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ABSTRACT

Motivation: Although the integration and analysis of the activity of
small molecules across multiple chemical screens is a common
approach to determine the specificity and toxicity of hits, the suitability
of these approaches to reveal novel biological information is less
explored. Here, we test the hypothesis that assays sharing selective
hits are biologically related.

Results: We annotated the biological activities (i.e. biological
processes or molecular activities) measured in assays and con-
structed chemical hit profiles with sets of compounds differing on
their selectivity level for 1640 assays of ChemBank repository. We
compared the similarity of chemical hit profiles of pairs of assays
with their biological relationships and observed that assay pairs shar-
ing non-promiscuous chemical hits tend to be biologically related.
A detailed analysis of a network containing assay pairs with the
highest hit similarity confirmed biological meaningful relationships.
Furthermore, the biological roles of predicted molecular targets of
the shared hits reinforced the biological associations between assay
pairs.

Contact: monica.campillos@helmholtz-muenchen.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

The screening of a library of compounds in a biological assay is a
common first step in drug discovery to find chemical hits for the
drug leads. A single chemical screening experiment provides
information about the activity of compounds on a target or bio-
logical process. However, to determine the suitability of the
chemical hit as chemical probe or drug lead, it is important to
know additional properties of the compound such as its specifi-
city and toxicity. An inexpensive and efficient manner to obtain
information about these properties is to learn about the activity
of this compound across multiple chemical screens. This
approach is followed routinely in chemical screening programs
such as the NCI60 project run by ‘US National Cancer Institute
(NCI) where the activity of a compound across 60 different
cancer cell lines is measured to detect selective chemical hits for
a particular cancer and avoid general toxicity (Shoemaker, 2006).

In the past decade several initiatives including the NIH
Molecular Libraries Program (Austin et al., 2004) and
ChemBank (Seiler ef al., 2008) have compiled chemical biology
experiments performed by different laboratories using diverse
experimental set-ups ranging from cell-free to cell-based and
even whole organism-based assays. The analysis of these
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heterogeneous datasets is challenging yet offers the possibility
to obtain a global view of the chemical and biological activities
of chemicals. In this regard, the integration and analysis of the
collection of assays stored in the PubChem BioAssay (Wang
et al., 2010) repository has proven to be useful to predict adverse
drug reactions (Pouliot et al., 2011) and to determine chemical
properties of promiscuous compounds, that is, those that appear
as frequent hitters in many high-throughput assays (Canny et al.,
2012; Chen et al., 2009; Schiirer et al., 2011).

The results of these studies suggest that a plethora of hidden
molecular and biological information in these repositories can be
uncovered using integrative computational methods. This is par-
ticularly relevant for the hits of phenotypic assays, for which the
underlying molecular targets responsible for their activity is un-
known. To determine the protein targets of the chemical hits of
these assays, in silico target prediction methods (Keiser et al.,
2007; Liu et al., 2013; Wang et al., 2012) are arising as an effi-
cient approach to obtain insights into the compound mode of
action. For instance, Young et al. have shown recently that the
predicted molecular targets of hits are able to explain complex
readouts of high-content screening assays (Young et al., 2008).

Here, we exploited the vast amount of publicly available chem-
ical screening assays present in the ChemBank database to evalu-
ate in a systematic manner if a pair of biological processes or
molecular activities (hereafter named ‘biological activities’)
modulated by common chemicals in phenotype- or target-
based assays, respectively, is related. We tested and confirmed
this hypothesis by the systematic analysis of the biological
activities measured in pairs of assays sharing non-promiscuous
compounds in this repository. Subsequently, to understand the
molecular mechanism linking pairs of phenotypic assays sharing
chemical hits, we annotated the molecular targets of the shared
hits. To that aim, we used HitPick (Liu ez al., 2013), a recently
developed in silico target prediction method to predict the
molecular targets of compounds. We found that the known
biological role of the predicted targets of common chemical
hits confirms the biological processes relationships between the
phenotypic assay pairs and provides mechanistic understanding
of the relationships. This approach allows us to find relationships
between biological activities and to understand better the
molecular basis of the shared biological activities.

2 MATERIALS AND METHODS

2.1 ChemBank assay data structure

The ChemBank (Seiler et al., 2008) data were downloaded in May 2011
and comprised 193 projects with loaded screening plates, including 3852
assays and 228887 tested compounds. We also extracted information
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about the assays and projects including ‘assay names’, ‘assay description’,
‘project names’, ‘project description’ and ‘project motivation’. Three pro-
jects containing 18 assays were discarded because they lacked information
about compound IDs. If a project comprises assays containing in the
‘assay name’ an annotation of ‘raw’ and ‘user’, such as the project of
‘Pseudomonas Cell Wall Synthesis’, we only kept the assay annotated as
‘user’, as we observed that it often reports the specific activity of the
compounds. This step retained 3617 assays. Then, we combined the
assays performed with the same experimental protocol indicated by iden-
tical ‘assay name’ and ‘assay description’, such as assay ID 1133.0005, ID
1133.0006 and ID 1133.0007 of the project ‘Glioblastoma Modulators’,
into the same ‘assay type’. In total, 3617 assays were grouped into 1640
assay types. The analysis presented here was based on the assay type,
which for simplicity we named ‘assay’. We assigned the activity of a
compound both on an assay level and a project level. A compound is
active in a project when it is active in at least one of their assays.

We classified the assays into ‘cell-free’, ‘cell-based’ or ‘microorganism’
assays according to the assay description provided by ChemBank. If the
assay was performed in a cell line (e.g. all the assays in the ‘Glioblastoma
Modulators’ project were done in U251 human glioma cells), this assay
was classified as ‘cell-based’; if the assay was performed in a microorgan-
ism (e.g. the ‘SigB Inhibition’ project that identified small-molecule
inhibitors of Listeria SigB transcription factor was performed in Vibrio
sp. S1063), this assay was classified as ‘microorganism’; the remaining
biochemical or biophysical assays were classified as ‘cell-free’.

2.2 Chemical hit identification methods

To identify chemical hits in the ChemBank data set, we applied three
published methods, namely, the ChemBank (Seiler et al., 2008), the
B-Score (Malo et al., 2006) and the Well-Correction (Makarenkov
et al., 2007) methods and five modifications of them to adapt the methods
to the ChemBank data structure. These methods are summarized briefly
as follows:

The ChemBank method aims to normalize the activity in the assay
based on mock signals. B-Score method uses the median polish procedure
to remove the row/column biases in a plate. First, a residual activity of a
compound is calculated and then all data are normalized for plate- and
row/column-specific effects. Chemical hits were determined using median
absolute deviation (MAD) or P-value statistics, i.e. (i) compounds with a
residual larger than 2*MAD (2MAD”), (ii) P<0.01, (iii) P<0.05, were
defined as hits. Well-Correction method rectifies the distribution of assay
measurements by normalizing data within each considered well across all
assay plates. In the end, both P<0.01 and 0.05 were applied to capture
the hits.

As the B-Score method requires ideally the controls to be located
randomly among the wells of each plate, or at most localized in the
first and last columns, we created a modification of the method called
B-Score_A adapted it to the ChemBank dataset structure where some
plates only contain positive-control wells (e.g. plate ID 1031.0004.Pos. A
and B). For this, positive controls were not considered in the median
polish procedure and their residual activity was computed by subtracting
the mean median effects of non-positive controls from their raw values.
The next steps, including hit detection thresholds, were identical to those
of the B-Score method.

The Well-Correction method requires the compounds measured across
all assay plates to be randomly distributed. In the ChemBank dataset,
many wells across different plates contain high number of positive
controls (e.g. well A24 of assay ID 1017.0030) and therefore, the Well-
Correction method cannot be applied directly. To correct for this, we
discarded wells with higher number of positive controls (i.e. number of
positive controls > number of non-positive controls). To keep all the
methods comparable, we applied this modification for the above four
methods (marked as * in Fig. 1).
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Fig. 1. ROC space showing the performance of the eight hit identification
methods for the ChemBank assay dataset. To assess the performance of
the eight methods, we calculated the distance of the coordinate (1-
Specificity, Sensitivity) to a random guess line. The greater the distance
to the random line, the better the method is. Sensitivity = TP/(TP + FN),
Specificity = TN/(TN + FP). TP: true positive, TN: true negative, FN:
false negative, FP: false positive. Asterisks denote modifications of the
corresponding methods

If the assay contains replicates of compounds, we required all repli-
cates to be identified as hits to consider them as chemical hits (also named
actives, Fig. 2a). We determined the performance of the eight hit identi-
fication methods using the receiver operating characteristic (ROC) graph
(Fawcett, 2006) and the positive and negative controls (including mock
treatments) of the assays were used as a benchmark set. In all 3852 assays,
the total number of positive controls is 96 and the number of negative
controls is 7590042 and 7620521 for non-modified and modified ver-
sions of methods, respectively. The modification of the B-Score_A with
two different thresholds, namely, 2MAD’ and ‘P <0.05, showed the best
performances. We selected the latter one due to its higher specificity
(97.4%) with 79.6% of sensitivity.

2.3 Promiscuity filters

To increase computational efficiency, we applied filter F1 to keep com-
pounds from the initial ChemBank dataset showing activity in more than
one project. The removal of the compounds active in only one project or
inactive in all the projects does not have an effect on the hit similarity
(calculated by continuous Tanimoto coefficient, Tc (Willett et al., 1998)
(see Supplementary Methods) between assays (see Supplementary Fig.
S1). Then, we applied two additional filters to keep selective compounds
at project level (F2) and assay level (F3), respectively. F3 was applied to
projects with at least nine assays, which was determined by averaging the
number of assays per project in the ChemBank screening repository.

3 RESULTS

3.1 Assay structure and chemical hit identification

We chose the ChemBank repository of chemical screens to
test the hypothesis of whether a pair of biological activities
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Fig. 2. Data structure of the ChemBank repository. (a) Classification of the different projects. Grey dots represent inactive compounds, while green dots
represent active hits in the assay. Asterisks indicate that the hit is specific to the ‘experiment’ assay. (b) Distribution of the number of assays in projects.
(c) Distribution of experimental assays in projects. (d) Distribution of cell-free, cell-based and microorganism assays in projects. (e) Percentage of assays

sharing tested compounds

(i.e. biological processes or molecular activities) modulated by
the same chemicals is related. In the ChemBank repository, the
raw activity of a total number of 228 887 compounds in 3852
assays (representing experimental batches) of 190 diverse projects
is available.

In a first step, we identified the chemical hits of the assays.
As several approaches have been proposed to identify chemical
hits in chemical screenings (Makarenkov et al., 2007; Malo et al.,
2006; Seiler et al., 2008), we decided to test a collection of eight
different methods (see Section 2) to select the best-performing hit
identification method for the ChemBank dataset repository.
To that aim, we determined the method that best discriminated
between the compounds representing positive and negative
controls within the assays. The B-Score_ A method, a modifica-
tion of the well-known B-Score method (Malo er al., 2006)
achieved the best performance with a sensitivity of 79.6% and
a specificity of 97.4% (Fig. 1). We thus selected this method to
determine the chemical hits of ChemBank assays. Then, we
grouped chemical screen batches performed using identical
experimental protocols into ‘assay types’ (hereafter named
‘assays’) reducing the number of assays to 1640 (see Section 2).

Next, we annotated and classified the assays part of
ChemBank projects to be able to compare them in terms of
their biological relatedness. We first classified the assays into
‘experiment’ and ‘control’, according to whether the activity
measured in the assay was the intended biological activity of
the project or unspecific activities, respectively (Fig. 2a). In the
second place, we classified the assays into cell-free, cell-based and
microorganism based on the biological object of the experiments
(Fig. 2a) (see Section 2). Lastly, we annotated the molecular
activities and biological processes measured in the projects by
assigning manually specific Gene Ontology (GO) (Ashburner
et al., 2000) terms (biological process for phenotypic assays or
molecular function for cell-free assays) to the projects Fig. 2a).
As an additional description of the activity tested in projects, we

manually assigned suitable keywords representing protein/gene
names or biological processes to the projects (Fig. 2a). The dis-
tribution of the number of manual GO and keywords assigned to
projects is listed in Supplementary Table S1. We then propagated
the GO terms and keywords of each project to its ‘experiment’
assays.

We observed that the projects differ both in the number of
assays (ranging from 1 to 113, Fig. 2b) and the percentage of
‘experiment’ assays (Fig. 2c) they include. This observation
underlines the heterogeneity of the composition of ChemBank
dataset. The distribution of cell-free, cell-based and microorgan-
ism assays is also heterogeneous. More than 40% of the projects
are composed of phenotypic assays (cell-based and microorgan-
ism), and the majority of them are cell-based assays (Fig. 2d, also
see Supplementary Fig. S2). Interestingly, despite the inhomo-
geneity of the ChemBank dataset, we found that ~80% of the
assays have >1000 tested compounds (Fig. 2e) in common, indi-
cating that the different assays can be compared based on the
activity of a large number of compounds.

3.2 Promiscuity filters and similarity in biological activity

Next, we tested the hypothesis of whether chemical screening
assays belonging to different projects with a similar chemical
hit profile are biologically related. To that aim, we applied the
Lin measurement (Lin, 1998) that quantifies the semantic simi-
larity between GO terms assigned to the assays. Additionally, we
applied the biomedical text-mining tool ‘EXtraction of Classified
Entities and Relations from Biomedical Texts (EXCERBT)
(Mewes et al., 2011) that detects terms co-mentioned in abstracts
of scientific literature to evaluate whether the keywords linked to
the assays of the pair are related.

Afterwards, for every assay and with the set of compounds
that show activity in at least two projects (Filter 1, F1) (Fig. 3,
F1), we constructed a binary fingerprint vector representing the
activity of the set of compounds in the assays (1 active chemical
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Promiscuity filters Number of compounds left

All Compounds

Project Level (active in > 1 project)

F1(40,849)

Project Level (activity < 20%)

Assay Level (activity < 20%) F3(18,617)

Fig. 3. Promiscuity filters. FO contains all the compounds of the dataset.
F1 keeps the compounds active in at least one project, and F2 retrieves
the compounds active in <20% of the projects. F3 retains compounds
active in <20% of the assays for the projects with higher than average
number of assays (average number of assays per project is 9 for
ChemBank). The number of remaining compounds after filtering is
given in brackets

hit, 0 inactive). Next, for all possible pairs of ‘experiment’ type
assays belonging to different projects, we calculated the chemical
hit similarity using a continuous Tc. Under these conditions,
chemical hit similarity appeared not to be related to similar
biological activities of assay pairs (Fig. 4a and b, F1). We rea-
soned that promiscuous compounds might be responsible for the
high chemical hit similarity in unrelated assays. The prevalence
of non-specific or promiscuous compounds is a well-known
problem in high-throughput screening (HTS) assays commonly
explained by their ability to form aggregates and act on unrelated
targets (Feng et al., 2005). Thus, their presence might be
especially disturbing for the detection of biological connections
between assay pairs.

Based on this assumption, we tested if the removal of promis-
cuous compounds increases the biological relatedness for assays
sharing hits. To that aim, we applied two promiscuity filters. The
first filter retained compounds with activity observed in <20% of
the projects (Fig. 3, F2) and the second filter (F3) kept com-
pounds that are active in <20% of the assays within a project.
To avoid discarding specific chemical hits in projects with low
number of assays where ‘experiment’ assays represent >20% of
all assays, the filter F3 was applied only to projects with at least
nine assays (Fig. 3, F3) (see Section 2). For example, the latter
filter would discard all specific chemical hits in projects com-
posed of one experiment and one control assay like the project
‘Glioblastoma Modulators’ (Fig. 2a) that searched for PI3K and
mTOR modifiers in glioblastoma cells. If applied to this project,
this filter would remove all specific hits, that is, those compounds
that are active in cells treated with rapamycin (‘experiment’) and
inactive in cells not treated with the mTOR inhibitor (‘control’),
as they are active on 50% (>20%) of the assays in this project.

As can be observed in Figure 4a and b, only after the
application of the most stringent promiscuity filter F3, a linear
relationship between hit similarity and known biological
relationships was observed. Interestingly, such relationship
disappeared when we compared assays with random hits,
reinforcing the reliability of the relationships between biological
activities captured by this approach. Furthermore, this trend
became stronger when we discarded combinations of assays shar-
ing low number of hits (Fig. 4a and b, number of shared hits >5,

Number of
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Fig. 4. Correlation between hit similarity and known relationships of
ChemBank assay pairs. Hit similarity was calculated by continuous Tc.
(a) Relationships indicated by GO terms and (b) relationships indicated
by text mining. Each point in the plot represents a bin of assay pairs
according to the sorted Tc values. In F1, each bin contains 1000 assay
pairs. Bins in F2 and F3 contain 500 and 100 pairs, respectively.
Separately, the performance of assay pairs in F3 sharing five or more
hits is shown for (a) and (b)

also see Supplementary Fig. S3a and b), indicating that the larger
the number of common chemical hits is, the more likely it is to
capture biological relationships between assays. An example of a
known relationship between assay pair captured with our
approach is the ‘Bacterial Viability’—Antibacterial’ assay pair.
This pair has a hit similarity of 0.54 (it shares 25 hits of the 51
and 25 tested compounds in each assay, respectively) and a
biological similarity of 1 (the same ‘G0O:0016049 cell growth’
term was annotated to both assays).

3.3 Assay interaction network

Next, we visualized and inspected manually the assay pairs show-
ing high chemical hit similarity. For that, we constructed an
assay interaction network with the assay pairs showing the high-
est hit similarity (Tc>0.4) and sharing five or more chemical
hits. This network contains 32 nodes and 26 edges (Fig. 5).

Interestingly, 92% of the edges in the network connect assays
of the same experimental type. That is, phenotypic assays share
hits with other phenotypic assays and cell-free assays tend to
share hits with other assays of the same type. We found, for
instance, a group of four interconnected assay pairs of the ‘micro-
organism’ type (i.e. ‘Bacterial Viability’, ‘SigB Inhibition’,
‘Worm Anti-Infective’ and ‘Anti-Bacterial’ assays) where the
same biological activity, that is, the antibacterial activity, was
sought in all of them. An example of a connection of two clearly
related cell-free assays is the link between ‘Kinesin Activity Eg5’
and ‘Kinesin Activity MKLP1” comprised by two assays aiming
to find inhibitors of proteins of the Kinesin family. These
instances provide evidence that relationships between the biolo-
gical activities measured in the assays can be captured by our
approach.

Intriguingly, we found a high number of edges (11, represent-
ing 42% of the edges) connecting ‘control’ assays to ‘experiment’
assays, the majority of them (9) linking two cell-based assays.
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Fig. 5. Network of assay pairs from ChemBank repository sharing
selective hits

A closer inspection of the activities measured in these assays in-
dicates that cell growth-related processes, such as differentiation
or growth inhibition, were often measured in the assays as the
sought activity, for example, in assays seeking for chemicals with
anticancer activity or in assays controlling the cytotoxicity of com-
pounds. To gain deeper insights into the molecular basis of these
assay combinations, we extracted molecular information of the
chemical hits shared by these pairs by annotating predicted
human drug targets of the compounds. For that, we applied the
HitPick target prediction method (Liu ez al., 2013) to predict the
molecular targets of hits with high confidence (precision > 50%).
Interestingly, we found the same predicted drug targets related to
several assay pairs. For example, compounds specifically target-
ing the glucocorticoid receptor (NR3C1) are active in four con-
secutive assays in the network, namely ‘Mycobacterium
tuberculosis (M .tuberculosis) Macrophage’, ‘Gamma Secretase
Inhibitor (GSI) Synthetic Lethal (Cell growth)’, ‘Adipocyte
Differentiation’ and ‘Unfolded Protein Response (UPR)’
(Fig. 6a). The role of NR3CI1 in macrophages as the target of
anti-inflammatory agents (Barnes, 1998) and its anticancer
activity (Cook er al., 1988) provides an explanation for the
molecular basis of the relationship between the ‘M.tuberculosis
Macrophage’ that screened for inhibitors of M.tuberculosis
growth in macrophages and ‘GSI Synthetic Lethal (Cell growth)’,
a ‘control’ assay that tested the growth inhibitory activity of
molecules in T-cells. Moreover, the known ability of NR3C1 to
induce adipocyte differentiation (Xu et al., 1990) explains the
common link between the cell growth and differentiation activ-
ities measured in ‘GSI Synthetic Lethal (Cell growth)’ and
‘Adipocyte Differentiation’ assays, respectively. Interestingly,
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Fig. 6. Enriched targets between assay pairs. (a—d) are examples of assay
connections (shown by assay name). The size of each pie chart is propor-
tional to the logarithm of the number of shared hits. For simplicity, in the
pie charts we show the most frequently predicted targets (with a precision
>50%) of the shared chemical hits (see Supplementary Table S2 for the
full target list of each assay pair in Fig. 6). The fraction of the pie charts
representing hits with no predicted targets is shown in white as ‘No
Information’. In Figure 6c, only those representative targets common
to three hits for assays pairs in the group are shown, and the remaining
targets common to <2 hits are shown in black as ‘Others’

although the link between UPR and differentiation processes
has been proposed in the literature (Hetz, 2012), the molecular
basis of this connection is not fully understood. Here, our results
suggest the function of NR3C1 as intermediary between UPR
induction and differentiation. However, this proposal should be
taken with caution, as the specificity of the chemical hits on UPR
process cannot be assessed owing to the lack of control assays in
the project. In this context, the UPR assay is linked to a control
assay of the “Wnt Inhibitors (Wnt mutated vector)’ project, which
measures the promoter activity of a mutated version of Wnt
responsive construct (Fig. 6b). A closer look at this relationship
reveals that ATP1A1 (ATPase, Na* /K" transporting, alpha 1
polypeptide), CYP1BI1 (cytochrome P450, family 1, subfamily B
polypeptide 1) and ADORAZ2B (adenosine A2b receptor) are the
predicted targets of the chemical hits of this pair. The role in
cancer of ATP1A1 (Newman et al., 2008), CYP1B1 (Gajjar
et al., 2012) and ADORA2B (Ma et al., 2010) indicate that the
activity of compounds in the ‘“Wnt Inhibitors (Wnt mutated vec-
tor)’ assay is likely due to their cytotoxicity. Although the known
role of UPR to induce cell cycle arrest (Brewer and Diehl, 2000)
and the recently reported role of ouabain, specific inhibitor of
ATP1A1, on the modulation of UPR (Ozdemir et al., 2012),
would suggest that the relationship between this assay pair is
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due to the UPR-dependent growth inhibitory activity, further
research is needed to assess the specificity of the shared hits on
the UPR assay.

The growth inhibition measured in the “Wnt Inhibitors (Wnt
mutated vector)’ assay is further confirmed by the association of
this assay with the anticancer ‘Gliobastoma Modulators’ and
‘Genotype-Specific Inhibitors in Non-Small Cell Lung Cancer’
assays (Fig. 6¢). Our target prediction approach revealed that,
within this group of growth inhibitory assays, the cytotoxic
activity is partly mediated through well-known anticancer tar-
gets, such as histone deacetylases (HDACs) (Wagner et al.,
2010), ATP1A1 (Newman et al, 2008), farnesyltransferase,
CAAX box, alpha (FNTA) (Rowinsky ez al., 1999) and mouse
double minute 2 homolog (MDM?2) (Shangary and Wang, 2008).
Furthermore, the modulation of these targets also explains the
link between the chemical screens measuring stem cell differenti-
ation [‘Stem Cell Differentiation (Cell count)’ assay] and DNA
methylation [by 4,6-diamidino-2-phenylidole staining in ‘Histone
Modification (DNA methylation)’ assay]. Intriguingly, other pre-
dicted targets behind the growth inhibition activity in this group
of cancer-related assays include adenosine receptor A3
(ADORA3), cannabinoid receptor 2 (CNR2), cholesteryl ester
transfer protein, plasma (CETP), 5-hydroxytryptamine receptor
6 (HTR6) and ATPase, Ca’>" transporting cardiac muscle, fast
twitch 1 (ATP2A1). The modulation of these targets in antic-
ancer screens suggests the possible role of these proteins in
growth inhibition. In fact, the activity of ADORA3 as a potential
target for tumor growth inhibition has been proposed before
(Madi et al., 2004).

Another well-known biological connection is represented by
the link between ‘Beta-Catenin’ assay that measured the nuclear
translocation of beta-catenin and ‘Histone Modification (DNA
methylation)” assay (Fig. 6d). HDAC, the predicted target of the
common hits, has been shown to inhibit Wnt signalling through
disruption of the interaction between beta-catenin and T cell
factor (Ye et al., 2009). Thus, the biological relationship between
these two assays is explained by the known relationship of
HDAC:S.

In summary, after retrieving the chemical hits from the
ChemBank assays, we observed that the biological activities mea-
sured in two assays sharing selective hits are related. The close
inspection of the assay pairs sharing specific hits in the network is
able to confirm the biological and molecular associations of
assay pairs and reveal molecular information underling the
shared activity.

4 DISCUSSION

In this work, we have integrated and analysed the information
stored in ChemBank and demonstrated that the biological
activities of assay pairs sharing selective chemical hits are
often related. The relationships between the biological processes
of phenotypic assays are furthermore supported by the role of
protein targets predicted for the shared hits.

Fingerprint-based approaches, where profiles of a collection of
predefined features of an object such as a compound or protein is
compared, have often been exploited in Chemistry and Biology
fields to infer properties of compounds (Willett et al., 1998)
(Willett, 2000) and genes (Liu et al., 2013). These approaches

are based on the observation that similar fingerprint profiles
correlate with similar properties (Fan et al., 2006). For example,
compounds with similar chemical fingerprint profiles tend to
have similar biological activities (Petrone er al., 2012).
Likewise, compounds with similar modes of action have also
been observed to exhibit similar behavior across multiple
assays (Dancik er al., 2014). In contrast, in this study we use
chemical hit-based fingerprints constructed with selective
compounds to infer biological relationships between assays.
Interestingly, we show that the relationships between assays
can only be captured when a stringent selectivity filter is applied
to discard promiscuous compounds from the chemical hit
profile. Currently, there is no consensus for the definition of
compound promiscuity, and different promiscuity filters have
been proposed in the literature. Schiirer et al. (2011) and Jacob
et al. (2012) defined promiscuous compounds as those showing
activity in >50 or 30% of the assays, respectively, while Gamo
et al. (2010) calculated an ‘inhibition frequency index’ for each
compound and applied a variable threshold, ranging from 5 to
20% of screens, depending on the number of HTS screens a
given compound had been through. Although these studies
have revealed interesting chemical moieties associated to unspe-
cific signals in chemicals screens, the question of what level of
selectivity is necessary to capture hits carrying information about
specific biological signals has not been addressed yet. In this
study, we have shown that a stringent promiscuity filter that
first selects hits active in <20% of the projects (filter F2) and
subsequently retains compounds with activity in <20% of the
assays within a project (filter F3) is necessary to enrich for hits
with specific biological activities. We reason that the low number
of projects performed in the same experimental backgrounds
generating the same unspecific signals might be the cause for
the lack of correlation between hit and similarity of biological
activities of two assays after the application of filter F2.
Although this is partially overcome by discarding compounds
active in several assays of the same project and consequently,
performed in similar experimental backgrounds (filter F3), our
approach also detects connections between cell-free assays that
are apparently unrelated. For example, the ‘Phospholypid
Hydrolysis’ assay is associated to the ‘Deubiquitilation’ assay
(Fig. 5). A closer look at this connection reveals artefactual yet
non-promiscuous hits, as the shared hits of the two connections
appear active in the control assays of the project (termed “unspe-
cific’ chemical hits, see Fig. 2a). This indicates that the stringent
promiscuity filters applied here might, for some experimental
conditions, be insufficient to discard unspecific hits, and add-
itional control assays might be necessary to remove non-selective
chemical hits.

The presence of unspecific hits is also evidenced by the occur-
rence of edges that connect ‘control’ and ‘experiment’ assays. For
example, the ‘e-Cadherin Synthetic Lethal (Cell growth)’ ‘con-
trol” assay that controlled for the cytotoxicity of compounds in
the human mammary epithelial HMLE cell line is connected to
the “‘Wnt And Lithum Modulators (Wnt vector)’ ‘experiment’
assay (Fig. 5), suggesting that the shared hits of the pair are
not specific of the Wnt signalling process. This hypothesis is
further corroborated by the known or suspected anticancer
activity of the predicted targets [HDAC1 (Wagner et al., 2010),
FNTA (Rowinsky et al., 1999) and sigma non-opioid
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Unveiling new biological relationships using shared hits of chemical screening assay pairs

intracellular receptor 1 (SGIMARI1) (Aydar et al., 20006),
Supplementary Table S2] of the shared hits and the modulation
of these targets in a control assay of ‘“Wnt Inhibitors (Wnt
mutated vector)’ (Fig. 6¢c, also see Supplementary Table S2).
Similarly, the link between the cytotoxic ‘control’ assay of the
‘e-Cadherin synthetic lethal (Cell growth)’ project and the
‘Translation Inhibition (Dengue replicon translation)’ assay
that detected inhibitors of the translation of Dengue virus repli-
con (Fig. 5) points to the unspecificity of the chemical hits in the
‘Translation Inhibition’ assay. These examples illustrate the need
of additional control assays in these screening projects to assess
the specificity of the compounds. Nonetheless, we show that this
approach was able to capture meaningful biological connections
even between different types of assays, such as the link between a
microorganism assay with a cellular assay. For example, the
microorganism ‘Anti-Bacterial’ assay is connected with cellular
‘M .tuberculosis Inhibition’ assay performed in BGI1 ovarian
cancer cells.

We observe that many relationships between different phe-
notypic assays are established based on the shared cytotoxicity
of compounds in cell- or whole organism-based assays.
Cytotoxicity appears thus as underlying biological effect
common to phenotypic assays that account for the activity of
many hits in these assays. Interestingly, the target prediction for
those ‘non-promiscuous’ but ‘cytotoxic’ compounds reveals
targets of drugs used as anticancer therapies, such as the
HDACs (Wagner et al., 2010) and ATP1A1 (Newman et al.,
2008), or targets that have been proposed for cancer treatment
such as FNTA (Rowinsky et al., 1999) and MDM?2 (Shangary
and Wang, 2008). Hence, other predicted targets connecting
these assays might represent potential targets for the treatment
of cancers, such as CNR2, CETP, HTR6, ATP2A1 and
ADORA3. Indeed, ADORA3 has been proposed as a potential
therapeutic cancer target (Madi et al., 2004).

In summary, this work shows the potential of integrative
approaches dealing with high-throughput chemical screening
data to reveal novel connections between the biological processes
and molecular activities measured in chemical screens. In the
future, with the expected increase in HTS assay data available
in public repositories, it is envisioned that many more biological
relationships will be discovered with the application of this or
similar computational approaches.
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