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Abstract 

Electron Paramagnetic Resonance (EPR) spectroscopy with tooth enamel is a widely used 

method of dosimetry. The accuracy of EPR tooth dosimetry depends on the spectrum processing 

procedure, the quality of which, in its turn, relies on instrumental noise and the signals from 

impurities. This is especially important in low-dose evaluation. The current paper suggests a method 

to estimate the accuracy of a specific spectrum processing procedure. The method is based on 

reconstruction of the radiation-induced signal (RIS) from a simulated spectrum with known RIS 

intensity. The Monte Carlo method was used for the simulations. The model of impurity and noise 

signals represents a composite residual spectrum (CRS) obtained by subtraction of the reconstructed 

RIS and the native background signal (BGS) from enamel spectra measured in HMGU (Neuherberg, 

Germany) and IMP (Yekaterinburg, Russia). The simulated spectra were deconvoluted using a 

standard procedure. The method provides an opportunity to compare the simulated “true” RIS with 

reconstructed values. Two modifications of the EPR method were considered: namely, with and 

without the use of the reference Mn2+ signals. It was observed that the spectrum processing 

procedure induces a nonlinear dose response of the reconstructed EPR amplitude when the height of 

the true RIS is comparable with the amplitudes of noise-like random splashes of СRS. The area of 

nonlinearity is below the limit of detection (DL). The use of reference Mn2+ signals can reduce the 

range of nonlinearity. However, the impact of the intensities of СRS random signals on nonlinearity 

is two times higher than the one observed when the reference signals were not used. The 

reproducibility of the software response is also dependent on both the amplitude of the СRS and the 

use of a reference signal, and it is also two times more sensitive to the amplitude of the СRS. In most 

EPR studies, all of the data are used, even those for which the dose value is lower than the DL. This 

study shows that low doses evaluated with the help of linear dose-response can be significantly 
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overestimated. It is recommended that linear dose response calibration curves be constructed using 

only data above the DL. Data below the DL should be interpreted cautiously. 
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1. Introduction 

Radiation dosimetry is a component of the complex biophysical and epidemiological studies related 

to the morbidity and mortality risk for humans exposed to ionizing radiation. Electron Paramagnetic 

Resonance (EPR) dosimetry with tooth enamel is a method for evaluating the doses accumulated 

during lifetime; it is used for reconstruction of the radiation dose accumulated over a lifetime. 

Ionizing radiation produces free stable СО2
– radicals in hydroxyapatite, which is the primary mineral 

of tooth enamel. EPR dosimetry is based on the measurement of the paramagnetic resonance 

response of the СО2
– radicals in tooth enamel. The intensity of the EPR response is proportional to 

the amount of radiation-induced radicals; thus, it reflects the absorbed dose in a sample (Ikeya et al., 

1984). Fig. 1 shows an example of the EPR spectrum of tooth enamel exposed to a dose of 10 Gy. At 

present, this method has been widely used in retrospective dosimetry (Ikeya, 1993). 

Usually, the EPR signal amplitude-to-dose conversion is based on a linear approximation (Wieser et 

al., 2000). No EPR response saturation with dose is observed at doses up to a few kGy (Liidja and 

Wieser, 2002). However, in some publications related to EPR dosimetry, the nonlinearity of the EPR 

response at low doses has been reported (Chumak et al., 1999). Some authors suggest that the 

nonlinearity of dose response at low dose areas could be related to the presence of competing 

trapping or recombination centers in hydroxyapatite (Jonas and Marseglia, 1997). However, this 

phenomenon could also be related to the procedure of analyzing the noisy signals that are typical of 

weak radiation-induced signals (RIS). 

Instrumental noise is an unavoidable component of spectroscopy. The shape of the spectrum is 

significantly affected by the native background component of tooth enamel (BGS); even after a long 

chemical treatment, it cannot be completely extracted from the enamel sample (Ivannikov et al., 

2001). The BGS has some variation of shape and can be fitted only with some uncertainty. 

Moreover, biological hydroxyapatite can contain various impurities, including metal ions (Shishkina 

et al., 2002). Therefore, in addition to RIS and BGS, the EPR spectrum contains a superposition of 

the instrumental noise and impurity signals, which influence the spectrum processing quality. 

Various algorithms are applied to reconstruct the RIS by spectrum analysis (Pass and Shames, 2000, 

Koshta et al., 2000, Dubovsky and Kirillov, 2001; Ivannikov et al., 2010). Algorithms for 

deconvolution are most commonly used for the automation of spectrum processing in routine 

measurements. There are two modifications of the EPR dosimetric measurements that require 

different approaches to processing the spectrum. The first approach is based on the use of the Mn2+ 

hyperfine signals of a reference sample, which allows the position of the magnetic field to be defined 

(Nagy, 2010). Fig. 2 presents the spectrum of tooth enamel (exposed to 3.6 Gy) recorded together 

with an Mn2+/ZnS reference using IMP equipment. The Mn2+ lines are broadened due to the high 

amplitude of magnetic field modulation necessary to register the enamel spectrum. However, for 
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some EPR spectrometers, recording a spectrum using reference samples is difficult due to technical 

limitations. The Mn2+ reference can be used when the reference sample is fixed in the microwave 

cavity with no change of its position relative to that of the enamel sample. When this is not possible 

(for example, when the equipment is not used exclusively for dosimetric purposes), the positions of 

the Mn2+ lines can vary relative to the RIS due to inhomogeneity of the magnetic field in the cavity. 

Moreover, the use a reference implies an increase of a field sweep and, consequently, an 

enhancement of spectral resolution. If resolution enhancement is not technically possible, the 

number of points in the informative part of the spectrum will be reduced. Furthermore, the 

placement of an additional sample containing Mn2+ in the cavity leads to a reduction in its quality 

factor and, consequently, in the sensitivity (Zhumadilov et al, 2005). In the second approach, no 

reference samples are used. In this case, the position of the radiation-induced EPR signal is 

determined either based on the measurements of the microwave frequency or using a criterion for the 

best fitting of the RIS. The first method uses one fitting parameter of signal intensity in the RIS 

reconstruction. The second method uses two free parameters (signal intensity and magnetic field 

position) for fitting the RIS. 

The aim of this study was to estimate the influence of instrumental noise and noiselike EPR response 

to impurities on the accuracy of dose reconstruction for one- or two-parameter approaches to RIS 

reconstruction. To achieve this goal, a numerical experiment was performed. For this purpose, 

impurities and noise were simulated using a composite residual spectrum (CRS) obtained by 

subtraction of reconstructed RIS and BGS from a number of measured EPR spectra of tooth enamel. 

In addition to instrumental noise and response to impurities, the CRS contains some residuals of 

non-perfect fitting of RIS and BGS. The spectra simulating measurements with known results were 

convoluted from the simulated “true” RIS and randomly selected СRS. Then, they were 

subsequently deconvoluted for reconstruction of the RIS intensity using EPR-Dosimetry software 

(Koshta et al., 2000).  

Two models of СRS were developed based on real spectra that were measured at the Institute of 

Metal Physics (IMP) and the Helmholtz Zentrum Muenchen (HMGU). These two research groups 

use different equipment and instrument settings (Volchkova et al., 2011), and their performances are 

very different (Wieser et al., 2008). 

It should be noted that only the idealized situation was considered in the current study, where no 

BGS influence on the RIS is assumed. In other words, ideal samples with negligible BGS were 

simulated. Nevertheless, in real tooth enamel dosimetry, the BGS affects the RIS reconstruction, and 

this issue will be considered in the discussion section. 

2. Material and methods 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 5

2.1. EPR dosimetry 

EPR spectra of 52 teeth and 30 teeth were measured at IMP and HMGU, respectively. The teeth 

were extracted for medical reasons in dental clinics of the Southern Urals (Russia) and Germany. 

The spectra were used for modeling two sets of spectral noise typical of the methods with different 

performance parameters.  

The EPR spectra at IMP were recorded using an ERS-231 X-band spectrometer (manufactured by 

the Academy of Sciences of the former German Democratic Republic, Berlin-Adlershof) equipped 

with a ZSX-18 cylindrical cavity. The parameters of the spectrum recording were as follows: 5 mT 

magnetic field sweep; 0.45 mT modulation amplitude; 13 mW incident microwave power; 

accumulation time equal to 69 seconds and 30 scans. The EPR spectra at HMGU were recorded with 

a Bruker ECS 106 X-band spectrometer. The parameters of the spectrum recording were as follows: 

5 mT magnetic field sweep; 0.14 mT modulation amplitude, 25 mW incident microwave power; 

accumulation time 84 seconds and 40 scans. Three repeated measurements were performed for each 

sample, resulting in the collection of 156 and 90 EPR spectra at IMP and HMGU, respectively.  

The sample preparation procedure was similar in both laboratories. Tooth enamel was separated 

from the dentine using ultrasound treatment in an aqueous solution of NaOH at a concentration of 20 

mol/l and a temperature of 60°C. The masses of the tooth enamel samples prepared at IMP and 

HMGU were 100 ± 4 mg and 115 ± 3 mg, respectively.  

The EPR spectra were processed using a computer deconvolution procedure with modified EPR-

Dosimetry software (Koshta et al., 2000). A set of three Gaussian lines and two tabulated functions 

was used to simulate the spectrum. The tabulated functions were obtained from simulated powder 

EPR spectra (Moens et al., 1993). The BGS was modeled using two Gaussian lines with g-factors of 

2.0051 and 2.0035 and line widths of 0.49 mT and 0.42 mT, respectively, and one simulated powder 

spectrum based on a Gaussian line shape with a g-factor of 2.0045 and a line width of 0.78 mT. The 

radiation-induced signal was modeled using one Gaussian line corresponding to a weak isotropic 

signal from CO2
- radical (g = 2.0006, line width: 0.21 mT) and one tabulated function with two 

components, including an orthorhombic signal with Lorentzian line shape (gx=2.0032; gy=1.9972; 

gz=2.0019 and line widths of 0.20, 0.21 and 0.2 mT, respectively) and a quasi-axial signal with a 

Gaussian line shape (gx =2.0027; gy =1.9972; gz =2.0025 and line widths of 0.46, 0.38 and 0.22 mT, 

respectively). Details of the tabulated functions are described in Zdravkova et al. (2003). In addition 

to the nonlinear curve fitting, the linear baseline correction was made. 

The EPR-Dosimetry software was modified to be able to process multiple spectra in automated 

mode. A new algorithm was added to find the value of the magnetic field (or g-factor) shift. The 

software finds the most probable value of the g-factor in the experimentally determined range of its 
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possible shift (±0.03). The most probable g-factor shift is selected from the set of results of linear 

deconvolutions obtained by spectrum fitting with consistently changing g-factor values 

(step=0.00001) using the criterion of a minimum χ
2 (Chernoff and Lehmann, 1954).  

2.2. Model of the “true” radiation-induced signal  

The analytical model of the “true” RIS was developed by best fitting of the experimentally obtained 

RIS induced by 10 Gy of gamma ray exposure (Fig. 1). The model represents a linear combination 

of the derivatives of 4 Gaussian (Eq. 1) and 4 Lorentzian (Eq. 2) lines with fixed shape parameters b. 

The scale parameters in both equations are indicated as a; g indicates the location parameters 

responsible for the line position. 
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The superposition of the 8 lines is the function R (A, g0, x) of the true signal (Eq. 3) characterized by 

the true RIS amplitude A and a location parameter g0. The variable x is the coordinate along the axis 

of a spectral scan (x=hν/µBB). The parameters of the lines are listed in appendix A. 
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The two models of RIS used in EPR-Dosimetry software and obtained by best fitting are in good 

agreement. However, because the true shape of the RIS is uncertain, the convolution procedure uses 

an RIS model different from those applied for the deconvolution. 

2.3. Monte Carlo simulation of experimental EPR spectra 

Simulations of measured spectra were performed by convolution of a deterministic model of the 

“true” RIS and stochastic modeling of the CRS. The model of the CRS was obtained by point-to-

point subtraction of the BGS and RIS signals from the initial EPR spectrum that was deconvoluted 

by EPR-Dosimetry software (Fig. 3). As a result, 156 and 90 СRSs of noise were fixed in the static 

databases for IMP and HGMU, respectively.  

Each of the spectra is defined within the range l corresponding to the width of the magnetic field 

sweep. Monte Carlo simulations were performed in two steps: 1) the random drawing of a СRS from 

the static database; 2) the random drawing of a location for “true” RIS gj (Eq. 3) based on the 

assumption that this parameter is floating uniformly within an interval ∆ chosen such that in the 

subsequent convolution, the RIS would completely fit into the interval l (Eq. 4).  

])1;0[5.0(0 randgg j −∗∆−=  (4) 
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Then, the “true” signal with a randomly shifted location was combined with the randomly selected 

СRS. Because of the idealized situation considered in the current study, a BGS was not applied for 

Monte Carlo simulation of the experimental EPR spectra. The obtained spectrum was processed by 

the EPR-Dosimetry software twice: with the known location, gdeconv = gj, and with the unknown one. 

In the second case, the program automatically fits gdeconv by selecting the most accurate fitting of the 

spectrum using an algorithm for minimization of the χ2 value. As a result, two amplitudes, a1,2, were 

reconstructed for each true amplitude A. 

The true values of amplitudes A were consistently simulated from 0 to 30 au with a step of 0.01 au. 

Each simulation of the EPR measurement was based on the average of three repeated drawings of 

the same amplitude. In total, 1500 drawings were made for each of the “true” amplitudes, simulating 

the measurements of 500 samples with the same “true” dose. 

It should be noted that the amplitudes are expressed in arbitrary units, which differ for different 

equipment. To make the results comparable, both true and reconstructed amplitudes (A and a) were 

converted into the corresponding doses (D and d), according to the calibration factor typical of each 

method (Wieser et al., 2008). Thus, all results are represented in dose units. 

3. Results and discussion 

3.1 Description of models for spectral noise 

The distributions of the amplitudes in СRS for both laboratories are characterized by Gaussian 

distributions with zero mean values. Fig. 4 presents a comparison of amplitude distributions in СRS 

represented in dose units. As can be observed from Fig. 4, the widths of the distributions are not 

equal. The values of the standard deviations and 95th percentiles of the distributions are shown in 

Table 1. As can be observed from the table, the distribution of amplitudes in СRS at IMP is wider 

than that at HGMU by a factor of approximately 2. 

The threshold is the quantity above which one can determine that the physical effect is present (a 

difference exists between the measurements of the blank and the RIS). The blank represents the 

spectrum of enamel that has never been exposed to radiation. The value of the radiation dose must 

exceed a certain threshold value to assume that the measured signal includes some information about 

the dose. This threshold is called the critical dose. In previous studies, the level of significance for 

the critical value was selected to be α = 0.05 (Wieser et al., 2008, Fattibene et al., 2011). Assuming 

the noise corresponds to the blank amplitude, the 95th percentile of the CRS amplitude distribution 

should correspond to the critical dose value, as shown in Ivanov et al. (2011). It should also be taken 

into account that individual EPR doses are usually obtained by averaging the results of three 

repeated measurements. Therefore, the parameters of the amplitude distribution in СRS width 
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(σsingle) were recalculated to dose equivalent units for triple measurements (σtriple) according to Eqn. 

(5). This was performed to make the results comparable to the estimates of the critical dose for EPR 

dosimetry. 

n
ngle

triple
sinσ

σ = , (5) 

The critical doses obtained from the СRS (5th column in Table 1) were compared with critical values 

calculated in Wieser et al., 2008 based on a 90% prediction interval for weighted least-squares fitting 

of EPR signal-to-dose response curves. The variances of the EPR measurements (6th column in 

Table 1) were assumed as weight factors. As can be observed from the table, the 95th percentile of 

CRS amplitude distribution represented in dose equivalent units for triple measurements do not 

contradict the preliminarily estimated critical values of the methods. This fact indicates that the 

parameters of CRS distribution are important and can be used to estimate the critical values, for 

example, in cases where it is not possible to perform the calibration experiment described in Wieser 

et al., 2008. 

3.2. Numerical experiment 

The results of simulation of triple EPR measurements with spectrum processing based on the 

automatic fitting of one or two parameters are shown in Fig. 5. The dependence of the mean 

reconstructed dose on the true dose is shown in Fig. 5a and 5c for one- and two-parameter fittings, 

respectively. As can be observed at low doses in all cases, there is a deviation from linearity. The 

nonlinearity is more explicit for the IMP method than for the HMGU method. In the region of small 

true doses, the software response becomes constant (dconst), and it depends on the width of the 

amplitude distribution in the СRS and the number of fitting parameters. The maximal value of the 

true dose for which the mean reconstructed dose is equal to dconst  is denoted as Dconst. The next 

important parameter describing nonlinearity is the border of true doses above which the software 

response can be assumed to be linear (Dlin). The parameter was evaluated based on the following 

criterion: if for 3 nearest true values (D) the root mean square deviations (RMSD) of the simulated 

doses are larger than their standard deviations (Eq. 6), then the deviation of the mean reconstructed 

doses (d) from linearity is significant.  
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Another important characteristic of the quality of a measurement is its repeatability. The 

analogous characteristic in the numeric experiment was the reproducibility of true dose 
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reconstruction, and it was estimated as the coefficient of variation (CV) of 500 doses reconstructed 

for each of the true doses. Fig. 5b and 5d show the dependence of the CV on the true doses for one- 

and two-parameter fittings, respectively. Assuming the least acceptable repeatability as 30% 

(CV≤0.3), the minimal true doses that met this condition were calculated (Drepeatable). Table 2 

summarizes the parameters describing the quality of the software response to the true dose. 

As can be observed from Table 2, both the CRS (an inherent characteristic of the method) and the 

number of fitting parameters (determined by the use or non-use of a reference sample) influence the 

linearity and repeatability of RIS reconstruction. The average ratio between the parameters obtained 

by the different laboratories (different CRS) under similar fitting conditions is equal to 4. The 

average ratio between the parameters obtained by the same laboratory but under different fitting 

conditions is equal to 2. Thus, the effect of CRS is found to be approximately 2 times greater than 

the effect of the use of a reference sample. However, the difference between the results for one- and 

two-parameter fitting is still significant, but the use of a reference signal can improve the EPR 

dosimetry only if there are no instrumental limitations. 

3.3. Discussion 

In practice, IMP and HMGU used the method for reconstructing EPR spectra with two fitting 

parameters. The lower bounds of the dose response linearity evaluated for two-parameter fitting 

exceed the critical doses (Wieser et al., 2008), and on average, they are equal to 40 and 110 mGy for 

HMGU and IMP, respectively (Fig. 5c). The large difference between these values is caused by the 

different conditions of the EPR equipment. The spectrometer at IMP is considerably older than the 

one at HMGU (Ivanov et al., 2011). The deviation from linearity for low doses results in a 

significant dose overestimation. The algorithm with two-parameter fitting of the RIS includes 

selection of the RIS position by analyzing the EPR signals in the neighborhood of the expected 

position of g. The most probable RIS is selected from the set of possible candidates according to the 

χ2 criterion. However, if the CRS is comparable in magnitude to the measurand, then the software 

may select an impurity signal or a random low frequency noise peak as RIS. Therefore, the constant 

software response, obtained for low values of true RIS, is close to the 95th percentile of the CRS 

amplitude distribution recalculated for triple measurements (Table 1). This explains why at zeroing, 

the true dose of the simulated spectrum does not approach zero after dose reconstruction (Fig. 5 a, c). 

Two estimates of the detection limits (DL) for the methods (Wieser et al., 2008) were performed 

based on 90% prediction intervals for least-squares fitting of EPR signal-to-dose response curves. 

The first one was performed by weighting the prediction intervals by the variances of the EPR 

measurements; the second one was implemented without weighting. The DLs were found to be equal 

to 56/188 mGy and 157/368 mGy for HMGU and IMP, respectively. The values before the slashes 
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correspond to the weighted estimates; the unweighted estimates are indicated after the slashes. As 

can be observed, the minimal estimates of the DL are lower than Drepeatable, and for IMP, they are 

lower than Dlin. The maximal estimates of the DL for both methods fall into the linear and well-

repeatable dose ranges. Therefore, the proposed maximal estimate of the DL is preferable as a 

criterion of data reliability. On the one hand, the doses in the range between the critical and DL 

values provide certain useful information and can be used in common analysis; but on the other 

hand, they are not reliable for individual estimates. Dose values such as these are typically used in 

statistical population analysis. For example, according to individual EPR measurements, the 

members of the Techa River Cohort (Krestinina et al., 2005) were externally exposed to doses in the 

range from undetectable levels up to 2 Gy (Degteva et al., 2005). Estimation of the average doses for 

specific groups formed according to residence histories is conducted by pooling all available doses, 

including undetectable cases (Volchkova et al., 2011). In such tasks, accounting for the nonlinearity 

of method-specific low dose response is indispensable. 

Development of calibration curves includes all measurement results, including those measured for 

unexposed samples. The RISs of such samples can be in the range of non-linearity, which can, in 

turn, result in underestimation of the calibration factor. Therefore, constructing the linear dose 

response calibration curve using only data above the DL is recommended. 

The results reported herein describe the case when BGS influence on RIS reconstruction is 

negligible. Real enamel spectra unavoidably contain BGS, the parameters of which can vary 

significantly. The influence on RIS reconstruction of the presence of BGS and its tooth-to-tooth 

variation represents a separate task that requires additional study. Simple preliminary testing of the 

influence of BGS was performed by adding the BGS with the same parameters used in the 

deconvolution procedure (the approach of perfect BGS fitting) described in section 2.1 to the 

simulated spectra. The amplitude of the BGS was constant, and its magnitude was selected to be 

equal to the mean of the BGS amplitudes of the experimental spectra described in 2.1.  Fig. 6 shows 

the result of RIS reconstruction in the presence of BGS. As can be observed from Fig. 6, the area of 

non-linearity becomes more evident due to the increased complexity of the spectrum with the BGS. 

It can be expected that the real tooth-to-tooth variability of BGS can additionally contribute to 

nonlinearity.   

5. Conclusions 

A. The nonlinearity of the EPR dose response can be caused by the procedure of spectrum 

processing, and it depends on two factors: (1) the height of the CRS amplitude distribution and (2) 

the use or non-use of a reference signal. The impact of the first factor is two times greater than that 

of the second. 
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B. The repeatability of the software response is also dependent on these two factors, and it is also 2 

times more sensitive to the height of CRS amplitude distribution. 

C. The region of nonlinearity of EPR dose response is below the detection limit of the method. 

Therefore, constructing the calibration curve for linear dose response using only the data above the 

DL is recommended. Doses measured below the DL may be overestimated and should be interpreted 

with caution. 
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Figure legends 

 

Fig. 1. An EPR spectrum of tooth enamel irradiated at a dose of 10 Gy. On the upper abscissa, the 

value of the magnetic induction (B) is converted into units of the gyromagnetic ratio (g-factor = 

hν/µBB). The bold line indicates the asymmetric resonance absorption peak resulting from СО2
– 

radicals with g-factor components of g⊥=2.0018 and g||=1.997.  A is the amplitude of the g⊥ signal 

component. 

 

Fig. 2. An enamel spectra recorded together with an Mn2+ reference. The irradiation dose of the 

enamel sample was 3.6 Gy. 

 

Fig. 3. An example of CRS obtained from EPR spectra measured at IMP. The dotted lines show the 

simulation of RIS and BGS. The irradiation dose of the enamel sample was 3.4 Gy. 

 

Fig. 4. The distribution of CRS amplitudes for IMP (a) and HGMU (b). The bold line represents the 

curve of a normal distribution. 

 

Fig. 5. The results of reconstruction of known doses from CRS and RIS combination for IMP and 

HMGU: a) mean values of 500 doses reconstructed for each true dose using one fitting parameter; b) 

coefficients of variation for doses reconstructed with one fitting parameter depending on the true 

dose; c) mean values of 500 doses reconstructed for each true dose using two fitting parameters; d) 

coefficients of variation for doses reconstructed with two fitting parameters depending on the true 

dose. 

 

Fig. 6. The results of reconstruction of doses from CRS and RIS combination with BGS (empty 

points) and without BGS (filled points) using two fitting parameters (IMP data). 
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Appendix A 

Table A.1. The parameters of Gaussians and Lorentzians used for simulation of “true” RIS in 

Monte-Сarlo experiments. The g is the location parameter, and the b is the shape parameter.  

Gaussian Lorentzian 

g b g b 

2.00228 0.001088 2.0014114 0.0003075 

2.004055 0.0009387 2.0018311 0.000249 

2.005704 0.001311 2.0025674 0.0001747 

2.0026328 0.00002505 2.00221288 0.000205 
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Table 1. Description of the width of spectral noise. Critical dose is shown according to 

Wieser et al. 2008. 

 σ of noise 

distribution, 

mGy 

σ of triple 

measurement, 

mGy 

95th percentile of 

noise distribution, 

mGy 

95th percentile of 

triple measurement, 

mGy 

Critical 

dose*, 

mGy 

IMP 110 70 170 100 93 

HMGU 50 30 90 50 33 
* The critical dose is the dose below which the confidence in the significance of the result is less 
than 5%. 
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Table 2. Parameters describing quality of software response to the true dose, mGy. The Dlin is 

the bound of doses with linear software response, The dconst is the region of true doses with 

constant software response, the Dconst is the maximal dose in dconst region, and Drepeatable is the 

minimal true dose satisfying the repeatability of 30%. 

Parameter HMGU IMP 

One-parameter 

fitting 

Two-parameter 

fitting 

One-parameter 

fitting 

Two-parameter 

fitting 

Dlin 30 60 170 250 

Dconst <5 15 25 60 

dconst 15 40 50 110 

Drepeatable 60 90 230 290 
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Highlights: 

Spectrum processing causes a nonlinearity of the EPR response to low doses. 

Parameters of nonlinearity depend mainly on the spectral noise height.  

The nonlinearity area of EPR dose response is below the limit of detection.  

Area of nonlinearity can be slightly reduced by applying a reference signal. 

The repeatability of software response is dependent on spectral noise height. 


