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ABSTRACT

An essential and so far unresolved factor influencing the evolution of cancer and the
clinical management of patients is intra-tumor clonal and phenotypic heterogeneity.
However, the de novo identification of tumor subpopulations is a so far challenging, if
not an unresolved, task. Here we present the first systematic approach for the de

novo discovery of clinically detrimental molecular tumor subpopulations.

In this proof-of-principle study, spatially-resolved, tumor-specific mass spectra were
acquired using matrix-assisted laser desorption/ionization (MALDI) imaging mass
spectrometry from tissues of 63 gastric carcinoma and 32 breast carcinoma patients.
The mass spectra, representing the proteomic heterogeneity within tumor areas,
were grouped by a corroborated statistical clustering algorithm in order to obtain
segmentation maps of molecularly distinct regions. These regions were presumed to
represent different phenotypic tumor subpopulations. This was confirmed by linking
the presence of these tumor subpopulations to the patients’ clinical data. This
revealed several of the detected tumor subpopulations to be associated with a
different overall survival of the gastric cancer patients (P=0.025) and the presence of

locoregional metastases in patients with breast cancer (P=0.036).

The procedure presented is generic and opens novel options in cancer research as it
reveals microscopically indistinct tumor subpopulations that have an adverse impact
on clinical outcome. This enables their further molecular characterization for deeper
insights into the biological processes of cancer which may finally lead to new

targeted therapies.
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INTRODUCTION

Intra-tumor heterogeneity is an important factor influencing the evolution of
cancer and the clinical management of patients [1-3]. It has been postulated to result
from either clonal evolution based on genetic instability and microenvironmental
stresses or multilineage differentiation of cancer stem cells [4,5]. Although these
cancer cell populations can be histologically indistinguishable at the microscopical
level [6], they are thought to have unique molecular phenotypes (here referred to as
tumor subpopulations) that drive tumor progression and determine the disease
outcome of the patient [7]. The identification of these clinically relevant tumor
subpopulations is thus of utmost importance for understanding cancer development

and the role of intra-tumor heterogeneity in the management of cancer patients [8].

While histological heterogeneity has long been known since the early days of
cancer pathology, molecular tumor heterogeneity has mainly been described on a
genetic, chromosomal, or transcriptomal level [9]. For proteins, the clinical
implications of tumor heterogeneity have mainly been investigated by targeted
assays using antibodies. This requires a priori knowledge of the protein to be studied
and is therefore unsuited to discovery-based research of novel tumor subpopulations
[10]. Hence, the de novo identification of tumor subpopulations with unequal
proteomes requires an unlabeled and spatially-resolved in situ read-out of the

molecular information of the tumor.

An emerging technology that fulfills these requirements is matrix-assisted
laser desorption/ionization (MALDI) imaging mass spectrometry (“MALDI imaging”)
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[11,12]. It combines mass spectrometry with microscopy of tissues, which enables
the unlabeled imaging of different molecular classes (proteins, peptides, lipids,
metabolites) in their histological context and thus the allocation of molecular profiles
to specific cell types like tumor, pre-neoplastic, or inflammatory cells [13-15]. The
spatially resolved data facilitates investigating intra-sample molecular details such as
tumor/normal interface zones or intra-tumor heterogeneity [16,17]. In the latter, it has
been convincingly demonstrated that MALDI imaging in combination with statistical
tools constitutes a unique tool to reveal tumor subpopulations that are a priori not
distinguishable by conventional histopathological methods, but which are molecularly
distinct [16,18-20]. However, none of the hitherto performed studies has investigated
which of the identified specific subpopulations drives the disease outcome in patients

such as locoregional and distant metastasis, or survival.

This study will show for the first time how MALDI imaging of tumor tissues in
combination with advanced statistical clustering methods can be used to identify
phenotypically and molecularly distinct tumor subpopulations with clinical relevance

in breast and gastric cancer.
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MATERIALS AND METHODS

Study population and tissues

All samples were fresh-frozen tissues stored in liquid nitrogen until
measurement. They were obtained from patients who underwent primary surgical
resection at the Klinikum rechts der Isar, Munich, Germany. All gastric cancer
patients were matched to their UICC-pT status (pT=2) and Lauren’s classification
(intestinal type). Follow-up data was available for all gastric cancer patients (median
overall survival time was 33.1 [0-53.4] months). Breast cancer samples were all from
invasive ductal carcinoma and patients with nodal metastases were matched to pN1.
This study was approved by the Institutional Review Board and the Ethics
Committee of the Faculty of Medicine of the Technische Universitat Minchen, with
informed consent from all subjects and patients. The clinicopathological data of both

patient series are listed in Table 1.

MALDI imaging experiments —in situ proteomic data from cancer tissues

MALDI imaging experiments were conducted as described in [21]. The mass
spectrometric data were acquired using an Ultraflex 1l MALDI-TOF/TOF (Bruker
Daltonics, Bremen, Germany) in positive linear mode, in which proteins were
detected in the mass range as given in Table 1 and a lateral resolution of 70 um.
Following the MALDI imaging experiments, the tissue sections were stained by
hematoxylin and eosin, scanned with a digital slide-scanning system (Mirax Desk,
Carl Zeiss Microlmaging, Goéttingen, Germany), and co-registered to the MALDI
imaging results to align mass spectrometric data with the histological features of the

tissue sections.
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Data pre-processing - selection of tumor-specific protein profiles

The alignment of mass spectral data and histology allows for a histology-guided
extraction (virtual micro-dissection) of tumor cell-specific spectral data, which was
done using the FlexImaging software (Bruker Daltonics). This results in an XML file
which contains a list of all mass spectra belonging to the user-defined region of
interest. All subsequent data processing was performed using MATLAB R2011a,
including the bioinformatics and image processing toolboxes (MathWorks, Natick,

Massachusetts).

The spectra referenced in the XML files were read into the MATLAB
environment where they underwent total-ion-count normalization and recalibration on
common peaks, which were defined to be peaks present in at least 85% of all
samples [22]. Peak picking was performed on the global basepeak mass spectrum
after smoothing, resampling, and baseline subtraction, and was performed using an
adapted version of the LIMPIC package [23]. The basepeak spectrum displays the
maximum intensity detected in the entire imaging dataset for every peak and is more

effective for detecting peaks with localized expressions [23].

Peak areas were extracted from all spectra and this reduced and more
computationally-manageable representation of a mass spectrum is then placed,
based on its original coordinate information, as a pixel into a project-specific data
cube. The project data cube contains the MALDI imaging data of all samples, in
which spatial offsets are used to place every sample’s data into the same spatial

domain (Figure 2A), with the corresponding mass spectral data in the z-dimension.

Unsupervised identification of heterogeneity
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For the a priori identification of intratumor biomolecular heterogeneity, we made use
of the multivariate nature of MALDI imaging data (here simultaneous detection of
many proteins). A number of multivariate statistical methods exist which enable the
identification of regions with distinct protein signatures. However, these different
algorithms optimize different functions; consequently their results can differ. We
therefore developed a method for the corroborated identification of molecular
heterogeneity previously termed agreement analysis [24], which consists of the
independent application and subsequent combination of five multivariate data
analysis (MVA) methods, including Principal Component Analysis (PCA), Maximum
Autocorrelation Factorization (MAF), Fuzzy C-means, Probabilistic Latent Semantic
Analysis (PLSA), and Non-Negative Matrix Factorization (NNMF). Each of these
methods projects the original multivariate data into a new, usually reduced, data
space with new variables, called components, and transformed original values,
called scores. While NNMF, PLSA, and Fuzzy C-means require the user to predefine
the number of expected components (k)—which here is considered equal to the
number of expected tumor subpopulations—PCA and MAF do not require such a
prior selection. Instead, the top 2*k components were selected and the negative and
positive scores treated separately. The agreement analysis works then as follows:

After defining k, the components returned by the MVA methods are compared
pairwise by calculating the Pearson correlation coefficient. Components that show
the highest spatial correlation were then normalized to their maximum score and
summed by a per-pixel score addition. This way consensus components are
obtained. The degree of agreement of a consensus component is indicated by the
sum of the correlation coefficients between the five multivariate methods and hence

ranges from 00J4. In this study, consensus components with a score <1 were
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excluded from further analyses. It is important to note that more than k consensus
components may be returned if correlated components are found by a subset of the
MVA methods.

Finally, a segmentation image is achieved by assigning each pixel to the consensus
component with the highest score at that location. This image shows molecularly
different regions (clusters) in different colors. In this manner tumor subpopulations,
represented by clusters with distinct and robust mass spectral profiles, could be

identified.

Statistical analysis — comparison with clinical endpoints

The statistical analysis required linking the clinical data of the samples to the
presence of specific clusters (tumor subpopulations) within a sample. To do so, a
sample was assigned to a cluster if the cluster was sufficiently present in that
sample; formalized, if the cluster held a higher fraction of pixels than would be
possible by chance alone, i.e. 21/k*100% pixels. A single patient sample may be
assigned to more than one cluster if it contains significant tumor heterogeneity.
Conversely, each cluster could be linked to the clinical data of the multiple samples
associated to it, which then allowed comparing each cluster’s clinical importance.
The clinical data can also be used to retrospectively investigate the pixel fraction
threshold, e.g. to elucidate the minimum presence of a cluster to affect the patients’

clinical outcome, as described in the Supplementary Protocol 2.

The statistical comparisons between the clusters’ clinical data were performed
within the R statistical environment (R Foundation for Statistical Computing, Vienna,
Austria), in which p-values <0.05 were considered statistically significant. Differences

in survival times of the clusters were assessed by Kaplan-Meier analysis and the log-
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rank test. Multivariate survival analyses to assess the independent prognostic value
of the clusters were done by Cox regression with p-values calculated by the Wald
test. Correlations of the clusters with the metastatic status were assessed by

Fisher's exact test.

The phylogenetic reconstruction of the protein signals distinguishing tumor
subpopulations was performed in MATLAB using the Neighbor-Joining algorithm with
Euclidean distance metric between the representative spectra of the clusters. In
order to avoid a bias towards the most intense peaks, the representative spectra of
each cluster were normalized according to their basepeak. The most discriminative
mass signal for a branching point with respect to its child nodes was determined by
comparing the representative spectra of both child nodes for the highest intensity
difference. The representative spectrum of each inner node was iteratively calculated

by averaging the spectra of all clusters that are leaf nodes of that node.

Protein identification

Direct tissue analysis using MALDI imaging detects intact proteins as well as protein
fragments. In a first step, peaks of interest highlighted by the statistical analysis were
compared with those previously reported in the literature and summarized in two
recently reported MALDI imaging identification databases [25,26]. This was followed
by extensive LC-MS/MS characterization of tissue extracts using top-down tandem
mass spectrometry using HCD and ETD on an Orbitrap Elite mass spectrometer
coupled to a Proxeon EASY-nLC 1000 system. Detailed information can be found in

Supplementary Protocol 1.
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RESULTS

The central hypotheses of this study are: i) The primary tumor consists of a
collection of subpopulations that reflect the evolution of the tumor, in which the
presence of subpopulations with specific characteristics can ultimately lead to
increased proliferation, metastasis or resistance to chemo- or radio-therapy (Figure
1A); ii) The molecular intratumor heterogeneity revealed by MALDI imaging depicts,
however incompletely, a representation of these tumor subpopulations. We then use
the clinical data of the patients to identify which subpopulations are associated with
specific phenotypes (Figure 1B). In this section, we provide examples in two different
cancer types, namely breast and gastric cancer, of the capability of the approach
presented here to identify tumor subpopulations that are associated with the disease

outcome of patients.

Identification of survival-associated tumor subpopulations in primary gastric

cancer

First, we applied our approach to identify tumor subpopulations associated
with prognosis in intestinal-type gastric cancer. Tissue sections from 63 patients
were measured by MALDI imaging with a lateral resolution of 70 ym to detect mass
spectral profiles. After the experiments, the tissues were H&E stained and
histopathologically annotated. Virtual micro-dissection was then performed to obtain
spatially-resolved mass spectra from histologically uniform tumor areas. The
resulting 54,833 mass spectra were arranged in a project-specific data cube (Figure
2A) and segmented using the agreement analysis on the 82 detected mass spectral

signals to reveal molecularly distinct subpopulations within the tumor areas.
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As the number of subpopulations present in a tumor is unknown, the
molecular segmentation was run with different values for the number of expected
tumor subpopulations (k) ranging from 2(110. It should be noted that the clustering
was performed simultaneously on all samples, as it was assumed that
phenotypically-important tumor subpopulations would display similar molecular
characteristics in all patient samples. For instance, the results for k=4 in Figure 2B
show that the agreement analysis was able to reveal molecularly distinct regions
within histomorphologically homogeneous tumor areas in about one third of the 63

samples. One example at higher magnification is shown in Figure 2C.

In order to determine the clinical importance of each tumor subpopulation, the
results of the molecular segmentation had to be linked to the clinical data of the
patients. A tumor subpopulation was associated with the clinical data of a patient if it
contributed more pixels to that sample than would be found by chance alone; e.g.
sample 19 in Figure 2C contained tumor subpopulations number 1 and 2, as each of

them held more than 25% (for k=4) of the pixels of that sample.

The tumor subpopulations could then be statistically compared according to
their associated clinical data; here, for the difference in their overall survival.
Statistically significant differences in overall survival were found for k=6 and k=9
between tumor subpopulations 1 vs. 4 (P=0.025) and 1 vs. 7 (P=0.044), respectively
(Figure 3B). Moreover, the presence of these tumor subpopulations in a sample was
predictive of survival independently of regional lymph node metastases (Figure 3B
and Supplementary Table 1). Good and poor survivor groups at trend level could
also be observed when k was defined as 4, 7, or 8, between clusters 1 vs. 3
(P=0.068), 1 vs. 6 (P=0.068), and 1 vs. 5 (P=0.058) respectively. Figures 3B and 3C

depict the Kaplan-Meier graphs for k=4 and k=6, and the corresponding phylogenetic
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reconstruction between the clusters. The latter summarizes the molecular
relationship between the tumor subpopulations and highlights the most
discriminating mass signals at each branching node. Tumor subpopulations
indicative for poor and good survival were consistently found (k=4 and k=6) to be
characterized by higher levels of m/z 3445 and 4156, and a significant change in m/z
14021 (Figure 3C). M/z 3445 and 14021 could be identified as DEFA-1 and histone

H2A, respectively (Supplementary Protocol 1).

Figure 3 also shows that a significant prognostic effect only became visible
after increasing k to differentiate smaller tumor subpopulations. An example of such
a subdivision of a tumor population into two finer subpopulations is illustrated in
Figure 3A. To further study the effect of the refinement of tumor populations on their
clinical phenotype, the survival analysis was performed on all subpopulations
detected for k=2 to 10. A dendrogram-like overview illustrates the results for each
detected tumor subpopulation, i.e. its clinical importance in terms of prognostic value
and its incidence amongst patients, and its parent tumor subpopulations (Figure 4).
The parent subpopulation is defined as the one that has the highest spatial
congruence in the previous segmentation map (k-1). Therefore, correlation
coefficients between consecutive segmentation maps were calculated (to identify
related clusters only positive correlations were considered) which are represented as
arrows between the tumor subpopulations in Figure 4. Consequently, parent tumor
subpopulations are considered molecularly robust if they are insensitive to be
subdivided in a subsequent k. In this case, tracing the correlations from k=10
backwards, shows that several tumor subpopulations (clusters 1, 2, 4, 5, and 6 of
k=10 in Figure 4) exhibit a high robustness across the different levels; including

those with a poor and a good overall survival. With an increasing number of
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expected clusters (k), a steady diversification could be observed, finally revealing
three major groupings of tumor subpopulations associated with a poor, medium and

good survival, which can be traced back to the levels k=3/4 (Figure 4).

To test the general applicability of the technique we then tested whether the
approach of using clinical endpoints to identify tumor driver subpopulations —here
demonstrated for patient survival— could also be applied to detect those associated
with metastasis, which is a strong determinant for patient disease outcome and also

thought to derive from clonal diversity.

Metastasis-associated subpopulations in primary breast cancer

Tissue sections from 32 breast cancer patients were measured by MALDI
imaging with a lateral resolution of 70 um. Proteomic data from histologically uniform
areas was obtained via virtual micro-dissection and arranged in a project-specific
data cube (Figure 5A). 21 of the 32 patients showed lymph node metastasis (pN1)
and 11 were metastasis-free (pNO). To investigate associations between
subpopulations in the primary tumors and their metastatic status, the 48,426 tumor-
specific mass spectra (mass range: m/z 2,000-25,000; 62 protein signals) were

submitted to the agreement analysis with k ranging from 2110.

The classification image in Figure 5B displays the result of the agreement
analysis for k=5. The analysis revealed molecularly distinct regions within
histologically homogeneous tumor areas. For example the tumor area of patient 22
was found to be mainly composed of the molecularly distinct subpopulations 1 and 4
(Figure 5C). A statistically significant association (P=0.036) was found between
tumor subpopulation 4 and the metastatic samples (pN1) (bar plot in Figure 5D). This

tumor subpopulation was topologically robust and consistently associated with the
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metastatic samples as indicated by the graph-based analysis from k=5 onwards
(Supplementary Figure 1). The molecular characteristics of this tumor subpopulation
was assessed by the phylogenetic analysis (Figure 5D) which revealed that it is
characterized by the presence of m/z 11368 and an absence of m/z 8419 and
14021. M/z 11368 and 14021 could be identified as acetylated histone H4 and

histone H2A, respectively (Supplementary Protocol 1).
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DISCUSSION

The de novo identification of phenotypic tumor subpopulations in patient
tissue and their molecular features is a challenging, if not an unresolved, task. In this
proof-of-concept study we linked the clinical information of patients to the molecularly
distinct regions detected by MALDI imaging (in this paper referred to as tumor
subpopulations). This was done under the assumption that a tumor resection
specimen—constituting a snapshot of intra-tumor heterogeneity at a certain time
point of tumor progression—may still contain molecular information indicative of the

subsequent disease outcome of the patient (Figure 1).

The analysis of 63 intestinal-type gastric cancer patients revealed extensive
heterogeneity within and between individual tumor samples (Figure 2). Linking this
heterogeneity to the clinical data revealed several of the regions to be associated
with a different and independent overall survival, and thus a different disease
outcome for the patients (Figure 3). Especially tumor subpopulation 1 (any k)
indicated a significantly unfavorable prognosis for the patient. Moreover, a proteomic
similarity of this “malicious” tumor subpopulation with a lymph node metastasis could

be observed in one sample (Supplementary Figure 2).

The general applicability of this multi-factorial approach was confirmed by
analyzing another independent sample cohort for a different clinical endpoint. 32
primary breast cancer tissues were investigated for tumor subpopulations associated
with the presence of regional lymph node metastasis. In comparison to the gastric
cancer cohort, the breast cancer dataset exhibited less molecular heterogeneity.
This is in line with previous reports that gastric cancer is a more heterogeneous

disease than breast cancer [27-29]. In breast cancer it is important to differentiate

This article is protected by copyright. All rights reserved



the tumors by their molecular subtype (luminal, basal, and Her2 positive), as these
can strongly influence prognosis or metastasis [30]. As our sample cohort was
mainly (90%) composed of luminal type (estrogen receptor positive) breast cancers,
no correlation could be found between a cluster and a certain subtype
(Supplementary Table 3). Still, one subpopulation was found to be significantly
associated with the metastatic status of the patients. This is in concordance with the
hypothesis that clones with metastatic potential are already present in the primary

tumor [7].

The minimum amount of tumor subpopulation that is necessary to affect the
clinical outcome of the patients was then investigated by optimizing the pixel
contribution threshold to be associated with the clinical data, as described in
Supplementary Protocol 2. The results show that optimized thresholds can increase
the statistical sensitivity between the presence of clusters and the clinical endpoints
and that significant effects were already detectable at thresholds of 10-14% in both
cancer datasets. However, since single tissue sections are unlikely to represent the
real proportions of the tumor subpopulations with respect to the entire tumor, these

numbers have to be considered project-specific, and are thus not generalizable.

Another important parameter is the number of expected tumor subpopulations
k. As this number is a priori unknown [31], we propose a clinico-biological solution
inspired by the trunk-branch model of intra-tumor heterogeneity [32]. Instead of
seeking an optimal k, our graph-based solution looks at the changes of the
decomposition over a varying k (Figure 4 and Supplementary Figure 1), which
enables the diversification in relationship with the clinical data to be investigated. In
gastric cancer a high molecular diversity was found in which clusters could be

constantly subdivided into new robust sub-clusters (e.g. cluster 4 of k=6 into clusters
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4 and 6 of k=7 in Figure 4). However, the clinical implications were less complex as
overall three survivor groups could be distinguished (poor, medium and good
survival). This reflects the fact that not every subpopulation will affect the disease’s
course. Additionally it is likely that the available clinical data and number of samples
were not able to fully resolve the molecular complexity in terms of prognostic effects
(e.g. clusters 5 and 6 of k=6 in Figure 3B). The analysis of a larger patient series and
extended clinical follow-up are expected to lead to the detection of additional

clinically relevant tumor subpopulations.

It is important to note that we have not yet established if the tumor
subpopulations detected by MALDI imaging represent different tumor clones that can
be distinguished by mutations or other heritable properties. Instead, we take
advantage of the fact that cellular selection operates on phenotypes [33] by
measuring phenotypic information in form of mass spectral protein profiles. It should
be noted that these phenotypic subpopulations were identified across the whole
sample cohort, which implies that the proteomic patterns specific to these cell
populations occurred in many tumor samples. This in turn suggests that these are

likely general proteomic adaptations.

Phylogenetic analysis in both studies highlighted five major contributors to the
proteomic pattern of the clinically most important tumor subpopulations: m/z 3445
(DEFA-1), 4156, 8416, 11368 (acetylated histone H4) and 14021 (histone H2A)
(Figure 3C and 5D; Supplementary Protocol 1). All of them have already been
detected in various cancer-focused MALDI imaging studies [34,35]. In particular,
DEFA-1, which is an antimicrobial peptide expressed by neutrophils and also found
in gastric cancer cells [36,37], was already reported to correlate with a poor

prognosis of early stage gastric cancer patients, hence confirming our results here
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[38,39]. M/z 4156 and 8416 could not be named. Interestingly, m/z 4156 has only
been detected in two other MALDI imaging studies on esophageal adenocarcinoma
reporting its role in carcinogenesis and drug resistance [40,41]. However a
prognostic value has not been found yet, not even in our previous study on the
identification of prognostic markers in gastric cancer [38]. This omission was not due
to the different data analysis platforms (ClinProTools vs. MATLAB; Supplementary
Figure 3), but rather due to the variable proportion of the phenotypic subpopulations

in the different patient tissues.

The small number of cells analyzed in each pixel coupled with the absence of
explicit protein purification or separation steps when MALDI is directly applied to
tissue sections means that MALDI imaging mainly detects abundant proteins [25].
Nonetheless, many studies using MALDI imaging and recently also a multicenter
validation gave evidence for the robustness and meaningfulness of such protein
signatures for representing clinically relevant information [42]. From our results we
conclude that patterns of these abundant molecules constitute robust surrogate
signals for different biochemical processes which enable a separation of phenotypic
tumor subpopulations with indistinguishable histology. In a next step, these regions
can be micro-dissected and analyzed using more sensitive, extraction-based
approaches like high-throughput nucleic acid sequencing and state-of-the-art MS-
based proteomics, which can deeply delve into the proteome and metabolome, as
shown by Mann and coworkers [43]. This way we expect to gain deeper insights into
the underlying biological processes and changes of the tumor subpopulations on a
genetic, metabolic, and proteomic level, which might finally result in novel targeted
therapies. Accordingly, we propose the approach presented here as the first step in

a pipeline for the de novo identification and characterization of phenotypic tumor

This article is protected by copyright. All rights reserved



Accepted Article

subpopulations, which we think is applicable to any kind of cancer tissues that exhibit

substantial heterogeneity.
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TABLES

Table 1 Clinicopathological parameters for the patient series

Gastric carcinoma  Breast carcinoma

Number of patients 63 32
Primary tumor extension
pT1 0 13
pT2 63 13
pT3 0 2
pT4 0 4
Regional lymph nodes metastasis
pNO 18 11
pN1 24 21
pN2 16
pN3 5
Resection status
RO 53 28
R1 9 1
Rx 1 3
Distant metastasis
MO 54 32
M1 9 0
MALDI imaging parameters
Resolution [pm] 70 70
Mass range [Da] 2,500-25,000 2,000-25,000
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FIGURE LEGENDS

Figure 1 Methodological concept of this study.

Intra-tumor clonal heterogeneity influences cancer evolution and the clinical outcome
of patients (A). It is caused by micro-environmental selective stresses or multilineage
differentiation of cancer stem cells which can generate “passenger” clones (grey
circles), having no effect on the malignant development, or tumor “driver” clones
(colored circles). The latter usually result in clinically measurable effects, such as
tumor progression (clinical parameter T), metastasis (clinical parameter N), or follow-
up data after surgery (e.g. survival time). (B) An approach using MALDI imaging
mass spectrometry to obtain spatially resolved proteomic data (in the form of mass
spectra) from primary tumor specimens. We hypothesize that statistical correlation of
the patients’ clinical data with the molecular diversity detected by a corroborated,
unsupervised segmentation of the mass spectra can enable the identification of

these tumor-driving subpopulations.
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Figure 2 Intra-tumor heterogeneity in intestinal-type gastric cancer.

63 tissues were measured by MALDI imaging and the mass spectral data (m/z) of all
samples was spatially arranged in the MATLAB environment (A). The agreement
analysis was performed for different k (21710) which revealed substantial tumor
heterogeneity, as shown in the segmentation image for k=4 (B). Higher magnification
images of patient 19 demonstrate the histomorphological homogeneity within the
measured tumor area (left panels) despite its clear molecular heterogeneity,

represented by clusters 1 and 2 (far right panel) (C).

A
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Figure 3 Assessment of clinical relevance of the identified tumor subpopulations

according to their associated clinical data.

Kaplan-Meier analysis revealed that the presence of certain tumor subpopulations
(clusters) is indicative of overall survival in gastric cancer patients (B). While the
survival difference between clusters 1 and 3 for k=4 was close to significant, the
difference between the topologically same clusters 1 and 4 for k=6 was significant
(B, upper panel). Moreover, these clusters turned out to be independent prognostic
factors compared to the metastatic status (pN) (B, lower panel). The topological (A)
and clinical consistency of these tumor subpopulations indicates their robustness
towards a changing k which is further examined in Figure 4. Phylogenetic analyses
show the relationship between all clusters which are represented by leaf nodes (C).
Internal nodes indicate the most decisive m/z signal between two child nodes. Here,
three signals—m/z 3445 (DEFA-1), 4156, and 14021 (histone H2A)—were
consistently found to be major contributors for distinguishing good from poor survivor

subpopulations.
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Figure 4 Graph-based analysis for the assessment of tumor diversity and its

prognostic value in gastric cancer.

Ellipses represent tumor subpopulations (clusters) which can be identified through
their id (nomenclature: first digit=k, second digit=cluster) or border color. The size of
an ellipse is proportional to its incidence among patients and its survival hazard ratio
is color-coded as fill color (both were normalized level-wise). The vertical dimension
shows the effect of a changing k—the parameter that controls the number of tumor
subpopulations expected—which leads to subdivisions of existing clusters into new
clusters. The strength of topological correlation (0(11) between clusters in
consecutive segmentation images is represented by the thickness of arrows between
ellipses. Clusters that are less split into new clusters by increasing k, are considered
molecularly robust, such as cluster 1. It can also be observed, that although an
increasing k leads to an increasing diversification, three main groups with different

survival behavior could be observed which can be traced back to the levels k=3-4.
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Figure 5 Tumor heterogeneity and metastatic status in 32 breast cancer samples.

MALDI imaging mass spectral data (m/z) from histologically uniform regions of 21
metastasized and 11 non-metastasized breast cancer tissues was obtained (A).
Agreement analysis was performed for different k (2[110) and the results for k=5 are
shown (B). A higher-magnification example for patient 22 proves the histological
homogeneity within the measured tumor area despite the detected molecular
heterogeneity, represented by tumor subpopulations 1 and 4 (C). (D) Tumor
subpopulation 4 was found to be significantly correlated with the metastatic status of
the patients (P=0.036) (bar plot) and characterized by changes in m/z 11368

(acetylated histone H4), 8419, and 14021 (histone H2A) (phylogenetic plot).
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