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ABSTRACT

Understanding how regulatory networks globally co-
ordinate the response of a cell to changing con-
ditions, such as perturbations by shifting environ-
ments, is an elementary challenge in systems biol-
ogy which has yet to be met. Genome-wide gene
expression measurements are high dimensional as
these are reflecting the condition-specific interplay
of thousands of cellular components. The integra-
tion of prior biological knowledge into the modeling
process of systems-wide gene regulation enables the
large-scale interpretation of gene expression signals
in the context of known regulatory relations. We de-
veloped COGERE (http://mips.helmholtz-muenchen.
de/cogere), a method for the inference of condition-
specific gene regulatory networks in human and
mouse. We integrated existing knowledge of regu-
latory interactions from multiple sources to a com-
prehensive model of prior information. COGERE in-
fers condition-specific regulation by evaluating the
mutual dependency between regulator (transcription
factor or miRNA) and target gene expression us-
ing prior information. This dependency is scored
by the non-parametric, nonlinear correlation coeffi-
cient η2 (eta squared) that is derived by a two-way
analysis of variance. We show that COGERE signif-
icantly outperforms alternative methods in predict-
ing condition-specific gene regulatory networks on
simulated data sets. Furthermore, by inferring the
cancer-specific gene regulatory network from the
NCI-60 expression study, we demonstrate the util-
ity of COGERE to promote hypothesis-driven clinical
research.

INTRODUCTION

Cellular processes are programed through regulatory con-
trol and are conditionally modulated. Gene expression is
a highly regulated mechanism that has a profound impact
on crucial processes such as cell division, differentiation
and apoptosis. Its malfunction can lead to the pathogen-
esis of fatal diseases (1,2). The regulation of gene expres-
sion covers a number of sequential processes controlling
the RNA concentration of target genes (TGs) selectively
regulating the quantity of gene products in the cell. Tran-
scriptional regulation is controlled through proteins called
transcription factors (TFs). Combinatorial interactions of
RNA-binding proteins and non-coding RNAs with regula-
tory elements located on target RNA molecules determine
the functional outcome of target RNA processing, such
as splicing, polyadenylation, export, stability and transla-
tion (3). At this, a family of small RNAs of about 22 nu-
cleotides in length without protein-coding potential called
microRNAs (miRNAs) has attracted a lot of attention. In-
tegrated within a multiprotein complex they bind to tar-
get sites preferably located in the 3′ untranslated region (4)
or the coding sequence (5) of mRNAs to govern stability
and translational efficiency. Post-transcriptional regulation
by miRNAs is an essential regulation layer for higher eu-
karyotes. One miRNA is able to regulate a large number of
protein-coding genes and vice versa one mRNA can be reg-
ulated by several miRNAs. By intertwining with transcrip-
tional gene regulatory networks (GRNs), miRNA regula-
tion induces extensive interacting control structures. Both
types of regulator genes (RGs), namely TFs and miRNAs,
span a global GRN that controls thousands of mammalian
TGs and forms multilayer regulatory circuits (6).

Novel technologies promote the ongoing transformation
of biology from a data-poor to an increasingly data-rich
science. The attendant increase in the number, size and di-
versity of data sources features knowledge for both, TF:TG
and miRNA:TG interactions. The integration of this infor-
mation offers unprecedented and as yet, largely unrealized
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opportunities for discoveries from the analysis of large-scale
GRNs. However, each data source has its unique bias and
inherent potential drawbacks. Sequence-based predictions
are rather exhaustive but yield a significant fraction of false
positives due to the limited comprehension of the molecular
basis of the regulator:target pairing process. Databases with
experimentally verified data and high-profile studies pro-
vide an impressive amount of information but are far from
complete. The biomedical literature is rich in known regu-
latory interactions but these are difficult to extract. All bi-
ological data sources naturally exhibit semantic differences
that are caused by varying levels of granularity or abstrac-
tion at which objects and their relationships are described.
These aspects illustrate the potential and importance of so-
phisticated data-driven integration approaches.

The fact that integrated networks contain regulatory in-
teractions that were described under varying conditions
makes these GRNs comprehensive, but also unspecific and
static; also the regulatory sign (stimulation/repression) of
potential relations is largely unknown. Since transcrip-
tional and miRNA-mediated post-transcriptional regula-
tion is context-dependent, it is evident that static GRNs
are not sufficient to represent regulatory interactions tak-
ing place under changing conditions. Modeling condition-
specific GRNs using prior information from integrated net-
works aims to overcome these problems and will facilitate a
better understanding on how gene expression is modulated.

With rapidly increasing amounts of gene expression pro-
files, an exhaustive insight into their underlying large-
scale condition-specific GRNs becomes feasible and at-
tractive. Therefore, we developed COGERE (modeling
of COndition-specific GEne REgulation; from the Latin
‘to collect’), an approach to infer condition-specific gene
regulation from gene expression data integrating existing
knowledge of regulatory interactions. This approach en-
ables the interpretation of multi-dimensional expression
profiles reflecting the dynamic interplay of thousands of cel-
lular components in the context of known regulatory re-
lations. We build a data structure of transcriptional and
miRNA-mediated gene regulation (prior model) by in-
tegrating automatically and manually mined interactions
from all available biomedical text with information from rel-
evant databases, recent studies and computational predic-
tions from sequence data. In addition to an increased sen-
sitivity, COGERE is able to suggest references for inferred
interactions that were described in the literature. This will
facilitate the generation of novel, testable hypotheses. To
compute the condition-specific strength of association from
gene expression data, COGERE uses a two-way nonlinear
non-parametric analysis of variance (ANOVA) considering
prior information. This association metric overcomes the
disadvantages of common approaches utilizing linear cor-
relation (7,8) and mutual information (8,9). Linear correla-
tion requires miRNA and mRNA expression profiles to be
obtained from the same set of individuals (matched data),
and inherently detects only linear relations. Mutual infor-
mation needs careful discretization of the expression data
to avoid loss of signal and, in addition, is non-negative, and
as such does not provide information about the condition-
specific sign of interaction.

In this work, we report the construction of the COGERE
framework and show that our approach significantly im-
proves existing methods for the large-scale modeling of
miRNA-mediated condition-specific GRNs. Further, we
demonstrate the utility of COGERE by inferring a cancer-
specific regulatory network from the NCI-60 (10) microar-
ray project.

MATERIALS AND METHODS

COGERE maps regulatory complexity by reconstructing
GRNs involving TFs or miRNAs as regulators (Figure 1A).
The workflow of COGERE is outlined in Figure 1B. In the
following each step of the framework (information integra-
tion, inference), the evaluation and the data analysis of the
use-case are described in detail.

Construction of the prior model by information integration

The prior network is composed of in vivo, in vitro and com-
putationally determined regulator:target interactions. Sev-
eral heterogeneous data sources were combined to a single-
graph data model. All genes with their symbols, gene syn-
onyms and identifiers as listed in NCBI Entrez Gene (11)
and miRBase version 19 (12) were added as vertices to the
regulatory graph. Regulatory associations were stored as di-
rected interactions between two gene nodes. Each interac-
tion was weighted by a prior score that ranks its regulatory
potential; this score is computed from the integrated evi-
dences as specified below.

Integration of transcriptional regulatory interactions. To
predict transcriptional regulatory associations, we obtained
human and murine promoter sequences of protein-coding
genes from the ElDorado database version 08-2011 (ElDo-
rado; http://www.genomatix.de). For miRNA genes, we col-
lected promoters from Fujita et al. (13) and CoVote (14)
and transcriptional starts from CoreBoost HM (15), Cor-
coran et al. (16), Marson et al. (17), Ozsolak et al. (18),
miRStart (19) and Eponine-TSS (20). Given a median pro-
moter length of 448 nt in the study of Fujita et al. and 350
nt predicted by CoVote, we extracted adequate promoter se-
quences from 500 nt upstream to 100 nt downstream relative
to a transcriptional start site. We obtained chromosomal lo-
cations of all miRNA hairpins from miRBase and calcu-
lated the distances between a miRNA hairpin start position
and all promoter start positions. For each miRNA gene,
we selected the promoter located closest to its hairpin se-
quence. If miRNA genes shared the same promoter and had
an inter-gene distance of up to 50 kb, they were proposed to
form a transcriptional unit (21). We filtered promoters lo-
cated up to 50 kb upstream of a miRNA gene or a transcrip-
tional unit (22). Additional promoter regions of intragenic
miRNAs located on the same strand and within an intron
of a protein-coding gene were considered coincident with
the one defined for the host gene (23). Gene annotations
were obtained from Ensembl (24). All promoter sequences
were scanned for vertebrate TF matrix matches using the
MatInspector algorithm (matrix family library version 8.4)
(25). We utilized ModelInspector (module library version
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Figure 1. Overview of the COGERE workflow. (A) Outline of the biological paradigm of TF and miRNA interplay in gene expression regulation considered
by COGERE: (i) transcriptional regulation is conducted by TFs binding to sites in promoter regions on the DNA of genes encoding either proteins or
non-coding RNAs such as miRNAs. Here, miRNAs can be co-regulated with its protein-coding host gene, within a transcriptional unit (gene cluster),
and/or through its own promoter (ii) miRNA regulation takes place post transcription by binding to sites mainly located on the 3′ untranslated region
(3′-UTR) and/or the coding sequence (CDS) of the target mRNA. The transcriptional and post-transcriptional regulatory pathways are interconnected.
(B) Construction of the prior network by information integration. For transcriptional regulation we combined predicted transcription factor-binding
sites (TFBS), their conservation and mined interactions from biomedical text by a linear integration function. For post-transcriptional regulation, we
integrated individual scores of six miRNA target prediction algorithms and text-mining results to a unified score weighting the regulatory potential of a
miRNA:TG interaction using AGO-bound CLIPseq data and proteomics (pSILAC) data. All scores computed by the relevant integration function were
normalized to percentile ranks (= prior score). Experimentally verified interactions were added to the prior network (prior score = 1). (C) Determination
of condition-specific regulation. For user-specified normalized and log2-transformed mRNA and/or miRNA expression data of at least two conditions,
COGERE computes for each interaction of the prior network, the strength of the conditional dependency and the condition-specific regulatory sign
(stimulation/repression) by deriving the coefficient η2 with its corresponding P by a two-way ANOVA.
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5.5) (26) to filter experimentally verified vertebrate mod-
ules of transcriptional regulatory units, functional compos-
ite elements consisting of at least two TF-binding sites in
conserved order and distance. PhastCons (27) scores from
46-way (human) and 30-way (mouse) alignments of verte-
brates available through UCSC (http://genome.ucsc.edu/)
were used to calculate mean conservation levels of poten-
tial TF-binding sites. We required each candidate target site
to correspond to the most conserved nucleotide at 95% of
all positions of the TF matrix or to be conserved with an
average score of at least 95%. Moreover, we extracted all
regulatory interactions found by the text-mining tool Bio-
Context (28). We required the associations of two biological
entities to be organism-specific and the interaction type to
be included in the set of terms: regulation, positive regu-
lation and negative regulation. BioContext provides a score
for each event mirroring the precision of the identified asso-
ciation based on specific event features. This allows for each
TF:target interaction the computation of the prior score
based on the TF matrix similarity score xsimilarity, the conser-
vation score xconservation and the text-mining score xliterature as
follows:

prior = xsimilarity + xconservation + xliterature (1)

at which xsimilarity, xconservation and xliterature are scaled be-
tween 0 and 1 by

F(x) = xi − min(x)
max(x) − min(x)

. (2)

Integration of miRNA-mediated post-transcriptional regula-
tory interactions. Due to the diverse feature and model
selection of miRNA:target prediction approaches (29,30),
we selected a set of six current algorithms to cover a
wide range of different miRNA targeting characteristics:
DIANA-microT-CDS (5), mirSVR (31), PicTar (32), PITA
3/15 (33), TargetScan 6.1 (34) and TargetSpy (35). Addi-
tionally, we integrated predicted interactions from literature
mining provided by miRSel (36), miRWalk (37) and Bio-
Context (28). For miRSel and miRWalk, we scored each
interaction by the number of retrieved documents contain-
ing a co-occurrence between the miRNA and its target. To
minimize the false positive rate, we obtained only the most
confident predictions of each tool as recommended by the
authors, respectively (Supplementary Table S1). We utilized
CLIP-Seq data from starBase version 1.0 (38) to identify
predicted target sites located in an Argonaute (AGO) CLIP-
Seq peak cluster. Here, each cluster holds a biological com-
plexity score b describing a measure of reproducibility be-
tween biological replicates or experiments. We prepared six
score vectors xm,b with {b = 0, b = 1, b = 2, b = 3, b = 4,
b ≥ 5} for each prediction method m ∈ M. A biological com-
plexity of b = 0 denotes target sites not located in any an-
notated AGO2-binding region. For each miRNA:target in-
teraction the best score was retained. We transformed each
prediction score vector xm,b into an efficiency score vector
ym,b of protein downregulation based on miRNA transfec-
tion data from Selbach et al. (39) (Supplementary Figure
S1). We computed a regression function F(xm,b,k) for the k-
th prediction score and the average log fold change ym,b,k of
all miRNA:target pairs with xm,b,l ≥ xm,b,k and a random

error εm,b,k:

ym,b,k = F(xm,b,k) + εm,b,k. (3)

We used the locally weighted least-squares method to
fit the polynomial function of the predictor (40). For each
miRNA:target pair we computed the prior score:

prior = (−1)
∑

m∈M

min
b

(ym,b,k). (4)

Transformation of prior scores. The integration of inde-
pendent sources inherently results in non-identical, hetero-
geneous prior score distributions. To obtain unified weights
for each interaction type k ∈ {TF:TG, miRNA:TG}, we
converted the raw prior scores xi ∈ priork to percentile rank
scores:

F(xi ) =0.5|{xj : xj = xi }| + |{xj : xj < xi }| + 0.5
|priork|

. (5)

This equation allows an intuitive interpretation of the
prior scores, e.g. a transformed priork score of 0.90 denotes
an interaction with a higher regulatory potential than 90%
of all interactions of type k contained in the prior model; in
return a prior cutoff of 0.90 retains the 10% most reliable
predicted regulatory associations. Note that Equation (5)
computes the mean rank for ties (see Supplementary Meth-
ods S1).

Integration of verified regulatory interactions. We col-
lected experimentally verified TF:TG interactions from
ENCODE (41), TRED (42), TRANSFAC (43), Trans-
Mir (44) and from manual literature search. We obtained
miRNA:TG interactions from miRecords (45), miRTarBase
(46), miR2Disease (47) and Tarbase (48). For each interac-
tion contained in one of these sources the prior score was
set to 1.0.

Determination of condition-specific regulation by inference

Preprocessing of expression data. We apply two prepro-
cessing steps to input data in order to improve the discrim-
inatory power of our approach.

(i) Balancing the data. To avoid a condition-dependent bias,
the sets of microarrays measured under the same con-
dition are pruned to equal size n. We compute the Mi,j
value for each probe j on microarray i by dividing the
intensity of j by the median intensity of the same probe
across all microarrays. According to (49) Mi,j can be de-
composed to the probe effect zj, the differential expres-
sion effect β i,j and an error term εi,j. As zj and β i,j are
the same across all k samples within one condition, com-
puting the sum of all L1 distances enables to filter the n
microarrays with minimal technical variation:

di =
∑

k

∑

j

|Mi, j − Mk, j |. (6)

We ranked all samples of each condition by their increas-
ing order of di and selected the top n microarrays for further
processing.
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(ii) Filtering of non-present and uninformative transcripts. In
order to assess the context-specific strength of associa-
tions, the transcripts of both regulator and target have
to meet the following two requirements: the genes need
to be expressed in all samples of interest and to show
significant variation across the different conditions. Re-
garding the latter, TGs whose expression does not alter
between the different conditions are unlikely to be un-
der context-specific regulation. We filter all probe sets
that have sufficient expression intensities (>log220) on
more than 5% of the microarrays and exhibit an ad-
equate variation across samples (probe set expression
interquartile range > median expression interquartile
range) (50).

Inferring condition-specific regulation by ANOVA. To
score regulatory associations of the prior model in terms of
condition-specific relevance, we utilize the non-parametric,
nonlinear correlation coefficient η2 (eta squared) (51). This
variable is derived from a two-way ANOVA and enables the
quantification of the mutual dependency between a regula-
tory pair based on gene expression profiles over different ex-
perimental conditions. We model observed expression data
with n replicates and k conditions as responses of two fac-
tors XC (condition) and XG (RG and TG), their potential
interaction XC × XG and the proportion of variation which
cannot be explained by the model ε (measurement noise).
Variance can be expressed in terms of the sum of squared
deviations from the mean (sum of squares, SS) (52). Ac-
cordingly, a two-way ANOVA splits the total sum of squares
(SST) into four parts:

SST = SSXC + SSXG + SSXC×XG + SSε. (7)

Here, SSXC reflects the effect of differential gene expression
between the conditions, SSXG is the difference in means of
the expression profiles of RG and TG, SSXC×XG denotes the
joint effect of both factors and SSε quantifies the variation
due to inaccuracy of measurement. For each regulatory pair
we extract two matrices of size n × k containing the expres-
sion values of the RG and the TG, respectively. From Equa-
tion (7), we calculate for each Z-score standardized expres-
sion matrix the mutual dependence in gene expression be-
tween the different conditions. It is defined as the fraction
of total variation explained by the variation in the data be-
tween conditions:

η2
C+ = SSXC

SST
, η2

C+ ∈ [0, 1]. (8)

This value can be interpreted in the same way as common
correlation coefficients. We take into account that η2 does
not explicitly test for negative regulation: we reversed the
sign of the RG data and calculate η2

C−. As a final score we
define η2 = max(η2

C+, η2
C−) (53). Interactions with η2

C+ <

η2
C− are signed as repression, otherwise as stimulation.
Regulatory associations showing a strong conditional de-

pendency between RG and TG, i.e. having a high η2 score,
were assumed to be of high relevance. We test this depen-
dency for statistical significance by an F-test. For each η2

the corresponding F-value is calculated by dividing the ef-

fect variance of factor XC by the total variance:

FXc = MSXC

MST
, MSi = SSi

df i
, i ∈ {XC, T}, (9)

where the degrees of freedom are chosen df XC
= k – 1 and

dfT = 2 × n × k – 1. P-values (P) are obtained from the F-
distribution and adjusted by the Benjamini–Hochberg pro-
cedure (54) to control the false discovery rate (FDR). The
pseudocode of the algorithm can be found in Supplemen-
tary Methods S2.

Evaluation

Performance assessment of the integration function. The
set of mRNA expression data was taken from the miRNA
transfection study performed by Linsley et al. (55). We
obtained the data from the NCBI Gene Expression Om-
nibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) under ac-
cession GSE6838. The expression profiles were measured
at 24 h post-transfection featuring maximal mRNA silenc-
ing but minimal secondary effects by protein depletion.
The expression profiles of HeLa, HCT116 Dicerex5 and
DLD-1 Dicerex5 miRNA-transfected cells relative to mock-
transfected cells were computed. We mapped probe iden-
tifiers to NCBI Gene accession numbers and selected the
probe with the lowest log ratio P for each gene. To obtain
statistically meaningful results, we considered only experi-
ments for which each prediction tool scored at least 150 in-
teractions. Finally, we obtained 18 expression profiles con-
taining 10 miRNAs (miR-106b, miR-16, miR-15a, miR-
20a, miR-195, miR-103, let-7c, miR-107, miR-17-5p and
miR-103). We recomputed the COGERE prior scores with-
out the information of validated interactions to make the
scores comparable among approaches. To mimic the inte-
gration functions of mirConnX (7) and MAGIA2 (8) we
used the six miRNA target prediction algorithms incorpo-
rated in the COGERE prior score. We implemented the
scoring scheme of mirConnX by weighting a miRNA:TG
association by the proportion of algorithms predicting the
interaction. For MAGIA2, we computed all 57 possible in-
tersections between the six miRNA target prediction algo-
rithms. We calculated the rank correlation between the ob-
served gene log2 fold changes following miRNA transfec-
tion and the scores computed for the miRNA:TG interac-
tion. Further, we performed a precision–recall analysis us-
ing the top and bottom 20% of candidate TGs based on
their expression changes.

Benchmark of prediction accuracy. We generated an in sil-
ico gold standard of 80 regulatory networks extracted from
a human source network composed of 64 029 experimen-
tally verified interactions using GeneNetWeaver (56). Each
sub-network contained 500 nodes and a varying number
of edges (min = 852, median = 1226 and max = 1421) of
which 50% were set to occur in a given set of conditions to
obtain a balanced test set. Stochastic dynamical models of
gene regulation accounting for molecular and experimen-
tal noise were applied to simulate matched expression data
of mRNA and miRNA. We simulated the steady-state ex-
pression of all genes for 60 conditions [c.f. NCI-60 cancer
microarray project (10)], with five replicated measurements
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each. We applied a precision–recall analysis for the deter-
mination of the prediction accuracy of condition-specific
regulation as well as a precisionsign–recall analysis for the
prediction of the sign of a regulatory interaction. For fur-
ther details about the construction of the benchmark suite,
the evaluation metrics and the application of the prediction
methods refer to Supplementary Methods S3 and Supple-
mentary Figure S2A.

Case study data. We extracted the raw total gene signals of
the NCI-60 Agilent microarray measurements from the Liu
et al. study (57). Six cell samples (MCF7, HCT116, HT29,
K562, SK-MEL-2 and CAK1-1) were labeled in quadru-
plicated, and the remaining samples were labeled in dupli-
cate. In accordance with the manufacturer, we set probe
intensities <5.0 to 5.0 and removed spots if the gene was
not detected on the microarray. The data were quantile
normalized (58) and log2 transformed. All probes were as-
signed a miRBase ID or Entrez Gene ID, respectively. We
obtained 789 miRNA probes measuring 533 genes and 26
091 mRNA probes measuring 16 651 genes. Processed data
from the NCI-60 DTP human tumor cell line screen mea-
suring the activity of 19 941 chemical compounds (drugs)
in NCI-60 cell lines were obtained from CellMiner (http:
//discover.nci.nih.gov/cellminer/). As proposed by Liu et al.
(57) relationships between drug activity and gene expression
were computed by Pearson correlation. At this, we aver-
aged the expression of a gene transcript for replicates of cell
lines. The FDA status of each compound was taken from
the CellMiner database (annotation of 07/30/2013, version
1.4).

RESULTS

Comprehensive information integration

As the prior model of COGERE defines the hypothesis
space for the inference of condition-specific regulation, the
information integration step has to be extensive. We com-
bined several sources containing regulatory interaction in-
formation to a unique, directed graph constituting a static
model of feasible gene regulation. Each interaction was
weighted by a prior score computed by a domain-specific
integration function. COGERE contains a regulatory net-
work with 5 481 057 interactions for human and 3 472 682
interactions for mouse. Comparing the amount of high-
confident interactions (prior score > 0.9) to recent data
pools, our model contains an extensive set of qualitative in-
formation: 294 394 TF:TG, 11 258 TF:miRNA and 316 875
miRNA:TG interactions in human. In comparison, EN-
CODE (41) features about 27 386 TF:TG, TransmiR (44)
353 TF:miRNA and the recent release of miRTarBase (46)
about 45 540 miRNA:TG human regulatory associations.
Since there is less data available for mouse, the information
gain is even higher: 199 308 TF:TG, 4105 TF:miRNA and
156 779 miRNA:TG high-confident interactions. In com-
parison: TRANSFAC (43) has 1118 TF:TG, TransmiR 16
TF:miRNA and miRTarBase 13 405 murine interactions.
The TransmiR database provides regulatory associations
for only 9% of human miRNA genes and 2% of murine
genes. This shortcoming was substantially improved by ex-
tensively collecting data from existing studies and care-

fully predicting promoter sequences. We considered that
miRNA genes can be embedded within a protein-coding
host gene, and/or being part of an independent transcrip-
tional unit, and/or can have their own promoter. COGERE
predicts transcriptional regulation for 51% of all human
and 50% of all murine miRNA genes (as annotated in miR-
Base 19). This is an increase compared to existing inte-
grative approaches that model transcriptional regulation of
about 29% [MAGIA2 (8)] to 31% [mirConnX (7)] of hu-
man miRNA genes and between 46% and 47% of murine
miRNA genes, respectively.

For the first time, we automatically integrated mined in-
teractions from all available biomedical text with informa-
tion from databases and their corresponding references.
Our current prior model contains 141 713 references for 97
816 interactions in human and 44 950 references for 25 142
interactions in mouse.

Improved weighting of miRNA:TG interactions a priori

Since COGERE integrates six miRNA target prediction
algorithms into a unique scoring framework under con-
sideration of individual target scores, we were interested
to know whether our integration function improves previ-
ous approaches such as the ordinary intersection of several
tools.

First, we compared the COGERE prior scores with the
prior scores computed by the integration function used by
mirConnX (7). The latter weights each miRNA:TG inter-
action by the fraction of target prediction tools confirm-
ing a potential regulation. The outcome is a prior network
with a discrete score distribution composed of {0, 1/6, 1/3,
1/2, 2/3, 5/6, 1}. To obtain the intrinsic value of how well
the weights describe the regulatory potential of an interac-
tion, we evaluated the overall ranking performance of both
scoring schemes. For this purpose, we computed the Spear-
man’s rank correlation between the observed log2 expres-
sion change following miRNA transfection and the prior
weights of the miRNA:TG interactions, respectively. Fig-
ure 2A shows that both attempts for combining multiple
target prediction tools exhibit a better performance com-
pared to the average performance of all individual tools. At
this, the COGERE prior score strongly outperforms the ba-
sic weighting used by mirConnX. In contrast to the prior
score, the simple combination of target prediction tools is
not optimized to describe potential miRNA-induced ex-
pression changes. In 16 of the 18 experiments, the per-
formance of the prior score outperforms the basic scor-
ing framework that constitutes a significant improvement
(paired signed rank test P = 1.7 × 10-4). In all except one
case, the COGERE integration function is superior to a
blindfolded random selection of a single algorithm.

Second, to analyze the performance of the prior score and
the intersection of tools as used in MAGIA2 (8) we gener-
ated all 57 possible intersections composed of at least two
of the six algorithms. We defined precision as the fraction of
predictions that are true positives and recall as the propor-
tion of actual positives that are correctly identified as such.
Figure 2B shows that the prior score strongly improves the
precision of the prior network over almost all values of re-
call. On average, the ranking by prior scores yields a signif-
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Figure 2. Evaluation of the prior score of miRNA:TG interactions. (A) Rank correlations (vertical bars) between predicted interaction weights and
observed mRNA log2 expression changes measured post-transfection of 11 miRNAs in three cell lines (55). The lower the correlation coefficient, the better
represents the scoring framework the potential of a miRNA-mediated regulation. Weighting miRNA:TG associations using the COGERE prior score
outperforms the basic scoring framework applied by mirConnX (7) in 94% of cases. Both scoring frameworks improve the average performance of all
single target prediction algorithms. The error bars denote the 95% confidence interval for the mean. (B) Mean precision–recall curve of the COGERE
prior score ranking the top 20% most downregulated targets (positives) and 20% least downregulated targets (negatives) of each transfection data set.
Shown are also the mean precision–recall values for all intersections of n miRNA target prediction algorithms. For a given recall the ranking by the prior
score yields an average advantage of 7.5% points in precision compared to the simple tool intersection applied by MAGIA2 (8). The F-measure denotes
the harmonic mean between precision and recall. The shaded area indicates the 95% confidence interval for the mean.

icant advantage of 7.5% points in precision (paired signed
rank test P = 8.8 × 10-11) compared to any tool intersec-
tion. Interestingly, the intersection method is not straight-
forward and thus does not assure a gain of precision for a
higher number of intersected tools on the expense of recall.

Advanced inference of condition-specific interactions

We generated an in silico benchmark set (80 networks of
size 500 nodes with corresponding steady-state expression
data) according to the framework used in the Dialogue for
Reverse Engineering Assessments and Methods (DREAM)
competition (56). This allows us to test COGERE against
a known ground truth and to compare it to the common
approaches mirConnX (7) and MAGIA2 (8). To measure
prediction accuracy, we used the area under the precision–
recall curve (AUPR) and the area under the precisionsign–
recall curve (AUPsignR). At this, recall describes the frac-
tion of predicted condition-specific interactions defined by
the gold standard, precision denotes the proportion of
true condition-specific predictions in the result set and
precisionsign the fraction of correctly predicted regulatory
signs. We computed the performance advancement of each
algorithm over the null model (random guessing), denoted
as ΔAUPR and ΔAUPsignR, respectively.

First, we evaluated how well the algorithms infer
condition-specific edges from the expression data. Fig-
ure 3A shows that all tested algorithms perform better than
random guessing predicting the whole condition-specific
model (ΔAUPR > 0 for RG:TG). Here, COGERE (me-
dian ΔAUPR = 0.294) exhibits a significantly higher accu-
racy (Mann–Whitney U-test P < 4 × 10-15) than mirConnX
(median ΔAUPR = 0.079) and MAGIA2 (median ΔAUPR
= 0.054). COGERE achieves major overall improvements
for the prediction of TF:TG as well as miRNA:TG interac-

tions compared to existing tools. The major drawback of
mirConnX and MAGIA2 is the low accuracy in predict-
ing transcriptional regulation; both tools have their strength
in detecting post-transcriptional regulation by miRNAs
(ΔAUPR TF:TG < ΔAUPR miRNA:TG).

Second, we investigated the accuracy of predicted signs
of the regulatory interactions (Figure 3B). Again, the
AUPsignR values obtained by the tools were higher than
the values obtained by the null model, whereas COGERE
(ΔAUPsignR = 0.456) substantially outperforms mirConnX
(ΔAUPsignR = 0.127) and MAGIA2 (ΔAUPsignR = 0.073).
Apparently, COGERE precisely determines the signs for
both kinds of regulatory interaction for all values of recall.
mirConnX and MAGIA2 exhibit similar lower accuracy
profiles for TF:TG interactions compared to miRNA reg-
ulatory associations, whereas the ΔAUPsignR miRNA:TG
values obtained by mirConnX are significantly higher than
the values of MAGIA2 (Mann–Whitney U-test P = 2.2 ×
10-12).

Case study: human cancer GRN

mRNA and miRNA profiles from tumor samples are fre-
quently published. Having only been used to extract tumor-
classifying molecular signatures (57) or confirming pre-
dicted miRNA:TG interactions (59), these expression data
sets contain more information to be exploited. We com-
puted the condition-specific relevance of regulatory interac-
tions for the NCI-60 data panel which involves 60 cell lines
originating from prostate cancer, lung cancer, breast can-
cer, melanoma, ovarian cancer, hematologic cancer, kidney
cancer, colorectal cancer and malignant glioma. We con-
sidered the top 10% predictions by COGERE (Table 1) as
highly relevant tumor specific interactions and will refer this
network in the following as the cancer GRN. The resultant
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Figure 3. Accuracy of predicted condition-specific regulation. (A) AUPR values for each inference method for predicting condition-specific interactions.
Shown is the deviation Δ from the null model (random guessing). COGERE outperforms mirConnX (7) and MAGIA2 (8) on the prediction of condition-
specific gene regulation tested against TF- and miRNA-mediated regulation (RG), only miRNA-mediated regulation (MIR) and only transcriptional
regulation (TF). (B) AUPsignR values for each inference method for predicting the condition-specific sign of an interaction. Shown is the deviation Δ from
the null model (random guessing). We computed precisionsign–recall curves to determine the fraction of correctly predicted condition-specific regulatory
signs for each value of recall. COGERE holds an excellent accuracy tested against TF- and miRNA-mediated regulation (RG), only miRNA-mediated
regulation (MIR) and only transcriptional regulation (TF). mirConnX and MAGIA2 exhibit low accuracy for transcriptional regulation.

miRNA-mediated GRN enables the systematic analysis of
gene regulation in human cancers and demonstrates the po-
tential of COGERE to reveal conditional regulatory land-
scapes.

The inferred GRN discovers causal RGs in cancer. To inves-
tigate whether the genes contained in the predicted GRN
were substantially related to the condition of cancer, we ex-
tracted 2760 known gene–cancer associations from HuGE-
Navigator (60) for all cancer cell lines contained in the NCI-
60 data. Altogether, 2477 cancer-related genes were mea-
sured by the NCI-60 microarrays, of which 1192 were con-
tained in the inferred GRN. This denotes a significant en-
richment of cancer-related genes (odds ratio = 1.2, Fisher
test P = 2.1 × 10-7), consistent with the expectation that
the inferred GRN should hold a higher fraction of cancer-
related genes than expected by chance. Further, cancer-
related TFs with at least one TG were significantly over-
represented (odds ratio = 2.2, Fisher test P = 4.1 × 10-10).
Five of the 10 most highly connected TFs (ELF3, EHF,
ETS2, ETV5 and KLF6) were known to play a role in car-
cinogenesis. We examined the enrichment by using all 518
genes listed in the cancer Gene Census database (61). Again,
the GRN shows a significant high content of cancer-related
genes (odds ratio = 1.4, Fisher test P = 7.7 × 10-6) and reg-
ulatory TFs (odds ratio = 2.1, Fisher test P = 2.2 × 10-6)
even without filtering the database for NCI-60 tumors. This
result suggests that the inferred GRN can be a valuable re-
source to extract information regarding cancer-specific gene
regulation in general.

Next, we were interested to know whether the human
cancer GRN was able to recapitulate miRNAs that are
both, namely dysregulated in malignant cells and at the
same time causally linked to specific oncogenic processes.
We compared the miRNAs contained in the GRN to entries
in PhenomiR (62), a manually curated database of miR-
NAs that are dysregulated in diseases including the nine
cancers of the NCI-60 panel. We used the Disease Ontology
resource (63) to manually map the NCI-60 cell lines to Phe-

nomiR diseases (Supplementary Table S2). Remarkably, a
highly significant enrichment of known dysregulated miR-
NAs was observed: 164 miRNAs in the inferred GRN were
previously shown to be dysregulated in tumors of the NCI-
60 data set (odds ratio = 6.0, Fisher test P = 4.5 × 10-12;
Supplementary Table S3). To investigate whether the dys-
regulated miRNAs contained in the human cancer GRN
are also known to hold a causal influence on cancer phe-
notypes, we manually mapped the causal relationships an-
notated in mirR2Disease to PhenomiR. It was striking that
48% of the miRNAs in the GRN that were known to be
dysregulated were also annotated to causally affect cancer
phenotypes (odds ratio = 1.7, Fisher test P = 4.3 × 10-3).
Among the top 10 of the most highly connected miRNAs,
all were known to be dysregulated and seven were assigned
a known causal relationship (mir-27a, mir-23a, mir-17, mir-
21, mir-29a, mir-20a and let-7b); among the top 25, all were
dysregulated and 80% causal (Supplementary Table S4).
In general, the higher the number of predicted condition-
specific targets by COGERE, the higher the probability
that a miRNA exhibits a causal relationship to cancer (Fig-
ure 4A); e.g. of the 5% of miRNAs with the highest number
of targets 67% were causal, whereas for the 5% of miRNAs
with the lowest number of regulatory interactions no causal
relationship was known.

RGs associated with the hallmarks of cancer. The fact that
a miRNA or a TF is contained in the inferred cancer GRN
does not implicate that this RG plays a role in key onco-
genic processes. Hanahan and Weinberg (64,65) proposed
10 traits of cancer that govern the transformation of nor-
mal cells to tumor cells. We used the set of Gene ontol-
ogy (66) biological process terms representing the 10 hall-
marks of cancer prepared by Plaisier et al. (67) to analyze
TGs for functional enrichment. We found 1393 genes in-
volved in key oncologic processes in our cancer GRN which
denotes a highly significant over-representation (odds ra-
tio = 1.3, Fisher test P = 6.6 × 10-11). Next, we were in-
terested to know which RGs in detail interact with these
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Table 1. Network characteristics of the human cancer GRN

NCI-60 GRN RG = TF RG = miRNA TG Interactions (prior = 1, reference) Maximum P

Full 473 251 8853 634 863 (4%, 5%) 0.67
Study 387 180 5869 63 486 (5%, 7%) <10–5

Listed are the network statistics for the full inferred GRN and the subnetwork used in this study: the number of RGs and TGs, the number of their
interactions and the highest predicted P of a condition-specific interaction; prior = 1 denotes the fraction of interactions with a prior score of 1 and
reference denotes the proportion of interactions with a reference.

Figure 4. Degree distributions of the cancer GRN. (A) Fraction of miRNAs that have been reported to be causally linked to specific oncogenic processes
(y-axis) for each fraction of miRNAs with the highest (light gray) or lowest (dark gray) number of targets in the cancer GRN (x-axis). miRNAs with a
high number of predicted cancer-specific TGs were more often reported to be causal than miRNAs with a low number of predicted cancer-specific TGs,
e.g. 78% of the top 15% of miRNAs with a high out-degree have a causal role in cancer compared to only 22% of the bottom 15% of miRNAs with a low
out-degree. (B) Empirical out-degree distributions of all RGs. In average, RGs with a predicted association with an altered chemosensitivity of cancer cells
exhibited 75 (increased drug response) or 81 (decreased drug response) more targets than any RG contained in the cancer GRN (background).

genes and are subsequently associated with the hallmarks
of cancer. The functional enrichment analysis of the tar-
get sets of each RG recovered 31 miRNAs and 85 TFs that
were predicted to regulate at least one process in oncogene-
sis (FDR adjusted Fisher test P < 0.05; Supplementary Ta-
ble S5). Notably, 10 TFs and nine miRNAs were associated
with at least five hallmarks of cancer (E2F2, ELF1, FLI1,
JUN, KLF2, KLF4, KLF6, KLF10, NFKB2, TFDP2, mir-
7-1, mir-18b, mir-21, mir-23a, mir-23b, mir-24-1, mir-24-
2, mir-29a and mir-181b-1) suggesting that these genes are
promising candidates for follow-up studies. Further, we ob-
served the evasion of inhibition mechanisms blocking pro-
liferation and the metastatic potential of a cell to be un-
der strong control. Together 100 RGs (71 TFs and 29 miR-
NAs) were predicted to regulate ‘insensitivity to antigrowth
signals’ followed by 97 RGs (71 TFs and 26 miRNAs) as-
sociated with ‘tissue invasion and metastasis’. The latter
hallmark is one of the defining features of malignant tu-
mors making putative regulators excellent biomarker can-
didates. COGERE proposes a mechanistic explanation of
how TFs and miRNAs act together to directly regulate
genes involved in metastatic processes (Figure 5 and Sup-
plementary Table S6). In this example, our cancer model
suggests that mir-20a, a member of the miR-17∼92 miRNA
cluster, regulates cell adhesion and cell migration in tumor
metastasis through direct suppression of thrombospondin
1 (THBS1). An upregulation of miR-17∼92 was described
to promote angiogenesis and tumor growth (68), whereas
increased THBS1 expression suppresses growth or metas-
tasis of some tumors in vivo and inhibits angiogenesis (69).

The THBS1 downregulation was observed primarily at the
level of mRNA turnover (70) which is probably induced by
miRNA-mediated mRNA degradation. These findings re-
turn a predicted cancer-specific interaction as an interesting
subject for further investigations.

The cancer GRN predicts potential targets for cancer phar-
macology. Given a condition-specific GRN, a key next
step for the extraction of novel testable hypotheses is the in-
tegration of orthogonal information. Drug insensitivity or
drug resistance are major obstacles in the successful treat-
ment of cancer. Several studies suggested that robustly posi-
tive or negative correlations between drug activity and gene
expression reflect a role in chemosensitivity of cancer cells.
A negative correlation may indicate that cancer cells with
an increased expression level of mRNA or miRNA are less
sensitive to the drug compound than other cells. On the
contrary, if the correlation is positive, co-treatment with
mRNA or miRNA might be used to enhance drug potency
or reduce toxicity (57,71). We calculated the correlation of
miRNA and mRNA expression profiles versus drug activ-
ities over all NCI-60 cancer cell lines. First, we validated
the informative value of the correlation coefficients by com-
paring our results to GI50 values measuring the growth in-
hibitory power of the test agent provided by Blower et al.
(71). They experimentally tested the activity pattern of 10
drugs following either inhibitor or precursor transfection
of three miRNAs (let-7, mir-16 and mir-21) in A549 cell
lines. The correlation coefficients were in good agreement
with the average log10 fold-changes of GI50 values between
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Figure 5. Metastatic interplay of TFs and miRNAs. Nodes are biological processes (colored parallelogram), TFs (triangle) and miRNAs (diamond). Arcs
denote an enrichment of RG targets in a metastatic process and are colored, respectively. The top five predicted negative regulations of mir-20a are listed
exemplary in the table shown at the lower right corner; e.g. the THBS1 repression by mir-20a which was described in (68) and holds a condition-specific
regulation score of 0.71. This interaction affects cell adhesion and cell migration (blue and orange arcs). Note that the shown network was filtered by
regulatory interactions having at least one literature reference (PubMed ID).

lowered and raised miRNA levels (R2 = 0.38, P = 2.7 ×
10−4; Supplementary Figure S3).

To gain a first broad perspective on the potential roles of
the predicted RGs in cancer therapy, we analyzed the as-
sociations of 163 anti-cancer compounds that are in clin-
ical trial or were approved by the FDA (U.S. Food and
Drug Administration) and all genes contained in our cancer
GRN. We observed 45 miRNAs and 125 TFs accounting
for 105 drug–miRNA and 309 drug–TF correlations reach-
ing the �-level of P = 10−4 suggested by Blower et al. (71).
This denotes a significant amount of potential drug targets
(miRNA odds ratio = 2.0, Fisher test P = 9.6 × 10−3; TF
odds ratio = 2.9, Fisher’s P = 1.9 × 10−16). Among these, 23
miRNAs and 71 TFs were predicted to decrease the cancer
cells’ chemosensitivity. This set of chemoresistance factors
exhibited on average 1.7 times more targets (factor 2.9 for

miRNAs and factor 1.5 for TFs) than any RG contained in
the whole GRN (Mann–Whitney U-test P = 6.7 × 10−6;
Figure 4B). For example, mir-22 was predicted with the
highest amount of negative effects to compound potencies;
it had the third most regulatory interactions in the cancer
GRN. The aberrant expression of this oncogene has been
reported to correlate with poor survival (72) and our results
indicate that tumor cells expressing mir-22 are less sensitive
to drug treatment. Based on its high number of targets, mir-
22 might be an interesting subject for further assessments
of its role in resistance to anticancer agents. It remains to
be evaluated if mir-22 is suitable as a prognostic biomarker.
However, if mir-22 plays a causal role in drug resistance its
inhibition may enhance the response of malignant cells to
cancer drug treatment.

Further, we observed 25 miRNAs and 79 TFs that exhib-
ited a positive correlation coefficient and thus were assumed
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to increase the susceptibility of NCI-60 cells to the action of
at least one cancer drug. Interestingly, we found the proto-
oncogene MYC as the RG which was predicted to positively
affect the potency of the highest number of compounds.
This TF is constitutively expressed in many cancers caus-
ing augmentation of cell proliferation (73). To investigate
whether this TF plays a substantial role in chemosensitivity,
we extracted all positive correlated drug–gene associations
composed of the 591 predicted MYC targets and the eight
MYC-affected compounds (Supplementary Figure S4). The
expression of the MYC targets POLG2, CAMKV, VASH2
and OGFOD2 in cancer cells was predicted to increase
the potency of oxaliplatin. Active derivatives of this com-
pound form both inter- and intra-strand DNA crosslinks
resulting in inhibition of DNA replication and transcription
and cell-cycle nonspecific cytotoxicity. POLG2 polymerase
promotes DNA synthesis. Oxaliplatin has been described
to induce lesions in the human MYC gene (74). Cancer
treatment with oxaliplatin might reduce the positive cancer-
specific regulation of POLG2 by MYC, which in turn might
cause an induced inhibitory effect on DNA synthesis result-
ing in an enhanced cytotoxic effect of this compound. In
addition VASH2 is involved in positive regulation of angio-
genesis, a typical process taking place in cancer cells. Loss
of induced regulation of this gene might induce a secondary
anti-cancer effect. Further, we found two compounds that
lower estrogen levels: calusterone and dromostanolone pro-
pionate. It has been proposed that the human MYC gen-
regulatory region embeds an estrogen-responsive cis-acting
element (75) inducing rapid MYC expression in the presence
of estrogen. Further, estrogen repletion is accompanied by
significant reduction in leukocyte adhesion (76). The MYC
target ICAM3 was predicted to increase the susceptibility
of cancer cells to the action of both anti-estrogen com-
pounds. This gene is a member of the intercellular adhesion
molecule family and has been reported to induce cancer cell
proliferation, cellular radio-resistance, cancer cell migration
and invasion (77). Based on the COGERE predictions we
can hypothesize that the reduction in estrogen might re-
duce MYC expression resulting in reduced ICAM3 func-
tion resulting in increased drug potency. Another interest-
ing compound for further investigations might be imexon,
a 2-cyanoaziridine derivate with antitumor activity, which
was predicted to be positively affected by the highest num-
ber of MYC targets. These 27 TGs contained among others
BCL2, a well-known oncogene encoding an anti-apoptotic
protein.

DISCUSSION

The experimentalist is confronted with large data sets of
high dimensionality reflecting the interplay of thousands
of cellular components. Therefore, it is an imperative com-
putational challenge to develop predictive and actionable
models to investigate functionality as well as spatial and
temporal behavior of these components. As the availability
of experimental evidence in databases and the biomedical
literature sharply increase, the systemic integration of ex-
isting knowledge to support the analysis of genome-wide
molecular expression signatures of complex diseases be-
comes a bare requirement.

Firstly, we presented a method for the graph-oriented in-
tegration of several millions of annotated, literature-mined
as well as pure sequence-based miRNA:TG and TF:TG in-
teractions to a uniform scoring framework (prior score) of
prior knowledge for human and mouse. We have illustrated
that our integrated model comprehensively covers current
knowledge provided by common experimental databases,
the biomedical literature and computational predictions.
The presented comparison to existing attempts reveals that
the COGERE prior score constitutes a major improvement
in the task of weighting miRNA regulation by their feasi-
ble regulatory effect on a TG. A basic combination of mul-
tiple prediction tools as conducted by mirConnX (7) per-
forms better than a blindfolded random selection of any in-
dividual algorithm. Compared to a sighted systematic se-
lection this scoring scheme performs effectively worse than
several individual tools (Supplementary Figure S5). In con-
trast, the COGERE prior score improves the accuracy in
78% of all transfection experiments (median rank 1) directly
compared to any of the six integrated target prediction al-
gorithms. Further, priors based on the COGERE scoring
framework exhibit effectively more accurate information
than a simple intersection of tools as used by MAGIA2 (8).
Our evaluation shows that a basic intersection of tools also
implies a strong limitation in usability: it remains unclear to
the user which tool combination fits best his requirements
regarding recall and precision. Despite the current success
of the COGERE prior score, ongoing progress in data col-
lection by high-throughput ‘-omics’ techniques will further
improve the prior knowledge.

Secondly, to detect condition-specific regulation from
mRNA and miRNA expression data, COGERE scores the
relevance of prior interactions by measuring the mutual
dependency between a RG and its TG. By applying an
ANOVA we derived the non-parametric and nonlinear cor-
relation coefficient η2 and its corresponding FDR adjusted
P. Here, neither a discretization of the expression data nor a
setup with matching samples is required, increasing the ro-
bustness of COGERE. We showed that COGERE strongly
outperforms existing approaches in predicting condition-
specific GRNs from synthetic expression data and holds an
excellent performance for predicting the regulatory sign of
an interaction. The presented analysis denotes, in addition,
a comparative evaluation of MAGIA2 and mirConnX per-
formance for the first time.

COGERE is capable to infer GRNs from unmatched
data implying two advantages: (i) expression data can be ob-
tained from different studies/measurements with identical
experimental setups, (ii) detection of signals in at least a sub-
set of experiments increases the robustness of the method
against noise. COGERE balances the gene expression data
by a condition-specific and individual-independent filtering
of microarrays. The discriminatory power of the inference is
sharpened as the variation within the conditions (technical
variation) is reduced, whereas the differences between the
conditions (biological variation) become more pronounced.
We observed increased robustness of accuracy to detect
context-specific effects due to differential TF- or miRNA-
mediated regulation in a benchmark with noisy expression
data (Supplementary Figures S2B and S6).
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We remind that the performance assessment is based on
simulated data. The in silico benchmark set is based on sub-
networks from a human GRN with known interactions and
thus holds similar types of structural properties and regula-
tory dynamics as realized in biological gene networks. The
evaluation represents a simplified model of gene regulation.
An in silico benchmark does not replace the careful evalua-
tion in vivo, but enables a systematically and efficiently per-
formance validation and comparison of prediction methods
over multiple networks. Unfortunately, to date an elaborate
in vivo data set composed of mRNA and miRNA expression
for several conditions as well as the corresponding exper-
imentally verified condition-specific GRN is not available
for human or mouse. It is likely that methods that do not
perform well in an in silico benchmark will perform even
worse with real biological data (78). In contrast to artificial
data, linear correlation between a RG and a TG is a weak
indicator of true condition-specific regulatory relationships
in real expression measurements. This assumption is sup-
ported by a recent comprehensive and comparative evalua-
tion of inference methods rating a two-way ANOVA-based
approach best on the prediction of real GRNs from Es-
cherichia coli and Saccharomyces cerevisiae expression data
(53).

We used the NCI-60 cancer expression study to show that
COGERE is a valuable resource to promote hypothesis-
driven clinical research. We were able to demonstrate that
the GRN inferred by COGERE captured disease-relevant
regulation of cancer. A significant reliable proportion of
known cancer-related genes and miRNAs were found in
the predicted network. At this, causal miRNAs exhibited a
higher number of condition-specific targets mirroring their
central role in cancerogenesis. We identified a relatively
small subset of RGs that play a role in multiple oncogenic
processes in cancer. By using the inferred GRN, we pro-
vided a mechanistic insight into the TF and miRNA in-
terplay during the regulation of metastatic processes. Since
many somatic passenger mutations may also alter expres-
sion profiles, we do not expect that all condition-specific
correlations are necessarily related to cancer driving pro-
cesses.

Our results suggest that the GRN contains novel, testable
and interesting hypotheses regarding cancer-specific regu-
lation beyond what is documented in existing databases.
Moreover, the network predicted TFs and miRNAs that
play a role in the chemosensitivity to approved cancer drugs
and made novel predictions regarding the role of 116 RGs
mediating the expression of genes associated with onco-
genic processes. A predicted strong drug–gene relation may
indicate a causal role in drug response (57,71). If such a
relationship proves to be causal, it could be exploited to
improve cancer therapy. We showed that condition-specific
GRN information inferred by COGERE enables the anal-
ysis of potential drug targets in the context of gene regu-
lation. Based on our observations, we suggest that the pre-
dicted GRN contains several hypotheses promoting cancer
pharmacogenomics.

In summary, we introduced COGERE, a novel, general-
izable approach that boosts signal to noise for the model-
ing of large-scale condition-specific regulatory landscapes
in any cellular contexts. COGERE implements a robust in-

ference method together with a concept of high-level data
integration. It features the capacity of rational interpreta-
tion of expression signals in very large data sets in the con-
text of known regulatory relations driving the discovery of
new biology.

AVAILABILITY

The application to infer GRNs from expression data
is freely available for academic use under http://mips.
helmholtz-muenchen.de/cogere. Furthermore, to facilitate
reader access and usability we provide all data contained in
the NCI-60 cancer GRN: regulatory interactions and gene
associations with approved compounds. We hope to provide
experimentalists with a tool to infer GRNs for their condi-
tion of interest and cancer researchers with a valuable re-
source to explore the cancer-specific GRN.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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