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ABSTRACT 

An essential and so far unresolved factor influencing the evolution of cancer and the 

clinical management of patients is intra-tumor clonal and phenotypic heterogeneity. 

However, the de novo identification of tumor subpopulations is a so far challenging, if 

not an unresolved, task. Here we present the first systematic approach for the de 

novo discovery of clinically detrimental molecular tumor subpopulations. 

In this proof-of-principle study, spatially-resolved, tumor-specific mass spectra were 

acquired using matrix-assisted laser desorption/ionization (MALDI) imaging mass 

spectrometry from tissues of 63 gastric carcinoma and 32 breast carcinoma patients. 

The mass spectra, representing the proteomic heterogeneity within tumor areas, 

were grouped by a corroborated statistical clustering algorithm in order to obtain 

segmentation maps of molecularly distinct regions. These regions were presumed to 

represent different phenotypic tumor subpopulations. This was confirmed by linking 

the presence of these tumor subpopulations to the patients’ clinical data. This 

revealed several of the detected tumor subpopulations to be associated with a 

different overall survival of the gastric cancer patients (P=0.025) and the presence of 

locoregional metastases in patients with breast cancer (P=0.036). 

The procedure presented is generic and opens novel options in cancer research as it 

reveals microscopically indistinct tumor subpopulations that have an adverse impact 

on clinical outcome. This enables their further molecular characterization for deeper 

insights into the biological processes of cancer which may finally lead to new 

targeted therapies. 
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INTRODUCTION 

Intra-tumor heterogeneity is an important factor influencing the evolution of 

cancer and the clinical management of patients [1-3]. It has been postulated to result 

from either clonal evolution based on genetic instability and microenvironmental 

stresses or multilineage differentiation of cancer stem cells [4,5]. Although these 

cancer cell populations can be histologically indistinguishable at the microscopical 

level [6], they are thought to have unique molecular phenotypes (here referred to as 

tumor subpopulations) that drive tumor progression and determine the disease 

outcome of the patient [7]. The identification of these clinically relevant tumor 

subpopulations is thus of utmost importance for understanding cancer development 

and the role of intra-tumor heterogeneity in the management of cancer patients [8]. 

While histological heterogeneity has long been known since the early days of 

cancer pathology, molecular tumor heterogeneity has mainly been described on a 

genetic, chromosomal, or transcriptomal level [9]. For proteins, the clinical 

implications of tumor heterogeneity have mainly been investigated by targeted 

assays using antibodies. This requires a priori knowledge of the protein to be studied 

and is therefore unsuited to discovery-based research of novel tumor subpopulations 

[10]. Hence, the de novo identification of tumor subpopulations with unequal 

proteomes requires an unlabeled and spatially-resolved in situ read-out of the 

molecular information of the tumor. 

An emerging technology that fulfills these requirements is matrix-assisted 

laser desorption/ionization (MALDI) imaging mass spectrometry (“MALDI imaging”) 
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[11,12]. It combines mass spectrometry with microscopy of tissues, which enables 

the unlabeled imaging of different molecular classes (proteins, peptides, lipids, 

metabolites) in their histological context and thus the allocation of molecular profiles 

to specific cell types like tumor, pre-neoplastic, or inflammatory cells [13-15]. The 

spatially resolved data facilitates investigating intra-sample molecular details such as 

tumor/normal interface zones or intra-tumor heterogeneity [16,17]. In the latter, it has 

been convincingly demonstrated that MALDI imaging in combination with statistical 

tools constitutes a unique tool to reveal tumor subpopulations that are a priori not 

distinguishable by conventional histopathological methods, but which are molecularly 

distinct [16,18-20]. However, none of the hitherto performed studies has investigated 

which of the identified specific subpopulations drives the disease outcome in patients 

such as locoregional and distant metastasis, or survival. 

This study will show for the first time how MALDI imaging of tumor tissues in 

combination with advanced statistical clustering methods can be used to identify 

phenotypically and molecularly distinct tumor subpopulations with clinical relevance 

in breast and gastric cancer. 
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MATERIALS AND METHODS 

Study population and tissues 

All samples were fresh-frozen tissues stored in liquid nitrogen until 

measurement. They were obtained from patients who underwent primary surgical 

resection at the Klinikum rechts der Isar, Munich, Germany. All gastric cancer 

patients were matched to their UICC-pT status (pT=2) and Lauren’s classification 

(intestinal type). Follow-up data was available for all gastric cancer patients (median 

overall survival time was 33.1 [0-53.4] months). Breast cancer samples were all from 

invasive ductal carcinoma and patients with nodal metastases were matched to pN1. 

This study was approved by the Institutional Review Board and the Ethics 

Committee of the Faculty of Medicine of the Technische Universität München, with 

informed consent from all subjects and patients. The clinicopathological data of both 

patient series are listed in Table 1.  

MALDI imaging experiments – in situ proteomic data from cancer tissues 

MALDI imaging experiments were conducted as described in [21]. The mass 

spectrometric data were acquired using an Ultraflex III MALDI-TOF/TOF (Bruker 

Daltonics, Bremen, Germany) in positive linear mode, in which proteins were 

detected in the mass range as given in Table 1 and a lateral resolution of 70 µm. 

Following the MALDI imaging experiments, the tissue sections were stained by 

hematoxylin and eosin, scanned with a digital slide-scanning system (Mirax Desk, 

Carl Zeiss MicroImaging, Göttingen, Germany), and co-registered to the MALDI 

imaging results to align mass spectrometric data with the histological features of the 

tissue sections. 
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Data pre-processing - selection of tumor-specific protein profiles 

The alignment of mass spectral data and histology allows for a histology-guided 

extraction (virtual micro-dissection) of tumor cell-specific spectral data, which was 

done using the FlexImaging software (Bruker Daltonics). This results in an XML file 

which contains a list of all mass spectra belonging to the user-defined region of 

interest. All subsequent data processing was performed using MATLAB R2011a, 

including the bioinformatics and image processing toolboxes (MathWorks, Natick, 

Massachusetts). 

The spectra referenced in the XML files were read into the MATLAB 

environment where they underwent total-ion-count normalization and recalibration on 

common peaks, which were defined to be peaks present in at least 85% of all 

samples [22]. Peak picking was performed on the global basepeak mass spectrum 

after smoothing, resampling, and baseline subtraction, and was performed using an 

adapted version of the LIMPIC package [23]. The basepeak spectrum displays the 

maximum intensity detected in the entire imaging dataset for every peak and is more 

effective for detecting peaks with localized expressions [23]. 

Peak areas were extracted from all spectra and this reduced and more 

computationally-manageable representation of a mass spectrum is then placed, 

based on its original coordinate information, as a pixel into a project-specific data 

cube. The project data cube contains the MALDI imaging data of all samples, in 

which spatial offsets are used to place every sample’s data into the same spatial 

domain (Figure 2A), with the corresponding mass spectral data in the z-dimension. 

Unsupervised identification of heterogeneity 
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For the a priori identification of intratumor biomolecular heterogeneity, we made use 

of the multivariate nature of MALDI imaging data (here simultaneous detection of 

many proteins). A number of multivariate statistical methods exist which enable the 

identification of regions with distinct protein signatures. However, these different 

algorithms optimize different functions; consequently their results can differ. We 

therefore developed a method for the corroborated identification of molecular 

heterogeneity previously termed agreement analysis [24], which consists of the 

independent application and subsequent combination of five multivariate data 

analysis (MVA) methods, including Principal Component Analysis (PCA), Maximum 

Autocorrelation Factorization (MAF), Fuzzy C-means, Probabilistic Latent Semantic 

Analysis (PLSA), and Non-Negative Matrix Factorization (NNMF). Each of these 

methods projects the original multivariate data into a new, usually reduced, data 

space with new variables, called components, and transformed original values, 

called scores. While NNMF, PLSA, and Fuzzy C-means require the user to predefine 

the number of expected components (k)—which here is considered equal to the 

number of expected tumor subpopulations—PCA and MAF do not require such a 

prior selection. Instead, the top 2*k components were selected and the negative and 

positive scores treated separately. The agreement analysis works then as follows: 

After defining k, the components returned by the MVA methods are compared 

pairwise by calculating the Pearson correlation coefficient. Components that show 

the highest spatial correlation were then normalized to their maximum score and 

summed by a per-pixel score addition. This way consensus components are 

obtained. The degree of agreement of a consensus component is indicated by the 

sum of the correlation coefficients between the five multivariate methods and hence 

ranges from 0�4. In this study, consensus components with a score <1 were 
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excluded from further analyses. It is important to note that more than k consensus 

components may be returned if correlated components are found by a subset of the 

MVA methods. 

Finally, a segmentation image is achieved by assigning each pixel to the consensus 

component with the highest score at that location. This image shows molecularly 

different regions (clusters) in different colors. In this manner tumor subpopulations, 

represented by clusters with distinct and robust mass spectral profiles, could be 

identified. 

Statistical analysis – comparison with clinical endpoints 

The statistical analysis required linking the clinical data of the samples to the 

presence of specific clusters (tumor subpopulations) within a sample. To do so, a 

sample was assigned to a cluster if the cluster was sufficiently present in that 

sample; formalized, if the cluster held a higher fraction of pixels than would be 

possible by chance alone, i.e. ≥1/k*100% pixels. A single patient sample may be 

assigned to more than one cluster if it contains significant tumor heterogeneity. 

Conversely, each cluster could be linked to the clinical data of the multiple samples 

associated to it, which then allowed comparing each cluster’s clinical importance. 

The clinical data can also be used to retrospectively investigate the pixel fraction 

threshold, e.g. to elucidate the minimum presence of a cluster to affect the patients’ 

clinical outcome, as described in the Supplementary Protocol 2. 

The statistical comparisons between the clusters’ clinical data were performed 

within the R statistical environment (R Foundation for Statistical Computing, Vienna, 

Austria), in which p-values <0.05 were considered statistically significant. Differences 

in survival times of the clusters were assessed by Kaplan-Meier analysis and the log-
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rank test. Multivariate survival analyses to assess the independent prognostic value 

of the clusters were done by Cox regression with p-values calculated by the Wald 

test. Correlations of the clusters with the metastatic status were assessed by 

Fisher’s exact test. 

The phylogenetic reconstruction of the protein signals distinguishing tumor 

subpopulations was performed in MATLAB using the Neighbor-Joining algorithm with 

Euclidean distance metric between the representative spectra of the clusters. In 

order to avoid a bias towards the most intense peaks, the representative spectra of 

each cluster were normalized according to their basepeak. The most discriminative 

mass signal for a branching point with respect to its child nodes was determined by 

comparing the representative spectra of both child nodes for the highest intensity 

difference. The representative spectrum of each inner node was iteratively calculated 

by averaging the spectra of all clusters that are leaf nodes of that node. 

Protein identification 

Direct tissue analysis using MALDI imaging detects intact proteins as well as protein 

fragments. In a first step, peaks of interest highlighted by the statistical analysis were 

compared with those previously reported in the literature and summarized in two 

recently reported MALDI imaging identification databases [25,26].  This was followed 

by extensive LC-MS/MS characterization of tissue extracts using top-down tandem 

mass spectrometry using HCD and ETD on an Orbitrap Elite mass spectrometer 

coupled to a Proxeon EASY-nLC 1000 system. Detailed information can be found in 

Supplementary Protocol 1. 
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RESULTS 

The central hypotheses of this study are: i) The primary tumor consists of a 

collection of subpopulations that reflect the evolution of the tumor, in which the 

presence of subpopulations with specific characteristics can ultimately lead to 

increased proliferation, metastasis or resistance to chemo- or radio-therapy (Figure 

1A); ii) The molecular intratumor heterogeneity revealed by MALDI imaging depicts, 

however incompletely, a representation of these tumor subpopulations. We then use 

the clinical data of the patients to identify which subpopulations are associated with 

specific phenotypes (Figure 1B). In this section, we provide examples in two different 

cancer types, namely breast and gastric cancer, of the capability of the approach 

presented here to identify tumor subpopulations that are associated with the disease 

outcome of patients. 

Identification of survival-associated tumor subpopulations in primary gastric 

cancer 

First, we applied our approach to identify tumor subpopulations associated 

with prognosis in intestinal-type gastric cancer. Tissue sections from 63 patients 

were measured by MALDI imaging with a lateral resolution of 70 µm to detect mass 

spectral profiles. After the experiments, the tissues were H&E stained and 

histopathologically annotated. Virtual micro-dissection was then performed to obtain 

spatially-resolved mass spectra from histologically uniform tumor areas. The 

resulting 54,833 mass spectra were arranged in a project-specific data cube (Figure 

2A) and segmented using the agreement analysis on the 82 detected mass spectral 

signals to reveal molecularly distinct subpopulations within the tumor areas. 



 

This article is protected by copyright. All rights reserved 

As the number of subpopulations present in a tumor is unknown, the 

molecular segmentation was run with different values for the number of expected 

tumor subpopulations (k) ranging from 2�10. It should be noted that the clustering 

was performed simultaneously on all samples, as it was assumed that 

phenotypically-important tumor subpopulations would display similar molecular 

characteristics in all patient samples. For instance, the results for k=4 in Figure 2B 

show that the agreement analysis was able to reveal molecularly distinct regions 

within histomorphologically homogeneous tumor areas in about one third of the 63 

samples. One example at higher magnification is shown in Figure 2C. 

In order to determine the clinical importance of each tumor subpopulation, the 

results of the molecular segmentation had to be linked to the clinical data of the 

patients. A tumor subpopulation was associated with the clinical data of a patient if it 

contributed more pixels to that sample than would be found by chance alone; e.g. 

sample 19 in Figure 2C contained tumor subpopulations number 1 and 2, as each of 

them held more than 25% (for k=4) of the pixels of that sample. 

The tumor subpopulations could then be statistically compared according to 

their associated clinical data; here, for the difference in their overall survival. 

Statistically significant differences in overall survival were found for k=6 and k=9 

between tumor subpopulations 1 vs. 4 (P=0.025) and 1 vs. 7 (P=0.044), respectively 

(Figure 3B). Moreover, the presence of these tumor subpopulations in a sample was 

predictive of survival independently of regional lymph node metastases (Figure 3B 

and Supplementary Table 1). Good and poor survivor groups at trend level could 

also be observed when k was defined as 4, 7, or 8, between clusters 1 vs. 3 

(P=0.068), 1 vs. 6 (P=0.068), and 1 vs. 5 (P=0.058) respectively. Figures 3B and 3C 

depict the Kaplan-Meier graphs for k=4 and k=6, and the corresponding phylogenetic 
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reconstruction between the clusters. The latter summarizes the molecular 

relationship between the tumor subpopulations and highlights the most 

discriminating mass signals at each branching node. Tumor subpopulations 

indicative for poor and good survival were consistently found (k=4 and k=6) to be 

characterized by higher levels of m/z 3445 and 4156, and a significant change in m/z 

14021 (Figure 3C). M/z 3445 and 14021 could be identified as DEFA-1 and histone 

H2A, respectively (Supplementary Protocol 1). 

Figure 3 also shows that a significant prognostic effect only became visible 

after increasing k to differentiate smaller tumor subpopulations. An example of such 

a subdivision of a tumor population into two finer subpopulations is illustrated in 

Figure 3A. To further study the effect of the refinement of tumor populations on their 

clinical phenotype, the survival analysis was performed on all subpopulations 

detected for k=2 to 10. A dendrogram-like overview illustrates the results for each 

detected tumor subpopulation, i.e. its clinical importance in terms of prognostic value 

and its incidence amongst patients, and its parent tumor subpopulations (Figure 4). 

The parent subpopulation is defined as the one that has the highest spatial 

congruence in the previous segmentation map (k-1). Therefore, correlation 

coefficients between consecutive segmentation maps were calculated (to identify 

related clusters only positive correlations were considered) which are represented as 

arrows between the tumor subpopulations in Figure 4. Consequently, parent tumor 

subpopulations are considered molecularly robust if they are insensitive to be 

subdivided in a subsequent k. In this case, tracing the correlations from k=10 

backwards, shows that several tumor subpopulations (clusters 1, 2, 4, 5, and 6 of 

k=10 in Figure 4) exhibit a high robustness across the different levels; including 

those with a poor and a good overall survival. With an increasing number of 
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expected clusters (k), a steady diversification could be observed, finally revealing 

three major groupings of tumor subpopulations associated with a poor, medium and 

good survival, which can be traced back to the levels k=3/4 (Figure 4). 

To test the general applicability of the technique we then tested whether the 

approach of using clinical endpoints to identify tumor driver subpopulations –here 

demonstrated for patient survival– could also be applied to detect those associated 

with metastasis, which is a strong determinant for patient disease outcome and also 

thought to derive from clonal diversity. 

Metastasis-associated subpopulations in primary breast cancer 

Tissue sections from 32 breast cancer patients were measured by MALDI 

imaging with a lateral resolution of 70 µm. Proteomic data from histologically uniform 

areas was obtained via virtual micro-dissection and arranged in a project-specific 

data cube (Figure 5A). 21 of the 32 patients showed lymph node metastasis (pN1) 

and 11 were metastasis-free (pN0). To investigate associations between 

subpopulations in the primary tumors and their metastatic status, the 48,426 tumor-

specific mass spectra (mass range: m/z 2,000–25,000; 62 protein signals) were 

submitted to the agreement analysis with k ranging from 2�10.  

The classification image in Figure 5B displays the result of the agreement 

analysis for k=5. The analysis revealed molecularly distinct regions within 

histologically homogeneous tumor areas. For example the tumor area of patient 22 

was found to be mainly composed of the molecularly distinct subpopulations 1 and 4 

(Figure 5C). A statistically significant association (P=0.036) was found between 

tumor subpopulation 4 and the metastatic samples (pN1) (bar plot in Figure 5D). This 

tumor subpopulation was topologically robust and consistently associated with the 



 

This article is protected by copyright. All rights reserved 

metastatic samples as indicated by the graph-based analysis from k=5 onwards 

(Supplementary Figure 1). The molecular characteristics of this tumor subpopulation 

was assessed by the phylogenetic analysis (Figure 5D) which revealed that it is 

characterized by the presence of m/z 11368 and an absence of m/z 8419 and 

14021. M/z 11368 and 14021 could be identified as acetylated histone H4 and 

histone H2A, respectively (Supplementary Protocol 1). 
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DISCUSSION 

The de novo identification of phenotypic tumor subpopulations in patient 

tissue and their molecular features is a challenging, if not an unresolved, task. In this 

proof-of-concept study we linked the clinical information of patients to the molecularly 

distinct regions detected by MALDI imaging (in this paper referred to as tumor 

subpopulations). This was done under the assumption that a tumor resection 

specimen—constituting a snapshot of intra-tumor heterogeneity at a certain time 

point of tumor progression—may still contain molecular information indicative of the 

subsequent disease outcome of the patient (Figure 1). 

The analysis of 63 intestinal-type gastric cancer patients revealed extensive 

heterogeneity within and between individual tumor samples (Figure 2). Linking this 

heterogeneity to the clinical data revealed several of the regions to be associated 

with a different and independent overall survival, and thus a different disease 

outcome for the patients (Figure 3). Especially tumor subpopulation 1 (any k) 

indicated a significantly unfavorable prognosis for the patient. Moreover, a proteomic 

similarity of this “malicious” tumor subpopulation with a lymph node metastasis could 

be observed in one sample (Supplementary Figure 2). 

The general applicability of this multi-factorial approach was confirmed by 

analyzing another independent sample cohort for a different clinical endpoint. 32 

primary breast cancer tissues were investigated for tumor subpopulations associated 

with the presence of regional lymph node metastasis. In comparison to the gastric 

cancer cohort, the breast cancer dataset exhibited less molecular heterogeneity. 

This is in line with previous reports that gastric cancer is a more heterogeneous 

disease than breast cancer [27-29]. In breast cancer it is important to differentiate 
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the tumors by their molecular subtype (luminal, basal, and Her2 positive), as these 

can strongly influence prognosis or metastasis [30]. As our sample cohort was 

mainly (90%) composed of luminal type (estrogen receptor positive) breast cancers, 

no correlation could be found between a cluster and a certain subtype 

(Supplementary Table 3). Still, one subpopulation was found to be significantly 

associated with the metastatic status of the patients. This is in concordance with the 

hypothesis that clones with metastatic potential are already present in the primary 

tumor [7]. 

The minimum amount of tumor subpopulation that is necessary to affect the 

clinical outcome of the patients was then investigated by optimizing the pixel 

contribution threshold to be associated with the clinical data, as described in 

Supplementary Protocol 2. The results show that optimized thresholds can increase 

the statistical sensitivity between the presence of clusters and the clinical endpoints 

and that significant effects were already detectable at thresholds of 10–14% in both 

cancer datasets. However, since single tissue sections are unlikely to represent the 

real proportions of the tumor subpopulations with respect to the entire tumor, these 

numbers have to be considered project-specific, and are thus not generalizable. 

Another important parameter is the number of expected tumor subpopulations 

k. As this number is a priori unknown [31], we propose a clinico-biological solution 

inspired by the trunk-branch model of intra-tumor heterogeneity [32]. Instead of 

seeking an optimal k, our graph-based solution looks at the changes of the 

decomposition over a varying k (Figure 4 and Supplementary Figure 1), which 

enables the diversification in relationship with the clinical data to be investigated. In 

gastric cancer a high molecular diversity was found in which clusters could be 

constantly subdivided into new robust sub-clusters (e.g. cluster 4 of k=6 into clusters 
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4 and 6 of k=7 in Figure 4). However, the clinical implications were less complex as 

overall three survivor groups could be distinguished (poor, medium and good 

survival). This reflects the fact that not every subpopulation will affect the disease’s 

course. Additionally it is likely that the available clinical data and number of samples 

were not able to fully resolve the molecular complexity in terms of prognostic effects 

(e.g. clusters 5 and 6 of k=6 in Figure 3B). The analysis of a larger patient series and 

extended clinical follow-up are expected to lead to the detection of additional 

clinically relevant tumor subpopulations. 

It is important to note that we have not yet established if the tumor 

subpopulations detected by MALDI imaging represent different tumor clones that can 

be distinguished by mutations or other heritable properties. Instead, we take 

advantage of the fact that cellular selection operates on phenotypes [33] by 

measuring phenotypic information in form of mass spectral protein profiles. It should 

be noted that these phenotypic subpopulations were identified across the whole 

sample cohort, which implies that the proteomic patterns specific to these cell 

populations occurred in many tumor samples. This in turn suggests that these are 

likely general proteomic adaptations. 

Phylogenetic analysis in both studies highlighted five major contributors to the 

proteomic pattern of the clinically most important tumor subpopulations: m/z 3445 

(DEFA-1), 4156, 8416, 11368 (acetylated histone H4) and 14021 (histone H2A) 

(Figure 3C and 5D; Supplementary Protocol 1). All of them have already been 

detected in various cancer-focused MALDI imaging studies [34,35]. In particular, 

DEFA-1, which is an antimicrobial peptide expressed by neutrophils and also found 

in gastric cancer cells [36,37], was already reported to correlate with a poor 

prognosis of early stage gastric cancer patients, hence confirming our results here 
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[38,39]. M/z 4156 and 8416 could not be named. Interestingly, m/z 4156 has only 

been detected in two other MALDI imaging studies on esophageal adenocarcinoma 

reporting its role in carcinogenesis and drug resistance [40,41]. However a 

prognostic value has not been found yet, not even in our previous study on the 

identification of prognostic markers in gastric cancer [38]. This omission was not due 

to the different data analysis platforms (ClinProTools vs. MATLAB; Supplementary 

Figure 3), but rather due to the variable proportion of the phenotypic subpopulations 

in the different patient tissues. 

The small number of cells analyzed in each pixel coupled with the absence of 

explicit protein purification or separation steps when MALDI is directly applied to 

tissue sections means that MALDI imaging mainly detects abundant proteins [25]. 

Nonetheless, many studies using MALDI imaging and recently also a multicenter 

validation gave evidence for the robustness and meaningfulness of such protein 

signatures for representing clinically relevant information [42]. From our results we 

conclude that patterns of these abundant molecules constitute robust surrogate 

signals for different biochemical processes which enable a separation of phenotypic 

tumor subpopulations with indistinguishable histology. In a next step, these regions 

can be micro-dissected and analyzed using more sensitive, extraction-based 

approaches like high-throughput nucleic acid sequencing and state-of-the-art MS-

based proteomics, which can deeply delve into the proteome and metabolome, as 

shown by Mann and coworkers [43]. This way we expect to gain deeper insights into 

the underlying biological processes and changes of the tumor subpopulations on a 

genetic, metabolic, and proteomic level, which might finally result in novel targeted 

therapies. Accordingly, we propose the approach presented here as the first step in 

a pipeline for the de novo identification and characterization of phenotypic tumor 
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subpopulations, which we think is applicable to any kind of cancer tissues that exhibit 

substantial heterogeneity. 
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TABLES 

Table 1 Clinicopathological parameters for the patient series 

    Gastric carcinoma Breast carcinoma 

Number of patients 63 32 

Primary tumor extension   

pT1 0 13 
pT2 63 13 
pT3 0 2 
pT4 0 4 

Regional lymph nodes metastasis   

pN0 18 11 
pN1 24 21 
pN2 16 0 
pN3 5 0 

Resection status     

R0 53 28 
R1 9 1 
Rx 1 3 

Distant metastasis   

M0 54 32 
M1 9 0 

MALDI imaging parameters   

Resolution [µm] 70 70 
Mass range [Da] 2,500-25,000 2,000-25,000 
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FIGURE LEGENDS 

Figure 1 Methodological concept of this study.  

Intra-tumor clonal heterogeneity influences cancer evolution and the clinical outcome 

of patients (A). It is caused by micro-environmental selective stresses or multilineage 

differentiation of cancer stem cells which can generate “passenger” clones (grey 

circles), having no effect on the malignant development, or tumor “driver” clones 

(colored circles). The latter usually result in clinically measurable effects, such as 

tumor progression (clinical parameter T), metastasis (clinical parameter N), or follow-

up data after surgery (e.g. survival time). (B) An approach using MALDI imaging 

mass spectrometry to obtain spatially resolved proteomic data (in the form of mass 

spectra) from primary tumor specimens. We hypothesize that statistical correlation of 

the patients’ clinical data with the molecular diversity detected by a corroborated, 

unsupervised segmentation of the mass spectra can enable the identification of 

these tumor-driving subpopulations. 
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Figure 2 Intra-tumor heterogeneity in intestinal-type gastric cancer.  

63 tissues were measured by MALDI imaging and the mass spectral data (m/z) of all 

samples was spatially arranged in the MATLAB environment (A). The agreement 

analysis was performed for different k (2�10) which revealed substantial tumor 

heterogeneity, as shown in the segmentation image for k=4 (B). Higher magnification 

images of patient 19 demonstrate the histomorphological homogeneity within the 

measured tumor area (left panels) despite its clear molecular heterogeneity, 

represented by clusters 1 and 2 (far right panel) (C). 
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Figure 3 Assessment of clinical relevance of the identified tumor subpopulations 

according to their associated clinical data. 

Kaplan-Meier analysis revealed that the presence of certain tumor subpopulations 

(clusters) is indicative of overall survival in gastric cancer patients (B). While the 

survival difference between clusters 1 and 3 for k=4 was close to significant, the 

difference between the topologically same clusters 1 and 4 for k=6 was significant 

(B, upper panel). Moreover, these clusters turned out to be independent prognostic 

factors compared to the metastatic status (pN) (B, lower panel). The topological (A) 

and clinical consistency of these tumor subpopulations indicates their robustness 

towards a changing k which is further examined in Figure 4. Phylogenetic analyses 

show the relationship between all clusters which are represented by leaf nodes (C). 

Internal nodes indicate the most decisive m/z signal between two child nodes. Here, 

three signals—m/z 3445 (DEFA-1), 4156, and 14021 (histone H2A)—were 

consistently found to be major contributors for distinguishing good from poor survivor 

subpopulations. 
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Figure 4 Graph-based analysis for the assessment of tumor diversity and its 

prognostic value in gastric cancer.  

Ellipses represent tumor subpopulations (clusters) which can be identified through 

their id (nomenclature: first digit=k, second digit=cluster) or border color. The size of 

an ellipse is proportional to its incidence among patients and its survival hazard ratio 

is color-coded as fill color (both were normalized level-wise). The vertical dimension 

shows the effect of a changing k—the parameter that controls the number of tumor 

subpopulations expected—which leads to subdivisions of existing clusters into new 

clusters. The strength of topological correlation (0�1) between clusters in 

consecutive segmentation images is represented by the thickness of arrows between 

ellipses. Clusters that are less split into new clusters by increasing k, are considered 

molecularly robust, such as cluster 1. It can also be observed, that although an 

increasing k leads to an increasing diversification, three main groups with different 

survival behavior could be observed which can be traced back to the levels k=3-4. 
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Figure 5 Tumor heterogeneity and metastatic status in 32 breast cancer samples.  

MALDI imaging mass spectral data (m/z) from histologically uniform regions of 21 

metastasized and 11 non-metastasized breast cancer tissues was obtained (A). 

Agreement analysis was performed for different k (2�10) and the results for k=5 are 

shown (B). A higher-magnification example for patient 22 proves the histological 

homogeneity within the measured tumor area despite the detected molecular 

heterogeneity, represented by tumor subpopulations 1 and 4 (C). (D) Tumor 

subpopulation 4 was found to be significantly correlated with the metastatic status of 

the patients (P=0.036) (bar plot) and characterized by changes in m/z 11368 

(acetylated histone H4), 8419, and 14021 (histone H2A) (phylogenetic plot). 
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