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ABSTRACT

Motivation: Although the integration and analysis of the activity of

small molecules across multiple chemical screens is a common

approach to determine the specificity and toxicity of hits, the suitability

of these approaches to reveal novel biological information is less

explored. Here, we test the hypothesis that assays sharing selective

hits are biologically related.

Results: We annotated the biological activities (i.e. biological

processes or molecular activities) measured in assays and con-

structed chemical hit profiles with sets of compounds differing on

their selectivity level for 1640 assays of ChemBank repository. We

compared the similarity of chemical hit profiles of pairs of assays

with their biological relationships and observed that assay pairs shar-

ing non-promiscuous chemical hits tend to be biologically related.

A detailed analysis of a network containing assay pairs with the

highest hit similarity confirmed biological meaningful relationships.

Furthermore, the biological roles of predicted molecular targets of

the shared hits reinforced the biological associations between assay

pairs.

Contact: monica.campillos@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The screening of a library of compounds in a biological assay is a

common first step in drug discovery to find chemical hits for the

drug leads. A single chemical screening experiment provides

information about the activity of compounds on a target or bio-

logical process. However, to determine the suitability of the

chemical hit as chemical probe or drug lead, it is important to

know additional properties of the compound such as its specifi-

city and toxicity. An inexpensive and efficient manner to obtain

information about these properties is to learn about the activity

of this compound across multiple chemical screens. This

approach is followed routinely in chemical screening programs

such as the NCI60 project run by ‘US National Cancer Institute

(NCI)’ where the activity of a compound across 60 different

cancer cell lines is measured to detect selective chemical hits for

a particular cancer and avoid general toxicity (Shoemaker, 2006).

In the past decade several initiatives including the NIH

Molecular Libraries Program (Austin et al., 2004) and

ChemBank (Seiler et al., 2008) have compiled chemical biology

experiments performed by different laboratories using diverse

experimental set-ups ranging from cell-free to cell-based and

even whole organism-based assays. The analysis of these

heterogeneous datasets is challenging yet offers the possibility

to obtain a global view of the chemical and biological activities

of chemicals. In this regard, the integration and analysis of the

collection of assays stored in the PubChem BioAssay (Wang

et al., 2010) repository has proven to be useful to predict adverse

drug reactions (Pouliot et al., 2011) and to determine chemical

properties of promiscuous compounds, that is, those that appear

as frequent hitters in many high-throughput assays (Canny et al.,

2012; Chen et al., 2009; Sch€urer et al., 2011).
The results of these studies suggest that a plethora of hidden

molecular and biological information in these repositories can be

uncovered using integrative computational methods. This is par-

ticularly relevant for the hits of phenotypic assays, for which the

underlying molecular targets responsible for their activity is un-

known. To determine the protein targets of the chemical hits of

these assays, in silico target prediction methods (Keiser et al.,

2007; Liu et al., 2013; Wang et al., 2012) are arising as an effi-

cient approach to obtain insights into the compound mode of

action. For instance, Young et al. have shown recently that the

predicted molecular targets of hits are able to explain complex

readouts of high-content screening assays (Young et al., 2008).
Here, we exploited the vast amount of publicly available chem-

ical screening assays present in the ChemBank database to evalu-

ate in a systematic manner if a pair of biological processes or

molecular activities (hereafter named ‘biological activities’)

modulated by common chemicals in phenotype- or target-

based assays, respectively, is related. We tested and confirmed

this hypothesis by the systematic analysis of the biological

activities measured in pairs of assays sharing non-promiscuous

compounds in this repository. Subsequently, to understand the

molecular mechanism linking pairs of phenotypic assays sharing

chemical hits, we annotated the molecular targets of the shared

hits. To that aim, we used HitPick (Liu et al., 2013), a recently

developed in silico target prediction method to predict the

molecular targets of compounds. We found that the known

biological role of the predicted targets of common chemical

hits confirms the biological processes relationships between the

phenotypic assay pairs and provides mechanistic understanding

of the relationships. This approach allows us to find relationships

between biological activities and to understand better the

molecular basis of the shared biological activities.

2 MATERIALS AND METHODS

2.1 ChemBank assay data structure

The ChemBank (Seiler et al., 2008) data were downloaded in May 2011

and comprised 193 projects with loaded screening plates, including 3852

assays and 228 887 tested compounds. We also extracted information*To whom correspondence should be addressed.
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about the assays and projects including ‘assay names’, ‘assay description’,

‘project names’, ‘project description’ and ‘project motivation’. Three pro-

jects containing 18 assays were discarded because they lacked information

about compound IDs. If a project comprises assays containing in the

‘assay name’ an annotation of ‘raw’ and ‘user’, such as the project of

‘Pseudomonas Cell Wall Synthesis’, we only kept the assay annotated as

‘user’, as we observed that it often reports the specific activity of the

compounds. This step retained 3617 assays. Then, we combined the

assays performed with the same experimental protocol indicated by iden-

tical ‘assay name’ and ‘assay description’, such as assay ID 1133.0005, ID

1133.0006 and ID 1133.0007 of the project ‘Glioblastoma Modulators’,

into the same ‘assay type’. In total, 3617 assays were grouped into 1640

assay types. The analysis presented here was based on the assay type,

which for simplicity we named ‘assay’. We assigned the activity of a

compound both on an assay level and a project level. A compound is

active in a project when it is active in at least one of their assays.

We classified the assays into ‘cell-free’, ‘cell-based’ or ‘microorganism’

assays according to the assay description provided by ChemBank. If the

assay was performed in a cell line (e.g. all the assays in the ‘Glioblastoma

Modulators’ project were done in U251 human glioma cells), this assay

was classified as ‘cell-based’; if the assay was performed in a microorgan-

ism (e.g. the ‘SigB Inhibition’ project that identified small-molecule

inhibitors of Listeria SigB transcription factor was performed in Vibrio

sp. S1063), this assay was classified as ‘microorganism’; the remaining

biochemical or biophysical assays were classified as ‘cell-free’.

2.2 Chemical hit identification methods

To identify chemical hits in the ChemBank data set, we applied three

published methods, namely, the ChemBank (Seiler et al., 2008), the

B-Score (Malo et al., 2006) and the Well-Correction (Makarenkov

et al., 2007) methods and five modifications of them to adapt the methods

to the ChemBank data structure. These methods are summarized briefly

as follows:

The ChemBank method aims to normalize the activity in the assay

based on mock signals. B-Score method uses the median polish procedure

to remove the row/column biases in a plate. First, a residual activity of a

compound is calculated and then all data are normalized for plate- and

row/column-specific effects. Chemical hits were determined using median

absolute deviation (MAD) or P-value statistics, i.e. (i) compounds with a

residual larger than 2*MAD (‘2MAD’), (ii) P50.01, (iii) P50.05, were

defined as hits. Well-Correction method rectifies the distribution of assay

measurements by normalizing data within each considered well across all

assay plates. In the end, both P50.01 and 0.05 were applied to capture

the hits.

As the B-Score method requires ideally the controls to be located

randomly among the wells of each plate, or at most localized in the

first and last columns, we created a modification of the method called

B-Score_A adapted it to the ChemBank dataset structure where some

plates only contain positive-control wells (e.g. plate ID 1031.0004.Pos.A

and B). For this, positive controls were not considered in the median

polish procedure and their residual activity was computed by subtracting

the mean median effects of non-positive controls from their raw values.

The next steps, including hit detection thresholds, were identical to those

of the B-Score method.

The Well-Correction method requires the compounds measured across

all assay plates to be randomly distributed. In the ChemBank dataset,

many wells across different plates contain high number of positive

controls (e.g. well A24 of assay ID 1017.0030) and therefore, the Well-

Correction method cannot be applied directly. To correct for this, we

discarded wells with higher number of positive controls (i.e. number of

positive controls � number of non-positive controls). To keep all the

methods comparable, we applied this modification for the above four

methods (marked as * in Fig. 1).

If the assay contains replicates of compounds, we required all repli-

cates to be identified as hits to consider them as chemical hits (also named

actives, Fig. 2a). We determined the performance of the eight hit identi-

fication methods using the receiver operating characteristic (ROC) graph

(Fawcett, 2006) and the positive and negative controls (including mock

treatments) of the assays were used as a benchmark set. In all 3852 assays,

the total number of positive controls is 96 and the number of negative

controls is 7 590042 and 7 620521 for non-modified and modified ver-

sions of methods, respectively. The modification of the B-Score_A with

two different thresholds, namely, ‘2MAD’ and ‘P50.05’, showed the best

performances. We selected the latter one due to its higher specificity

(97.4%) with 79.6% of sensitivity.

2.3 Promiscuity filters

To increase computational efficiency, we applied filter F1 to keep com-

pounds from the initial ChemBank dataset showing activity in more than

one project. The removal of the compounds active in only one project or

inactive in all the projects does not have an effect on the hit similarity

(calculated by continuous Tanimoto coefficient, Tc (Willett et al., 1998)

(see Supplementary Methods) between assays (see Supplementary Fig.

S1). Then, we applied two additional filters to keep selective compounds

at project level (F2) and assay level (F3), respectively. F3 was applied to

projects with at least nine assays, which was determined by averaging the

number of assays per project in the ChemBank screening repository.

3 RESULTS

3.1 Assay structure and chemical hit identification

We chose the ChemBank repository of chemical screens to

test the hypothesis of whether a pair of biological activities

Fig. 1. ROC space showing the performance of the eight hit identification

methods for the ChemBank assay dataset. To assess the performance of

the eight methods, we calculated the distance of the coordinate (1-

Specificity, Sensitivity) to a random guess line. The greater the distance

to the random line, the better the method is. Sensitivity=TP/(TP+FN),

Specificity=TN/(TN+FP). TP: true positive, TN: true negative, FN:

false negative, FP: false positive. Asterisks denote modifications of the

corresponding methods
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(i.e. biological processes or molecular activities) modulated by

the same chemicals is related. In the ChemBank repository, the

raw activity of a total number of 228 887 compounds in 3852

assays (representing experimental batches) of 190 diverse projects

is available.
In a first step, we identified the chemical hits of the assays.

As several approaches have been proposed to identify chemical

hits in chemical screenings (Makarenkov et al., 2007; Malo et al.,

2006; Seiler et al., 2008), we decided to test a collection of eight

different methods (see Section 2) to select the best-performing hit

identification method for the ChemBank dataset repository.

To that aim, we determined the method that best discriminated

between the compounds representing positive and negative

controls within the assays. The B-Score_A method, a modifica-

tion of the well-known B-Score method (Malo et al., 2006)

achieved the best performance with a sensitivity of 79.6% and

a specificity of 97.4% (Fig. 1). We thus selected this method to

determine the chemical hits of ChemBank assays. Then, we

grouped chemical screen batches performed using identical

experimental protocols into ‘assay types’ (hereafter named

‘assays’) reducing the number of assays to 1640 (see Section 2).

Next, we annotated and classified the assays part of

ChemBank projects to be able to compare them in terms of

their biological relatedness. We first classified the assays into

‘experiment’ and ‘control’, according to whether the activity

measured in the assay was the intended biological activity of

the project or unspecific activities, respectively (Fig. 2a). In the

second place, we classified the assays into cell-free, cell-based and

microorganism based on the biological object of the experiments

(Fig. 2a) (see Section 2). Lastly, we annotated the molecular

activities and biological processes measured in the projects by

assigning manually specific Gene Ontology (GO) (Ashburner

et al., 2000) terms (biological process for phenotypic assays or

molecular function for cell-free assays) to the projects Fig. 2a).

As an additional description of the activity tested in projects, we

manually assigned suitable keywords representing protein/gene
names or biological processes to the projects (Fig. 2a). The dis-

tribution of the number of manual GO and keywords assigned to
projects is listed in Supplementary Table S1. We then propagated
the GO terms and keywords of each project to its ‘experiment’

assays.
We observed that the projects differ both in the number of

assays (ranging from 1 to 113, Fig. 2b) and the percentage of

‘experiment’ assays (Fig. 2c) they include. This observation
underlines the heterogeneity of the composition of ChemBank

dataset. The distribution of cell-free, cell-based and microorgan-
ism assays is also heterogeneous. More than 40% of the projects
are composed of phenotypic assays (cell-based and microorgan-

ism), and the majority of them are cell-based assays (Fig. 2d, also
see Supplementary Fig. S2). Interestingly, despite the inhomo-
geneity of the ChemBank dataset, we found that �80% of the

assays have41000 tested compounds (Fig. 2e) in common, indi-
cating that the different assays can be compared based on the
activity of a large number of compounds.

3.2 Promiscuity filters and similarity in biological activity

Next, we tested the hypothesis of whether chemical screening

assays belonging to different projects with a similar chemical
hit profile are biologically related. To that aim, we applied the
Lin measurement (Lin, 1998) that quantifies the semantic simi-

larity between GO terms assigned to the assays. Additionally, we
applied the biomedical text-mining tool ‘EXtraction of Classified
Entities and Relations from Biomedical Texts (EXCERBT)’

(Mewes et al., 2011) that detects terms co-mentioned in abstracts
of scientific literature to evaluate whether the keywords linked to
the assays of the pair are related.

Afterwards, for every assay and with the set of compounds
that show activity in at least two projects (Filter 1, F1) (Fig. 3,

F1), we constructed a binary fingerprint vector representing the
activity of the set of compounds in the assays (1 active chemical

(a) (b) (d)

(c) (e)

Fig. 2. Data structure of the ChemBank repository. (a) Classification of the different projects. Grey dots represent inactive compounds, while green dots

represent active hits in the assay. Asterisks indicate that the hit is specific to the ‘experiment’ assay. (b) Distribution of the number of assays in projects.

(c) Distribution of experimental assays in projects. (d) Distribution of cell-free, cell-based and microorganism assays in projects. (e) Percentage of assays

sharing tested compounds
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hit, 0 inactive). Next, for all possible pairs of ‘experiment’ type

assays belonging to different projects, we calculated the chemical

hit similarity using a continuous Tc. Under these conditions,

chemical hit similarity appeared not to be related to similar

biological activities of assay pairs (Fig. 4a and b, F1). We rea-

soned that promiscuous compounds might be responsible for the

high chemical hit similarity in unrelated assays. The prevalence

of non-specific or promiscuous compounds is a well-known

problem in high-throughput screening (HTS) assays commonly

explained by their ability to form aggregates and act on unrelated

targets (Feng et al., 2005). Thus, their presence might be

especially disturbing for the detection of biological connections

between assay pairs.
Based on this assumption, we tested if the removal of promis-

cuous compounds increases the biological relatedness for assays

sharing hits. To that aim, we applied two promiscuity filters. The

first filter retained compounds with activity observed in520% of

the projects (Fig. 3, F2) and the second filter (F3) kept com-

pounds that are active in520% of the assays within a project.

To avoid discarding specific chemical hits in projects with low

number of assays where ‘experiment’ assays represent420% of

all assays, the filter F3 was applied only to projects with at least

nine assays (Fig. 3, F3) (see Section 2). For example, the latter

filter would discard all specific chemical hits in projects com-

posed of one experiment and one control assay like the project

‘Glioblastoma Modulators’ (Fig. 2a) that searched for PI3K and

mTOR modifiers in glioblastoma cells. If applied to this project,

this filter would remove all specific hits, that is, those compounds

that are active in cells treated with rapamycin (‘experiment’) and

inactive in cells not treated with the mTOR inhibitor (‘control’),

as they are active on 50% (420%) of the assays in this project.
As can be observed in Figure 4a and b, only after the

application of the most stringent promiscuity filter F3, a linear

relationship between hit similarity and known biological

relationships was observed. Interestingly, such relationship

disappeared when we compared assays with random hits,

reinforcing the reliability of the relationships between biological

activities captured by this approach. Furthermore, this trend

became stronger when we discarded combinations of assays shar-

ing low number of hits (Fig. 4a and b, number of shared hits �5,

also see Supplementary Fig. S3a and b), indicating that the larger

the number of common chemical hits is, the more likely it is to

capture biological relationships between assays. An example of a

known relationship between assay pair captured with our

approach is the ‘Bacterial Viability’–‘Antibacterial’ assay pair.

This pair has a hit similarity of 0.54 (it shares 25 hits of the 51

and 25 tested compounds in each assay, respectively) and a

biological similarity of 1 (the same ‘GO:0016049 cell growth’

term was annotated to both assays).

3.3 Assay interaction network

Next, we visualized and inspected manually the assay pairs show-

ing high chemical hit similarity. For that, we constructed an

assay interaction network with the assay pairs showing the high-

est hit similarity (Tc40.4) and sharing five or more chemical

hits. This network contains 32 nodes and 26 edges (Fig. 5).
Interestingly, 92% of the edges in the network connect assays

of the same experimental type. That is, phenotypic assays share

hits with other phenotypic assays and cell-free assays tend to

share hits with other assays of the same type. We found, for

instance, a group of four interconnected assay pairs of the ‘micro-

organism’ type (i.e. ‘Bacterial Viability’, ‘SigB Inhibition’,

‘Worm Anti-Infective’ and ‘Anti-Bacterial’ assays) where the

same biological activity, that is, the antibacterial activity, was

sought in all of them. An example of a connection of two clearly

related cell-free assays is the link between ‘Kinesin Activity Eg5’

and ‘Kinesin Activity MKLP1’ comprised by two assays aiming

to find inhibitors of proteins of the Kinesin family. These

instances provide evidence that relationships between the biolo-

gical activities measured in the assays can be captured by our

approach.

Intriguingly, we found a high number of edges (11, represent-

ing 42% of the edges) connecting ‘control’ assays to ‘experiment’

assays, the majority of them (9) linking two cell-based assays.

(a)

(b)

Fig. 4. Correlation between hit similarity and known relationships of

ChemBank assay pairs. Hit similarity was calculated by continuous Tc.

(a) Relationships indicated by GO terms and (b) relationships indicated

by text mining. Each point in the plot represents a bin of assay pairs

according to the sorted Tc values. In F1, each bin contains 1000 assay

pairs. Bins in F2 and F3 contain 500 and 100 pairs, respectively.

Separately, the performance of assay pairs in F3 sharing five or more

hits is shown for (a) and (b)

Fig. 3. Promiscuity filters. F0 contains all the compounds of the dataset.

F1 keeps the compounds active in at least one project, and F2 retrieves

the compounds active in �20% of the projects. F3 retains compounds

active in �20% of the assays for the projects with higher than average

number of assays (average number of assays per project is 9 for

ChemBank). The number of remaining compounds after filtering is

given in brackets
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A closer inspection of the activities measured in these assays in-

dicates that cell growth-related processes, such as differentiation

or growth inhibition, were often measured in the assays as the

sought activity, for example, in assays seeking for chemicals with

anticancer activity or in assays controlling the cytotoxicity of com-

pounds. To gain deeper insights into the molecular basis of these

assay combinations, we extracted molecular information of the

chemical hits shared by these pairs by annotating predicted

human drug targets of the compounds. For that, we applied the

HitPick target prediction method (Liu et al., 2013) to predict the

molecular targets of hits with high confidence (precision450%).

Interestingly, we found the same predicted drug targets related to

several assay pairs. For example, compounds specifically target-

ing the glucocorticoid receptor (NR3C1) are active in four con-

secutive assays in the network, namely ‘Mycobacterium

tuberculosis (M.tuberculosis) Macrophage’, ‘Gamma Secretase

Inhibitor (GSI) Synthetic Lethal (Cell growth)’, ‘Adipocyte

Differentiation’ and ‘Unfolded Protein Response (UPR)’

(Fig. 6a). The role of NR3C1 in macrophages as the target of

anti-inflammatory agents (Barnes, 1998) and its anticancer

activity (Cook et al., 1988) provides an explanation for the

molecular basis of the relationship between the ‘M.tuberculosis

Macrophage’ that screened for inhibitors of M.tuberculosis

growth in macrophages and ‘GSI Synthetic Lethal (Cell growth)’,

a ‘control’ assay that tested the growth inhibitory activity of

molecules in T-cells. Moreover, the known ability of NR3C1 to

induce adipocyte differentiation (Xu et al., 1990) explains the

common link between the cell growth and differentiation activ-

ities measured in ‘GSI Synthetic Lethal (Cell growth)’ and

‘Adipocyte Differentiation’ assays, respectively. Interestingly,

although the link between UPR and differentiation processes

has been proposed in the literature (Hetz, 2012), the molecular

basis of this connection is not fully understood. Here, our results

suggest the function of NR3C1 as intermediary between UPR

induction and differentiation. However, this proposal should be

taken with caution, as the specificity of the chemical hits on UPR

process cannot be assessed owing to the lack of control assays in

the project. In this context, the UPR assay is linked to a control

assay of the ‘Wnt Inhibitors (Wnt mutated vector)’ project, which

measures the promoter activity of a mutated version of Wnt

responsive construct (Fig. 6b). A closer look at this relationship

reveals that ATP1A1 (ATPase, Na+/K+ transporting, alpha 1

polypeptide), CYP1B1 (cytochrome P450, family 1, subfamily B,

polypeptide 1) and ADORA2B (adenosine A2b receptor) are the

predicted targets of the chemical hits of this pair. The role in

cancer of ATP1A1 (Newman et al., 2008), CYP1B1 (Gajjar

et al., 2012) and ADORA2B (Ma et al., 2010) indicate that the

activity of compounds in the ‘Wnt Inhibitors (Wnt mutated vec-

tor)’ assay is likely due to their cytotoxicity. Although the known

role of UPR to induce cell cycle arrest (Brewer and Diehl, 2000)

and the recently reported role of ouabain, specific inhibitor of

ATP1A1, on the modulation of UPR (Ozdemir et al., 2012),

would suggest that the relationship between this assay pair is

Fig. 6. Enriched targets between assay pairs. (a–d) are examples of assay

connections (shown by assay name). The size of each pie chart is propor-

tional to the logarithm of the number of shared hits. For simplicity, in the

pie charts we show the most frequently predicted targets (with a precision

450%) of the shared chemical hits (see Supplementary Table S2 for the

full target list of each assay pair in Fig. 6). The fraction of the pie charts

representing hits with no predicted targets is shown in white as ‘No

Information’. In Figure 6c, only those representative targets common

to three hits for assays pairs in the group are shown, and the remaining

targets common to �2 hits are shown in black as ‘Others’

Fig. 5. Network of assay pairs from ChemBank repository sharing

selective hits
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due to the UPR-dependent growth inhibitory activity, further
research is needed to assess the specificity of the shared hits on
the UPR assay.

The growth inhibition measured in the ‘Wnt Inhibitors (Wnt
mutated vector)’ assay is further confirmed by the association of
this assay with the anticancer ‘Gliobastoma Modulators’ and

‘Genotype-Specific Inhibitors in Non-Small Cell Lung Cancer’
assays (Fig. 6c). Our target prediction approach revealed that,
within this group of growth inhibitory assays, the cytotoxic

activity is partly mediated through well-known anticancer tar-
gets, such as histone deacetylases (HDACs) (Wagner et al.,
2010), ATP1A1 (Newman et al., 2008), farnesyltransferase,

CAAX box, alpha (FNTA) (Rowinsky et al., 1999) and mouse
double minute 2 homolog (MDM2) (Shangary and Wang, 2008).
Furthermore, the modulation of these targets also explains the

link between the chemical screens measuring stem cell differenti-
ation [‘Stem Cell Differentiation (Cell count)’ assay] and DNA

methylation [by 4,6-diamidino-2-phenylidole staining in ‘Histone
Modification (DNAmethylation)’ assay]. Intriguingly, other pre-
dicted targets behind the growth inhibition activity in this group

of cancer-related assays include adenosine receptor A3
(ADORA3), cannabinoid receptor 2 (CNR2), cholesteryl ester
transfer protein, plasma (CETP), 5-hydroxytryptamine receptor

6 (HTR6) and ATPase, Ca2+ transporting cardiac muscle, fast
twitch 1 (ATP2A1). The modulation of these targets in antic-
ancer screens suggests the possible role of these proteins in

growth inhibition. In fact, the activity of ADORA3 as a potential
target for tumor growth inhibition has been proposed before
(Madi et al., 2004).

Another well-known biological connection is represented by
the link between ‘Beta-Catenin’ assay that measured the nuclear
translocation of beta-catenin and ‘Histone Modification (DNA

methylation)’ assay (Fig. 6d). HDAC, the predicted target of the
common hits, has been shown to inhibit Wnt signalling through

disruption of the interaction between beta-catenin and T cell
factor (Ye et al., 2009). Thus, the biological relationship between
these two assays is explained by the known relationship of

HDACs.
In summary, after retrieving the chemical hits from the

ChemBank assays, we observed that the biological activities mea-

sured in two assays sharing selective hits are related. The close
inspection of the assay pairs sharing specific hits in the network is
able to confirm the biological and molecular associations of

assay pairs and reveal molecular information underling the
shared activity.

4 DISCUSSION

In this work, we have integrated and analysed the information

stored in ChemBank and demonstrated that the biological
activities of assay pairs sharing selective chemical hits are
often related. The relationships between the biological processes

of phenotypic assays are furthermore supported by the role of
protein targets predicted for the shared hits.
Fingerprint-based approaches, where profiles of a collection of

predefined features of an object such as a compound or protein is
compared, have often been exploited in Chemistry and Biology
fields to infer properties of compounds (Willett et al., 1998)

(Willett, 2000) and genes (Liu et al., 2013). These approaches

are based on the observation that similar fingerprint profiles
correlate with similar properties (Fan et al., 2006). For example,
compounds with similar chemical fingerprint profiles tend to

have similar biological activities (Petrone et al., 2012).
Likewise, compounds with similar modes of action have also
been observed to exhibit similar behavior across multiple

assays (Danc�ık et al., 2014). In contrast, in this study we use
chemical hit-based fingerprints constructed with selective
compounds to infer biological relationships between assays.

Interestingly, we show that the relationships between assays
can only be captured when a stringent selectivity filter is applied
to discard promiscuous compounds from the chemical hit

profile. Currently, there is no consensus for the definition of
compound promiscuity, and different promiscuity filters have
been proposed in the literature. Sch €urer et al. (2011) and Jacob

et al. (2012) defined promiscuous compounds as those showing
activity in450 or 30% of the assays, respectively, while Gamo
et al. (2010) calculated an ‘inhibition frequency index’ for each
compound and applied a variable threshold, ranging from 5 to

20% of screens, depending on the number of HTS screens a
given compound had been through. Although these studies
have revealed interesting chemical moieties associated to unspe-

cific signals in chemicals screens, the question of what level of
selectivity is necessary to capture hits carrying information about
specific biological signals has not been addressed yet. In this

study, we have shown that a stringent promiscuity filter that
first selects hits active in520% of the projects (filter F2) and
subsequently retains compounds with activity in520% of the

assays within a project (filter F3) is necessary to enrich for hits
with specific biological activities. We reason that the low number
of projects performed in the same experimental backgrounds

generating the same unspecific signals might be the cause for
the lack of correlation between hit and similarity of biological
activities of two assays after the application of filter F2.

Although this is partially overcome by discarding compounds
active in several assays of the same project and consequently,
performed in similar experimental backgrounds (filter F3), our

approach also detects connections between cell-free assays that
are apparently unrelated. For example, the ‘Phospholypid
Hydrolysis’ assay is associated to the ‘Deubiquitilation’ assay

(Fig. 5). A closer look at this connection reveals artefactual yet
non-promiscuous hits, as the shared hits of the two connections
appear active in the control assays of the project (termed ‘unspe-

cific’ chemical hits, see Fig. 2a). This indicates that the stringent
promiscuity filters applied here might, for some experimental
conditions, be insufficient to discard unspecific hits, and add-

itional control assays might be necessary to remove non-selective
chemical hits.
The presence of unspecific hits is also evidenced by the occur-

rence of edges that connect ‘control’ and ‘experiment’ assays. For
example, the ‘e-Cadherin Synthetic Lethal (Cell growth)’ ‘con-
trol’ assay that controlled for the cytotoxicity of compounds in

the human mammary epithelial HMLE cell line is connected to
the ‘Wnt And Lithum Modulators (Wnt vector)’ ‘experiment’
assay (Fig. 5), suggesting that the shared hits of the pair are

not specific of the Wnt signalling process. This hypothesis is
further corroborated by the known or suspected anticancer
activity of the predicted targets [HDAC1 (Wagner et al., 2010),

FNTA (Rowinsky et al., 1999) and sigma non-opioid
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intracellular receptor 1 (SGIMAR1) (Aydar et al., 2006),

Supplementary Table S2] of the shared hits and the modulation

of these targets in a control assay of ‘Wnt Inhibitors (Wnt

mutated vector)’ (Fig. 6c, also see Supplementary Table S2).

Similarly, the link between the cytotoxic ‘control’ assay of the

‘e-Cadherin synthetic lethal (Cell growth)’ project and the

‘Translation Inhibition (Dengue replicon translation)’ assay

that detected inhibitors of the translation of Dengue virus repli-

con (Fig. 5) points to the unspecificity of the chemical hits in the

‘Translation Inhibition’ assay. These examples illustrate the need

of additional control assays in these screening projects to assess

the specificity of the compounds. Nonetheless, we show that this

approach was able to capture meaningful biological connections

even between different types of assays, such as the link between a

microorganism assay with a cellular assay. For example, the

microorganism ‘Anti-Bacterial’ assay is connected with cellular

‘M.tuberculosis Inhibition’ assay performed in BG1 ovarian

cancer cells.
We observe that many relationships between different phe-

notypic assays are established based on the shared cytotoxicity

of compounds in cell- or whole organism-based assays.

Cytotoxicity appears thus as underlying biological effect

common to phenotypic assays that account for the activity of

many hits in these assays. Interestingly, the target prediction for

those ‘non-promiscuous’ but ‘cytotoxic’ compounds reveals

targets of drugs used as anticancer therapies, such as the

HDACs (Wagner et al., 2010) and ATP1A1 (Newman et al.,

2008), or targets that have been proposed for cancer treatment

such as FNTA (Rowinsky et al., 1999) and MDM2 (Shangary

and Wang, 2008). Hence, other predicted targets connecting

these assays might represent potential targets for the treatment

of cancers, such as CNR2, CETP, HTR6, ATP2A1 and

ADORA3. Indeed, ADORA3 has been proposed as a potential

therapeutic cancer target (Madi et al., 2004).
In summary, this work shows the potential of integrative

approaches dealing with high-throughput chemical screening

data to reveal novel connections between the biological processes

and molecular activities measured in chemical screens. In the

future, with the expected increase in HTS assay data available

in public repositories, it is envisioned that many more biological

relationships will be discovered with the application of this or

similar computational approaches.
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