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Statement of translational relevance 

 

In the era of targeted molecular therapies, intratumor heterogeneity is an emerging challenge 

to successful cancer therapy since it may result in evasion of therapy of distinct cell 

subpopulations or in development of therapy resistance as an adaptive phenomenon to 

specific inhibiting therapies. Therefore, investigating the frequency of and comprehensively 

characterizing intratumor heterogeneity is crucial. In hepatocellular carcinoma (HCC), it is 

known that tumors can display intratumoral heterogeneous morphology and histological 

differentiation grades. In our study we aimed to make a link between morphological 

intratumor heterogeneity, immune phenotypes (CK7, CD44, AFP, EpCAM, glutamine 

synthetase) and genetic heterogeneity of the two most important driver mutations in HCC 

(CTNNB1 and TP53), of which β-catenin (CTNNB1) represents a potential therapeutic target. 

We used multiregional sequencing, supplementing Sanger sequencing with next generation 

sequencing which added a high level of accuracy to our analyses. Our results illustrate that 

intratumor heterogeneity is a frequent finding in HCC, which has implications not only for 

targeted therapies but also for establishing a robust HCC classification in daily clinical 

practice. 
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Abstract 

 

Purpose: Morphologic intratumor heterogeneity is well known to exist in hepatocellular 

carcinoma (HCC) but very few systematic analyses of this phenomenon have been 

performed. The aim of this study was to comprehensively characterize morphological 

intratumor heterogeneity in HCC. Also taken into account were well-known 

immunohistochemical markers and molecular changes in liver cells that are considered in 

proposed classifications of liver cell neoplasms or discussed as molecular therapeutic 

targets. Experimental design: In HCC of 23 patients without medical pretreatment, a total of 

120 tumor areas were defined. Analyzed were cell and tissue morphology, expression of the 

liver cell markers CK7, CD44, AFP, EpCAM and glutamine synthetase along with mutations 

of TP53 and CTNNB1, assayed by both Sanger and next generation sequencing. Results: 

Overall, intratumor heterogeneity was detectable in the majority of HCC cases (20/23, 87%). 

Heterogeneity solely on the level of morphology was found in 6/23 cases (26%), 

morphological heterogeneity combined with immunohistochemical heterogeneity in 9/23 

cases (39%), and heterogeneity with respect to morphology, immunohistochemistry and 

mutational status of TP53 and CTNNB1 in 5/23 cases (22%). Conclusions: Our findings 

demonstrate that intratumor heterogeneity represents a challenge for the establishment of a 

robust HCC classification and may contribute to treatment failure and drug resistance in 

many cases of HCC. 
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Introduction  

 

Hepatocellular carcinoma (HCC) generally arises in the context of chronic liver diseases, 

including chronic viral hepatitis, alcohol-induced liver injury, or other metabolic, dietary or 

toxic factors such as fatty liver disease or aflatoxin ingestion [1] and ranks number three 

among the leading causes of cancer mortality worldwide [2]. It is worthy of note that dietary 

induced liver cancer is one the fastest growing cancer in the United States of America [3]. 

For a pathologic stratification, tumor stage and grade are the only valid prognostic factors to 

date. Attempts to classify HCC by immunohistochemical markers or molecular genetic 

characteristics added fundamental knowledge to our understanding of hepatocarcinogenesis, 

but so far have hardly been applied in routine surgical pathology and postoperative 

management [4, 5]. This stands in contrast to the widely accepted classification of 

hepatocellular adenoma based on morphology, immunohistochemistry and genetics that has 

been included in the latest edition of the WHO classification [6, 7], and has implications for 

patient management. 

It is well-known that HCC frequently display heterogeneous growth patterns and/or 

cytological features within one and the same tumor. This might either reflect plasticity of 

phenotypes or intratumor genetic heterogeneity. Both have been described in several solid 

tumor entities, including skin, breast, and kidney cancer [8-12]. In small HCC, intratumor 

heterogeneity with respect to histological differentiation grade and proliferative activity was 

reported to occur in up to 64% of HCC measuring 3-5 cm in diameter and in 25-47% of HCC 

smaller than 2 cm [13, 14]. Nonetheless, especially in larger HCC the true extent of 

intratumor heterogeneity with respect to morphological, immunohistochemical and molecular 

features has not been systematically assessed. The aim of this study was to systematically 

investigate intratumor heterogeneity in HCC by a comprehensive analysis of tumor area-

specific morphology, correlated with clinically relevant immunohistochemical markers [15-21]. 

CK7 is a marker of biliary as well as progenitor cell differentiation. CK7/19, in conjunction 

with TP53 mutations, has been described as a marker of putative HCC progenitor cells [15] 

and its expression has been correlated to early tumor recurrence [22]. Likewise, CD44, 
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EpCAM and AFP have been described to be expressed in hepatic progenitor cells and/or 

hepatocellular carcinoma [18-21]. In addition, AFP is a serum marker for HCC [23]. The 

enzyme glutamine synthetase (GS), a marker of pericentral nonneoplastic hepatocytes, is an 

indicator of Wnt signaling, and together with nuclear accumulation of β-catenin a surrogate 

marker for CTNNB1 gene mutations [17, 24]. Analyses were supplemented by multiregional 

amplicon sequencing of the two genes most frequently mutated in HCC, TP53 and CTNNB1 

(β-catenin) [5, 23, 25, 26]. 

 

 

Material and Methods 

 

Patients and tissues 

23 patients with an initial diagnosis of a primary hepatocellular carcinoma (HCC) receiving 

surgical treatment between 2003 and 2009 at the University Hospital Zurich were included in 

this study. Excluded were cases with any kind of pretreatment (e.g. chemotherapy, TACE) 

and cases with substantial tumor necrosis (>20%). Necrotic tumor areas, ranging between 3-

20%, were not included in the analyses. Tumor and adjacent normal liver tissues were 

formalin-fixed, paraffin embedded (FFPE) and cut into 2-3 µm sections. Histologic slides 

were stained with hematoxylin & eosin and scanned with a Hamamatsu NDPI Nano Zoomer 

(Hamamatsu, Japan). Tumor stage was determined according to the 2009 TNM classification 

(7th Edition). Tumor grade was assessed according to Edmondson and Steiner [27]. This 

study was approved by the local ethics committee (StV 26-2005 and KEK-ZH-Nr. 2013-

0382).  

 

Morphology and definition of tumor areas 

21 of the 23 HCC were single tumors, and only a single lesion was analyzed in two multifocal 

HCC. Thus, all tissues analyzed of an individual case originated from the same lesion. To 

distinguish different areas within the same tumor, scanned images were annotated with the 

Hamamatsu viewer software (NDPI, version 2.2.6). A tumor size range between 0.5 cm and 
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18 cm was arbitrarily divided into large (>4cm, n=14) and smaller HCC (<4cm, n=9). The 

following criteria were used to define specific intratumor areas on HE slides: intratumor 

fibrotic septa, ”nodule-in-nodule” growth and different clearly demarcated architectural growth 

patterns. In HCC >4cm up to three tumor blocks were analyzed. At least one area was 

defined per block,  resulting in a minimum of 3 analyzed intratumor regions per large HCC. In 

smaller HCC (<4cm), 3 areas per tumor from one tumor block were analyzed. Tumor satellite 

nodules were excluded from the analysis. 

The architectural growth patterns of individual tumor areas (solid, pseudoglandular and 

trabecular) were defined according to the WHO classification 2009 [1]. Additionally, the 

presence of typical cytological features such as clear cell aspect, fatty change and 

pleomorphic cells was analyzed. The morphology was designated as heterogeneous if 

different architectural pattern and/or cytologic features were detectable within the same 

tumor.  

Microdissection of the defined tumor areas was performed by punching two 0.6 mm cores 

from FFPE tissue blocks with a tissue micro-arrayer (Estigen, MTA1). To minimize potential 

wild type contamination, dissection marks of every tumor block were evaluated after the 

dissection procedure by cutting 30 consecutive sections, followed by additionally staining the 

last slide of every series. 

 

Immunohistochemistry 

All slides were stained with antibodies against cytokeratin 7 (CK7), cytokeratin 19 (CK19), 

CD34, CD44, epithelial cell adhesion molecule (EpCAM), α-fetoprotein (AFP), β-catenin and 

glutamine synthetase (GS), a downstream target of β-catenin [28, 29] using the following 

antibodies: CK7: Dako M7018 Cl. Ov-Tl 12/30, dilution 1/100; CK 19: Abcam ab 9221, 

dilution 1:200; CD34: Ventana QBEnd/10 (pre-diluted); CD44: Becton Dickinson G44-26, 

dilution 1/100; EpCAM: Dako Ber-EP4, dilution 1/40; AFP: Ventana polyclonal, dilution 1/40; 

glutamine synthetase: Abcam ab 16802 polyclonal, dilution 1:800 and Biocare Medical Cl. 6, 

dilution 1/500; β-catenin: Transduction lab Inc. 610154 Cl. 14, dilution 1/50. Glutamine 

synthetase and CK7 were prepared as single and double stainings (opti view, Ventana) with 
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individual pretreatments (GS: CC1 mild, CK7: Protease 4`). All other stainings (Ventana GX 

and Ventana Bench Mark Ultra) were performed as single stainings: CD34 (Ventana ultra 

view, CC1 mild), CD44 (Ventana ultra view, CC1 8`), AFP (Ventana opti view, CC1 mild), CK 

19 (Ventana ultra view, P1 4`), and β-catenin (Ventana ultra view, CC1 mild).  

A two point score was applied for glutamine synthetase (negative vs. positive) and for β-

catenin (nuclear vs. non-nuclear staining). For CK7, CK19, CD34, CD44 and AFP staining, 

the percentage of immunoreactive cells with respect to each tumor area was 

semiquantitatively evaluated and grouped according to previously described scoring systems 

[15]  > 50 % positive cells, 5 – 50 % positive cells, < 5 % positive cells (also referred to as 

scattered cells) or negative. Intratumor expression was considered heterogeneous if 

expression intensities ranged from “negative” to “positive” (for glutamine synthetase), from 

“nuclear” to “non-nuclear” (for β-catenin) or from “negative” to > 5% positive cells (CK7, 

CK19, AFP, CD34, CD44). All staining intensities were compared to peritumoral liver tissue. 

Morphology and immunohistochemistry results were evaluated by at least two different 

pathologists (JF and LF or AW). 

 

DNA extraction and Sanger sequencing 

DNA was extracted from the microdissected tumor areas using a DNA extraction and 

purification kit adapted for FFPE samples (NucleoSpin, FFPE DNA, Machery-Nagel and GFX 

PCR purification, GE healthcare). For amplification of exon 5-8 of the TP53 gene 

oligonucleotide primer pairs were used as described [30]. PCR was performed in a total 

volume of 50 µl with 100-150 ng purified tumor DNA, 0.2 mM dNTPs, 2.5 mM MgCl2, 400nM 

primer mix (forward and reverse), and 1 unit Taq-polymerase (Amplitaq Gold, Applied 

Biosystems). The S1000 Bio-Rad thermocycler (Bio-Rad laboratories, Cressier, Switzerland) 

was used for amplification (95°C initial denaturation, 5min; 40 cycles of 58°C annealing for 

TP53 (45s) / 57 °C for CTNNB1 (1 min); elongation at 72°C (45s for TP53 / 1 min for 

CTNNB1); final elongation step at 72°C for 7 min (TP53) / 10 min (CTNNB1)). A BigDye 

Terminator kit version 3.1 was used for sequencing reactions. For sequencing CTNNB1 we 

used an inner forward primer (5’-TAAAGTAACATTTCCAATC-3’). Capillary electrophoresis 
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was performed on an ABI 3130 xl DNA analyzer (Applied Biosystems). Sequences were 

analyzed using Bioedit software and BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi. Mutations 

were identified by comparison with reference sequences (CTNNB1- NM_1904.1, TP53- 

NM_001126112.2) and described according international conventions [31].   

HCC that showed intratumor heterogeneity on the molecular level by Sanger sequencing 

were additionally re-sequenced by deep sequencing on a 454 Junior Sequencer platform 

(Roche, Basel, Switzerland). 

 

DNA quantification and amplicon library preparation for deep sequencing  

Amplicon library preparation started with the target specific amplification using bidirectional 

fusion primers as described earlier [30]. CTNNB1 fusion primers were designed using 

NetPrimer software (www.premierbiosoft.com; see supplementary table 1). Primers carried 

adaptor sequences and individual multiplex identifiers (MIDs). A single amplification step was 

applied for TP53 exon 5-8 in 50 µl reactions containing 50 ng of tumor DNA from FFPE 

samples, 0.2 mM dNTPs, 0.5 mM MgCl2, 200 nM fusion primer and 1 unit iProof Polymerase 

(Bio-Rad, Cressier, Switzerland). After 2 min initial denaturation at 98°C, each amplification 

cycle was performed as follows: 15s denaturation at 98°C, 30s annealing with 58°C 

annealing temperature for exon 5 and 6, 56°C for exon 7, and 62°C for exon 8 of TP53 and 

30s elongation at 72°C. Final elongation was performed at 72°C for 5 min after 40 cycles.  

A two-step amplification protocol for exon 3 of CTNNB1 was used. The first step included a 

pre-amplification with the outer forward primer that was used in Sanger sequencing 

(forward1) and reverse primer (supplementary table 1). Reactions were carried out in 20 µl 

volume containing 25 ng of DNA, 0.2 mM dNTPs, 0.5 mM MgCl2, 200 nM fusion primer, 0.5 

units iProof polymerase (Bio-Rad laboratories Switzerland, Cressier) and eighteen 

amplification cycles at 53°C annealing temperature. For the second amplification step, the 

PCR products of β-catenin were diluted 1:50 and admixed to 0.2 mM dNTPs, 0.5 mM MgCl2, 

400 nM of fusion primer mix (forward 2 and reverse in supplementary table 1), 1 unit iProof 

polymerase (Bio-Rad Switzerland). Amplification program: 2 min initial denaturation at 98°C; 

35 cycles of 15s denaturation at 98°C, 30s annealing at 56°C, 30s elongation at 72°C; final 
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elongation at 72°C for 5 min. Amplicon purification and quantification were performed with an 

Augencourt Ampure Kit (Beckmann Coulter, Beverly, USA) and a QuantIT PicoGreen dsDNA 

assay kit (Invitrogen, Life Technologies, Lucerne, Switzerland), respectively. The diluted 

library with pooled equimolar amounts of 1x105 molecules/µl served as input for emPCR (Lib-

A by Roche, Basel, Switzerland) reactions (30ul of 1x105 molecules for A-beads and 30ul of 

1x105 molecules for B-beads resulting in a molecule per bead ratio of 0.6:1). 

 

Deep sequencing workflow and analysis 

For the target regions exon 3 of CTNNB1 and exons 5-8 of TP53, deep sequencing was 

performed on a 454 Junior Sequencer (Roche, Basel, Switzerland). Demultiplexing, gene 

mapping and variant calling (reference genome GRch37/hg19) were performed with 

Amplicon Variant Analyser software (AVA) version 2.7 from Roche with default settings. We 

included variants that were present in forward and reverse sequences and with at least 50 

reads for further analysis [30]. For quality control (sensitivity and specificity) we amplified the 

target regions from independent samples of FFPE extracted tumor DNA and sequenced 

each in an individual run. This resulted in 8 independently amplified and sequenced 

replicates. In this re-sequenced control we detected the TP53 variant p.E258V in six of seven 

runs (sensitivity). The background error rate or “noise” (specificity) was calculated from the 

frequencies of unexpected single nucleotide changes, insertions or deletions with very low 

frequencies and/or strand bias that were detected in only one of seven replicate analyses 

(Supplementary figure 1). One single nucleotide change with a strand bias (fw/rev ratio 2.3) 

located at a stretch of 4-homopolymers most probably represented a false positive call. As a 

result the calculated error rate of our control was 1.3% over all amplicons. Variants that could 

only be detected in deep sequencing and not in Sanger sequencing, i.e. < 10% frequency, 

were carefully analyzed for strand biases and coverage: if the minimum coverage of an 

identified variant was <1000 or had a strand bias > 1.5, these areas were re-sequenced.  

To determine single nucleotide variants and the pathogenicity of mutations, every variant 

was annotated with an algorithm using free access databases. Annotations were taken from: 

ENSEMBL (www.ensembl.org), mutations assessor (www.mutationassessor.org), Polyphen 
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(www.genetics.bwh.harvard.edu/pph), SIFT (www.sift.jcvi.org) and CHASM 

(www.chasmsoftware.org).  

Statistical analysis was conducted by SPSS 20. Analysis of associations between variables 

was calculated with the Fisher’s exact test. Statistical analysis performed on the level of all 

defined tumor areas was regarded as exploratory since these areas were not completely 

independent due to the fact that several of these belonged to the same tumor. Survival 

analysis was performed by Kaplan-Meier analysis and log rank tests. A p-value <.05 was 

considered as significant. Hierarchical cluster analysis used the squared Euclidean distance 

as distance measure. 

 

Results 

 

Overall frequency of intratumor heterogeneity in hepatocellular carcinoma 

In 23 HCC, a total of 120 tumor areas were demarcated. Per tumor, a mean of five areas (5.3 

SD +/- 2.6, range 3-10) was analyzed. The size of the tumor areas ranged from 3-332 mm2 

(mean 81 SD +/- 80mm2).  Intratumor heterogeneity was found with respect to three different 

features: morphology, immunohistochemistry and mutational status of CTNNB1 and TP53 

(figure1). A strict hierarchy of features was observed: If tumors showed intratumor 

heterogeneity for only one feature this feature was morphology (n=6), heterogeneity for two 

features comprised morphology and immunohistochemistry (n=9), and a combination of all 

three features (morphology, immunohistochemistry and mutations) was found in 5 cases. 

Intratumor heterogeneity with respect to the mutational status was always accompanied by 

heterogeneity on the morphological and immunohistochemical level. Morphological 

intratumor heterogeneity disregarding other aspects was seen in 87% of HCC. Most 

commonly the tumors were of solid growth pattern, followed by pseudoglandular growth and 

trabecular growth pattern (53%, 24% and 23% respectively, quantification based on tumor 

areas). Ten HCC displayed one or more cytologic features (clear cell n=5, fatty change n=5, 

pleomorphic cells n=2, bile plugs n=1) in at least one tumor area. Five HCC displayed 

different histologic grades in the same tumor. However, there was no significant correlation 
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between specific morphologic patterns, histologic differentiation grades or cytological 

features and positivity of certain immunohistochemical markers (supplementary table 2). 

Three tumors were homogeneous, meaning that there was no variation in morphology or 

immunohistochemical marker expression within the tumor. 

 

Clinico-pathological findings 

The mean age of the patients was 62 years (SD +/- 12.4), and the male/female ratio was 

3.8/1. The mean size of the tumors (range 0.5-18cm) was 7.4cm SD +/- 5.4cm. Large HCC 

(n=14) had a mean tumor size of 10 cm (SD+/- 4) and small HCC (n=9) had a mean tumor 

size of 2 cm (SD +/- 0.7).  

Table 1 shows the tumor-specific findings and associated clinical background. The tumors 

were sorted by size and stratified according to TNM (2009) with a distribution of 6/14/3 for 

the tumor stages pT1/T2/T3. Genetic intratumor heterogeneity was more frequently seen in 

tumors with higher tumor stages (n=4/17 of tumor stage T2 and T3) and larger tumor size of 

>4cm (n=4/14). Multinodularity of tumors was frequently associated with morphological and 

combined immunohistochemical intratumor heterogeneity (p=.023), whereas satellite nodules 

where generally a rare finding (4/23). 60% of HCC with molecular heterogeneity, 56% of 

HCC with immunohistochemical heterogeneity and 33% of HCC with morphological 

heterogeneity showed vascular invasion. The median disease free survival was not 

significantly different between the two groups (26 months in the 5 patients with tumors 

displaying genetic heterogeneity, compared to 27 months in other patients). Of four tested 

pathological variables (intratumor heterogeneity, multinodularity, satellite nodules, vascular 

invasion) only vascular invasion showed significant impact on patient survival (log rank test: 

p=.04, supplementary figure 2). 

Twenty HCC patients were known to have a chronic liver disease. Eleven patients suffered 

from chronic hepatitis B or C. Three patients had HCC of unknown etiology. In a total of 5 

cases in which tumors displayed all features of intratumor heterogeneity (morphology, 

immunohistochemistry and molecular characteristics) there was no predominance of a 

particular chronic liver disease. Worthy of note is that 2 of 3 patients with HCC of unknown 

etiology had homogeneous tumors. 
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Intratumor heterogeneity of immune phenotypes  

Table 2 provides a heatmap of intratumor heterogeneity of immune phenotypes. Eleven 

tumors were glutamine synthetase positive and/or showed β-catenin nuclear positivity in at 

least one tumor area. The association between these two markers was in line with published 

data [24, 29] and found to be statistically significant (p=.006). Consistent glutamine 

synthetase positivity in all areas of the same tumor was found in only 2 cases, whereas 

heterogeneous immunoreactivity of glutamine synthetase was seen in 80% of the tumors 

(n=8/10). Of 15 CK7 positive tumors, 73% exhibited intratumoral heterogeneous CK7 

expression (n=11/15). CK7 positivity in all tumor areas of the same tumor was found in 4 

HCC. In tumors with intratumoral heterogeneous CK7 expression, a spectrum of different 

staining patterns was observed: exclusive positivity in glandular structures, widely scattered 

single cell staining, or marked foci within single tumor areas (supplementary  figure 3). CD44 

expression was found in ten tumors, with 4 showing intratumoral heterogeneous expression. 

57% of AFP positive tumors showed intratumoral heterogeneous expression (n=4/7). 

Immunohistochemical AFP expression (heterogeneous and homogeneous) was significantly 

associated with increased serum AFP (pre-surgical measurements) >10 µg/l (p=.015). One 

HCC exhibited foci of immunoreactivity for EpCAM in single tumor areas (patient 3). Strong 

positivity over all tumor areas was seen in a young patient with a hepatitis B-related HCC 

(patient 14).  

In the analysis of area-specific morphology with respect to immunohistochemistry, no 

significant associations between morphological growth pattern and cytologic features were 

detected (supplementary table 2). Remarkably, 71% of areas with clear cell aspect and 48% 

of pseudoglandular areas showed CK7 positivity.  

CK19 positivity was only present in entrapped bile ducts. Similarly, CD34 expression was not 

found in tumor cells, but only in microvessel structures (not shown). Figure 2 illustrates 

overview and high power of intratumor heterogeneity of all three features (patient 13). Tumor 

areas were defined and schematically illustrated by the H&E slide overview. Microscopy 

images showed predominantly solid growth pattern with partial glutamine synthetase or CK7 

positivity. Multiregional sequencing revealed three different CTNNB1 mutations: a private 
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S37 and two shared mutations (T41 and 15bp deletion at c.352-c.367), while a single 

nucleotide polymorphism in exon 6 of TP53 (rs 1800372) was detected in all tumor areas. 

 

Intratumor diversity of CTNNB1 and TP53 mutational status in HCC 

Of 23 HCC, six were CTNNB1 mutated and two were TP53 mutated. CTNNB1 mutations 

affected the GSK-3β phosphorylation sites, as described [25], and were significantly 

associated with immunohistochemical positivity for glutamine synthetase (p=.002) as well as 

nuclear accumulation of β-catenin (p=.009).  

A total of 120 tumor areas in 23 HCC were sequenced targeting CTNNB1 and TP53. The 

distribution of wild type, CTNNB1 and/or TP53 mutated tumor areas is shown in table 1 and 

illustrated for intratumoral heterogeneous cases in figure 2, figure 3 and supplementary 

figure 4 A. For eight HCC cases, all tumor areas were validated using deep sequencing to 

detect mutations with low frequencies and to account for the possibility that wild-type 

contamination might have led to false-negative results using the Sanger sequencing method. 

Targeted deep sequencing was performed in 8 individual runs. A total load of ~500.000 

enriched beads per run resulted in an average of 79867 high quality reads with a mean 

coverage of 1442 reads per amplicon. Two additional low frequency CTNNB1 mutations 

were discovered by deep sequencing. For example, Sanger sequencing detected a CTNNB1 

mutation (I35S) in 5/6 tumor areas in patient 1, whereas 6/6 areas were mutated at the same 

location in deep sequencing (supplementary figure 4 B). Another additional low frequency 

CTNNB1 mutation (S37P) was detected in patient 2 (figure 3 C). Conversely, two CTNNB1 

mutations that were detected in tumor areas of patient 2 (S45P, figure 3 C) and of patient 19 

(E54E, not shown) could not be validated in deep sequencing (coverage: 2297 and 2111 

reads respectively). Remarkably, two HCC with heterogeneous intratumor morphology and 

immunohistochemistry of three markers (CK7, glutamine synthetase and β-catenin nuclear 

accumulation) exhibited different CTNNB1 mutations in different tumor areas (figure 2 and 3 

C). Moreover, one tumor (patient 2) carried three different CTNNB1 mutations in one single 

area (figure 3 C), displaying a rare L31P, a S33A and a silent mutation P44P (P44P not 

shown). Analysis of single reads of deep sequencing results revealed that not all nucleotide 

exchanges were located on the same read (data not shown). Two HCC carried TP53 
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mutations, one in exon 5 and one in exon 7. Intratumor heterogeneity with wild type and 

TP53 mutated tumor areas was seen in one patient with a R175H mutation (patient 6, figure 

3 E). Another TP53 mutation (E258G) was found in all tumor areas in patient 4. Analysis for 

single nucleotide polymorphisms of the targeted genes (exon 3 CTNNB1, exon 5-8 TP53) 

were also taken into account for determining molecular intratumor heterogeneity. Only a 

single nucleotide polymorphism (rs 1800372) was uniformly detected in the HCC of patient 

13 along with intratumoral heterogeneous CTNNB1 mutations (figure 2 D). Multiregional 

sequencing results were finally displayed as hierarchical cluster analysis (dendrograms of 

figure 2 D, 3 B, D, F) showing clusters of mutated among wild type tumor areas.  

Area-based analysis of mutational status, the expression of immunohistochemical markers 

and morphology revealed a positive association between CTNNB1 mutations, nuclear β-

catenin [24] and glutamine synthetase positivity [29]. CTNNB1 mutations and AFP positivity 

were inversely associated as has been observed before [32]. Furthermore, a 

pseudoglandular growth pattern was frequently seen in CTNNB1 mutated tumor areas 

(45%). CD44 positivity was present in 70% of TP53 mutated areas [33]. The association 

between TP53 mutation and β-catenin immunohistochemistry found in our cohort was due to 

a single TP53 mutated HCC (patient 4) with nuclear β-catenin staining in all tumor areas 

(table 3).         

 

 

Discussion  

 

In this study we systematically characterized intratumor heterogeneity in hepatocellular 

carcinoma (HCC) on the level of morphology, immune phenotype, or mutational status of 

CTNNB1 and TP53, respectively. With this approach, we found tumor heterogeneity of at 

least one feature in the majority of HCC (20/23; 87%). Although based on a relatively small 

number of cases, our findings have implications for HCC biology, HCC classification and 

HCC targeted therapy in the era of personalized medicine. 
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Morphological intratumor heterogeneity in HCC has been reported before by Kenmochi et al. 

[13], who found two or more histological differentiation grades in more than half of the cases 

they had studied. An and coworkers [14] also analyzed heterogeneity with respect to the 

histological grade and described different tumor grades in 11 of 41 surgically resected small 

HCC (< 3 cm in diameter). After studying tumor heterogeneity on three different levels, we 

now confirm and further define this phenomenon, having detected heterogeneity in different 

combinations revealing a strict hierarchy: 1) either only on the level of morphology, 2) or 

morphological heterogeneity combined with immunohistochemical heterogeneity, 3) or a 

three feature intratumor heterogeneity with respect to morphology, immunohistochemistry 

and the mutational status of TP53 and CTNNB1. Morphological and immunophenotypical 

heterogeneity within a tumor might either reflect variable genetic aberrations or tumor cell 

plasticity without underlying genetic differences. Our data suggest that both apply to HCC. 

Notably, about 50% of HCC reveal heterogeneous expression of two key 

immunohistochemical markers in liver pathology, i.e. CK7 and glutamine synthetase (GS), 

respectively, which also are used for HCC classification and prognostication [15]. Not 

unexpectedly, we observed that the frequency of morphological intratumor heterogeneity was 

associated with larger tumor size and higher tumor stage, although it did not reach statistical 

significance, most likely due to a small sample size. 

Studying TP53 and CTNNB1, we found a heterogeneous intratumor mutational status in 22% 

of HCC. Different types of CTNNB1 mutations in one tumor sample were also reported 

before by Van Nieuh et al. [34] and Huang et al. [35]. Park et al. analyzed HCC as well as 

precursor lesions for the presence of CTNNB1 mutations, and found no CTNNB1 mutations 

in precursor lesions of HCC [36]. These findings show that CTNNB1 mutations, generally 

considered as driver mutations in HCC, are not uniformly present in all tumor regions within 

the same tumor, and reflect a rather late event in hepatocarcinogenesis. TP53 and CTNNB1 

are both used as molecular classifiers for hepatocellular carcinoma [26, 37]. For instance, the 

transcriptome classification proposed by Boyault et al. depicts 6 subgroups of HCC; two 

groups are associated with TP53 and two other groups with CTNNB1 alterations [37]. The 

intratumor heterogeneity we found on the molecular and morphological level indicates a high 

degree of genetic instability in HCC. This stands in contrast to hepatocellular adenoma, for 
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which a solid body of literature exists without evidence for relevant histological heterogeneity 

[38, 39]. Furthermore based on the few data available on genetic heterogeneity in 

hepatocellular adenoma (HCA) when progression to HCC was studied [40], it can be 

assumed, that adenoma are more homogeneous. The classification of HCA based on the 

clinical setting, morphology and genetics is well accepted [6], and has an impact on the 

clinical management of HCA patients. For HCC, classification proposals based on genetic 

changes [26], or gene expression patterns [41, 42], have not proven robust enough so far to 

be integrated into clinical practice. According to our data, intratumor heterogeneity obviously 

is an obstacle to the establishment of a comprehensive classification of HCC comparable to 

the HCA classification [6, 7]. Distinct parts of one and the same tumor differ with respect to 

biomarker expression and mutational status, which illustrates the co-existence of different 

tumor-cell populations in the same tumor. Presumably, the rate of genetic diversity would be 

even higher if the genetic analysis of individual tumor areas were expanded to analyze more 

genes. 

Molecular analysis, based on testing a small piece of tumor, might underestimate the 

complexity of tumor genomics. According to our data which are based on analysis of multiple 

tumor regions, single tumor biopsies might be an insufficient approach to characterize 

individual HCC. It is conceivable that a significant proportion of HCC already harbor the 

same genetic complexity and molecular heterogeneity within one and the same tumor that is 

characteristic of HCC as a tumor entity [1, 43]. This obviously impedes the development of a 

comprehensive and clinically meaningful HCC classification. 

The level of intratumor heterogeneity we have demonstrated may result in evasion of therapy 

when targeting single molecules of hepatocarcinogenesis. In particular, the wnt/β-catenin 

pathway is discussed as a potential therapeutic target in HCC [44]. Since the efficacy of a 

molecular therapy is determined by the mutational status of the target, e.g. EGFR in 

colorectal and lung cancer treatment, or c-KIT in the case of GIST, an HCC harboring tumor 

subpopulations with variable CTNNB1 mutational status (notably prior to therapy) is a major 

challenge. Currently, treatment with the multi-targeted tyrosine kinase inhibitor sorafenib is 

the only proposed molecular targeted therapy for HCC, although only a modest survival 

benefit was demonstrated in a multicenter European HCC trial [45], and even markedly lower 
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benefit in a trial with Asian HCC patients [46]. The intratumoral molecular diversity we have 

shown for the TP53 and CTNNB mutational status in a significant proportion of HCC 

suggests that the development of a molecular targeted therapy for HCC might be more 

challenging than for tumor entities with more uniform targetable genetic changes. 

In summary, in a comprehensive analysis on the level of morphology, immunohistochemistry, 

and mutational status of TP53 and CTNNB genes, we show that intratumor heterogeneity is 

a frequent finding in HCC. This finding might be the reason for some of the challenges in 

developing a robust classification of HCC as well as a molecular targeted therapy for this 

tumor entity. 
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Figure legends 

 

Figure 1: Frequency of intratumor heterogeneity with respect to different criteria 

(morphology, immunohistochemistry and mutational status of CTNNB1 and TP53) in 23 

HCC.  

 

Figure 2:  HCC in patient 13 (60y, male, history of alcohol and diabetes II). A: Slide overview 

(H&E staining) and photomicrographs of defined tumor areas, scale bar: 5 mm. B: 

Microscopy images (40x) of tumor areas consecutively revealed by H&E staining, CK7, 

glutamine synthetase (GS) and β-catenin immunohistochemistry, scale bar: 40 µm. C: 

Morphological, immunohistochemical and molecular characterization of numbered tumor 

areas; (+) Morphological pattern present or immunohistochemistry positive (glutamine 

synthetase: positive, CK7: > 5%, β-catenin: nuclear staining); empty spaces: morphological 

pattern absent or negative immunoreaction; sc- scattered cells, ic- immunohistochemistry, 

Sanger seq- Sanger sequencing, deep seq- deep sequencing Mutations: chromatograms 

from Sanger sequencing and global alignment graph of 454 analysis output (AVA software), 

purple square: codon number of CTNNB1 or TP53 gene and amino-acid exchange thereof 

compared to reference sequences NM 1904.1 (CTNNB1) and NM 001126112.2 (TP53). bp 

del base pair deletion, wt- mutational analysis wild type. D: Dendrogramm of clustered tumor 
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areas (hierarchical clustering) according to private mutations in single tumor areas (S37), 

shared mutations (T41, 15 bp deletion) and ubiquitous single nucleotide polymorphism in 

exon 6 of TP53 (rs1800372). Distance measure: squared Euclidean distance. 

 

Figure 3 A, C, E: Morphological, immunohistochemical and molecular characterization of 

numbered tumor areas in 3 individual patients. (+) Morphological pattern present or 

immunohistochemistry positive (glutamine synthetase: positive, CK7: >5 %, β-catenin: 

nuclear staining); empty space: morphological pattern absent or negative immunoreaction. 

ic- immunohistochemistry, sc- scattered cells, Sanger seq- Sanger sequencing, deep seq- 

deep sequencing. Mutations: depicted by chromatograms from Sanger sequencing and 

global alignment graph of 454 analysis output (AVA software), purple square: codon number 

of CTNNB1 or TP53 gene and amino-acid exchange thereof compared to reference 

sequences NM 1904.1 (CTNNB1) and NM 001126112.2 (TP53). wt- mutational analysis wild 

type. B, D, F: Corresponding dendrograms illustrating hierarchical cluster analysis of tumor 

areas. Distance measure: squared Euclidean distance. 
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Table 1: Clinical And Pathological Data Of 23 Patients With Hepatocellular Carcinoma (HCC) 

  
Large Hepatocellular Carcinoma 5-18cm (Ø 10cm) 

 

      

Pt Sex Age Risk factor HCC Liver histology 

AFP level 
 Serum 
(µg/l) 

Tumor 
size 
(cm) 

Tumor stage, 
vascular 
invasion 

Multinodularity/ 
Satellites 

Features of 
intratumoral 

heterogeneity 

CTNNB1
a
  

mutations/analyzed 
tumor regions 

TP53
b
 

mutations/analyzed 
tumor regions 

1 M
e
 74 Hepatitis B Steatosis 40%, Fibrosis periportal 4.4 5,8 pT1G2, 

g
V- +/- Growth, IC

c
 6/6 0/6 

2 M 75 Alcohol Fibrosis periportal and septal  10 6 pT3G2, V+ +/- Growth, IC, Mol
d
 3/9 0/9 

3 M 57 α1-deficiency Fibrosis periportal and septal  1389.5 7,5 pT2G2, V+ +/- Growth, IC 0/6 0/6 

4 M 69 Hepatitis B, diabetes II Fibrosis periportal and septal  NA 8,5 pT1G2, V- +/- Growth, IC 0/6 6/6 

5 M 63 Unknown etiology Portal Fibrosis NA 8,5 pT3aG2, V+ -/+ None 0/3 0/3 

6 F
f
 60 Obesity  Steatosis 10-20% <10 9,2 pT2G3, V+ +/- Growth, IC, Mol 0/10 4/10 

7 M 77 Diabetes II Fibrosis periportal   126.6 9,5 pT2G2, V+ +/- Growth, IC 0/8 0/8 

8 F 61 Tobacco Portal Fibrosis 12630 9,8 pT2G2, V+ +/- Growth 0/7 0/7 

9 F 63 Unknown etiology Portal Fibrosis NA 10 pT2G3, V+ -/+ None 0/3 0/3 

10 M 62 Hemochromatosis Siderosis, Fibrosis portal  43.2 10,5 pT2G2, V+ +/- Growth, IC, Mol 4/6 0/6 

11 M 80 Tobacco , alcohol Steatosis 10% NA 13,5 pT2G3, V+ +/- Growth, IC 0/7 0/7 

12 M 70 Alcohol Steatosis 20%, Fibrosis portal 85.6 16 pT2G3, V+ +/- Growth 0/7 0/7 

13 M 60 Alcohol, diabetes II Steatosis NA 18 pT2G1, V- +/- Growth, IC, Mol 5/10 0/10 

14 F 23 Hepatitis B Cirrhosis 16387 18 pT3bG3, V+ +/- Growth, IC 0/5 0/5 

Smaller Hepatocellular Carcinoma 0.5-4cm (Ø 2cm) 
 

      

Sex Sex Age Risk factor HCC Liver histology 

AFP level 
Serum 
(µg/l) 

Tumor 
size 
(cm) 

Tumor stage, 
vascular 
invasion 

Multinodularity/ 
Satellites 

Features of 
intratumoral 

heterogeneity 

CTNNB1
a
  

mutations/analyzed 
tumor regions 

TP53
b
 

mutations/analyzed 
tumor regions 

15 M 62 Hepatitis B Incomplett cirrhosis 2.8 0,5 pT2G1, V- -/- None 0/3 0/3 

16 M 67 Unknown etiology Cirrhosis  NA 1,5 pT2G2, V- +/+ Growth 0/3 0/3 

17 M 75 Hepatitis C, alcohol Cirrhosis NA 1,5 pT2G2, V- -/- Growth 0/3 0/3 

18 M 45 Hepatitis B, diabetes II Cirrhosis NA 2,2 pT1G2, V- -/- Growth, IC 0/3 0/3 

19 M 70 Hepatitis  C Cirrhosis NA 2,2 pT2G2, V- +/+ Growth 0/3 0/3 

20 F 61 Hepatitis C  Cirrhosis NA 2,3 pT1G2, V- +/- Growth 0/3 0/3 

21 M 51 Hepatitis C  Cirrhosis NA 2,5 pT1G2, V- +/- Growth, IC 0/3 0/3 

22 M 48 Hepatitis B Fibrosis periportal and septal  NA 2,6 pT1G1, V- +/- Growth, IC, Mol 2/3 0/3 

23 M 60 Hepatitis B Cirrhosis and steatosis 5% NA 3,2 pT2G2, V+ +/- Growth, IC 2/2 0/2 
  

a 
CTNNB1- β-catenin gene

 ,  b 
TP53- tumor protein 53,

   c 
IC- immunohistochemistry,  

d 
Mol- molecular findings,  

e 
M- male, 

f 
F- female, 

g
 V–vascular invasion, NA-not available 
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Table 2: Intratumoral Heterogeneity Of Immune Phenotypes Per Tumor
 
Analyzed tumor regions in large HCC 5-18cm (Ø10cm) 
Pt GS+ β-cat+ CK 7+ CD 44+ AFP+ EpCam+ 

1 6/6 4/6 4/6 6/6 0/6 0/6 

2 3/9 3/9 4/9 0/9 0/9 0/9 

3 0/6 0/6 2/6 0/6 3/6 4/6 

4 4/6 6/6 0/6 3/6 1/6 0/6 

5 0/3 0/3 0/3 3/3 0/3 0/3 

6 0/10 0/10 6/10 7/10 0/10 0/10 

7 3/8 0/8 0/8 8/8 2/8 0/8 

8 0/7 0/7 0/7 0/7 7/7 0/7 

9 0/3 0/3 3/3 3/3 0/3 0/3 

10 6/6 0/6 3/6 0/6 0/6 0/6 

11 0/7 0/7 4/7 6/7 3/7 0/7 

12 0/7 0/7 0/7 0/7 0/7 0/7 

13 7/10 7/10 1/10 0/10 0/10 0/10 

14 0/5 0/5 3/5 3/5 5/5 5/5 

Analyzed tumor regions in smaller HCC 0.5-4cm (Ø2cm) 

Pt GS+ β-cat+ CK 7+ CD 44+ AFP+ EpCam+ 

15 0/3 0/3 3/3 0/3 0/3 0/3 

16 0/3 0/3 0/3 0/3 3/3 0/3 

17 0/3 0/3 3/3 0/3 0/3 0/3 

18 1/3 0/3 2/3 0/3 0/3 0/3 

19 0/3 0/3 3/3 0/3 0/3 0/3 

20 0/3 3/3 0/3 3/3 0/3 0/3 

21 1/3 1/3 1/3 0/3 0/3 0/3 

22 2/3 3/3 2/3 3/3 0/3 0/3 

23 2/3 2/3 0/3 0/3 0/3 0/3 
 

Red: intratumoral heterogeneity of immune phenotypes in analyzed tumor regions,  
Green: homogeneous positivity, Gray: negativity of indicated marker 
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Table 3: Associations Of CTNNB1 Mutations And TP53 Mutations With Morphology And 
Immunohistochemistry  

  
Areas with CTNNB1 mutations

(n=22) 
Areas with TP53 mutations 

(n=10) 

 
Number  
of areas OR p-value 

Number 
of areas OR p-value 

Morphology 
Solid  8(36%) 0.45 0.10 4(40%) 0.58 0.52 
Trabecular  4(18%) 0.69 0.78 3(30%) 1.46 0.69 
Pseudoglandular 10(45%) 3.46 0.01 3(30%) 1.38 0.70 
Clear cell aspect 2(9%) 1.86 0.61 0 0 1 
Fatty change 2(9%) 0.88 1 0 0 0.59 
Immunohistochemistry 
β-catenin nucl. + 14(64%) 9.68 0.00 6(60%) 5.67 0.01 
GS + 20(91%) 55.3 0.00 4(40%) 1.69 0.47 
CK7+ 13(59%) 2.47 0.08 4(40%) 1.16 1 
AFP+ 0 0 0.01 1(10%) 0.42 0.68 
CD44+ 8(36%) 0.94 1 7(70%) 4.48 0.04 
EpCam+ 0 0 0.2 0 0 1 

 

OR: Odds ratio; GS= glutamine synthetase; nucl.+= nuclear positivity; p-values based on Fisher´s exact test; percentages 

refer to the total number of CTNNB1/TP53 mutated tumor areas;  the predominant growth pattern of each tumor area was 
used for the analysis, cytologic features (if present) were additionally recorded 
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