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Peroxisome proliferator-activated receptor gamma (PPARG) is a mas-
ter transcriptional regulator of adipocyte differentiation and a ca-
nonical target of antidiabetic thiazolidinedione medications. In rare
families, loss-of-function (LOF) mutations in PPARG are known to
cosegregate with lipodystrophy and insulin resistance; in the gen-
eral population, the common P12A variant is associated with a de-
creased risk of type 2 diabetes (T2D). Whether and how rare
variants in PPARG and defects in adipocyte differentiation influence
risk of T2D in the general population remains undetermined. By
sequencing PPARG in 19,752 T2D cases and controls drawn from
multiple studies and ethnic groups, we identified 49 previously un-
identified, nonsynonymous PPARG variants (MAF < 0.5%). Consid-
ered in aggregate (with or without computational prediction of
functional consequence), these rare variants showed no association
with T2D (OR = 1.35; P = 0.17). The function of the 49 variants was
experimentally tested in a novel high-throughput human adipocyte
differentiation assay, and nine were found to have reduced activity
in the assay. Carrying any of these nine LOF variants was associated
with a substantial increase in risk of T2D (OR = 7.22; P = 0.005). The
combination of large-scale DNA sequencing and functional testing
in the laboratory reveals that approximately 1 in 1,000 individuals
carries a variant in PPARG that reduces function in a human adipo-
cyte differentiation assay and is associated with a substantial risk
of T2D.

ype 2 diabetes (T2D) is a common, complex disease caused

by insulin resistance in multiple peripheral tissues combined
with inadequate beta-cell response. In the general population, a
nonsynonymous P12A variant in peroxisome proliferator-acti-
vated receptor gamma (PPARG), a transcriptional regulator of
adipocyte differentiation and canonical target of antidiabetic
thiazolidinediones, has been associated with decreased risk of
T2D (1, 2). It has been challenging to document the impact of this
common polymorphism on function in human cell-based assays. For
P12A, the variant is very common, but the magnitude of effect on
disease risk is modest (20% decreased risk of T2D) (3). In rare
families with syndromic lipodystrophy, loss-of-function (LOF) mu-
tations in PPARG that prohibit adipocyte differentiation in vitro,
have been found that segregate with lipodystophy, insulin resistance,
and T2D (4, 5). The magnitude of effect on individual and cellular
phenotypes is strong, but the mutations are extremely rare. Whether
LOF mutations in PPARG play a broader role in T2D, and whether
these mutations implicate a role for adipocyte differentiation in
T2D, have not previously been characterized.

More generally, exome sequencing now enables the systematic
identification of all nonsynonymous variants, common and rare, in
population and clinical cohorts. However, interpretation of rare
variants—even those that alter protein sequence—is challenging:
The overwhelming majority of nonsynonymous variants in any
given sample are extremely rare, and only a minority alters protein
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function. For example, the NHLBI exome Sequencing Project
identified 285,000 nonsynonymous variants in 2,440 individuals
(6). Eighty-two percent were previously uncharacterized and over
half were observed in a single individual. Bioinformatic analysis
predicted that only 2% significantly alter protein function.

We hypothesized that individuals in the general population might
harbor rare, nonsynonymous variants in PPARG, that only a subset
of these variants would alter function in an adipocyte differentiation
assay, and that such variants might be associated with a risk of T2D.
We further hypothesized that the effect of these variants on type 2
diabetes risk in the general population might in some cases be less
severe than that estimated in individuals ascertained based on
syndromic lipodystrophy (7). To evaluate this hypothesis we se-
quenced PPARG in 19,752 multiethnic T2D cases/control samples,
characterized each nonsynonymous variant through parallel bio-
informatic and experimental approaches, and compared the T2D
risk of individuals carrying benign and LOF variants.

Results

Identification of Nonsynonymous PPARG Variants from the Population.
After sequencing and analyzing all exons of PPARG in 19,752
multiethnic individuals (9,070 T2D cases and 10,682 controls;

Significance

Genome sequencing of individuals in the population reveals
new mutations in almost every protein coding gene; inter-
preting the consequence of these mutations for human health
and disease remains challenging. We sequenced the gene
PPARG, a target of antidiabetic drugs, in nearly 20,000 indi-
viduals with and without type 2 diabetes (T2D). We identified
49 previously unidentified protein-altering mutations, charac-
terized their cellular function in human cells, and discovered
that nine of these mutations cause loss-of-function (LOF). The
individuals who carry these nine LOF mutations have a seven-
fold increased risk of T2D, whereas individuals carrying muta-
tions we classify as benign have no increased risk of T2D.
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SI Appendix, Table 1), 53 nonsynonymous PPARG variants were  greater than 1% in any ancestry group we studied (S Appendix,
observed. Only one of these variants (the well-studied PPARG ~ Table 2). As expected, carriers of the common PPARG P12A
P12A variant, rs1801282) demonstrated a minor allele frequency  variant showed a reduced risk of T2D, consistent with previous

Table 1. Rare, nonsynonymous variants in PPARG identified from 19,752 T2D case/controls

!
o

Location on Base Amino acid Countsin  Counts in T2D Bioinformatic OR
chromosome 3 change change Ancestral geography controls cases prediction® (95% ClI) P
" 12458632 G>T A417S European 0 1 Deleterious
12447449 G>T D230Y South Asian 0 1 Deleterious
a 12447410 G>A E217K Hispanic 0 1 Deleterious
12458359 G>A E326K Hispanic 0 1 Deleterious
12434116 T>G F162Vv European 0 1 Deleterious
12434114 G>A G161D European 0 2 Deleterious
12434179 C>T H183Y Hispanic 1 0 Deleterious
12434133 C>G 1167M European, European American 1 1 Deleterious
12458374 A>G 1331V South Asian 1 0 Deleterious
12475511 A>G K462R Hispanic 0 1 Deleterious
12475583 A>C K486T South Asian 1 1 Deleterious
12434164 C>A L178I European 1 5 Deleterious
12458466 G>C L361F European American 1 1 Deleterious 2.1 0.12
12475403 C>T P426L European 0 1 Deleterious (0.82-5.45)
12475486 C>G P454A Hispanic 4 2 Deleterious
12422871 C>T Q121* European American 1 0 Deleterious
12422929 G>A R140H Hispanic, African American 1 1 Deleterious
12434126 G>C R165T European 0 2 Deleterious
12447479 C>T R240W South Asian 1 0 Deleterious
12458306 G>T R308L European 0 1 Deleterious
12458516 G>A R378K European 0 1 Deleterious
12475399 C>T R425C European 0 1 Deleterious
12422908 C>A S133Y European 0 1 Deleterious
12447507 C>G $249* European 0 1 Deleterious
12458613 C>A S410R Hispanic 1 0 Deleterious
12421260 C>G S47C East Asian 0 1 Deleterious
12458335 G>A V318M European 0 1 Deleterious
12447537 C>T A259V European American 1 0 Benign
12458594 C>T A404V Hispanic 0 1 Benign
12475457 C>T A444v European American 1 0 Benign
12421391 G>A A91T African American 3 0 Benign
12447572 G>A D271N European 0 1 Benign
12421266 A>C D49A Hispanic 1 0 Benign
12421267 T>G D49E African American 2 2 Benign
12475490 A>G E455G European American 1 0 Benign
12421355 G>A E79K European, East Asian 1 4 Benign
12393119 A>G 110V South Asian 1 1 Benign
12434131 A>G 1167V European 0 1 Benign
12447512 A>G 1251V Hispanic 0 1 Benign
12421253 A>T 145F African American 3 0 Benign
12458511 G>A M376I European 0 2 Benign
12421279 G>A M53I South Asian 1 0 Benign
12422880 A>G N124D South Asian 1 0 Benign
12475424 C>T P433L Hispanic, European 0 2 Benign
12458611 A>T 5410C European 0 1 Benign
12421343 A>C T75P Hispanic 1 3 Benign
12458209 G>A V276l European, Hispanic, African 5 6 Benign
American, East Asian
12458386 G>C V335L African American, Hispanic 11 9 Benign
12421262 G>A V48M European American 1 0 Benign
12421274 G>A V521 African American, East Asian, 3 2 Benign
European
12422856 T>G Y116D South Asian 1 0 Benign
12458216 A>G Y278C European 0 1 Benign

The variant position is based on human genome build NCBI36/hg18, and the amino acid position is based on the NCBI protein reference sequence
NP_005028.4. Release notes for this genome build are available at www.ncbi.nlm.nih.gov/genome/guide/human/release_notes.html#b36. Cl, confidence
interval.

*Stop codon.
TCriteria for deleterious: A variant must have a mammalian conservation LOD score >10 and be categorized as damaging by Condel (17) (Methods).
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reports (odds ratio = 0.85; 95% confidence interval 0.78-0.93; P =
0.0006) (3).

The remaining 52 variants were observed in 120 individuals
(Table 1), yielding an aggregate frequency of 0.6% in the
population. The most frequently occurring variant in any ethnic
group, p.V335L, was observed at a frequency of 0.7% (20 indi-
viduals of African-American ancestry). The majority of the var-
iants (33 of 52 or 63%) were observed in only a single individual.
Nonsynonymous variants were identified in every ancestry group
sampled: European, East Asian, South Asian, European Amer-
ican, African American, and Hispanic. Some variants were spe-
cific to individuals from one ethnic background, whereas others
were observed in individuals across multiple ethnic backgrounds.
Every individual with a rare, nonsynonymous PPARG was het-
erozygous for that variant and carried only one rare, non-
synonymous PPARG variant. The PPARG variants identified
were distributed across the entire protein-coding region and in-
cluded variants in all previously identified functional domains.
Two variants (p.Q121* and p.S249*) were predicted to result in
premature termination of the protein. Of the variants we iden-
tified, 49 are previously unidentified and 3 (p.R165T, p.V318M,
and p.R425C) have been previously reported to segregate with
disease in families with familial partial lipodystrophy 3 (FPLD3).

Association analysis for T2D was performed comparing indi-
viduals carrying any rare missense PPARG variant (with fre-
quency <1% in the study sample) to those who carried no such
variant; no significant association was observed (odds ratio of 1.36;
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95% confidence interval 0.87-2.11; P > 0.17). Next, variants were
classified as benign or deleterious (Table 1) based on bioinformatic
annotation combining computational prediction, evolutionary con-
servation, and variant frequency (restricted to variants observed in
a single individual or the less stringent minor allele frequency
<0.1%). The strongest association was for variants classified as del-
eterious (odds ratio of 2.11; 95% confidence interval 0.82-5.45);
again, the result was not nominally significant (P > 0.12) despite
nearly 20,000 samples.

Functional Assessment of Nonsynonymous PPARG Variants. Recog-
nizing that the majority of rare protein-coding variants are be-
nign or very mildly deleterious, and that computational
prediction remains imperfect (8), we set out to experimentally
characterize the function of each nonsynonymous PPARG vari-
ant by genetic complementation in an assay measuring differ-
entiation of human preadipocytes. Specifically, we developed
a quantitative adipocyte differentiation assay in human Simpson—
Golabi-Behmel syndrome (SBGS) preadipocytes by combining
high-content microscopy with a custom automated image
analysis pipeline (Fig. 14). This assay compared favorably with
standard triglyceride quantification methods using Oil Red O
staining and extraction (Fig. 1B) with the advantages of acceler-
ated throughput and an explicit measurement of total cell number.
To isolate the effect of exogenous PPARG variants on adipocyte
differentiation, preadipocytes were exposed to a submaximal dif-
ferentiation mixture that only permitted differentiation in the
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Fig. 1. High-throughput quantification of adipo-
cyte differentiation in response to exogenous PPARy.

(A) Preadipocytes are cultured in 96-well plates,

differentiated for 8 d, and stained for lipid (BODIPY)
and nuclei (DAPI). Each well is imaged in a high-
content microscope for lipid and nuclei. Adipocytes
l and undifferentiated cells are identified by the

overlay of lipid and nuclei from automated image
analysis. (B) Preadipocytes were plated at increasing
density and differentiated. Parallel samples were
subjected to image-based differentiation measure-
ment or Oil Red O staining followed by lipid ex-
traction and spectrophotometric quantification.
(C) Preadipocyte differentiation in response to increas-
ing doses of exogenous PPARy with and without
3-isobutyl-1-methylxanthine (IBMX). (D) Gene ex-
pression levels in preadipocytes of endogenous
and exogenous PPARy in response to increasing
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presence of functioning, exogenous PPARG (Fig. 1C) and main-
tained endogenous PPARG at background levels (Fig. 1D).

Each nonsynonymous PPARG variant identified from pop-
ulation-based sequencing was engineered into a construct in
vitro, and tested for its ability to rescue adipocyte differentiation
in SGBS preadipocytes (Fig. 24). The empirical distribution of
WT PPARG function in this assay was defined using multiple
independent replicates of WT PPARG clones, with reduced
function in the assay defined as adipocyte differentiation index
falling below this null distribution in a one-tailed ¢ test with a P <
0.05 threshold. Variants previously reported to be benign (Fig.
24, blue bars) and to cause LOF (Fig. 24, red bars) were gen-
erated and tested in parallel as positive and negative controls,
respectively. Among these previously characterized variants,
those characterized as benign (Fig. 24, blue bars) stimulate ad-
ipocyte differentiation with similar efficacy as WT PPARG
whereas those known to cause reduced protein activity (Fig. 24,
red bars) show decreased ability to stimulate adipocyte differ-
entiation to varying degrees. Consistent with prior work, variants
reported to segregate with disease in FPLD3 families show the
most severe LOF with those that reside in the DNA binding
domain (p.R165T, p.C159Y, and p.Y151C), almost completely
inactivating PPARG (9-11).

Using this assay we classified the 53 missense variants observed in
population screening. Forty-one of the rare missense variants were
scored as benign when tested in the assay: they stimulated adipocyte
differentiation in a manner that fell within the 95% confidence in-
terval based on replicates of WI PPARG. (The common P12A
variant was at the lower limit of the normal range.) However, 12
variants fell below the 95% confidence limit for WT PPARG con-
structs. Of the 12 with reduced activity, 3 were previously reported as
LOF mutations observed in patients with lipodystrophy, and 9 were
previously unidentified. Novel variants with reduced function were
identified in the DNA binding, the hinge, and the ligand-binding
domains of PPARG (Fig. 2B). Notably, whereas all previously
identified mutations in the DNA-binding domain (from families
segregating FPLD3) completely inactivate PPARG, in study samples
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ascertained for common disease, two partial LOF variants were
observed in the DNA-binding domain (p.R140H and p.E217K).

Each variant that displayed reduced activity in the assay was
retested for the ability to stimulate adipocyte differentiation in
the presence of varying doses of the PPARG agonist rosiglita-
zone. Consistent with previous reports (13), and the lack of
clinical efficacy of thiazolidinediones in FPLD3, complete
LOF variants are unresponsive even to 100-fold increased doses.
In contrast, some of the variants observed as having reduced
activity in the cellular assay (e.g., p.R140H, p.E217K, p.Y278C,
and p.M376I) were rescued to WT levels using a higher dose
(two- to fivefold) of rosiglitazone (Fig. 2B).

LOF Nonsynonymous PPARG Variants and T2D Risk in the Population.
Based on the experimental classification of variants in the adi-
pocyte differentiation assay, we repeated the analysis of associ-
ation to T2D in individuals carrying benign and functional
PPARG variants (Fig. 3). Of the 102 individuals harboring var-
iants classified as benign, half occurred in cases and half in controls
(52 T2D cases and 50 controls). In contrast, of the 16 individuals
harboring variants that cause reduced function in the assay, 14
occurred in cases of T2D and only 2 in controls. The estimated risk
of T2D was 1.17-fold (95% confidence interval 0.68-2.02) in car-
riers of a benign PPARG variant and 7.22-fold (95% confidence
interval 1.79-29.02; P = 0.005) in carriers of a PPARG variant with
reduced function in the assay. We examined the phenotypic char-
acteristics of these 16 carriers (where phenotypic data were avail-
able; Table 2), but did not observe compelling evidence that these
individuals were extreme outliers in the measured parameters.

Discussion

Based on a multiethnic sample of nearly 20,000 individuals, we
estimate that (/) approximately 6 in 1,000 individuals carry an
inherited rare coding variant in PPARG, (ii) 20% of these var-
iants demonstrate reduced function in an adipocyte differentia-
tion assay, and (iii) individuals who are heterozygous for the
latter class of variants have an estimated sevenfold increased risk

function in vitro
[CJpreviously unknown
[l known LOF
[Eknown benign

Fig. 2. Experimental characterization of rare PPARy
variants identified from population sequencing. (A)
Each PPARy variant was generated and tested for its
ability to rescue adipocyte differentiation in vitro.
From left to right PPARy variants are sorted by
in vitro function in three groups: (i) WT from in-
dependent experiments, (ii) previously identified
synthetic and human mutations, and (iii) variants
identified in population based exon resequencing.
Blue dashed lines denote the 95% confidence in-
terval of WT function. (B) Roziglitazone (rozi) dose-
response of PPARy variants identified as LOF. The
amino acid position along the PPARy protein is
shown. ECso WT denotes the rozi dose required to
achieve 50% of maximal WT response. AD, activation
domain; DBD, DNA-binding domain; LBD, ligand-
binding domain. Error bars indicate +1 SEM. Signifi-
cant differences compared with WT are noted: *P <
0.05; **P < 0.005; ***P < 0.0001. *Variants identified
in families with partial lipodystrophy.
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Fig. 3. T2D case/control status in multiethnic individuals harboring non-
synonymous PPARG variants, according to PPARG function in vitro. Each
point represents an individual variant; point size denotes the number of
individuals carrying that variant. Function in vitro was determined by the
ability of each variant to rescue adipocyte differentiation in comparison with
WT PPARG. The blue dashed line indicates the threshold for a one-tailed
t test below which variants are classified as LOF compared with WT PPARG
(P < 0.05). Odds ratios and P values for T2D case status among individuals
carrying benign and LOF variants were calculated as described in Methods.
*Variants observed only in a single case or control individual.

of T2D. Based on available clinical data, T2D patients who carry
such mutations have increased risk of T2D but may lack the
highly penetrant, extreme syndromic features observed in mu-
tation carriers who were ascertained based on lipodystrophy that
segregates in families.

Compared with the P12A variant, which has a smaller effect
size but a 150-fold higher frequency, these rare variants con-
tribute very modestly to the overall population burden of disease.

However, given their larger individual effect sizes, such variants
may prove useful for clinical risk prediction. An aggregated score
of common genetic variants at 18 loci (including PPARG P12A)
provided a 2.6-fold increased risk in individuals in high-score
versus low-score groups (12); our data suggests that functional
variants in PPARG may have effects larger than fivefold. How-
ever, only 0.1% of individuals with T2D are estimated to carry
such rare variants in PPARG, and it is expected that the few
individuals in the 0.1% tail of the distribution of risk based on
common variants might similarly have larger magnitude of risk.
A score that combines common and rare variants will be more
predictive than an approach that considers only rare variants, or
only common variants, alone.

The data presented here are consistent with the hypothesis
that some patients with the common form of T2D have partial
defects in adipocyte function attributable to mutations in PPARG.
Some of the variants we observed in PPARG cause reduced
function in the adipocyte differentiation assay that is as severe as
the PPARG mutations associated with FPLD3. Other protein
variants in PPARG cause a milder degree of dysfunction and can
be rescued to WT levels by elevated doses of PPARG agonists
(Fig. 2B). Based on the response to rosiglitazone in the adipocyte
differentiation assay, we hypothesize that individuals with mild
LOF variants in PPARG might respond positively to PPARG
agonists, because their individual risk of disease was substantially
increased by a genetic variant that could be rescued in vitro by
PPARG agonists. Administration of rosiglitazone to individuals
with severe LOF PPARG mutations who manifest lipodystrophy,
insulin resistance, and T2D showed unclear therapeutic ben-
efit for glycemia or insulin resistance, but this might be be-
cause mutations conferring complete LOF are not responsive to
PPARG agonists (13).

This study has multiple limitations, including a cross-sectional
case-control design and the extent of phenotypic characterization of
mutation carriers. We are unable to detect any physiologic correlate
in LOF PPARG variant carriers, which could indicate that the
phenotype is not severe, or reflect the lack of more detailed
characterization to date such as by dual-energy X-ray absorpti-
ometry-based (DEXA) body composition. The individuals in this
study were not ascertained based on extreme phenotypes such
as lipodystrophy, nor demonstrate unusual features in the available

Table 2. Clinical and biochemical characteristics of individuals carrying LOF variants in PPARG

Effect on

PPARG  PPARG T2D Waist-to-hip Total

variant function  status Ethnicity Age Sex BMI ratio SystolicBP  DiastolicBP cholesterol LDL HDL Triglycerides

R165T Severe  Case European 40 F 23.6 125 82.5 184 201

R165T Severe  Case European 74 M 336 150 115 189 100 35 280

F162V Severe  Case European 65 M 253 0.92 160 85 268 188 53 135

S$249* Severe  Case European 55 F 214 177.5 102.5 228 145 41 211

Q121*  Severe Control Caucasian  36-62" F  20.0" 96" 67" 184" 114" 65" 12"
American

G161D Severe  Case European 54 M 252 0.94 149 84 256 173 46 183

G161D Severe  Case European 82 M 237 0.98 150 920 203 125 30 236

V318M  Severe Case European 55 F 29.3 0.88

R425C Severe  Case European 50 M 26.1 110 65 180 28 395

P426L Mild Case European 49 F 245 134 77 217 137 36 223

E217K Mild Case Hispanic 61 F 215 0.90 243 158 39 230

Y278C Mild Case European 69 F 258 0.96 146 82 215 129 51 181

R140H Mild Case Hispanic 55 F  31.0 0.96 128 81 202 139 37 126

R140H Mild Control African 67 F 332 130 77 249 186 41 119
American

M376l Mild Case European 39 M 243 0.92 125 89 216 136 44 178

M376l Mild Case European 44 M  26.5 1.03 135 86 193 104 57 164

Units of measurement are as follow: age is in years; systolic and diastolic blood pressure are in millimeters of mercury; total cholesterol, LDL, HDL, and
triglycerides are in milligrams per deciliter. BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
"This individual had longitudinal measurements obtained over 30 y of follow up. The average values over this period are reported.
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data (SI Appendix, Fig. 1), but we cannot rule out partial lipo-
dystrophy, which can manifest subtly and easily escape clinical
detection. Finally, this study assesses one cellular function of
PPARG—adipocyte differentiation. It is possible that some
missense variants may alter other cellular functions of PPARG
and influence glycemic physiology.

The requirement for experimental characterization before
association analysis is consistent with other studies in which
functional characterization of rare mutations was needed to
discover the relationship to disease (14, 15). This is in contrast to
genome-wide association studies of common variants, where the
combination of frequency and effect size is sufficient to discover
associations without assumptions as to the in vitro assay that will
predict clinical impact. Generalization of a genotype-function-
phenotype approach to rare variants presents several challenges,
in particular the definition of in vitro functional assays that are
relevant to the clinical phenotype of interest. With genome
sequencing becoming readily available, the key to clinically
interpreting rare variants may turn out to be the laboratory
assays and computational methods to discriminate benign from
functional variants.

Methods

Sample Ascertainment. We studied 19,752 individuals (9,070 cases and 10,682
controls) from multiple ancestries as part of five candidate gene or whole-
exome sequencing studies: the Genetics of Type 2 Diabetes (GoT2D) study, the
Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-
Ethnic Samples (T2D-GENES) study, the SIGMA (Slim Initiative in Genomic
Medicine for the Americas) T2D Consortium, and the Framingham and Jackson
Heart Study Allelic Spectrum project (FHS/JHS). For each study, individuals were
drawn from previously described cohorts shown in S/ Appendix, Table 1.
Details on sample sequencing and PPARG variant identification are provided in
SI Appendix, Supplementary Methods, Sequencing, Variant Calling, Data QC,
and Variant Annotation. These sequencing studies were approved by the
Massachusetts Institute of Technology committee on the use of humans as
experimental subjects. Informed consent was obtained from the subjects.

Bioinformatic Assessment of Nonsynonymous PPARG Variants. Variants were
bioinformatically classified as pathogenic if they met the following three
criteria: (i) occurred at an evolutionarily conserved site [logarithm of the
odds (LOD) >10 based on an alignment of 29 mammalian genomes] (16), (ii)
computationally predicted as protein damaging by the consensus mutation
analysis tool Consensus Deleteriousness Score (Condel) (17), and (iii) private
to one study individual and not observed in the 1000 Genomes project (18).
If they did not meet all of these criteria, they were classified as computa-
tionally benign. A second, less stringent bioinformatics classification scheme,
where rare variants (i.e., minor allele frequency <0.1%) were classified as
pathogenic if they fulfilled criteria i and ii here above, was also tested.
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. Sunyaev SR (2012) Inferring causality and functional significance of human coding
DNA variants. Hum Mol Genet 21(R1):R10-R17.
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Rescue of Adipocyte Differentiation by in Vitro PPARG Variant Constructs. Each
PPARG variant was recreated in vitro by PCR mutagenesis and packaged
into lentiviruses. These lentiviruses were used to transduce SGBS pre-
adipocytes exposed to a submaximal stimulation for adipocyte differen-
tiation. In this assay, preadipocytes differentiate only when provided with
functional, exogenous PPARG (Fig. 1C). Details are provided in S/ Appen-
dix, Supplementary Methods, Rescue of Adipocyte Differentiation by in
Vitro PPARG Variant Constructs.

High-Throughput Adipocyte Differentiation Assay. To measure adipocyte dif-
ferentiation at the end of 8 d of exposure to differentiation mixture and
PPARG variants, cells were fixed in 4% (wt/vol) PFA, washed in PBS, and
stained with boron-dipyrromethene (BODIPY; Sigma) (1 pg/mL) to stain lipids
and DAPI (1 pg/mL) to stain nuclei. Stained cells were imaged with a high-
content fluorescence microscope (Molecular Devices IXM) at 4x at 512 and
484 nm, corresponding respectively to the peak emission spectra of BODIPY
and DAPI. The obtained images were analyzed using a custom analysis
pipeline developed in CellProfiler (19) to identify total numbers of adipo-
cytes and undifferentiated cells. The ratio of adipocytes to total cells is the
percentage of differentiation (Fig. 1A).

Statistical Analysis. In the experimental classification of PPARG variants,
differentiation scores for variants were compared with differentiation scores
for unmutated PPARG. Variants were classified experimentally as LOF if they
demonstrated decreased ability to stimulate adipocyte differentiation
compared with a series of WT controls as assessed by a one-tailed Student
t test with equal variances and a P value threshold of 0.05. Association tests
were performed to assess the diabetes risk of variant carriers relative to
noncarriers. An identical aggregate gene-based analysis was repeated for
each variant annotation: experimental LOF, experimental benign, bio-
informatically deleterious, and bioinformatically benign. Details are pro-
vided in S/ Appendix, Supplementary Methods, Association Tests.
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Supplementary Figure 1. Anthropometric and metabolic traits of individuals harboring rare PPARy variants
identified from population sequencing.

For each trait, the value for a given individual, if known, is represented on the abscissa as a percentile calculated within
that individual’s ascertainment cohort and with respect to T2D case/control status. On the ordinate, the ability of that
individual’s PPARy variant to rescue adipocyte differentiation in vitro is shown as % differentiation. PPARy variants shown
to cause loss-of-function (see Figure 2) are explicitly labeled.
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Supplementary Table 1: T2D case/control samples sequenced for PPARG

Consortium Ethnicity Geography | Study Reference | Cases | Controls
name
GoT2D European Sweden Malmo Preventive [1-6] 670 236
Project
GoT2D European Finland The Botnia Study [7-9] 500 268
GoT2D European Finland FUSION [10] 470 474
GoT2D European UK UKT2D [11-13] 329 332
GoT2D European Germany KORA [14] 97 91
T2D-GENES European Finland METSIM [15] 487 | 501
T2D-GENES European USA Ashkenazim Study [16] 506 385
T2D-GENES South UK LOLIPOP [17, 18] 531 539
Asian
T2D-GENES South Singapore | Singapore Indian [19] 564 585
Asian Chinese Cohort Study
T2D-GENES East Asian | Korea KARE [20] 522 554
T2D-GENES East Asian | Singapore | The Singapore [21-24] 476 592
National Health
Survey
T2D-GENES Hispanic USA The San Antonio [25-28] 245 182
Family
Diabetes/Gallbladder
Study
T2D-GENES Hispanic USA Starr County Health [29] 754 705
Study
T2D-GENES African- USA Wake Forest Study [30] 540 571
American
FHS/JHS/T2D- | African- USA Jackson Heart Study [31] 341 1357
GENES American
FHS/JHS European USA Framingham Heart [32] 225 1338

Study
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SIGMA-T2D Hispanic USA Multiethnic Cohort [33] 483 441
Study

SIGMA-T2D Hispanic Mexico UNAM/INCMNSZ [33] 551 546
Diabetes Study

SIGMA-T2D Hispanic Mexico Diabetes in Mexico [33] 509 459
Study

SIGMA-T2D Hispanic Mexico Mexico City Diabetes [33] 270 526
Study
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Supplementary table 2: Allele frequency (%) of PPARG variants by ethnicity

PPARG variant European African.American Hispanic South.Asian East.Asian

p.A259V 0.014 0 0 0 0
p.A404V 0 0 0.018 0 0
p.A417S 0.014 0 0 0 0
p.A444V 0.014 0 0 0 0
p.A91T 0 0.11 0 0 0
p.D230Y 0 0 0 0.045 0
p.D271N 0.014 0 0 0 0
p.DA9A 0 0 0.018 0 0
p.DA9E 0 0.14 0 0 0
p.E217K 0 0 0.035 0 0
p.E326K 0 0 0.018 0 0
p.E455G 0.014 0 0 0 0
p.E79K 0.058 0 0 0 0.047
p.F162V 0 0 0 0 0
p.G161D 0.029 0 0 0 0
p.H183Y 0 0 0.018 0 0
p.110V 0 0 0 0.09 0
p.1167M 0.029 0 0 0 0
p.1167V 0.014 0 0 0 0
p.1251V 0 0 0.018 0 0
p.1331V 0 0 0 0.045 0
p.145F 0 0.11 0 0 0
p.K462R 0 0 0.018 0 0
p.KAS6T 0 0 0 0.09 0
p.L178I 0.087 0 0 0 0
p.L361F 0.029 0 0 0 0
p.M376l 0.029 0 0 0 0
p.M53| 0 0 0 0.045 0
p.N124D 0 0 0 0.045 0
p.P426L 0.014 0 0 0 0
p.P433L 0.014 0 0.018 0 0
p.P454A 0 0 0.11 0 0
p.Q121* 0.014 0 0 0 0
p.R140H 0 0.036 0.071 0 0
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p.R165T 0.029 0 0 0 0
p.R240W 0 0 0 0.045 0
p.R308L 0.014 0 0 0 0
p.R378K 0.014 0 0 0 0
p.R425C 0.014 0 0 0 0
p.S133Y 0.014 0 0 0 0
p.5249* 0.014 0 0 0 0
p.5410C 0.014 0 0 0 0
p.S410R 0 0 0.018 0 0
p.S47C 0 0 0 0 0.047
p.T75P 0 0 0.071 0 0
p.vV276l 0.029 0.25 0.018 0 0.047
p.vV318M 0.014 0 0 0 0
p.V335L 0 0.71 0.11 0 0
p.V48M 0.014 0 0 0 0
p.V52I 0.014 0.11 0 0 0.047
p.Y116D 0 0 0 0.045 0
p.Y278C 0.014 0 0 0 0
Supplementary table 3: Sequencing quality metrics for PPARG variants
Location on Ch3 base change amino acid change DP GQ

12393119 A>G p.l110V 63 99

12393119 A>G p.110V 20 99

12421253 A>T p.l45F 108 99

12421253 AST p.l45F 394 99

12421253 A>T p.l45F 350 99

12421260 C>G p.S47C 97 99

12421262 G>A p.V48M 92 99

12421266 A>C p.D49A 53 99

12421267 T>G p.D4A9E 406 99

12421267 T>G p.D4A9E 106 99

12421267 T>G p.D4A9E 98 99

12421267 T>G p.D4A9E 283 99

12421274 G>A p.V52| 101 99

12421274 G>A p.V52I 102 99

12421274 G>A p.V52| 135 99

12421274 G>A p.V52I 178 99

12421274 G>A p.V52| 521 99

12421279 G>A p.M53| 103 99

12421343 A>C p.T75P 70 99

12421343 A>C p.T75P 149 99

12421343 A>C p.T75P 155 99

12421343 A>C p.T75P 191 99

12421355 G>A p.E79K 73 99
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12421355
12421355
12421355
12421355
12421391
12421391
12421391
12422856
12422871
12422880
12422908
12422929
12422929
12434114
12434114
12434116
12434126
12434126
12434131
12434133
12434133
12434164
12434164
12434164
12434164
12434164
12434164
12434179
12447410
12447410
12447449
12447449
12447479
12447507
12447512
12447537
12447572
12458209
12458209
12458209
12458209
12458209
12458209
12458209
12458209

G>A
G>A
G>A
G>A
G>A
G>A
G>A
>G
T
A>G
C>A
G>A
G>A
G>A
G>A
>G
G>C
G>C
A>G
C>G
C>G
C>A
C>A
C>A
C>A
C>A
C>A
C>T
G>A
G>A
G>T
G>T
T
C>G
A>G
C>T
G>A
G>A
G>A
G>A
G>A
G>A
G>A
G>A
G>A

p.E79K
p.E79K
p.E79K
p.E79K
p.A91T
p.A91T
p.A91T
p.Y116D
p.Q121*
p.N124D
p.5133Y
p.R140H
p.R140H
p.G161D
p.G161D
p.F162V
p.R165T
p.R165T
p.1167V
p.1167M
p.1167M
p.L178I
p.L178I
p.L178I
p.L178I
p.L178I
p.L178I
p.H183Y
p.E217K
p.E217K
p.D230Y
p.D230Y
p.R240W
p.5249*
p.1251V
p.A259V
p.D271IN
p.V276l
p.V276l
p.V276l
p.V276l
p.V276l
p.V276l
p.V276l
p.V276l

133
82
91

112
95

256

413
58
65
21

170

262
21
55
65
33
52
91
69
31
93
58
91
58
86
76
87
58
70
67
49
81
35
50
46
56
32
28
83
88
29
26
36
28

99
99
46
99
99
99
99
99
99
99
99
20
99
40
99
99
23
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
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12458209
12458209
12458209
12458216
12458306
12458335
12458359
12458374
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458386
12458466
12458466
12458511
12458511
12458516
12458594
12458611
12458613
12458632
12475399
12475403
12475424
12475424
12475457
12475486
12475486
12475486

G>A
G>A
G>A
A>G
G>T
G>A
G>A
A>G
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>C
G>A
G>A
G>A
T
A>T
C>A
G>T
T
T
T
T
T
C>G
C>G
C>G

p.V276l
p.V276l
p.V276l
p.Y278C
p.R308L
p.V318M
p.E326K
p.1331V
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.V335L
p.L361F
p.L361F
p.M376l
p.M376l
p.R378K
p.A404V
p.S410C
p.S410R
p.A417S
p.R425C
p.P426L
p.P433L
p.P433L
p.A444V
p.P454A
p.P454A
p.P454A

39
101
15
23
233
74
100
93
101
72
80
52
199
220
81
190
162
87
111
92
78
243
255
232
82
270
76
66
56
88
34
56
38
66
13
67
40
124
125
61
136
84
63
62
87

99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
99
84
99
99
99
99
99
99
99
99
99
99
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12475486 C>G p.P454A 83 99

12475486 C>G p.P454A 63 99
12475486 C>G p.P454A 70 99
12475490 A>G p.E455G 129 99
12475511 A>G p.K462R 98 99
12475583 A>C p.K486T 41 99
12475583 A>C p.KA86T 42 21

Variant position is based on human genome build NCBI36/hg18, and amino acid position is
based on the protein reference sequence NP_005950.

DP = read depth at position, GQ = phred quality -10log_10p(genotype call is wrong)
Supplementary methods:
Sequencing, variant calling, data QC, and variant annotation
DNA libraries were barcoded using the Illumina index read strategy and sequenced with an
Illumina HiSeq2000 following target capture with the Agilent SureSelect Human All Exon
platform. Reads were mapped to the human genome hgl9 with the BWA algorithm [1] and
processed with the Genome Analysis Toolkit (GATK) [2] to recalibrate base quality-scores and
perform local realignment around known indels. Target coverage for each sample was also
computed with the GATK (Supplementary figure 2). Single nucleotide variants (SNVs) and small
insertions and deletions (indels) were called with the Unified Genotyper module of the GATK
and filtered to remove SNVs with annotations indicative of technical artefacts (such as strand-
bias, low variant call quality, or homopolymer runs). In concordance with a previously published
analysis framework[2], samples with fewer than 76% of targeted bases covered to 20x, with an
abnormally high number of non-reference alleles or heterozygosity, or with an abnormally low
concordance with prior SNP array genotypes (based on the distribution across all samples) were
excluded from analysis. Any sample genotype at a site with fewer than 10x coverage in the
sample was not included in analysis (i.e. set as missing) (Supplementary table 3). Variants were

annotated with the Variant Effect Predictor [3]. Non-synonymous variants identified in PPARG
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(transcript isoform 2, ENST00000287820) were advanced for downstream experimental
characterization and statistical analysis. Raw sequence read data for each variant carrier was
examined as a quality control step; variants or genotypes that had visual signatures of
sequencing artifacts — such as reads of poor mapping quality, evidence for variation supported
by only reads on one strand of the genome, or additional called variants nearby — were

excluded from further analysis.

Rescue of adipocyte differentiation by in vitro PPARG variant constructs

To recreate variants in vitro, cloned human PPARG2 (the adipocyte predominant isoform)
sequences were engineered in parallel by PCR mutagenesis (Stratagene Quikchange 1) to create
a series of constructs, one per variant. To enable controlled titration of PPARG dosage, these
constructs, were cloned into a custom designed lenti-viral plasmid backbone containing a
doxycycline inducible promoter (Tet-ON). Each variant plasmid was packaged into lentivirus
using standard protocols (http://www.broadinstitute.org/rnai/public/resources/protocols),
matched by titre, and used to transduce Simpson-Golabi Behmel Syndrome (SGBS) pre-
adipocytes (a gift from M. Wabitsch). Subsequently, transduced SGBS pre-adipocytes were
stimulated to differentiate for 8 days in the presence of 0.1ug/mL doxycyline to activate gene
expression of exogenous PPARG, 2uM rosiglitazone, and a standard hormonal cocktail
described previously lacking the cAMP agonist IBMX[4]. In this assay, pre-adipocytes
differentiate only when provided with functional, exogenous PPARG (Figure 1c). Levels of
endogenous PPARG and exogenous PPARG were monitored with monitored with probes

(Nanostring nCounter) directed against the native 3’UTR and the lenti-viral expression 3'UTR
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respectively with no increase in endogenous PPARG expression over background levels in pre-

adipocytes (Figure 1d).

Association tests

Analysis was performed separately for three groups of individuals — those sequenced for the
T2D-GENES and GoT2D projects, those sequenced for the SIGMA-T2D project, and those
sequenced for the FHS/JHS projects — and then combined via a meta-analysis to produce the
final estimated significance and effect sizes. As a control, diabetes risk of variant carriers

relative to non-carriers of the common PPARG rs1801282 variant was assessed in parallel.

For each group of individuals, each individual was scored according to the presence of a variant
with the relevant annotation (e.g., carriers assigned a 1 and non-carriers a 0). Analysis was then
performed using a linear mixed-model, regressing T2D status on the genotype score, within the
EPACTS software package (http://www.sph.umich.edu/csg/kang/epacts/). A kinship matrix for
the analysis was computed using independent SNPs (MAF >1%). For the T2D-GENES/GoT2D and
SIGMA-T2D analyses, SNPs for the kinship matrix were obtained from the exome-wide
sequencing data produced. For the PMBL and FHS/JHS projects, SNPs were obtained from

available genome-wide SNP array data on the same subjects.

Point estimates for odds ratios were computed via the logistic regression score test
(http://stattech.wordpress.fos.auckland.ac.nz/files/2012/11/skat-meta-paper.pdf) as
implemented in EPACTS, with 10 principal components as covariates (computed via the
EIGENSTRAT [5]software package from the same SNPs as for the kinship matrix). These were

then transformed into 95% confidence intervals using standard error estimates back calculated
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from the p-values produced by the linear mixed model.

The resulting three estimated odds ratios, standard errors, and association p-values were

combined via an inverse variance based fixed-effects meta-analysis (as implemented in the

METAL software package [6]) to obtain an estimated odds-ratio and p-value for association

across the full set of studied individuals.
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