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Abstract

Efficient adaptation strategies to changing environmental conditions are essential for bacteria to survive and grow. Fundamental
restructuring of their metabolism is usually mediated by corresponding gene regulation. Here, often several different environmental
stimuli have to be integrated into a reasonable, energy-efficient response. Fast fluctuations and overshooting have to be filtered out.
The gene regulatory networks for the anaerobic adaptation of the pathogenic bacterium Pseudomonas aeruginosa is organized as a
feed-forward loop (FFL), which is a three-gene network motif composed of two transcription factors (Anr for oxygen, NarxL for
nitrate) and one target (Nar for nitrate reductase). The upstream transcription factor (Anr) induces the downstream transcription
factor (NarXL). Both regulators act together positively by inducing the target (Nar) via a direct and indirect regulation path (coherent
type-1 FFL). Since full promoter activity is only achieved when both transcription factors are present the target operon is expressed
with a delay. Thus, in response to environmental stimuli (oxygen, nitrate), signals are mediated and processed in a way that short
pulses are filtered out. In this study we analyze a special kind of FFL called FFLk by means of a family of ordinary differential
equation models. The secondary FFL regulator (NarXL) is expressed constitutively but further induced in presence of the upstream
stimuli. This FFL modification has substantial influence on the response time and cost-benefit ratio mediated by environmental
fluctuations. In order to find conditions where this regulatory network motif might be beneficial, we analyzed various models and
environments. We describe the observed evolutional advantage of FFLk and its role in environmental adaptation and pathogenicity.
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1. Introduction

Most bacteria are regularly exposed to changing physical and
chemical conditions in their environment. In order to survive
in a wide range of habitats, it is necessary to adapt to these
environmental fluctuations, which is often mediated by tran-
scription regulation networks. In response to external signals,
transcription factors are able to change the transcription rate of
target genes, which encode proteins or RNAs required for ef-
ficient adaptation. Usually multiple signals and regulators are
integrated at the target gene promotor in a complex gene regu-
latory network (GRN). Global analysis of the design principles
of microbial GRNs revealed overrepresented sub-networks, so
called network motifs (Shen-Orr et al., 2002; Alon, 2007).

One of the most abundant network motifs found in microbial
systems is the feed-forward loop (FFL). Examples for FFLs are
used for the regulation of various sugar utilization systems of
Escherichia coli (Mangan et al., 2003, 2006; Görke and Stülke,
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2008), of flagella production (Kalir et al., 2005) and the induc-
tion of the m-xylene biodegradation pathway in Pseudomonas
putida (Silva-Rocha and de Lorenzo, 2011). A nested system
of feed-forward loops is found in the sporulation pathway of
Bacillus subtilis (Eichenberger et al., 2004). Structurally, a FFL
is a three-gene network of two transcription factors x and y that
act together to regulate the target gene(s)/protein(s) z with the
additional property that y is also regulated by x. Thus, there is
a direct and indirect path to regulate z. Both regulators usually
respond to the external stimuli sx and sy, respectively (Fig. 1A).
Since there are three types of regulatory interactions, which can
be either positive or negative (activation or repression), a FFL
motif offers eight different possibilities of structural configu-
rations (Mangan and Alon, 2003). The relationship between
each FFL topology with its dynamic response behaviour shows
a unique probability distribution pattern with differences in its
intrinsic plasticity and robustness (Macia et al., 2009; Widder
et al., 2012).

In our study, we are interested in the so-called type-1 co-
herent FFL where all regulatory interactions are positive. It
was shown that this type of FFL has the potential to act as a
delay element since the second regulator has first to accumu-
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Figure 1: A) General structure of a type-1 coherent feed-forward loop motif.
Regulator x activated by stimulus sx induces the expression of regulator y which
is activated by stimulus sy. Both regulators act together in inducing the target
gene(s) and corresponding protein(s) designated as z. Optionally, y has a basal
expression rate of k. B) Anaerobic induction of the denitrification genes of
P. aeruginosa in presence of nitrate and absence of oxygen via the regulators
Anr and the two-component system NarXL. NarXL has a basal half-maximal
expression which is presented by the parameter k.

late for successful transcription of the target gene(s) (Mangan
and Alon, 2003; Kalir et al., 2005; Wall et al., 2005). Conse-
quently, these circuits can act as filter for unwanted responses
to fluctuating inputs. In contrast to previous studies we analyze
a special case of the type-1 coherent FFL where the second reg-
ulator y shows a significant basal expression level denoted by
k. Therefore, we named this regulatory circuit FFLk. While
FFLk leads to a permanent cost factor due to the production
of the regulator y it is expected that the pulse filtering is re-
duced to shorter pulses since the delay time to the onset of z
is significantly decreased. FFLk-type regulation was previously
described for E. coli, where the arabinose responsive regulator
AraC shows a significant basal expression level (Mangan et al.,
2003). In this study we refer to an FFLk involved in anaerobic
adaptation of the opportunistic pathogen P. aeruginosa. Dur-
ing an environmental shift to anoxic conditions this organism
can efficiently adapt to dissimilatory denitrification which is a
respiratory process where nitrate is used instead of oxygen as
electron acceptor for energy generation. While, oxygen is the
energetically most favourable electron acceptor, dissimilatory
nitrate respiration is the system with highest energy yields in
anaerobic environments (Strohm et al., 2007). The two envi-
ronmental signals “loss of oxygen” and “presence of nitrate”
are sensed by the regulator Anr and the two-component system
NarXL, respectively. It has been shown in previous analyses,
that the narXL operon is constitutively expressed under aero-
bic conditions and is induced about two-fold after anaerobic
induction (Fig. 1B) (Schreiber et al., 2007). We argue, that
the resulting decreased response time to anaerobic pulses might
be a tradeoff between the essential need for energy production
versus the cost-intensive biosynthesis of the nitrate reducing en-
zyme apparatus. Such a balancing of cost and increased fitness

seems to play a major role in the evolutionary selection of pro-
tein expression levels and network motifs (Lan and Tu, 2013;
Dekel et al., 2005; Shachrai et al., 2010).

In this context, we analyzed various models in order to find
conditions where a FFLk is generally beneficial in comparison
to a FFL without a basal expression. An optimal net-benefit re-
lation with a non-trivial, i. e. non-vanishing and non-complete,
basal expression mirrors an evolutionary advantage of a FFLk.
The paper is organized as follows: First the modeling approach
of the feed-forward loop is generally introduced in Sec. 2. In
the following Sec. 3 a linear modeling approach is discussed.
There, we show that the use of linear influence functions is not
suitable to demonstrate a non-trivial optimal net-benefit rela-
tion. The first argument for an evolutionary advantage is found
in Sec. 4 using a nonlinear model with an optimal net-benefit
function. However, the short delay time and ability of fast target
production accounts for significant costs in this model. Directly
after a signal switch to anaerobic phases the instantaneous net-
benefit of this model is negative, which is not suitable to explain
an evolutionary advantage because such a situation would even-
tually lead to cell death. This model is able to explain the ad-
vantage of the basal expression but not the evolutionary stability
of the whole system. Consequently, Sec. 5 extends the model
by an energy storing mechanism, that integrates the mentioned
costs and turns their utilization into the advantage of a rapid
change to anaerobic respiration. This model with an energy
store allows for a better understanding of the essential role of
the basal expression. However, the use of linear influence func-
tions again does not provide arguments for any optimality of a
non-vanishing and non-complete basal expression. Finally, the
model with the energy store and the nonlinearities were com-
bined, and we will present a simple mathematical model un-
derlining the evolutionary advantage of the basal expression.
We conclude with numerical simulation results and a discus-
sion in the context of anaerobic adaptation and pathogenicity of
P. aeruginosa.

2. Modeling the feed-forward loop

The generalized feed-forward-loop model contains a system
of three differential equations corresponding to the two regula-
tors x and y and the target z. For simplicity, transcription and
translation were modeled as one process, so the state variables
represent protein levels. All state variables are normalized to
one, max x = max y = max z = 1, where the value 1 means
maximum abundance of the respective protein. The degrada-
tion rates of the regulators x and y and the target z are deter-
mined by their own concentrations and assumed to be identical.
A normalization of the time scale gives the dynamical system

ẋ = sx − x, (1)
ẏ = gk(x) − y, (2)
ż = m(x, y) − z. (3)

The first regulator x is induced by the signal sx. The signal sy

is assumed to be constant. Here, sx = sx(t) is simplified as a
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piecewise constant function, which switches between the values
0 for no stimulus and 1 for activating stimulus. All points of
switching between zero and one are called Ti with Ti+1 > Ti

and T0 = 0.

sx(t) =

{
0 if t ∈ [T2i,T2i+1[,
1 if t ∈ [T2i+1,T2i+2[, i ∈ Z. (4)

In the following T1 is the time of the first switch from no
stimulus to an activating stimulus. The production of the second
regulator y depends on the regulation gk(x), which includes the
level of basal expression k ∈ [0, 1] and the first regulator x. Fi-
nally, the target z is induced by x and y via the function m(x, y).

The regulations gk(x) and m(x, y) are monotonously increas-
ing functions in each component. Since a full presence of the
regulators generate a maximized expression, we get the condi-
tions

gk(0) = k, gk(1) = 1 ∀k ∈ [0, 1] and m(1, 1) = 1. (5)

A higher basal expression provokes a higher regulation of the
transcription factor y, i. e. gk(x) > g`(x) ≥ 0 is true for k > ` and
for all x ∈ [0, 1]. So, gk needs to be monotonously increasing
in k.

The net-benefit C is produced by the benefit minus the costs
of the feed-forward-loop. The production and maintenance of
regulator y and the target z is an energy consuming process with
cost factors ηy and ηz, respectively. However, the availability of
z is beneficial and increases the fitness under the appropriate
environmental condition when the signal sx is present.

Therefore, we define the net-benefit by

C = lim
T→∞

1
T

T∫
0

sxz − ηygk(x) − ηzm(x, y) dt. (6)

The net-benefit is well defined whenever the limit on the right
hand side exists. We show below, that periodic excitations sx

lead to periodic x, y, z, and thus, T -periodic solutions of system
(1 - 3) provide the net-benefit functional

C =
1
T

T∫
0

sxz − ηygk(x) − ηzm(x, y) dt. (7)

The integrand ck = sxz − c̃k = sxz − ηygk(x) − ηzm(x, y) in
Eq. (7), i. e. the time-dependent difference of cost and benefit,
is called the instantaneous net-benefit with c̃k as instantaneous
cost.

In order to discuss the influence of the basal expression k to
the net-benefit and a possible optimal k, we need some prelim-
inary facts about the system (1 - 3) formulated in the following
lemmas.

Lemma 2.1.
The differential equation u̇ = f −u with the excitation f has the
solution

u = e−tu(0) +

t∫
0

eθ−t f (θ) dθ. (8)

A T-periodic excitation leads to the periodic steady state

L[ f ] = u =
e−t

1 − e−T

T∫
0

eθ−T f (θ) dθ +

t∫
0

eθ−t f (θ) dθ. (9)

Proof. A simple calculation proves the lemma. �

The periodic steady state L[ f ] = u in Eq. (9) defines the
linear operator L : L1([0,T ])→ L1([0,T ]).

We emphasize the dependence of the solution on the basal
expression by an index k. The periodic case provides x = L[sx],
yk = L[gk(x)] and zk = L[m(x, yk)].

Lemma 2.2. Solutions (x, yk, zk) and (x, y`, z`) of system (1 -
3) with k ≥ ` ≥ 0 and yk(0) ≥ y`(0) and zk(0) ≥ z`(0) obey
yk(t) ≥ y`(t) and zk(t) ≥ z`(t) for all t > 0.

Proof. Due to Eq. (8) in Lemma 2.1, the monotonicity of gk(x)
in k implies the monotonicity of the solution yk(t) in k. Fur-
thermore, yk(t) depends monotonously increasing on the initial
value yk(0).

Analogously, the monotonicity of the excitation m(x, yk) in
yk leads to a target zk(t) which increases monotonously with
zk(0) and with k. �

In the case of a periodic signal sx(t), any transient phase fades
out, and the analogous argumentation shows the monotonicity
of yk = L[gk(x)] and zk = L[m(x, yk)] in k. Therefore, an or-
ganism with basal expression, i. e. with k > 0 has a higher con-
centration of the regulators yk and thus a higher expression of
the target zk for every periodic steady state and for every system
behavior with identical initial conditions.

3. Linear model

The simplest cases for gk(x) and m(x, y) are linear functions
in each component, so we call the model (1 - 3) the linear model
by using

gk(x) = k + (1 − k)x and m(x, y) = xy. (10)

Lemma 3.1. The first switch at T1 and the time after the switch
τ in the system (1 - 3) with the initial values x(0) = 0, yk(0) = k
and zk(0) = 0 induces the growth behavior

x(T1 + τ) = O(τ) and yk(T1 + τ) = k + O(τ2).

The additional assumption m(x, y) = O(xy) for small x and y
assures

zk(T1 + τ) = kO(τ2) + O(τ4).

Proof. A calculation using the linear constitutive functions in
Eq. 10 and the Hartman-Grobman theorem provide the proof. �

Lemma 3.1 shows that in all situations the instantaneous costs
c̃k = ηygk(x) + ηzm(x, yk) = ηyk + O(τ) are much higher for
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small τ than the benefit sx(T1 + τ)zk(T1 + τ) shortly after the
first switch (Fig. 2 D).

The FFL model (Eqs. 1 - 3) results in a negative instanta-
neous net-benefit ck at t = T1 + τ for small τ > 0, see Fig. 2D,
and thus, it cannot explain the evolutionary stability of this bac-
terial system. Despite the negative instantaneous net-benefit,
the model is tested for optimality in the basal expression k.

In the following, we prove that the net-benefit functional (7)
cannot have a strong maximum with k ∈]0, 1[ if the linear ac-
tivations (10) are used. The idea behind this is, to show that
C = C(k) is a linear function in k. For that purpose, the linear
model cannot explain a selective advantage for FFLk compared
with FFL0 under the given assumptions.

Theorem 3.1.
The linear model has no strongly optimal k in the net-benefit
C = C(k).

Proof.
Using the linearity of the operator L and Eq. (10), we write the
solution of system (1 - 3) as

x = L[sx] and yk = L[k + (1 − k) x].

With y0 = L(x) in the absence of a basal expression, we find

yk = k + (1 − k) y0 and
zk = L[xyk] = L[x (k + (1 − k) y0)]

= ky0 + (1 − k) L[y0x].

The net-benefit (7) with these calculated solutions reads as

C(k) =
1
T

T∫
0

sx (ky0 + (1 − k) L[y0x]) − . . .

− ηy (k + (1 − k) x) − ηzx (k + (1 − k) y0) dt,

where x = L[sx] and y0 = L[x] = L[L[sx]] are independent of
k. Therefore, the net benefit has the form

C(k) =
1
T

T∫
0

Q1(sx, ηy, ηz) · k + Q2(sx, ηy, ηz) dt.

with the time-dependent coefficients

Q1 = sx(y0 − L[y0x]) − ηy(1 − x) − ηzx(1 − y0)

and
Q2 = sxL[y0x] − ηy − ηzx.

The net-benefit functional is a linear function in k. Hence,
strong optima of the net-benefit occur only at zero or one,
depending on the sign of Q1. �

A typical simulation result for a fluctuating environment with
cyclic changes between zero stimulus and activating stimulus
is shown in Fig. 2. The plot includes the transient phase and
shows how the periodic solution is approached. In particular, it
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Figure 2: Simulation results in a periodic environment using the linear model.
The plots show the response behaviour of x (A), y (B) and z (C) as well as
the net-benefit of the system (D). Activating pulses are denoted by gray back-
ground. The expression levels k were set to k = 0, 0.2, 0.4, 0.6, 0.8 (solid and
dashed, alternately from beneath) and k = 1 (dotted). The cost factors were set
to ηy = ηz = 0.1.

is visible that higher basal expressions k leads to higher regula-
tor concentrations yk and to higher target expressions zk. That
still holds true even after the stimulating phases. This fading
out can be interpreted as a memory of the biological system.

The investigation has shown that the system behavior typical
for fluctuating environmental changes can be reproduced, but
the linear model cannot provide a reason for any evolutionary
advantage of a basal expression k ∈]0, 1[. Therefore, we need
to investigate different model extensions.

4. Nonlinear model

A possible model extension of the initial model to reach a
strong maximum net-benefit with k ∈]0, 1[ consists in using
nonlinear activation functions gk(x) and m(x, y) instead of the
linear functions (10). We investigate system (1 - 3) with the aim
of deducing an optimal net-benefit functional (7) with k ∈]0, 1[.

The saturated influence function

H(x) =
(1 + K)xh

xh + K
(11)

with the saturation constant K and the Hill coefficient h ≥ 1
fulfills H(0) = 0, H(1) = 1 and lim

x→∞
H(x) = 1+K. Accordingly

the half saturation of the function H(x) is at x̄ =
h
√

K.
We denote different saturated influence functions by indices

Hxy(x) =
(1 + Kxy)xh

xh + Kxy
,
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Figure 3: Production rates gk(x) of the second regulator y using the saturation
function in Eq. (11) with K = 0.07 and h = 3 (dashed line) in comparison to
the linear regulation in Eq. (10) with k = 0 and k = 0.6 (solid line).

where the substance scaled in x influences the production of
the substance denoted by y. Of course, the saturation constant
may depend on the involved substances. The Hill coefficient is
generalized for all saturated influence functions.

The activation functions

gk(x) = k + (1 − k)Hxy(x) and m(x, y) = Hxz(x)Hyz(y) (12)

obey the conditions in Eq. (5). In Figure 3 the linear and non-
linear activation functions gk are shown for two different basal
expression levels (k = 0 and k = 0.6). The saturation branch
with H(x) > 1 is not used in a realistic application of system
(1 - 3) because x ∈ [0, 1] as well as y ∈ [0, 1] holds true for all
t. Hence, the saturated influence function (11) is nonlinear for
x ∈ [0, 1] and a suitable parameter choice with 0 < K << 1
approximates a saturation for values x near 1.

Now, we prove that a suitable parameter choice in the nonlin-
ear saturated influence function can provide an optimum in the
net-benefit functional (7) with k ∈]0, 1[. So, we will see that it
is possible to show an argument for the evolutionary advantage
of a non-trivial basal expression in a nonlinear model.

Theorem 4.1.
There exist nonlinear influence functions (12) such that the
model (1 - 3) has an optimal net-benefit C(k) for k ∈]0, 1[.

Proof. The notation yk and zk are again used to emphasize the
dependence of the solution of system (1 - 3) on the basal expres-
sion k. We consider the derivative of the net-benefit function in
(7)

C′(k) =
1
T

T∫
0

sx
∂zk

∂k
− ηy

∂gk(x)
∂k

− ηz
∂m(x, yk)

∂k
dt.

With the notations

γk(x) =
∂gk(x)
∂k

≥ 0 and my(x, y) =
∂m(x, y)
∂y

and again with yk = L[gk(x)] and zk = L[m(x, yk)], the linearity
of L provides

∂yk

∂k
= L[gk(x)] γk,

∂m(x, yk)
∂k

= my(x, yk) L[gk(x)] γk

and
∂zk

∂k
= L[m(x, yk)] my(x, yk) L[gk(x)]γk.

Now, we have the expression

C′(k) =
1
T

T∫
0

γk

(
(sxL[m(x, yk)] − ηz) my(x, yk) L[gk(x)] − ηy

)
dt

or written as

C′(k) =
1
T

T∫
0

γk

(
(sxzk − ηz) yk my(x, yk) − ηy

)
dt. (13)

The influence function m(x, y) can be chosen in a manner
that my(x, 1) = my(x, y1) > 0 is very small and that my(x, y0) is
larger for all occurring values y0(t). If now ηz is small enough
to assure a positive integral sxzk−ηz for all k, a suitable ηy leads
to

C′(0) > 0 and C′(1) < 0

and therefore to the existence of a strong maximum of the
net-benefit function C(k) with k ∈]0, 1[. �

The last argument for the choice of suitable parameters be-
comes more comprehensible when we consider the extreme
scenario of a very fast oscillating external signal sx. For
Ti+1 − Ti → 0 for all i, the solution tends to constant functions
x → s̄, yk → gk(s̄) and zk → m(s̄, gk(s̄)). Then, the considered
derivative of the net-benefit functional tends to

C′(k)→ γk(s̄)
([

s̄ · m(s̄, gk(s̄)) − ηz
]
gk(s̄) my(s̄, gk(s̄)) − ηy

)
.

The choice ηz < s̄ · m(s̄, g0(s̄)) and a very small derivative
my(s̄, 1) � my(s̄, g0(s̄)) near the full activation y1 = 1 with[

s̄m(s̄, 1) − ηz
]

my(s̄, 1) <
[
s̄m(s̄, g0(s̄)) − ηz

]
g0(s̄) my(s̄, g0(s̄))

allows us to choose ηy so that the assertion is fulfilled.
Just like the linear model, the nonlinear FFL model shows a

negative instantaneous net-benefit ck directly after the start of
the first pulse at T1. In Fig. 4 the net-benefit C(k) is shown
for changing basal expression levels k. The time after the first
switch is defined as τ = t − T1.

Due to the availability of a strong maximum net-benefit with
k ∈]0, 1[, the model should be extended by maintaining the ad-
vantage of the basal expression and erasing the negativity of the
instantaneous net-benefit. Therefore, we investigate the perfor-
mance of the circuit and embed it in a basic model that mimics
the energy flow within a cell in the next section.
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5. Model expansion by energy storing

So far we have concentrated on the net energy gain exclu-
sively mediated by the regulatory circuit. This net energy gain
has been identified with population growth. In particular, an in-
stantaneous net energy loss leads to a decrease of the population
size. However, in general, cells incorporate an energy storage
system that allows for starvation without immediate death. For
instance many bacteria, including P. aeruginosa, store energy
in polyhydroxyalkanoates (PHAs) and

polyphosphates (PolyPs) to compensate for fluctuating en-
vironmental conditions (Chan et al., 2006; Achbergerová and
Nahálka, 2011). In contrast, mainly ATP, but also other
molecules as acetyl-CoA and NADH supply energy for imme-
diate use. We embed our model in a larger structure addressing
this energy storage system.

The storing system consists of two components: energy im-
mediately available for usage ã (“distributor”) and energy al-
located to long-term store b (“store”) (Langemann and Re-
hberg, 2010). Both components have some target size or set-
point ãset resp. bset. If ã < ãset, there is not enough energy
for maintenance and physiological processes available, and the
cell starves. If ã > ãset, the surplus of energy can be stored
or used for reproduction. Similarly, b < bset may be detrimen-
tal, as time intervals without nutrient may lead to cell death;
on the other hand, if b > bset, energy is stored that could be
used for reproduction. In our model, we do not address ã di-
rectly, but a = ã − ãset, see Fig. 5. Note, that a may become
negative. The considerations above indicate that the flow j1
from a to b is proportional to bset − b (we allow a negative
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Figure 5: Expanded model with energy storing capacity in b and distributor a.
The (x, y, z)-system is included as sub-model, marked by the dotted rectangle.
Energy flows are marked by solid lines, signals by dashed lines, and the double
arrow indicates the influence of z on the energy flow.

flow here), and the flow j2 from b to a is proportional to a− b+,
where a− = (|a| − a)/2 = |min(a, 0)| denotes the negative part
of a, a+ = (|a| + a)/2 = max(0, a) the positive part of a and
b+ = (|b| + b)/2 = max(0, b) denotes the positive part of b.

All energy flows enter or leave the central distributor a. The
energy inflow jin = jin(sx, z) depends on the signal sx = sx(t)
and is modulated by the target z. We define jin = 1 − sx(t) +

sx(t) z(t). A signal with activating stimulus sx(t) = 1 provokes
an energy flow mediated by z into the distributor a, cf. Eq. (4),
and the last summand is non-vanishing. A signal without a
stimulus sx(t) = 0 affects an energy flow of size one, and the
term 1 − sx(t) is non-vanishing.

The circuit builds up proteins y and z at rates gk(x) resp.
m(x, y). As before, we assume that the energy required reads
jy = ηy gk(x) and jz = ηz m(x, y). To model the energy needed
for general maintenance, we define an additional energy out-
flow jout which is assumed to be constant in time.

The last, but important modeling step is to replace the net
benefit C, see Eq. (6), by a compartment w that integrates all
energy that is available for growth over time. Therefore, we de-
fine an energy flow jw that is transformed into cell growth, i.e.,
from a to w. The cell starts to grow at an excess of immedi-
ately available energy, i. e. when a > 0 holds true. We define
jw = αa+.
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Overall, the model equations read

ẋ = sx(t) − x,

ẏ = gk(x) − y,

ż = m(x, y) − z, (14)
ȧ = jin − j1 + j2 − jy − jz − jout − jw,

ḃ = j1 − j2,

ẇ = jw.

Parameters that maximize w in the long run are considered
to be optimal (Dekel et al., 2005). These parameters maximize
the mean fitness

W = lim
t→∞

w(t) − w(0)
t

(15)

The next proposition connects the basic model and its extended
version.

The introduction of an energy-storing capacity interprets the
increased energy need of the organism with basal expression in
a modified way. This energy need is not longer seen as costs,
but as the capability to use the stored energy faster.

It is clear, that the basal expression k > 0 is a cost in absence
of signal sx. Therefore, an organism with basal expression has
lower remaining energy to grow in these phases. On the other
hand, the energy in the store can be used faster if z is available.

Here, we demonstrate both effects by a periodic change of sx

with period T = 5, where the on phase sx(t) = 1 and the off

phase sx(t) = 0 are of identical length. Furthermore, we use the
linear influence functions in Eq. (10) and set

bset = 1, j1 = 1 − b, j2 = βa− b+

with the parameters α = 4, jout = 0.5, ηy = ηz = 0.1. Fig. 6
shows the simulation results for different basal expressions k
and a rather slow outflow β = 1 from the energy store.

The initial values are x(0) = 0, y(0) = k, z(0) = 0, a(0) =

0, b(0) = bset = 1 and w(0) = 0.
As shown in Fig. 6B+C, a higher basal expression leads to

higher production of transcription factor y and target z. In the
first moment of adaptation, the energy of the store is used to
produce both the y and z. In parallel, the energy in the distrib-
utor a and in the store b decreases while the fitness w stagnates
especially for higher k values Fig. 6D-F.

This stagnation remains until the store is refilled. An organ-
ism with basal expression gets a considerate inflow jin and is
able to grow again earlier after the switch. In contrast, organ-
isms with low basal expression need more time for adaptation,
and they apparently grow faster for the first few cycles. This
advantage is lost when the benefit of z raises the energy in-
flow jin and organisms with high basal expression overtake all
others. Even after four periods the organism with the highest
basal expression has the most successful fitness in this example
(Fig. 6F).

After the end of a signal, both the transcription factor and
the target are still more abundant in organisms with basal ex-
pression. This can be considered as a sort of memory since
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Figure 6: Simulation results in a periodic environment using the linear store
model. In accordance with Fig. 2 the plots show the response behaviour of x
(A), y (B) and z (C). The behaviour of distributor a and store b is shown in
D and E, respectively. Increasing expression levels k lead to higher y, z, a, b
while the fitness w is lower in the initial periods but overtakes after some cycles
(F). Activating pulses are denoted by gray background. The expression levels k
were set to k = 0, 0.2, 0.4, 0.6, 0.8 (solid and dashed, alternately from beneath)
and k = 1 (dotted).

organisms are better prepared in an upcoming environmental
change.

The role of the distributor in the model is similar to the one
of the store, as it acts like a short time energy store. The role
of the compartment a can be restricted to a pure distributor if
the outflow j2 from the store is increased under energy need by
increasing β. In the limit situation β → ∞, where the energy
level in the distributor is constant, we have a distribution node
without storing function. The system of ordinary differential
equations transforms into a differential algebraic system with a
constraint. On the other hand, the distributor can be seen as a
distributing system in the organism which has a small storing
function.

An extreme scenario with very fast switching for a model
without a store is described in section 4, where x → s̄, yk →

gk(s̄) and zk → m(s̄, gk(s̄)) were found. For a very fast oscillat-
ing signal sx the state variables a and b tend to constant func-
tions. Consequently we get j1 = j2 and jw = jin − jy − jz − jout.
The growth ẇ = jw is calculated depending on s̄ as

ẇ = 1 − s̄ + s̄(t)z − ηygk(s̄) − ηzm(s̄, gk(s̄)) = const.

The introduction of an energy storing system enables us to
consider the initial production of the regulator y and the target
gene z as an advantage for the organism. This can be seen in
contrast to the previous sections 3 and 4 where the initial pro-
duction was only interpreted as costs. Directly after the switch
to the first pulse at t = T1 + τ, the growth ẇ = jw shows no
negativity. The fitness w of the linear FFL model with an en-
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Figure 7: The fitness w of the linear model with an energy store system is shown
for various basal expression levels k for times τ = t − T1 after the first switch
T1. The cost factors are ηy = ηz = 0.1 with α = 4, β = 10 and jout = 0.5. In
this model, the fitness shows no negativity at all.

ergy store is shown in Figure 7 with cost factors ηy = ηz = 0.1,
α = 4, β = 10 and jout = 0.5.

The use of linear influence functions (10) generates situa-
tions, where the long-time optimum of the fitness is at k = 1,
see Fig. 6F. Since the long-time solution depends strongly
monotonous on k, the linear model including a store is not suit-
able to explain the evolutionary advantage of a non-trivial basal
expression.

In order to generate a model with the explanatory power in-
cluding a store and the existence of a strong optimal basal ex-
pression discussed in Sec. 4, we combine both parts. Therefore,
we now consider the system (14) with suitable nonlinear func-
tions gk(x) and m(x, y). We assume, that the nonlinear activa-
tion functions gk(x) and m(x, y) are the same as in the nonlinear
model without an energy store in Eq. 12.

The fitness w of the linear and the nonlinear store model oc-
curs by different signal lengths and different basal expression
levels. In the linear store model the maximal fitness w depend-
ing on the basal expression level k is found for minimal or for
maximal basal expression. Using nonlinear activation functions
different reaction times after environmental switching are ex-
pected. This is a sufficient condition for a strong maximal basal
expression.

The model with the energy store requires the same optimal
basal expression k as the model without an energy store, if
the production functions are equal in both models. Finally the
equality of the optimal basal expression k for the models with
and without an energy store has to be proven.

Lemma 5.1. We assume that sx(t) is periodic, and that the sys-
tem (x, y, z, a, b) tends to a periodic solution. Then, a parameter

set that optimizes model (14) also optimizes model (1)-(3) with
cost functional (6) and vice versa.

Proof: We relate the mean fitness W in Eq. (15) and the net
benefit C in Eq. (7) in the case of periodic solutions. We assume
that the signal and the solution for model (14), apart from w(t),
are periodic with period T . In particular, this implies that the
solution (1)-(3) is T -periodic, too. Integrating the differential
equations over this period, we obtain

0 =

T∫
0

ḃ(t) dt =

T∫
0

j1(t) − j2(t) dt

from the equation for b and next, the equations for a and w
provide

w(T ) − w(0) =

T∫
0

jw dt =

T∫
0

jin − jy − jz − jout dt

=

T∫
0

1 − sx(t) dt − joutT + T C

= A + T C

where we use

T∫
0

ȧ(θ) dθ = 0 and A =

T∫
0

1 − sx(t) dt − joutT.

Note that A does not depend on the model parameters. Hence,
in each period, the gain of variable w equals C plus a constant.
Thus, W = A/T+C. The parameters optimizing C also optimize
W and vice versa. �

The models with and without an energy store lead to the same
optimal basal expression. As shown in Lemma 5.1 the outlined
energy store has no influence on the optimal basal expression.
The optimal k leading to the optimized net-benefit C or to the
optimized mean fitness W was determined for a wide range of
periodic signals using the linear and nonlinear production func-
tions. Simulations were carried out using the previously defined
parameters at different signal lengths in a periods T . One pe-
riod consists of a preceding time interval of length T1 followed
by the signal that lasts until the next switching point at time
T2 = T . Hereby, the ratio T1/T gives the proportion of time in
which the signal sx = 0.

The linear model shows two stages. They are first, a full
basal expression with k = 1 and second, a vanishing basal ex-
pression with k = 0. Depending on the environment the value
of k switches between both levels, see Fig. 8A. Consequently,
the linear production functions are not sufficient to explain the
advantage of a non-trivial basal expression level k ∈]0, 1[.

However, the model with nonlinear production functions
show a continuous transition from zero to a full basal expres-
sion, see Fig. 8B. These models show a strong optimum and
are able to explain the advantage of a FFLk type regulation. Re-
markably, for longer periods (in simulation 8 at around T > 12)
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Figure 8: Optimal basal expression level k in various periodic environments determined by the period length T and the switching point T1 which is the time point
where the signal is turned on. In the linear model without a store or with a store (A) no optimal k exists while the nonlinear model with and without an energy store
(B) shows a smooth region with k ∈]0, 1[.

with sufficiently long parts without signal the same optimal
basal expression value is found. This result is due to the fact
that the state variables x, y and z decrease closely to their steady
state level when the signal is lacking for longer time. However,
long time-ranges without signal are a permanent cost factor in a
FFLk regulatory circuit. Starting the signal from low-level state
variables a higher basal expression is beneficial since the tar-
get is produced faster. In the case that the signal is not absent
for a sufficiently long period of time, x, y and z are not com-
pletely degraded and the full benefit of a basal expression is not
exploited. Here, parts of the induced compounds from the pre-
ceding stimulus are still provided, which can be considered as
a kind of memory effect (Wolf et al., 2008).

6. Conclusion

From an abstract modeling viewpoint, we have investigated
a model family of four mathematical models, which was gener-
ated by model extensions of Eqs. (1 -3 ) with linear production
functions in section 3 in two directions. The first direction is the
consideration of nonlinear activation functions in section 4, and
the second direction is the inclusion of an energy storing com-
partment in section 5. The first extension enabled us to find an
optimal basal expression k by using nonlinear production func-
tions, and the second extension helped to reproduce a realistic
behavior with a positive net-benefit, here redefined as growth,
for organisms with FFLk type regulation. Each extension di-
rection reproduces an observation from real biology. Finally,
the model combining both extensions inherits the reproduction

of both observations. We can conclude, that the model exten-
sions are robust with respect to each other and can be mapped to
a certain observation from reality. The deterministic approach
was chosen for the reason that the feed-forward system does
not incorporate multi-stability. It is expected that stochastic
effects merely lead to a fluctuation well centered around one
mean value. In the long run, the fluctuations average out, and
the efficiency of the system resembles in large parts that of the
deterministic system considered here if the parameters are av-
eraged in an appropriate way.

From the perspective of evolutionary biology FFLk type reg-
ulation produces costs in the absence of signal sx. Thus, under
this condition a FFL type regulation without a basal expression
should be more beneficial with high selection pressure against
FFLk. Using the example of anaerobic adaptation in P. aerug-
inosa, the aerobic phases in a fluctuating environment cause
permanent costs. However, the benefit arises during the shift
to anaerobic conditions. In real life P. aeruginosa encounters
mainly microaerobic and anaerobic conditions while living in
the soil, on surfaces as biofilms or in the anaerobic mucus of
cystic fibrosis patients (Schobert and Jahn, 2010). By apply-
ing the nonlinear store model it was shown that organisms with
basal expression of the second regulator are better prepared to
changing conditions. Hereby, the growth behaviour of the target
genes z depends on the basal expression. The higher the basal
expression is the earlier the production of the anaerobic system
starts (Lemma 3.1). However, for a minimization of cost and
a maximization of benefit a tradeoff between zero and maxi-
mum basal expression arises in fluctuating environments. The
optimal basal expression k depends on the degree of environ-
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mental fluctuation. In non-fluctuation environments no basal
expression is required. On the other hand in extreme environ-
ments with nearly permanent sx stimulus or under high fluctu-
ation condition the optimum results in a full basal expression
level. This state is equal to an independent simple-AND acti-
vation by both regulators (Dekel et al., 2005). A strong optimal
basal expression exists only for pulses of sufficient length and
frequency.

For this reason we argue that the anaerobic regulation system
of P. aeruginosa is optimized to a balanced ratio of not too short
anaerobic pulses. One of the main hazardous ways of living of
P. aeruginosa is its persistence in biofilms e.g. in the airways
of cystic fibrosis patients or in the urinary tract during its in-
fections. It has been shown previously that the deeper layers of
biofilms are anaerobic while close to the surface increasingly
aerobic conditions are prevailing (Xu et al., 1998). In addition
permanent reorganization of the biofilm structure especially in
habitats with permanently flows, like urinary tract, leads to con-
tinuous adaptation demand (Lieleg et al., 2011). In this context
FFLk type regulation might be important for biofilm formation
on surfaces and as a consequence for pathogenicity. The results
also confirm that P. aeruginosa is a typical environmental bac-
terium adapted to many habitats rather than a highly specialized
pathogenic organism adapted to the human host. This spectrum
of ways of living is reflected by the versatile regulatory system
employed by P. aeruginosa. Consequently, this mechanism of
adaptation surely contributes to the evolutionary success of this
group of bacteria.

There is increasing evidence that bacterial behavior strategies
are often not just optimized for the actual conditions, but rather
to cope with unpredictable fluctuating environments. Various
strategies are known, including bet hedging and other forms
of phenotypic heterogeneity, high mutation rates, or develop-
ment of mobile genetic elements (Turrientes et al., 2013; Heuer
et al., 2008; Salathé et al., 2009; Engelstädter and Moradigara-
vand, 2014; Gomes et al., 2013; Davidson and Surette, 2008).
All of these include investment (costs) under certain conditions
which pay off if the environment changes. Obviously, such
strategies meet a central requirement for many species under
natural conditions. From this perspective, it can be speculated
that the FFLk strategy may be more common, but sometimes
overlooked as low basal gene expression is difficult to measure
and could be misinterpreted in terms of unavoidable, but pur-
poseless noise.
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Achbergerová, L., Nahálka, J., 2011. Polyphosphate–an ancient energy source
and active metabolic regulator. Microb. Cell. Fact. 10, 63.
URL http://dx.doi.org/10.1186/1475-2859-10-63

Alon, U., 2007. Network motifs: theory and experimental approaches. Nat.
Rev. Genet. 8 (6), 450–461.
URL http://dx.doi.org/10.1038/nrg2102

Chan, P.-L., Yu, V., Wai, L., Yu, H.-F., 2006. Production of medium-chain-
length polyhydroxyalkanoates by Pseudomonas aeruginosa with fatty acids
and alternative carbon sources. Appl. Biochem. Biotechnol. 129-132, 933–
941.

Davidson, C. J., Surette, M. G., 2008. Individuality in bacteria. Annu. Rev.
Genet. 42, 253–268.
URL http://dx.doi.org/10.1146/annurev.genet.42.110807.091601

Dekel, E., Mangan, S., Alon, U., 2005. Environmental selection of the feed-
forward loop circuit in gene-regulation networks. Phys. Biol. 2 (2), 81–88.
URL http://dx.doi.org/10.1088/1478-3975/2/2/001

Eichenberger, P., Fujita, M., Jensen, S. T., Conlon, E. M., Rudner, D. Z., Wang,
S. T., Ferguson, C., Haga, K., Sato, T., Liu, J. S., Losick, R., 2004. The
program of gene transcription for a single differentiating cell type during
sporulation in Bacillus subtilis. PLoS Biol. 2 (10), e328.
URL http://dx.doi.org/10.1371/journal.pbio.0020328
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