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NOXA as critical mediator for drug combinations in
polychemotherapy

H Ehrhardt"?%, | Hofig"®, F Wachter', P Obexer®, S Fulda®, N Terziyska' and | Jeremias*'*

During polychemotherapy, cytotoxic drugs are given in combinations to enhance their anti-tumor effectiveness. For most drug
combinations, underlying signaling mechanisms responsible for positive drug—drug interactions remain elusive. Here, we prove
a decisive role for the Bcl-2 family member NOXA to mediate cell death by certain drug combinations, even if drugs were
combined which acted independently from NOXA, when given alone. In proof-of-principle studies, betulinic acid, doxorubicin
and vincristine induced cell death in a p53- and NOXA-independent pathway involving mitochondrial pore formation, release of
cytochrome c and caspase activation. In contrast, when betulinic acid was combined with either doxorubicine or vincristine, cell
death signaling changed considerably; the drug combinations clearly depended on both p53 and NOXA. Similarly and of high
clinical relevance, in patient-derived childhood acute leukemia samples the drug combinations, but not the single drugs
depended on p53 and NOXA, as shown by RNA interference studies in patient-derived cells. Our data emphasize that NOXA
represents an important target molecule for combinations of drugs that alone do not target NOXA. NOXA might have a special
role in regulating apoptosis sensitivity in the complex interplay of polychemotherapy. Deciphering the differences in signaling of

single drugs and drug combinations might enable designing highly effective novel polychemotherapy regimens.
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Polychemotherapy involves the simultaneous application of
various cytotoxic drugs. So far, effective drug combinations
were selected empirically in clinical trials, while the mechan-
istic understanding of favorable drug—drug interactions
remained largely elusive. Here, we characterized an important
role for the Bcl-2 member NOXA in mediating effective drug
combinations, even if the single drugs induced NOXA-
independent cell death.

NOXA represents an important intracellular target for
effective cell death induction in tumor cells. NOXA is a pro-
apoptotic member of the BCL-2 family, which mediates
induction of apoptosis via activation of mitochondria and the
intrinsic apoptosis signaling pathway."? Cell death induction
by cytotoxic drugs is mainly mediated by the intrinsic
apoptosis signaling cascade and NOXA has an important
role for apoptosis induction by cytotoxic drugs.®>® As a so
called ‘BH3-only’ protein of the BCL-2 family, upregulation of
NOXA counteracts the pro-survival function of anti-apoptotic
BCL-2 family members.®>® As described for PUMA, another
pro-apoptotic BH3-only member, the expression of NOXA is
regulated by the transcription factor p53, but also by, for
example, p38 and ERK.*®° Although its important role for
apoptosis induction by single drugs was extensively shown,>
the role of NOXA for drug combinations remains elusive so far.

Betulinic acid (BA) represents a potent new drug for cell
death induction in a broad spectrum of different tumor
cells."®"" We recently identified BA as highly effective in
ALL cells, especially upon drug resistance and relapse.'® For
signaling apoptosis, BA directly targets mitochondria, but also
regulates members of the BCL-2 family shifting the balance
into a pro-apoptotic state.'®'2714

Here, we found that NOXA had an important role for
the effect of combinations of cytotoxic drugs, which induced
NOXA-independent cell death, when given alone.

Results

The aim was to characterize the role of NOXA for mediating
apoptosis induction by doxorubicin, vincristine and BA either
given as single drugs or in drug combinations.

Super-additive apoptosis by the combination of BA and
doxorubicin. BA induced super-additive, synergistic apop-
tosis in combination with doxorubicin (doxo) in all six tumor
cell lines tested (Figure 1a). Throughout the work, doxo-
rubicin was used in concentrations that were within the drug
level ranges measured in patients upon anti-tumor treatment
and BA was used in concentrations that were successfully
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Figure 1  Synergistic cell death and reduction of colony formation by the combination of BA and doxorubicin. (a) MCF-7 breast cancer, HCT116 colon cancer, A549 lung
cancer, A498 renal cancer and CEM and JURKAT leukemia cells were stimulated with doxo and BA. Each drug was applied in a concentration that induced less than 25%
specific apoptosis, when the drug was given alone. For all solid tumor cell lines, doxo was applied at 0.5 uM and BA at 20 M, CEM and JURKAT cells were treated with
0.03 uM doxo and 2 uM BA. Apoptosis induction was measured after 72 h by forwardside scatter analysis for leukemia cells and after 96 h by Nicoletti staining for solid tumor
cells. Statistical analysis was performed applying ANOVA. *P<0.05, comparing apoptosis induction after combined treatment and the addition of apoptosis induction after
single-agent stimulation (for detailed description of statistical analysis compare Supplementary Figure S1). For all cell line experiments, data are presented as mean values of
at least three independent experiments £ S.E.M. if not stated differently. (b) JURKAT cells were seeded at 0.05 million cells/ml and stimulated as in Figure 1a. Colony
formation was detected by Cellscreen light microscopy and pictures are representative image sections from the whole well of a 96-well plate. Percentages indicated within the
picture represent simultaneously determined specific apoptosis induction. Numbers below light microscopy pictures indicate quantity of colonies over the whole well. Depicted
is one representative experiment after 72 h of incubation time. (¢) Cells from n=20 primary childhood acute leukemia samples were stimulated with doxorubicine (doxo;
0.5 uM) and BA (20 uM) directly after isolation from bone marrow aspirates for at least 48 h as described in Materials and Methods. Depicted are specific apoptosis data for the
single and the combinatory stimulations. *P<0.05, ANOVA, comparing each single agent to the combinatorial stimulation
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used in animals as clinical data are not available yet.'>'® For
all cell line experiments, a significant increase in cell death
induction by the combinatorial approach was testified by
asterixes whenever the addition of apoptosis induction by
each drug alone was inferior to the effect of the combined
stimulation with a P-value of P<0.05 (for details see
Supplementary Figure S1). In addition to its direct cytotoxic
effects, the formation of new tumor colonies was markedly
reduced (Figure 1b and data not shown). Most importantly,
BA enabled induction of cell death in otherwise doxo-resistant
leukemia cells and thus overcame resistance towards doxo
(Supplementary Figure S2 and data not shown).

Beyond work with cell lines, favorable anti-leukemia effects
of the combination of BA and doxo (BA/doxo) were detected in
fresh primary tumor cells from n=20 children with newly
diagnosed ALL or ALL relapse before onset of therapy
(Figure 1c).

In addition to doxo, BA also induced synergistic apoptosis in
combination with vincristine (data not shown).

Taken together, the combination of BA together with doxo
or vincristine induced synergistic anti-tumor effects on several
cell lines and primary ALL cells in vitro.

Common downstream apoptosis signaling for single
drugs and drug combinations. To identify the intracellular
target molecule responsible for the favorable cell death effect
of the combination BA plus doxo, we studied the two T-cell
leukemia cell lines JURKAT and CEM. Results for JURKAT
cells and doxo together with BA are presented in printed
figures; results for the combination of vincristine and BA
(Supplementary Figure S7) and data for doxo plus BA on
CEM cells (Supplementary Figure S8) were similar through-
out all experiments, and decisive experiments are summar-
ized in Supplementary Figures.

As BA and doxo are both known to activate the intrinsic
apoptosis signaling cascade, we first studied the release of
the pro-apoptotic factors cytochrome ¢, SMAC/DIABLO, OMI/
HtrA2, AIF and EndoG from mitochondria by fractionated
investigation of mitochondrial and cytosolic lysates. Com-
pared with single-agent stimulations, the mitochondrial
release of the apoptogenic factors cytochrome ¢, SMAC/
DIABLO and OMI/HtrA2 was augmented upon combined
stimulation with BA plus doxo. No release of AIF and
Endonuclease G (EndoG) was detected (Figure 2a and data
not shown). The release of apoptogenetic factors from
mitochondria was followed by the activation of executioner
caspases 9 and 3, while no activation of further effector
caspases was observed (Figure 2b).

Pro-apoptotic factors are released from mitochondria via
formation of membrane pores. Regulators of this pore
formation are members of the BCL-2 family, which consists
of both pro- and anti-apoptotic members. It is well known, that
inhibition of mitochondrial pore formation reduces cell death
induction by BA or doxo alone'®'”:'® (own data not shown).
In line, cell death induction of the combinatorial treatment with
doxo plus BA was markedly reduced in JURKAT cells, which
lacked simultaneously BAX and BAK expression and in cells
with stable overexpression of BCL-2 and BCL-XL (Figure 3a).

Downstream of mitochondrial pore formation, cell death
induction mostly depends on the activation of caspases. It is
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Figure 2 Release of apoptogenetic factors and activation of caspases during
synergistic apoptosis induction. (a) JURKAT cells were stimulated with doxo and BA
for 36 h and fractionated investigation of cytosolic (c) and mitochondrial (m) extracts
was performed by western blot. GAPDH and COX IV served as loading controls. For
the clearness of presentation, the order of samples from the original blot was
rearranged without any further modifications. (b) JURKAT cells were stimulated as
in Figure 2a for time periods indicated and western blot analysis was performed of
total cellular extracts. For the detection of all caspase-cleavage products, TRAIL-
stimulated cells were used as positive control (data not shown). Experimental
procedure and drug concentrations were applied as in Figure 1a

well known, that biochemical or molecular inhibition of
caspase activation reduces cell death induction by BA or
doxo alone'®'"~'® (own data not shown). Next, we tested the
impact of the irreversible broad-spectrum caspase inhibitor
qVD, overexpression of XIAP, which is known to inhibit
caspases activation, or the lack of caspase-9 on the
combination of BA plus doxo. All described modifications
markedly inhibited the cell death induction by BA plus doxo
(Figure 3b). An important role of caspase-9 was proven by
recombinant re-expression of caspase-9 in caspase-9-lacking
cells, which rescued apoptosis induction by BA plus doxo
(Figure 3b).

Taken together, these data show that the drug combination
of BA plus doxo activated the identical downstream signaling
steps that have been described before for BA or doxo alone.

Distinct role of NOXA for single drugs and drug
combinations. BAX/ BAK form the mitochondrial mem-
brane pore to release pro-apoptotic factors from mitochon-
dria, unless they are inhibited by BCL-2 and/ or BCL-XL.
One step upstream, the pro-apoptotic BH3-only members
of the Bcl-2 family, such as BIM, BID, NOXA and PUMA,
inhibit the anti-apoptotic BCL-2 members, such as BCL-2
and BCL-XL, and thus enable pro-apoptotic signaling by

@
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Figure 3 Mitochondrial pore formation and activation of caspases as
prerequisite for synergistic apoptosis induction. (a) Parental JURKAT cells,
JURKAT cells deficient for BAX and BAK (BAK—/~) and JURKAT cells
overexpressing BCL-2 (BCL-2) or BCL-XL (BCL-XL) were stimulated with
doxorubicin and BA. (b) Parental JURKAT cells, JURKAT cells pretreated with
qVD (50 uM) for 6h, JURKAT cells overexpressing XIAP (XIAP), with loss of
caspase-9 (Casp-9 ') and after retransfection of caspase-9 (Casp-9*'™)
were stimulated with doxo and BA as in Figure 1a. Drug concentrations,
experimental procedure, measurement of apoptosis induction, statistical analysis
and presentation of data were identical as in Figure 1a and Supplementary
Figure S1. NS, not significant

double inhibition.32%2! As we had found an important impact
of BAX/BAK and BCL-2/BCL-XL on cell death induction by
BA and doxo alone and for the combinatorial treatment, we
next studied the putative role of BH3-only members of the
BCL-2 family. For JURKAT cells, it has been described in the
literature, that cell death induction by doxo does not depend
on the most prominent members of the BH3-only family as
long as only one member is targeted.® In contrast, nothing is
known for the signal initiation of BA upstream of BCL-2 and
BCL-XL. So we first evaluated the impact of RNA inter-
ference against PUMA, NOXA, BID and BIM on cell death
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induction by BA and doxo if applied alone. We were not
able to ascribe any of these BH3 members an impact on
apoptosis induction by BA or doxo alone (Supplementary
Figures S3A and B and data not shown).

To evaluate the relevance for the combinatorial treatment
approach of BA plus doxo, we first studied the expression of
most members of the IAP and BCL-2 family after combined
stimulation. Levels of all proteins remained unchanged,
including PUMA and Mcl-1, with the exception of the pro-
apoptotic BH3-only protein NOXA that showed a marked
upregulation upon stimulation with BA plus doxo (Figure 4a,
Supplementary Figures S3C and D). On a functional
level, neither knockdown of BIM, BID nor PUMA by RNA
interference altered apoptosis induction by BA plus doxo.
In contrast, when NOXA was downregulated by shRNA,
apoptosis induction by BA plus doxo was markedly reduced
and the drug combination was unable to induce apoptosis
efficiently. The effect of knockdown of NOXA could not be
enhanced by simultaneous knockdown of PUMA as shown
by double knockdown experiments arguing towards distinct
functions of NOXA and PUMA upon BA plus doxo-induced cell
death (Figure 4b). The decisive impact of NOXA was present
for a broad range of different drug combinations (Figure 4c).
The presence of either cycloheximide or actinomycin D
inhibited both upregulation of NOXA and the synergistic
activity of the drug combination suggesting an important role
of protein neosynthesis (Figure 4d and data not shown). In
contrast, addition of neither acetylcysteine nor glutathion
esthers altered these signaling steps arguing against involve-
ment of reactive oxygene species, which have an important
role for regulating NOXA in other settings (Figure 4e and data
not shown).”® As candidate target of NOXA, knockdown of
Mcl-1 promoted cell death induction for the combination of BA
and doxo, but not for both single drugs (Figure 4f and
Supplementary Figures S3E and F). These data highlight a
unique role of NOXA for apoptosis induction by the combina-
tion of BA plus doxo, but not by either single agent alone.

Distinct role of p53 for single drugs and drug combina-
tions. So far, we assigned NOXA a key role in enabling
apoptosis induction by the combination of BA/doxo. NOXA is
typically regulated by the transcription factor p53 and most
cytotoxic drugs including doxo activate p53.3522 We had
recently demonstrated p53 functionality in the JURKAT cells
used here, which showed p53-dependent upregulation of ,for
example, caspase-8 upon stimulation with methotrex-
ate.®®2% BA is known to induce apoptosis independently
from p53 in several cell systems.'"'? Interestingly and in
contrast to other cancer cells, cell death induction by doxo
alone did not depend on the presence of p53 in JURKAT
cells (Supplementary Figures S4A and B), although p53 was
activated after stimulation with doxo (Figure 5a). When
JURKAT cells were simultaneously stimulated with BA plus
doxo, p53 activation and accumulation was much more
pronounced (Figure 5a). Inhibition of the accumulation of p53
using RNA interference directed against p53 markedly
reduced the upregulation of NOXA and apoptosis induction
for the combination of BA plus doxo suggesting p53-
dependent cell death signaling selectively for the combina-
torial treatment (Figures 5b and c). The impact of p53 for
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Figure 4 Differential involvement of NOXA after single-agent and combination therapy. (a) Total JURKAT cell lysates from Figure 2b were analyzed for the expression of
NOXA, PUMA and Mcl-1. (b) Parental JURKAT cells, JURKAT cells stably transfected with shRNA against BIM (shBIM), BID (shBID), PUMA (shPUMA), NOXA (shNOXA) or
NOXA and simultaneously PUMA (shNOXA + shPUMA) were stimulated with doxorubicin and BA. (c) Parental JURKAT cells (upper panel) and JURKAT cells stably
transfected with shRNA against NOXA (lower panel) were stimulated with several drug combinations for doxo (0.01, 0.03, 0.06 uM) and BA (2, 6, 12 uM). Synergism was
evaluated using isobolograms. (d and e) JURKAT cells were pretreated with cycloheximide (CHX, 0.3 ng/ml, d) or acetylcysteine (ACC, 500 ug/ml, e) for 6 h followed
by stimulation with doxorubicin and BA. (f) Parental JURKAT cells and JURKAT cells stably transfected with shRNA against Mcl-1 (shMcl-1) were stimulated
with doxorubicin and BA. Drug concentrations, experimental procedure, measurement of apoptosis induction, statistical analysis and presentation of data were
identical as in Figure 1a and Supplementary Figure S1 if not stated differently. Statistical significance is indicated with an asterix, whenever the P-value was <0.05.

NS, statistically not significant

efficient cell death was detected for a broad range of drug
combinations tested (Figure 5d). The decisive role of p53
was confirmed in cells with p53 in wild-type status
(Supplementary Figure S5).

These data show that cell death induction by the combina-
tion of BA plus doxo, but not by each agent alone was
dependent on the transcription factor p53 that regulated the
BH3-only member NOXA.

Roles of NOXA and p53 in patient-derived ALL cells.
Due to prolonged in vitro culture, leukemic cell lines inherit
alterations and mutations not present in patient-derived
cells.?”?® For example, leukemic cell lines show frequent
alterations in p53, whereas those are rare in patient-derived
leukemia cells.232%3% We therefore aimed to survey the
dependency of BA plus doxo-induced cell death on p53 and
NOXA in patient-derived leukemia cells.

Towards this aim, we used our recently established
technique for transient transfection of patient-derived acute
leukemia cells with siRNA in cells from two different patients
with pre-B-ALL (ALL-50, initial diagnosis, female, 7 years,
Figure 6) and pre-B-ALL (ALL-169, initial diagnosis, female,
18 years, Supplementary Figures S6C-H)?>* and siRNAs
targeting p53, NOXA or PUMA. p53 functionality was proven
using irradiation and Etoposide as classical p53 stimuli

and regulation of PUMA as typical p53 target gene
(Supplementary Figures S6A and B). As expected, inhibition
of p53 or NOXA did not affect cell death induction by BA or
doxo if applied alone (Supplementary Figures S6C—F). For
the combinatorial treatment of BA plus doxo, cell death
induction was significantly inhibited by transfection of siRNA
directed against p53 or NOXA, but not PUMA (Figure 6a,
Supplementary Figure S6G) and the cell death regulating
function was present for a range of drug concentrations tested
(Figure 6b and Supplementary Figure S6H). Transient knock-
down efficiency of expression or upregulation of proteins was
achieved as shown by Western Blot.

These data show that the underlying signaling mechanism
responsible for effective cell death induction by the combina-
tion BA plus doxo in patient-derived leukemia cells involves
p53 and NOXA, but not PUMA.

The identical distinct involvement of NOXA and p53 only
during combined drug stimulation was observed for the
second combinatorial treatment approach investigated of BA
together with VCR (Supplementary Figure S7) and in CEM
cells, the second ALL cell line investigated (Supplementary
Figure S8 and data not shown).

Taken together, the pro-apoptotic BH3-only member
NOXA and p53 represent the critical target molecules,
which mediate the super-additive cell death induction

o

Cell Death and Disease



JQ

NOXA as critical mediator for combination therapy
H Ehrhardt et a/

o

a 12h

BA -+ -1+
doxo -l -+ |+

nuclear ps3 [ = ]
Histon H1 [ = w]
eytosolic p53 [ —]

GAPDH [

b OBA

@ doxo

H BA+doxo
¥ 50
?, NS
8
<%
o
o
(]
L 25
©
(]
[
(7]

0

parental mock shp53

p53  [rm— — |

NS T p— -
GAPDH [ ——

c
BA

doxo N D Y T R
NOXA

GAPDH | s

d

doxo

parental shp53

-+ (- |+ -] +]-]+

+
+

1.0

0.75

0.5

0.25

0 0.25 0.5

BA

0.75 1.0
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statistical analysis and presentation of data were identical as in Figure 1a and Supplementary Figure S1 if not stated differently

by the combination of BA together with doxo or vincristine.
In contrast, cell death by each single drug does not rely
on NOXA or p53. Downstream of NOXA, all single agents
and drug combinations converge in a common pathway
depending on mitochondrial pore formation and caspases
activation (Figure 6c).

Discussion

Our data show that the pro-apoptotic BCL-2 family member
NOXA can have a decisive role in mediating efficient
apoptosis induction for certain drug combinations. Most
importantly, molecular studies on tumor cells derived from
children with ALL proved that only the drug combinations
relied on signaling by NOXA and p53, whereas the single
agents did not.

Upon stimulation with BA plus doxo, NOXA was upregu-
lated, whereas further classical target genes of p53, such as
BAX, PUMA or caspase-8, were not regulated. This can be
explained by the complex network of p53 signal transduction
described, where different p53-activating stimuli induce
upregulation of different p53 target genes.?>2%3' The data
are in line with our recent results that demonstrated drug-
specific regulation of common p53 target genes.®2425:31:52

Cell Death and Disease

Our data are in line with published results, that assign NOXA
and PUMA overlapping and distinct regulations by p53
depending on the experimental setting.%:52%2

For exerting its pro-apoptotic function, NOXA inactivates
anti-apoptotic Bcl-2 family members, mainly Mcl-1 and A1.*
As downregulation of Mcl-1-sensitized cells for apoptosis
induction by BA and doxo, Mcl-1 might represent the putative
target for NOXA upon stimulation with the combination of BA
and doxo (Figure 4).

So far, NOXA was mainly studied with focus on its role for
efficient apoptosis induction after stimulation with single
cytotoxic drugs, where the activation of NOXA appeared
critical for the intracellular cell death response.s‘5 In contrast,
the decisive role of NOXA for combination chemotherapy is a
completely new finding. So far, solely two recent studies
showed that drug combinations induced super-additive
apoptosis via upregulation of NOXA in chronic lymphocytic
leukemia and mantle-cell lymphoma.”"® In these papers and
in contrast to our data, NOXA was shown to be regulated
by ROS generation and independently from p53, suggesting
cell type- and/or stimulus-dependent regulation of NOXA.
Together, these and our data clearly point out the necessity
to further evaluate the significance of NOXA for combination
chemotherapy.
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performed out of four independent experiments, for each setting one representative western blot is presented. *P< 0.05, ANOVA, significantly augmented apoptosis induction
for the combined stimulation compared with the addition of apoptosis induction after single-agent stimulation. (b) The identical experimental setting from Figure 6a was
performed for cells transfected with the control siRNA (upper panel) and siRNA against NOXA (middle) or p53 (lower panel) for a range of drug combinations of doxo (0.02,
0.05,0.2 uM) and BA (0.2, 0.6, 2 uM). (c) Differential involvement of NOXA and p53 during single-agent and combined stimulation: Synergistic apoptosis induction by doxo or
vincristine plus BA depends on the regulation of p53 and NOXA, whereas single-agent signaling bypasses p53 and NOXA. Downstream of NOXA, a common pathway is
activated for single-agent and combinatorial treatment approaches. Measurement of apoptosis induction, statistical analysis and presentation of data were performed as in
Figure 1a, Supplementary Figure S1, Figures 4c and 5d

As single agent, BA can directly target mitochondria
independent from p53 or NOXA and bypass apoptosis
resistance mechanisms in proximal signaling steps.’®'!13
When BA is combined with other cytotoxic drugs, detailed
mechanistic investigations of the synergistic effects are
missing so far.'"3*3%* Based on the mechanistic data
obtained here and their proof in patient-derived ALL
cells, our data suggest incorporating BA in close proximity
to doxo or vincristine into future polychemotherapy trials of
ALL to take advantage of the favorable regulation of p53
and NOXA.

Here we show that NOXA is critical for efficient apoptosis
induction by the drug combinations of BA together with doxo
or vincristine, whereas the single drugs induce NOXA-
independent apoptosis. Of interest, both experimental set-
tings converge on the identical downstream intrinsic apoptosis
signaling cascade but differ in the initiating step. On a more
general level, our data argue that identification of the
intracellular target for a single agent does not implicate the

understanding of how this drug acts in combination with other
drugs. Understanding the differences in signaling between
single drugs and drug combinations might enable designing
new effective polychemotherapy regimens. Our data suggest
that NOXA might represent an important intracellular target
determining chemosensitivity in the complex context of
polychemotherapy.

Materials and Methods

Materials. Acetylcysteine, glutathione esthers and the pan-caspase inhibitor
qVD were obtained from Calbiochem (San Diego, CA, USA). All further reagents
from Sigma (Deisenhofen, Germany). For western blot analysis, the following
antibodies were used: anti AIF, anti BAK, anti BAX, anti BCL-2, anti clAP-2, anti
Histone H1, anti-Mcl-1 and anti p53 from Santa Cruz Biotechnology Inc. (Santa
Cruz, CA, USA); anti BCL-XL, anti BID, anti cleaved caspase-3, 6 and 7, anti
cleaved PARP, anti cytochrome ¢, anti COX 1V, anti Endonuclease G, anti OMI/
HtrA2, anti PUMA and anti Survivin from Cell Signaling Technology Inc. (Danvers,
MA, USA); anti o-Tubulin from Oncogene (San Diego, CA, USA); anti caspase-9
and anti XIAP from BD Biosciences (San Jose, SA, USA); anti GAPDH from
Thermo Fisher (Waltham, MA, USA); anti NOXA from Calbiochem; anti BIM and

)
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anti caspase-8 from Alexis Corp. (Lausen, Switzerland); anti SMAC/DIABLO from
Millipore (Billerica, MA, USA).

Cell lines, primary samples and stimulation experiments. All cell
lines were maintained, seeded and stimulated as described.'®?*2® Drug-resistant
derivative cell lines were established as specified.”® Cells were seeded and
simultaneously stimulated with cytotoxic drugs and BA for 72h. To enable
visualization of synergistic apoptosis, drugs were used in concentrations that
induced limited apoptosis as single drugs (10-25% specific apoptosis). Apoptosis
was measured by DNA fragmentation and sub-G1 fraction in FACscan (Becton
Dickinson, Heidelberg, Germany) for all solid tumor cell lines and by forwardside
scatter analysis for leukemia cells. For primary leukemia cells and leukemic cell
lines, Annexin V/propidium iodide staining was performed in parallel for selected
experiments. Results of forwardside scatter analysis were highly correlated to the
percentage of Annexin V/propidium iodide double-positive cells arguing towards
apoptotic cell death. For biochemical inhibition, cells were pretreated for 6 h prior
to stimulation. CFUs were performed using methylcellulose base media as
described recently.®

Primary leukemia blasts were obtained from n=20 children treated for acute
leukemia at the Ludwig Maximilian University Children’s Hospital and the children’s
hospital of the TU Munich during 2006 and 2008. Samples were obtained,
isolated, seeded, stimulated and incubated with cytotoxic drugs and BA as
described. 02426353 A|| experiments were approved by the local ethics boards
according to the declaration of Helsinki.

Western blot analysis. Western blot analysis of total cellular protein and
separated evaluation of cytosolic and nuclear fractions was performed as
described.'®3® nvestigation of cytosolic and mitochondrial fractions was
achieved by homogenizing cell pellets with preparation buffer (250 mM sucrose,
20mM HEPES (pH 7.4), 1 mM EDTA, 1mM EGTA, 10mM KClI, 1,5mM MgCl,
and 1mM DTT). Lysates were passed three times through a 24G needle and
centrifuged at 13000 x g. Supernatants were collected as cytosolic extracts,
pellets were resuspended in RIPA buffer (150mM NaCl, 1% NP40, 0,5%
Deoxycholate, 0,1% SDS, 50 mM Tris (pH 8.0)) to obtain mitochondrial extracts.
For clearness of presentation, the order of presentation was rearranged for some
of the blots presented without any further modifications.

RNAi transfection of cell lines. Parental JURKAT and CEM cell lines
were stably transfected with previously specified vectors expressing shRNA
against p53, NOXA, BID and BIM or a corresponding mock sequence using the
Cell Line Nucleofector kit V (Lonza, Walkersville, MD, USA)242637:388 For
expression of shRNA against PUMA or Mcl-1oligonucleotides containing 19 bp
sequences against PUMA mRNA (5'-TCTCATCATGGGACTCCTG-3') or Mcl-1
mRNA (5'-CGGGACTGGCTAGTTAAAC-3') and in parallel a scrambled sequence
were cloned between BamHI and EcoRl sites of the vector pGreenPuro (System
Biosciences (SBI), Mountain View, CA, USA). VSV-G pseudotyped high titers
lentiviruses (4 x 10° transducing units per ml) were generated by transient co-
transfection of HEK-293T cells in six-well tissue culture plates with a four-plasmid
combination (2.3 ug pGreenPuro-shPUMA; 2.3 ug pRSV-Rev; 4.7 ug pMDLg/
pRRE; 1.3 ug pMD2.G) using Trans|T-293 (Mirus, Madison, WI, USA). Super-
natants were collected 72h after transfection, purified by 0.45-um-filters,
concentrated using an Amicon Ultra centrifugal filter unit (Millipore), aliquoted
and frozen at — 80 °C. For lentiviral transduction, 1 million JURKAT and CEM
cells were seeded in 12-well tissue culture plates and infected with 2 ul/ml
lentivirus in the presence of 8 ug/ml polybrene (Sigma). To generate stably
transfected cell lines, cells were selected starting 24 h post infection up to 7 days
in 20 ug/ml puromycin.

Amplification and transfection of patient-derived tumor cells.
The animal work was approved by the Regierung von Oberbayern (55.2-1-54-
2531-2-07) and the xenograft NOD/SCID mouse model was performed as
described by others.®® Shortly, fresh primary childhood ALL cells were isolated by
Ficoll gradient centrifugation from blood or bone marrow that had been obtained
from leftovers of clinical routine sampling. A total of 10 million ALL cells were
injected into 6- to8-week-old NOD/SCID mice and engrafted human ALL cells
were isolated from spleens of diseased mice by pressing through a cell strainer
(BD Biosciences) and Ficoll gradient centrifugation. Cells were separated and
simultaneously injected into next generation of mice and subjected to in vitro
experiments. Xenografted cells were transfected using the technique recently
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described.2*“° Directly after transfection, cells were transferred to the previously
specified medium and stimulated 6 h after transfection. The following siRNAs were
used at a concentration of 20 uM: silencer-validated siRNA against p53 (5’-GGG
UUAGUUUACAAUCAGC-3', Ambion, Austin, TX, USA), siRNA against NOXA
(5'-GUCGAGUGUGCUACUCAACU-3'); siRNA against PUMA (5’-UCUCAUCAUG
GGACUCCUG-3, both from MWG Biotech, Ebersberg, Germany) and All Star
negative control siRNA (Qiagen, Hilden, Germany).

Statistical analysis. Specific apoptosis was calculated as [(apoptosis of
stimulated cells at end — apoptosis of unstimulated cells at end)/ (100 — apoptosis
of unstimulated cells at end) x 100]. Drug resistance was defined as specific
apoptosis < 10%. Isobolograms were performed using CompuSyn software
version 1.0 (ComboSyn Incorporated, Paramus, NJ, USA). To test for statistically
significant differences, one-way RM ANOVA was applied to compare the different
experimental settings, including the expected (addition) and the measured cell
death induction of the combinatorial treatment. Statistical significance was
accepted with P-values <0.05.
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