Separate channels 
of these images are shown in Fig. S6. Scale bar 30 µm. c HEK293 
cells were transfected with the five different poly-DPR constructs 
(GA175-GFP, GFP-GR149, PR175-GFP, PA175-myc and GP80-V5) or 
Q102-GFP and analyzed using GFP fluorescence and immunostain-
ing of HA-Unc119, PA175-myc and GP80-V5 using specific antibod-
ies 2  days later. HA-Unc119 co-aggregates only with GA175-GFP 
(white arrows). DAPI (in blue) was used as a nuclear marker. Scale 
bar 20 µm
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the GFP expressing control (Fig.  5b). Since the Unc119 
mRNA levels remained unchanged (Fig. 5c), this indicates 
that Unc119 sequestered in poly-GA aggregates becomes 
insoluble.

To analyze the effect of Unc119 loss of function in neu-
rons we transfected hippocampal neurons with specific 
shRNAs and analyzed neuron morphology. Unc119 knock-
down led to dendrite withering similar to poly-GA expres-
sion (Fig. 5d, e). Moreover, compared to a control shRNA, 
lentiviral Unc119 knockdown induced neuronal death 
as quantified by increased LDH release (Fig.  5f). While 

overexpression of HA-Unc119 alone had no effect on cell 
viability, HA-Unc119 overexpression reduced toxicity in 
GA149-myc expressing neurons suggesting that Unc119 
loss of function contributes to poly-GA toxicity in neurons. 
In contrast, Unc119 knockdown in GA149-myc expressing 
neurons did not increase toxicity, which also indicates that 
Unc119 loss of function is a major source of poly-GA tox-
icity (Fig. 5f).

In summary, sequestration of Unc119 in poly-GA aggre-
gates may cause Unc119 loss of function and contribute to 
FTLD/ALS pathogenesis.
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Fig. 5   Unc119 sequestration in neurons contributes to poly-GA 
toxicity. a Immunofluorescence of primary hippocampal neurons 
co-transduced with HA-Unc119 and either GFP or GA149-GFP 
(DIV6 + 17). Arrows indicate examples of poly-GA inclusions show-
ing co-aggregation of HA-Unc119. Scale bar 15 µm. b Immunoblot 
with the indicated antibodies in GFP or GA149-myc transduced cor-
tical neurons shows decreased levels of soluble Unc119 running at 
27 kDa. Two separate transductions are shown (DIV6 + 17). c qPCR 
analysis of neurons transduced as in (b) shows no significant changes 
in Unc119 mRNA levels (mean ± SD, Student’s t test, DIV7 + 10). 
(d, e) Hippocampal neurons transfected with shRNA targeting 
Unc119 (shUnc) or a non-targeting control (shCtrl) together with 
GFP to outline cell morphology (DIV7  +  5). Dendritic branching 

was quantified by Sholl analysis. Unc119 knockdown reduced den-
drite complexity significantly (p  <  0.0001 for 12.5–62.5  µm radius 
and p < 0.001 for 75 µm radius, two-way ANOVA, n = 40 neurons 
per condition). Scale bar depicts 40  µm. f LDH release assay from 
cortical neurons co-transduced with either GFP or GA149-GFP (GA) 
together with HA-Unc119 (Unc), shRNA targeting Unc119 (shUnc) 
or non-targeting shRNA (shCtrl) (DIV6  +  17). Note that Unc119 
knockdown causes toxicity in GFP-transduced neurons, but does 
not increase poly-GA toxicity further. HA-Unc119 expression res-
cues GA149-GFP toxicity. One-way ANOVA with Tukey’s post-test. 
**p < 0.01, ***p < 0.001, n = 3 with six replicates in each experi-
ment
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Unc119 is a component of DPR inclusions in C9orf72 
patients

Next, we analyzed Unc119 localization in C9orf72 patients 
by immunohistochemistry using antibody Unc119#1 to 
validate co-aggregation with poly-GA found in vitro. In 
CA3/4 of the hippocampus Unc119 was mainly local-
ized in the cytoplasm (Fig. 6a). Moreover, in all analyzed 
C9orf72 FTLD/ALS patients Unc119-positive NCIs were 
detected, but no Unc119 NCIs were seen in healthy con-
trols (Fig. 6, S8d). In the hippocampus of C9orf72 patients, 
Unc119 formed star-shaped NCIs that appeared similar to 
poly-GA inclusions (Fig. 6b).

Further Unc119 NCIs were detectable in frontal cortex 
(Fig. 6c, d), occipital cortex (Fig. 6e) and the hippocampal 
dentate gyrus (Fig. 6f). Importantly, in a fraction of neurons 
nearly all Unc119 was sequestered into aggregates (Fig. 6b, 
d, f). Despite abundant DPR pathology only one of the five 
C9orf72 cases showed prominent Unc119 NCIs in the cere-
bellum (Fig. 6g). The second Unc119 antibody (Unc119#2) 
appeared less sensitive but showed robust NCI pathology 
in the frontal cortex and in the dentate gyrus (Fig. S8a/b). 
With both antibodies no Unc119 inclusions were detected 
in control cases (Fig. 6a, S8c/d).

To further validate antibody specificity we performed 
competition experiments with GST-Unc119 using immuno-
blotting (Fig. S9a) and immunohistochemistry (Fig. S9b). 
Both soluble and inclusion staining were strongly reduced 
upon preincubation with purified GST-Unc119 further con-
firming specificity of the Unc119#1 antibody (Fig. S9b). 
Importantly, this antibody also detected insoluble Unc119 
in C9orf72 patients but not in controls using filter trap 
(Fig. 6h).

Double immunofluorescence staining with both Unc119 
antibodies confirmed co-localization of poly-GA and 
Unc119 in the cortex and cerebellum of C9orf72 cases 
(Fig. 7a, b, S10a). Quantitative analysis in the frontal cor-
tex of three FTLD/ALS patients revealed that Unc119 was 
present in 9.5 ± 2.7 % of GA inclusions (mean ±  stand-
ard deviation >300 poly-GA inclusions counted per 
patient). In contrast, only 0.4–3.3 % of GA inclusions were 
Unc119 positive in the cerebellum (1.6  ±  1.5  %). In the 
occipital cortex an intermediate level of co-aggregation 
was observed (5.8 ± 1.6 %). All Unc119 inclusions were 
also poly-GA positive suggesting that DPRs drive inclu-
sion formation. Importantly, despite abundant DPR and 
phospho-TDP-43 pathology in the frontal cortex, there was 
no co-localization of Unc119 and phospho-TDP-43 within 
inclusions (Fig. 6c, S10b).

Taken together, Unc119 specifically co-aggregates in 
poly-GA inclusions in C9orf72 cases. Notably, Unc119 
inclusions were preferentially detected in the frontal cor-
tex, the main region for neurodegeneration in FTLD. Thus, 

region-specific Unc119 aggregation may contribute to the 
selective vulnerability of specific neuron populations to 
C9orf72 repeat expansion in vivo.

Discussion

Our work establishes a cell culture model for C9orf72 
FTLD/ALS that reproduces core findings in patients and 
directly links C9orf72 repeat translation to neurodegen-
eration. Using quantitative analysis of the poly-GA inter-
actome, we identified a novel co-aggregating protein, 
Unc119, which has been linked to axon maintenance in C. 
elegans previously [23, 30].

DPR aggregation

Expressing DPR proteins from nearly GGGGCC-free 
synthetic genes containing ATG start codons allowed us 
to compare the aggregation properties of the five differ-
ent DPR species while largely excluding potential sec-
ondary effects through RNA toxicity. Previous work with 
GGGGCC-based expression constructs did not lead to 
inclusion formation even when a start codon was present 
[55]. The higher expression levels in our system presum-
ably accelerate disease mechanisms that would normally 
require gradual build-up of DPR proteins in the brain. In 
cell culture, the five DPR species displayed remarkably 
different properties. Only poly-GA expression resulted 
in compact cytoplasmic inclusions similar to those seen 
in C9orf72 mutation brains [33, 36, 55] suggesting that it 
may be the main driving force for aggregation (Figs. 1, 2). 
This is in line with the observation that virtually all TDP-
43-negative inclusions in C9orf72 patients contain poly-
GA, while antibodies against the other DPR species label 
only a fraction (10–50  %) of these inclusions [35, 36]. 
Interestingly, poly-GR and poly-PR formed mainly nuclear 
inclusions similar to the occasional nuclear DPR inclu-
sions previously identified in patients with poly-GA and 
p62 antibodies [1, 29, 36]. These two charged DPR species 
might be actively imported into the nucleus, because a high 
density of positively charged arginines is also common in 
classical nuclear localization signals [14]. The discrepancy 
between aggregation properties observed in patients and 
our cell culture might be due to the fact, that the synthetic 
DPR proteins used are much shorter than the several hun-
dred or even thousand repeats found in patients [5, 51].

DPR toxicity

How C9orf72 repeat expansion leads to neurodegen-
eration is poorly understood. In fly models RNA toxic-
ity from a 30-mer repeat seems to be the main cause of 
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Fig. 6   Unc119 forms neuronal cytoplasmic inclusions in C9orf72 
patients. a–g Immunohistochemistry for Unc119 in two C9orf72 
mutation carriers (C9-1 and C9-2) and a control case (Ctrl-2) using 
antibody Unc119#1. a Whereas Unc119 is distributed throughout 
the cytosol in hippocampal cornu ammonis regions 3/4 (CA3/4) of 
a control case, a C9orf72 patient shows neuronal cytoplasmic inclu-
sions. Scale bar represents 20 µm in overviews and 10 µm in close-
up. b Unc119-positive inclusions have a similar shape as poly-GA 
inclusions. c, d In the superior frontal gyrus (SFG) Unc119-positive 
cytoplasmic inclusions are detectable in large neurons of mutations 

carriers. e–g) Further Unc119-positive neuronal cytoplasmic inclu-
sions are found in the occipital cortex (OCX) and in the granular cell 
layers of the dentate gyrus (DG) and the cerebellum (CBL). In vari-
ous areas, a fraction of cells with Unc119 inclusions shows a clear 
reduction of cytosolic Unc119 suggesting a redistribution of cytosolic 
Unc119 into aggregates (close-ups in b, d, f). Scale bars represent 
10 μm. Counterstains in A-G were done with hemalum. h Filter trap 
assay detects insoluble Unc119 in 1 % SDS in the frontal cortex of 
mutation carriers, but not in healthy controls
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neurodegeneration [52]. Neurons derived from C9orf72 
patients show normal viability, but increased sensitivity to 
cellular stressors [2, 15, 43]. Zu and colleagues reported 
combined RNA and protein toxicity for poly-PR and poly-
GP in non-neuronal cell culture in the absence of inclu-
sion formation [55]. Despite robust DPR expression in 
transfected HEK293 cells, we found no evidence for cell 
death due to protein toxicity in an LDH release assay with 
the five DPR species. Moreover, the GGGGCC expres-
sion constructs without ATG start codon and GGGGCC 
repeat based poly-GP construct were not toxic, suggesting 
HEK293 cells are not overtly sensitive to either C9orf72 
repeat RNA or protein toxicity under our conditions. We 
could not analyze GGGGCC repeat toxicity in neurons, 
because the repeat seems to block lentiviral packaging. In 
contrast, caspase activation and DNA fragmentation sug-
gest that p62-positive poly-GA inclusions lead to apoptosis 
in primary hippocampal and cortical neurons (Figs.  2, 3). 
Since the synthetic poly-GA gene largely lacks GGGGCC 

repeats and requires an ATG start codon to cause toxicity, 
DPR proteins themselves can cause toxicity in neurons. 
Due to our construct design these findings, however, do not 
rule out additional or synergistic effects through GGGGCC 
repeat-mediated RNA toxicity or C9orf72 haploinsuf-
ficiency in the pathogenesis of C9orf72 FTLD/ALS. Due 
to the resemblance of poly-GA aggregates in neurons and 
patients we focused our study on poly-GA toxicity in neu-
rons. However, it would also be interesting to analyze the 
effects of other DPR species alone or in combination with 
poly-GA in neuron culture.

Overexpression models have been invaluable tools to 
study neurodegenerative diseases but abnormally high lev-
els of the aggregating proteins could also complicate the 
interpretation [16]. Importantly, lentiviral transduction in 
our system led to poly-GA aggregates that were compara-
ble in size and poly-GA levels to inclusions from patients 
suggesting that the observed toxicity of poly-GA in cul-
tured cells is also relevant in vivo (Fig. S3).
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Fig. 7   Unc119 co-aggregates with poly-GA, but not with TDP-43 in 
patients with C9orf72 mutation. Double immunofluorescence analy-
sis of Unc119 with poly-GA or phosphorylated TDP-43 (pTDP-43) in 
C9orf72 mutation cases C9-1, C9-2 and C9-3. a In the superior fron-
tal gyrus (SFG), a subset of poly-GA-positive neuronal cytoplasmic 
inclusions also contains Unc119. Redistribution of Unc119 compared 
to GA-negative cells can be seen in a fraction of co-aggregating cells 

(white arrows). b In the cerebellar granular cell layer (CBL) abundant 
cytoplasmic poly-GA inclusions are only rarely positive for Unc119 
(white arrows). c As shown for the superior frontal gyrus, Unc119 
(white arrow) and pTDP (red arrow) are not co-localized in the same 
cytoplasmic inclusions. Scale bars represent 10  μm for overviews 
and 5 µm for the close-up in the second column
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Poly‑GA interactome

Revealing the interaction profile of poly-GA is an important 
step to understand the mechanisms leading to the DPR tox-
icity. Novel instruments, advances of proteomics workflows 
and new bioinformatics algorithms have greatly increased 
the accuracy and depth of analysis as well as number of 
applications for quantitative proteomics [3, 6, 37]. Using 
GA149-GFP expression, we identified several interacting 
proteins by affinity purification and quantitative proteomic 
analysis (Table  1). However, we cannot exclude that addi-
tional proteins co-aggregate with the DPR inclusions in 
C9orf72 patients. Importantly, the top hit was p62/SQSTM1, 
an ubiquitin-binding protein that is found in almost all types 
of intracellular protein aggregates in neurodegenerative dis-
eases including DPR inclusions [1, 25, 36]. This validates 
our cell culture model and the unique potential of quantita-
tive mass spectrometry to identify disease-relevant protein 
interactions. Additionally, we found several proteins asso-
ciated with the ubiquitin proteasome system, but could not 
detect altered proteasomal expression or activity in poly-
GA expressing HEK293 cells or neurons. Interestingly, a 
Gly/Ala-rich repetitive stretch of about 240 amino acids in 
EBNA1 was found to block its own proteasomal degradation 
suggesting that poly-GA may also interfere with the protea-
some system [27]. However, in contrast to our findings with 
poly-GA, the Gly/Ala-rich region in EBNA1 prevents inter-
action with the proteasome [46], which may be explained by 
the distinct sequences. EBNA1 only contains GA monomers 
and dimers and does not form cellular inclusions.

Proteasomal dysfunction has been controversially dis-
cussed as a pathomechanism in poly-Q repeat disorders 
[45]. The poly-G aggregates derived from the CGG repeat 
expansion in FXTAS are also ubiquitinated [48]. Thus, the 
ubiquitin proteasome system is clearly linked to repeat 
expansion diseases although the mechanistic contribution 
to neurodegeneration remains unclear.

Apart from the ubiquitin–proteasome system, we detected 
co-localization of poly-GA inclusions with overexpressed 
and endogenous Unc119, which was among the identi-
fied poly-GA interacting proteins (Figs.  4, 5, 7, S10). In 
the brain, many neurons with Unc119 inclusions show little 
residual cytosolic Unc119 staining indicating that poly-GA 
inclusions in C9orf72 patients lead to partial Unc119 seques-
tration (Figs. 6, 7). In cultured neurons, poly-GA expression 
strongly decreases the levels of soluble Unc119 suggesting 
a possible loss of function component in the disease in brain 
regions where it aggregates. Interestingly, we only scarcely 
detect Unc119 inclusions in the cerebellum, an area which 
shows little neurodegeneration in C9orf72 patients despite 
abundant DPR pathology [29]. Unc119 has mainly been 
studied in the C. elegans nervous system and the mammalian 
retina. Importantly, Unc119 knockout in C. elegans almost 

completely paralyzes the worms and disturbs axonal devel-
opment and maintenance [23, 30, 31]. Unc119 serves as a 
trafficking factor for myristoylated proteins, which it spe-
cifically binds through a hydrophobic pocket composed of 
β-sheets [8]. It is intriguing that the binding motif to Trans-
ducin α in the retina was mapped to the myristoylated N-ter-
minal GAGASA sequence which strongly supports our inter-
action data with poly-GA [53]. Apart from this photoreceptor 
protein the only other known cargos in the nervous system 
are Gα proteins in the C. elegans olfactory system [8]. It will 
be important to elucidate how Unc119 sequestration affects 
neuronal function in C9orf72 patients. We suspect that poly-
GA enters and clogs the hydrophobic cavity of Unc119 and 
thus inhibits transport of so far unidentified myristoylated 
Unc119 cargos in cortical neurons, which may contribute to 
neurotoxicity observed upon Unc119 knockdown or poly-
GA expression. An Unc119 nonsense mutation was found in 
a patient with cone rod dystrophy and causes retinal degen-
eration in mice [24], which is consistent with the toxicity 
we observed upon Unc119 knockdown in cortical and hip-
pocampal neurons. Importantly, Unc119 overexpression 
partially rescues poly-GA toxicity in primary neurons, while 
Unc119 knockdown does not further increase poly-GA tox-
icity. Together this indicates that Unc119 sequestration is a 
major cause of poly-GA toxicity.

In conclusion, our data strongly suggest that the unusual 
translation of the expanded repeats into poly-GA causes 
neurodegeneration. Co-sequestration of crucial neuronal 
proteins, such as Unc119, within DPR aggregates may be 
a novel pathomechanism in C9orf72 FTLD/ALS further 
strengthening the importance of DPR aggregates in disease 
context.
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