

Article

Subscriber access provided by Helmholtz Zentrum Muenchen - Zentralbibliothek

Development of Land Use Regression Models for elemental, organic carbon, PAH and hopanes/steranes in 10 ESCAPE/TRANSPHORM European study areas

Aleksandra Jedynska, Gerard Hoek, Meng Wang, Marloes Eeftens, Josef Cyrys, Menno Keuken, Christophe Ampe, Rob Beelen, Giulia Cesaroni, Francesco Forastiere, Marta Cirach, Kees de Hoogh, Audrey De Nazelle, Wenche Nystad, Christophe Declercq, Kirsten Thorup Eriksen, Konstantina Dimakopoulou, Timo Lanki, Kees Meliefste, Mark J Nieuwenhuijsen, Tarja Yli-Tuomi, Ole Raaschou-Nielsen, Bert Brunekreef, and Ingeborg Kooter *Environ. Sci. Technol.*, Just Accepted Manuscript • DOI: 10.1021/es502568z • Publication Date (Web): 15 Oct 2014

Downloaded from http://pubs.acs.org on October 20, 2014

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Lanki, Timo; National Institute for Health and Welfare, Department of Environmental Health Meliefste, Kees; Utrecht University, Institute for Risk Assessment Sciences (IRAS) Nieuwenhuijsen, Mark; IMIM (Hospital del Mar Research Institute), ; Center for Research in Environmental Epidemiology (CREAL), ; CIBER Epidemiología y Salud Pública , Yli-Tuomi, Tarja; National Institute for Health and Welfare, Department of Environmental Health Raaschou-Nielsen, Ole; Danish Cancer Society, Institute of cancer epidemiology Brunekreef, Bert; Utrecht University, Institute for Risk Assessment Sciences (IRAS); University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care Kooter, Ingeborg; TNO, Netherlands Organization for Applied Scientific
Kooter, Ingeborg; TNO, Netherlands Organization for Applied Scientific Research,

SCHOLARONE[™] Manuscripts

Development of Land Use Regression Models for elemental, organic carbon, PAH 1 and hopanes/steranes in 10 ESCAPE/TRANSPHORM European study areas 2

- 3 4
- 5
- 6
- Aleksandra Jedynska^{†*}, Gerard Hoek[‡], Meng Wang^{‡,•}, Marloes Eeftens^{‡,•,•}, Josef Cyrys^{§,I}, Menno Keuken[†], Christophe Ampe^{δ}, Rob Beelen[‡], Giulia Cesaroni[%], Francesco Forastiere[%], Marta Cirach^{@,&,o}, Kees de Hoogh^{Σ ,•}, Audrey De Nazelle^{@,∞}, Wenche Nystad^β, Christophe Declercq^α, Kirsten T. Eriksen^π, Konstantina 7
- Dimakopoulou ^x, Timo Lanki ^{\(\phi\)}, Kees Meliefste [‡], Mark J. Nieuwenhuijsen ^{@,&,\(\circ)}, Tarja Yli-Tuomi ^{\(\phi\)}, Ole 8
- Raaschou-Nielsen ^{π}, Bert Brunekreef ^{\ddagger, ψ}, Ingeborg M. Kooter ^{\dagger} 9
- [†] TNO, The Netherlands Applied Research Organization, Utrecht, The Netherlands 10
- [‡] Institute for Risk Assessment Sciences, Utrecht University, The Netherlands[§] Helmholtz Centre for 11 12 Environmental Research, Munich, Germany
- 13 ¹ University of Augsburg, Environmental Science Center, Augsburg, Germany
- ⁸ AIRPARIF, Paris, France 14
- [%] Epidemiology Department, Lazio Regional Health Service, Rome, Italy 15
- [@] Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain 16
- [&] IMIM (Hospital del Mar Research Institute), Barcelona, Spain 17
- ° CIBER Epidemiolog ía y Salud Pública (CIBERESP), Spain 18
- Σ MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial 19
- 20 College London, London, United Kingdom
- ^β Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway 21
- 22 ^a French Institute for Public Health Surveillance (InVS), Saint-Maurice Cedex, France
- 23 ^{*π*} Danish Cancer Society Research Center, Copenhagen, Denmark
- 24 ^{*x*} Department of Hygiene, Epidemiology & Medical Statistics, Medical School, National and Kapodistrian University of Athens, Greece 25
- ⁴ Department of Environmental Health, National Institute for Health and Welfare (THL), Kuopio, Finland 26
- ^v Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The 27 Netherlands 28
- 29 • Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland 30
- University of Basel, Basel, Switzerland 31
- 32 ^{°°} Centre for Environmental Policy, Imperial College London, UK
- * Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, The 33 United States 34 35
- 36
- 37
- 38
- 39 40

42 43	
43	Abstract
45 46	Land use regression (LUR) models have been used to model concentrations of mainly traffic related
47	air pollutants (nitrogen oxides (NO _x), particulate matter (PM) mass or absorbance). Few LUR models
48	are published of PM composition, whereas the interest in health effects related to particle
49	composition is increasing.
50	The aim of our study was to evaluate LUR models of polycyclic aromatic hydrocarbons (PAH),
51	hopanes/steranes and elemental and organic carbon (EC/OC) content of PM _{2.5} .
52	In 10 European study areas PAH, hopanes/steranes and EC/OC concentrations were measured at 16-
53	40 sites per study area. LUR models for each study area were developed based on annual average
54	concentrations and predictor variables including traffic, population, industry, natural land obtained
55	from geographic information systems.
56	The highest median model explained variance (R^2) was found for EC – 84%. The median R^2 was
57	51% for OC, 67% for benzo[a]pyrene and 38% for sum of hopanes/steranes, with large variability
58	between study areas. Traffic predictors were included in most models. Population and natural land
59	were included frequently as additional predictors. The moderate to high explained variance of LUR
60	models and the overall moderate correlation with $PM_{2.5}$ model predictions support the application of
61	especially the OC and PAH models in epidemiological studies.
62 63 64	Keywords: EC, OC, PAH, Land Use Regression model, PM2.5, Spatial variation
65	
66	
67	
68	

71 Abstract Art

75 INTRODUCTION

76

Many studies have documented adverse health effects of exposure to ambient air pollution ¹⁻³. 77 Particulate matter (PM) with diameters smaller than 10 or 2.5 µm (PM₁₀, PM_{2.5}, respectively) is the 78 79 most used parameter for assessment of air quality in epidemiological studies. However, PM is a chemically complex mixture and it has been suggested that observed adverse health effects depend 80 on PM chemical composition ^{4,5}. Epidemiological studies have started to assess chemical composition 81 82 of particles, but few studies have assessed the relationship between specific organic components and long-term adverse health effects. In the recently published studies from the US National Particle 83 Components Toxicity (NPACT) Initiative on health effects of particle composition, the focus was on 84 elemental composition supplemented with elemental and organic carbon measurements ^{6,7}. Limited 85 availability of measurements with a sufficient spatial resolution and models of organic components of 86 87 particles have contributed to the small number of studies that have assessed health effects of organic PM components. 88

Environmental Science & Technology

89 One approach, which has been used in air quality studies, is to quantify elemental (EC) and organic carbon (OC) as more generic indicators of air quality. EC is a highly polymerized dark fraction which 90 is resistant to oxidation at temperatures below 400°C⁸. EC is used as an indicator for traffic diesel 91 emissions and correlates highly with black smoke (BS), black carbon (BC) and PM absorbance ⁹⁻¹². 92 93 EC has been linked in epidemiological studies with short and long-term health effects ¹³. OC in 94 contrast is a mixture of organic compounds such as aliphatic and aromatic hydrocarbons and acids. OC has been included in epidemiological studies less often than elemental carbon. There is evidence 95 of OC associations with short-term adverse health effects ^{14,15}. Recently long-term exposure to OC 96 was associated with heart disease and pulmonary mortality ¹⁶ and cardiovascular mortality ⁶. 97 Polycyclic aromatic hydrocarbons (PAH) are persistent organic components formed during 98 99 incomplete combustion processes. Sources include: domestic, transportation, industrial, and agricultural processes. Domestic emissions arise from burning wood, coal, oil and garbage for heat 100 and waste disposal. Road and maritime transportation can be significant sources of PAH depending 101 on engine type and age, and fuel used. Industrial PAH emissions originate mainly from metal and 102 103 steel production, the petrochemical industry and power generation. PAH from agriculture derive 104 mainly from open biomass burning ¹⁷. PAH has been associated with various adverse health effects ^{18,19} but has not been evaluated in the major cohort studies on long-term air pollution exposure and 105 106 mortality / lung cancer. The EU limits the annual average concentration of benzo[a]pyrene (B[a]P) as a proxy for all PAH in ambient air to $1 \text{ ng/m}^{3 20}$ 107

Hopanes and steranes are components present in crude oil. They have been used as markers for motor
vehicle exhaust particles in the atmosphere. Hopanes and steranes are also present in lubricating oil
used by both gasoline- and diesel-powered motor vehicles, and are also found in diesel fuel ²¹.

Hopanes and steranes have been associated with lung toxicity ²², but have not been used as exposure
metrics in epidemiological studies.

113 Land use regression models are used to describe spatial variation of the annual concentration of a

pollutant, often as a tool for exposure assessment in epidemiological studies ²³. Most modeled

pollutants are PM_{2.5}, PM₁₀ and compounds strongly affected by traffic (NO_x, PM absorbance,

116 EC)^{24,25}. Few LUR models have been developed for pollutants for which traffic is not a major source.

- 117 Recently, LUR models were developed for the elemental composition of PM_{2.5} and PM₁₀ in 20
- 118 European study areas ²⁶. Three North American studies presented LUR models for wood smoke ²⁷⁻²⁹.
- 119 Within the framework of NPACT, LUR models for EC and OC were developed. LUR models for
- 120 PAH concentrations were developed in an American study ³⁰.
- 121 Within the framework of two European projects: ESCAPE (European Study of Cohorts for Air
- 122 Pollution Effects) and TRANSPHORM (Transport related Air Pollution and Health impacts -
- 123 Integrated Methodologies for Assessing Particulate Matter) concentrations of NO_x, NO₂, PM_{2.5},
- 124 PM₁₀, PM_{2.5} absorbance and elemental composition of PM_{2.5} and PM₁₀. were measured in 20
- 125 European study areas. The spatial variation and LUR models for these pollutants have been published
- ^{24-26,31}. The ESCAPE LUR models have been used to assess exposure for epidemiological studies ³².
- 127 Additionally specific organic components (EC/OC, PAH and hopanes/steranes) were measured in 10
- 128 of the areas. The spatial variation of concentrations within and between the ten European study areas
- 129 was published ³³.
- 130 The aim of this paper is the development and evaluation of LUR models for EC, OC, PAH and
- 131 hopanes/steranes. A second aim was to assess the correlation of the predictions of the new models
- 132 with the already published model predictions for $PM_{2.5}$ and NO_x .

METHODS

Sampling campaign and analyses. The ESCAPE sampling campaign including the organic 134 component characterization was described previously^{31,33,34}. Briefly, the monitoring campaign was 135 conducted in 10 study areas across Europe between October 2008 and April 2011 (Table 1, online 136 137 supplement figure S1) and common standardized procedures were used across the study areas. Maps of the study areas can be found in the supporting information of Eeftens et al.³¹. At each sampling 138 site, three two-weekly samples were collected over a period of one year. Samples were taken during 139 three different seasons: winter, summer and intermediate season – either spring or autumn. 140 141 Monitoring was performed using the Harvard impactor, which collects PM_{2.5} and PM₁₀ on separate Teflon filters using an air flow of approximately 10 L/min. For extended PM_{2.5} characterization two 142 additional samples were collected: one on a Teflon coated glass fiber filter (T60A20, Pallflex) for 143 analysis of organic components (PAH, hopanes/steranes)³³ and one on a quartz filter 144 (QMA, Whatman) for EC/OC, oxidative potential and levoglucosan quantification. In most study 145 146 areas, PM concentrations were measured at 20 monitoring sites. In Catalonia 40 sites were measured 147 and in The Netherlands organic components were measured at 16 of the 40 ESCAPE sites because of lack of additional sampling equipment. In each study area, NO_x only measurements were conducted 148 149 at 20 locations (40 in Catalonia and the Netherlands). Sampling sites were divided into three groups according to traffic intensity: street sites (S), urban background (UB) and regional background (RB), 150 151 using common criteria. One reference site, located in an urban or rural background location depending on the study area, was established to measure continuously for 2-week periods during a 152 153 full year to adjust for temporal variation. This site was used in the calculation of the temporally 154 adjusted annual average concentrations. 155 Annual averages were calculated after adjusting for temporal variation measured at the continuous

reference site. For each of the three sampling periods, the ratio of the concentration measured in that

- 157 period from the overall annual mean at the reference site was used as adjustment, following
- 158 previously published procedures ³³.

	160	Table 1.	Description	of study areas
--	-----	----------	-------------	----------------

Country	Study area	Sampling period	Sites	Site	type	s
				RB	UB	S
Norway	Oslo	05.02.2009 - 29.01.2010	19	2	9	8
Finland	Helsinki/Turku	27.01.2010 - 26.01.2011	20	2	10	8
Denmark	Copenhagen	19.11.2009 - 17.11.2010	20	3	6	11
United Kingdom	London/Oxford	26.01.2010 - 18.01.2011	20	1	12	7
The Netherlands	Rotterdam, Amsterdam, Groningen, Amersfoort	17.02.2009 - 19.02.2010	16	4	4	8
Germany	Munich/Augsburg	01.03.2009 - 05.11.2009	20	5	6	9
France	Paris	04.01.2010 - 04.01.2011	20	4	9	7
Italy	Rome	27.01.2010 - 26.01.2011	20	2	8	10
Spain	Catalonia (Barcelona, Girona, Sabadell)	14.01.2009 - 14.01.2010	40	4	13	23
Greece	Athens	21.04.2010 - 27.04.2011	20	1	12	7

Analytical methods. Analytical methods were previously described ³³. Briefly, quartz filters were 163 used for EC/OC analyses, which were completed via a thermal-optical analyzer (Sunset Laboratory, 164 Inc., Oregon, USA). The EUSAAR2 protocol was used for the temperature settings ³⁵. T60A20 filters 165 were extracted via an accelerated solvent extraction method (ASE) with toluene. Extracts were 166 fractioned into three fractions via a silica column. This separated hopanes/steranes from PAH and 167 PAH derivatives. 16 EPA PAH and 13 hopanes/steranes were analyzed via gas chromatography in 168 combination with mass spectrometric detection (GS/MS) in electron impact mode (GC/MS EI, 169 Agilent 6890/5973N). From the 16 EPA PAH measured, eight particle-related PAH were quantified, 170 171 as our sampling system did not quantitatively capture semi-volatile PAH well. Σ PAH was determined as the sum of eight particle-related PAH: benzo[a]anthracene, chrysene, 172 benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-c,d]pyrene, 173 174 dibenzo[a,h]anthracene and benzo[g,h,i]perylene. For budgetary reasons, hopanes/steranes were only measured in four study areas. 175 176 GIS predictor data. The description of available geographical information system (GIS) predictor 177

variables has been presented in detail ^{24,25}. The predictor variables chosen for LUR development

describe potential emission sources like traffic, industry or population density. The values of

180 predictor variables were determined for each sampling site using GIS. Geographic data were obtained

181 from two sources: central and local. Central data sets included: information on roads with a road

182 classification (EuroStreets version 3.1), land use (CORINE land cover 2000), altitude (SRTM 90m Digital Elevation Data), and population (enhanced EEA population density data using CORINE land 183 cover 2000). If available, local GIS data were collected on road network with linked traffic 184 185 intensities, land use, population density and altitude. Each variable was calculated in several circular buffers from the sampling site (e.g. 25, 50, 100). Traffic variable buffers started at 25m because 186 significant variation has been found at small distances from roads. Land use variable buffers started 187 at 100 meter as these variables may represent variability in urban background concentrations. 188 Variables with at least 5 non-zero values were used in model development. A detailed description of 189 predictor variables including the buffer sizes and the a priori specified direction of effect on the 190 pollutant concentration are presented in online supplement table S1. 191

192

209

LUR model development. LUR models for all study areas were developed centrally at IRAS. We 193 followed the method used in the ESCAPE study Briefly, adjusted annual average concentrations of 194 pollutants and predictor variables were used for LUR development. A supervised stepwise method 195 was used to obtain the linear regression model with the highest adjusted explained variance (R^2) . 196 First, all predictor variables were offered separately and the variable with the highest R² having a 197 slope in the a priori specified direction was selected. Next variables were added to the model one by 198 one based on the highest adjusted R² if it improved model's adjusted R² with at least 1% and had the 199 200 same effect direction as decided a priori.

The following diagnostics were used for the final model check: significance of individual variables 201 (*p*-value <0.1), collinearity test (variance inflation factor (VIF) lower than 3) and influential 202 observation test (Cook's D value lower than 1) and Morans'I – spatial autocorrelation of the model 203 residuals. If an influential observation determined by a too high Cook's D value was caused by 204 extreme measured concentrations, we additionally developed LUR models without the observation. 205 An outlier was defined as a concentration higher than the 75th percentile plus four times the 206 interquartile range: $c_0 > P75 + 4*(P75-P25)$, where $P75 - 75^{th}$ percentile, $P25 - 25^{th}$ percentile. 207 The performance of the final model was evaluated with leave-one-out cross validation (LOOCV). 208 Each site was sequentially left out from the model while the included variables were left unchanged. 210 Predicted pollutant concentration were compared with measured concentration at the excluded site.

211 This procedure was repeated for all sites included in the model development.

- 212 We developed LUR models for EC, OC, Σ PAH, B[a]P, chrysene and Σ hopanes/steranes. As
- 213 individual PAHs correlated with each other very highly in all study areas we developed LUR models

for only two individual PAHs: B[a]P and chrysene in addition to Σ PAH.

- 215 B[a]P is used in air quality guidelines as a surrogate for all PAH²⁰. Chrysene was chosen because of
- 216 its relatively high concentrations in comparison with other PAH, its higher correlation with traffic

217 markers (Table S2) 33 .

218 To further assess the added value of the organic components to characterize the air pollution mixture,

the correlation of LUR model predictions with predictions of the already published LUR models for

fine particles was calculated. We selected PM_{2.5} and PM_{2.5} absorbance. The correlation was calculated

- at the (20 40) NO₂ measurement sites in each area which were not used for model development but
- did have GIS predictor variables.

223 **RESULTS**

224 Measured concentrations of pollutants. Substantial variability was found in measured 225 concentrations of EC, OC, Σ PAH, B[a]P, chrysene and Σ hopanes/steranes within and between study 226 areas (Figure 1, Table S2). The highest concentrations of EC and OC were found in southern Europe 227 and the lowest in northern Europe. PAH concentrations exhibited a different trend in Europe, with 228 similar concentrations in southern and northern Europe. For all components higher concentrations 229 were measured at street locations in comparison to urban background and regional background 230 locations ³³.

231

Land use regression modelling. The final models of EC, OC, ∑PAH, B[a]P, chrysene and
 ∑hopanes/steranes are presented in Tables 2 to 4 and Supplementary information tables S4, S5 and
 S6. Figures S2 to S7 show predicted versus measured concentrations.

EC models. In all 10 study areas LUR models could be developed (Table 2). Explained variance 235 was high in all areas, ranging from 73% for Catalonia to 95% in Oslo and the Netherlands (median 236 87%). The median LOOCV R² was 80%. Differences between R² and LOOCV R² was lower than 237 11% in all study areas indicating that models were stable. In all models traffic related variables were 238 used, mostly describing local traffic (nearest road or buffer ≤ 100 m). In 8 of the 10 models, traffic 239 intensity was included, sometimes in combination with road length variables. The Rome model 240 contained only traffic variables, but all other models included non-traffic predictors such as 241 population or address density often in large buffers (1000 or 5000m). In Helsinki, Rome and Paris 242 single street sites were very influential because of very high EC concentrations which were identified 243 as outliers (Figure 1). Models are presented without the outliers. 244

OC models. In all study areas LUR models for OC could be developed (Table 3). In general 245 246 explained variance of OC LUR models was lower than for EC models. The explained variance varied from 27% in Rome to 81% in London/Oxford (median 59%). The difference between model R² and 247 LOOCV R² was larger than for EC indicating less stable models. In 8 models traffic variables were 248 249 used, of which 2 models contained only traffic predictors (Rome, London). Most models contained non-traffic predictors particularly natural land and population / address density variables, often in 250 smaller buffers than for EC. In Copenhagen and Helsinki/Turku, models with a single non-traffic 251 predictor were identified. 252

B[a]P models. In two locations -Copenhagen and Helsinki/Turku- LUR models could not be 253 developed due to influential sites which were not identified as outliers (Table 4). The median model 254 R² was 67%, with a range from 31% (Munich/Augsburg) to 87% (London/Oxford). In all 8 255 developed models traffic variables were used. Three models included only traffic predictors (Munich, 256 257 Rome and Athens). In five models, population or natural land use were additionally included. **\SigmaPAH models.** In general, Σ PAH model performance and structure was very similar to B[a]P 258 models (Supplemental Information Table S5). Because of the same sites as in the case of B[a]P 259 260 models it was not possible to develop models in Helsinki/Turku and Copenhagen. For the eight 261

Chrysene models. Chrysene models were slightly better than B[a]P models (Table S5). Fewer areas had low cross-validation R^2 compared to B[a]P. Models could be developed for 9 study areas. Only for Copenhagen it was not possible to build a LUR model due to an influential site. The median explained variance of the chrysene models was 71%. In Helsinki/Turku and Athens models with only one variable were developed with the low R^2 . In eight models, traffic variables were included. Only in Paris three non-traffic variables were used. The better performance compared to B[a]P is likely due to the larger impact of traffic on chrysene.

269 **Σhopanes/steranes models.** Σhopanes/steranes models were developed in all four study areas 270 with measurements available (Supplemental Information Table S6). The models had the lowest 271 explained variance of all modeled components (median $R^2 = 43\%$). In Oslo and Catalonia, models 272 with low R^2 (<30%) were developed including one non-traffic variable. In The Netherlands, the 273 model with the highest R^2 was developed – 78%. The model included one traffic variable, population 274 and they coordinate indicating lower concentrations in the north. The Munich/Augsburg model 275 included two traffic variables and a coordinate indicating higher concentrations in the east.

276

277 Additional analyses

278 Most models explained more variation for street than for urban background locations (figures S2 – 279 S7). The average model R^2 was 19% higher at street sites. Averaged over the five pollutants 280 measured in 10 areas, the models with the lowest R^2 were found in Helsinki and Copenhagen and the 281 models with the highest R^2 in London and Paris (Table S7).

282

283 Comparison of LUR PM component model predictions and LUR predictions from

PM_{2.5}, PM_{2.5} absorbance models. Correlations between predictions of the newly developed LUR PM component models with already published model predictions for PM_{2.5}, PM_{2.5} and absorbance at monitoring sites not used in model development are shown in Table5. Correlations varied with study area and component, e.g. in London most correlations were high and in Munich correlations with

288 PM_{2.5} model predictions were very low. Moderate to high correlations were found between the EC ACS Paragon Plus Environment

289	and PAH models and $PM_{2.5}$ absorbance. OC correlated less with $PM_{2.5}$ absorbance, but showed a
290	moderately high correlation with PM _{2.5} .
291	
292	
293	
294	
295	
296	
297	
298	

Figure 1. Distribution of the annual average measured concentrations within study areas a) EC, b)
 OC, c) B[a]P, d) chrysene, e) ΣPAH, f) Σhopanes /steranes ³⁴

Table 2. Description of land use regression models for EC ($\mu g/m^3$)

Study area	LUR model	n	R ² (%)	LOOCV $R^2(\%)$	RMSE	Measured concentration
					$(\mu g/m^3)$	$(\mu g/m^3)$
Oslo	0.915 + 3.444 x 10 ⁻¹² x TRAFLOAD_1000 + 8.185 x DISTINVMAJOR1 - 0.0342 x SQRALT	19	95	92	0.141	0.99 [0.18 - 2.16]
Helsinki/Turku	0.738 - 2.383 x 10 ⁻⁷ x URBNATURAL_1000 + 0.000293 x ROADLENGTH_100 + 0.000595 x ROADLENGTH_50	19	79	68	0.087	0.81 [0.32 - 2.38]
Copenhagen	$0.526 + 0.0002764 \ x \ MAJORROADLENGTH_{300} + 3.622 \ x \ 10^{-8} \ x \ TRAFMAJORLOAD_{100} - 1.805 \ x \ 10^{-7} \ x \ URBNATURAL_{1000}$	20	87	78	0.146	0.98 [0.49 - 1.72]
London/Oxford	0.692 ± 0.000237 x INTMAJORINVDIST \pm 0.000143 x HEAVYTRAFMAJOR \pm 43.793 x DISTINVMAJORC2 \pm 1.111 x 10^-8 x HDRES_5000	19	85	77	0.131	1.32 [0.57 - 5.84]
Netherlands	$0.583 + 0.00116 \text{ x ROADLENGTH}_{50} + 3.114 \text{ x DISTINVMAJOR}_{1} + 9.992 \text{ x } 10^{-7} \text{ x POP}_{5000}$	16	95	90	0,103	1.21 [0.68 - 2.07]
Munich/Augsburg	$0.821 + 0.00572 \text{ x MAJORROADLENGTH}_{50} + 0.0000139 \text{ x TRAFNEAR} + 7.699 \text{ x } 10^{-7} \text{ x POP}_{5000}$	20	86	81	0.265	1.45 [0.71 - 2.87]
Paris	$0.689 + 3.968 \ x \ 10^{-7} \ x \ TRAFLOAD_{50} + 9.750 \ x \ 10^{-6} \ x \ POP_{1000} + 3.422 \ x \ 10^{-8} \ x \ INDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x \ NDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x \ NDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x \ NDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x \ NDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x \ NDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x \ NDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x \ NDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x \ NDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x \ NDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x \ NDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x \ NDUSTRY_{5000} + 3.000 \ x \ 10^{-8} \ x $	19	95	91	0.215	1.82 [0.44 - 8.08]
Rome	1.582 + 3.313 x 10 ⁻⁷ x TRAFMAJORLOAD_50 + 0.000330 x MAJORROADLENGTH_300	20	75	65	0.430	2.26 [1.40 - 3.99]
Catalonia	$1.579 + 0.000521 \ x$ INTMAJORINVDIST1- 2.343 x $10^{-8} \ x$ NATURAL_5000 + 2.536 x $10^{-7} \ x$ HDRES_1000	40	73	66	0.604	2.15 [0.72 - 5.50]
Athens	$0.125 + 9.366 \ x \ 10^{-7} \ x \ TRAFLOAD_{-}25 + 2.820 \ x \ 10^{-7} \ x \ PORT_{-}5000 + 0.0108 \ x \ DISTINVNEARC2 + 0.00001837 \ x \ TRAFMAJOR + 1.683 \ x \ 10^{-8} \ x \ HDRES_{-}5000$	20	93	91	0.207	1.62 [0.81 - 3.69]
Median			87	80		

Description of variables used in the models: DISTINVMAJOR1 Inverse distance to the nearest major road (local road network), major road – road with intensity > 5,000 mvh/24h, DISTINVMAJOR2 Inverse distance to the nearest major road squared (local road network), DISTINVMAJORC1 Inverse distance to the nearest major road (central road network), DISTINVMAJORC2 Inverse distance to the nearest major road squared (central road network), INTMAJORINVDIST1 Product of traffic intensity on nearest major road and inverse of distance to the nearest major road, Squared (central road network), INTINVDIST Product of traffic intensity on nearest road and inverse of distance to the nearest major road, Squared (central road network), INTINVDIST Product of traffic intensity on nearest road and inverse of distance to the nearest road, HEAVYINTINVDIST2 Product of Heavy-duty traffic intensity on nearest road and inverse of squared distance to the nearest road, heavy duty traffic – trucks. TRAFLOAD Total traffic load of all roads in a buffer (sum of (traffic intensity * length of all segments), TRAFNEAR Traffic intensity on nearest road, TRAFMAJOR Traffic intensity on nearest major road, ROADLENGHT Road length of all roads in a buffer, MAJORROADLENGTH Road length of major roads in a buffer, TRAFMAJORLOAD Total traffic load of major roads in a buffer (sum of (traffic intensity * length of all segments), HEAVYTRAFMAJOR Heavy-duty traffic intensity on nearest major road, URBNATURAL Urban green area, NATURAL Semi-natural and forested areas, UGNL Combined urban green and natural land, PORT Port, HDRES High density residential land, LDRES Low density residential land, POP Number of inhabitants, INDUSTRY Industry area, SQRALT Squared altitude, BUILDINGS_L Area of buildings, YCOORD, XCOORD, XPLUSY Coordinate variables

Table 3. Description of land use regression models for OC $(\mu g/m^3)$

Study area	LUR model	n	R ² (%)	LOOCV $R^2(\%)$	RMSE	Measured concentration
					$(\mu g/m^3)$	$(\mu g/m^3)$
Oslo	0.732 - 0.00000573 x NATURAL_300 + 0.00683 x ROADLENGTH_50 + 2.429 x INTMAJORINVDIST	19	59	34	0.621	1.65 [0.32 - 3.60]
Helsinki/Turku	1.393 - 0.00000580 x URBNATURAL_300L	20	42	32	0.362	1.08 [0.21 - 2.25]
Copenhagen	0.410 + 0.00000488 x BUILDINGS_L_300	20	35	25	0.441	1.45 [0.70 -2.75]
London/Oxford	0.886 + 109.599 x DISTINVMAJORC2 + 0.000181 x HEAVYTRAFMAJOR	20	81	74	0.326	1.39 [0.63 - 3.69]
Netherlands	0.480 + 4.798 x 10 ⁻⁷ x LDRES_1000 + 0.00397 x ROADLENGTH_25	16	80	71	0.279	1.78 [0.63 - 2.54]
Munich/Augsburg	-112.391 - 0.406 x SQRALT + 0.000224 X INTINVDIST + 0.0000126 x XPLUSY	20	59	39	0.506	2.66 [1.22 - 4.33]
Paris	0.894 + 0.000314 x MAJORROADLENGTH_500 + 0.0000278 x LDRES_100	20	79	69	0.528	2.23 [0.44 - 5.89]
Rome	3.396 + 3.3128 x 10 ⁻⁷ x TRAFLOAD_50	20	27	10	0.778	3.70 [2.73 - 5.82]
Catalonia	2.602 + 0.00360 x INTMAJORINVDIST2 - 8.237 x 10 ⁻⁷ x NATURAL_1000	40	44	30	0.895	2.76 [0.62 - 6.41]
Athens	$0.812 + 0.00177 \ x \ MAJORROADLENGTH_{100} + 0.000896 \ x \ ROADLENGTH_{100} + 5.199 \ x \ 10^{-9} \ x \ TRAFLOAD_{500}$	20	77	68	0.472	3.53 [1.24 - 5.52]
Median			59	37		

Table 4. Description of land use regression models for $B[a]P(ng/m^3)$

Study area	LUR model	n	R ² (%)	LOOCV R ² (%)	RMSE (ng/m ³)	Measured concentration (ng/m ³)
Oslo	0.158 + 9.402 x 10 ⁻¹³ x TRAFLOAD_1000 - 0.00848 x SQRALT	19	70	57	0.0713	0.14 [0.01 - 0.42]
Helsinki/Turku*	-	20				0.78 [0.03 - 0.42]
Copenhagen*	-	20				0.21 [0.05 - 0.80]
London/Oxford	0.0666 + 0.0000350 x INTMAJORINVDIST - 2.165 x 10 ⁻⁹ x URBGREEN_5000 + 0.0000131 x MAJORROADLENGTH_500	20	87	78	0.0251	0.09 [0.00 - 0.31]
Netherlands	0.143 + 0.000695 x MAJORROADLENGTH_50 - 4.151 x 10 ⁻⁹ x UGNL_5000	16	64	39	0.0489	0.14 [0.04 - 0.31]
Munich/Augsburg**	0.108 + 0.000255 x MAJORROADLENGTH_100	20	31	14	0.0501	0.13 [0.04 - 0.28]
Paris**	0.0108 + 0.0000250 x MAJORROADLENGTH_500 + 0.00000144 x LDRES_100 - 7.793 x 10 ⁻⁹ x URBGREEN_5000 + 3.208 x 10 ⁻⁹ x LDRES_5000 ACS Paragon Plus Environment	20	87	66	0.0400	0.14 [0.03 - 0.47]

Rome	0.111 + 2.169 x DISTINVMAJOR1 + 0.000174 x MAJORROADLENGTH_100	20	77	69	0.0548	0.19 [0.06 - 0.49]
Catalonia	0.0752 + 0.0000311 x INTMAJORINVDIST1 + 1.115 x 10 ⁻⁷ x HDRES_500	40	39	29	0.0732	0.17 [0.02 - 0.37]
Athens	0.176 + 1.363 x 10 ⁻⁸ x TRAFMAJORLOAD_25 + 7.517 x 10 ⁻¹¹ x TRAFMAJORLOAD_500	19	38	18	0.0574	0.25 [0.11 - 0.76]
Median			67	48		

* no model possible due to an influential site ** too high Cook's D value

Table. 5 Correlations (R²) between predicted values of PM component and LUR PM_{2.5} and PM_{2.5} absorbance at

the NO_x only sites not used for model development in each study area

338 339

5	5	2
3	4	0

EC OC ΣΡΑΗ B[a]P Component Chrysene Σhopanes/steranes 0.60** 0.36** 0.54** 0.55** 0.47** 0.34** Oslo PM2.5 PM2.5abs 0.31* 0.06 0.30* 0.30* 0.14 0.28* 0.18 0.07 0.27* Helsinki/Turku PM2.5 NM NM NA 0.24* 0.25* 0.47** NM PM2.5abs NM NA 0.49** 0.67** Copenhagen PM2.5 NM NM NA NM 0.83** 0.26* PM2.5abs NM NM NM NA PM2.5 0.85** 0.60** 0.66** 0.84** 0.64** London/Oxford NA 0.73** 0.86** 0.84** 0.68** 0.81** PM25abs NA 0.18* 0.02 0.21** 0.35** 0.26** 0.11 Netherlands PM2.5 0.42** 0.06 0.23** 0.15* 0.11* 0.18* PM2.5abs 0.07 0.00 0.00 0.03 0.39** 0.00 Munich/Augsburg PM2.5 0.54** 0.00 0.59** 0.59** 0.86** 0.25* PM2.5abs 0.59** 0.69** 0.61** 0.60** 0.13 Paris PM2.5 NA 0.43** 0.92** 0.36** 0.36** PM2.5abs 0.09 NA 0.49** 0.79** 0.91** 0.85** 0.10 Rome PM2.5 NA 0.71** PM2.5abs 0.68** 0.85** 0.70** 0.23* NA 0.71** 0.47** 0.50** 0.50** 0.50** 0.19** Catalonia PM2.5 0.91** 0.56** 0.72** 0.72** 0.72** 0.30** PM2.5abs 0.56** 0.47** 0.46** 0.27* 0.17 NA Athens PM2.5 0.67** 0.38** 0.36** 0.56** 0.51** NA PM25abs Median PM2.5 0.53 0.52 0.53 0.22 0.27 0.47 PM2.5abs 0.68 0.38 0.48 0.58 0.37 0.27

341

342 NA - Σhopanes/steranes not measured

343 NM – no model possible for organic component

344 ** p value< 0.01

345 * p value < 0.05

347 DISCUSSION

348

349 We developed LUR models for PAH, EC, OC and Σ hopanes/steranes in ten study areas across Europe. LUR models were developed with high (EC), moderate (OC, Σ PAH) and low 350 351 (Σ hopanes/steranes) explained variance. For EC explained variance of the models was high in all 352 study areas. For the other components large differences were found in levels of explained variance. 353 Correlations between predictions of the newly developed LUR PM component models with model predictions for PM_{2.5}, PM_{2.5} absorbance varied between components and areas. EC and PAH model 354 355 predictions correlated moderately to highly with especially PM_{2.5} absorbance. OC model predictions correlated highest with PM_{2.5} model predictions. 356

357

EC models. The explained variability for EC was the same ($R^2=87\%$) as the R^2 reported previously 358 for PM_{2.5} absorbance for the same study areas ²⁵ and higher than for the NO_x and PM_{2.5} models 359 360 $(R^2=80\%$ and 74\%, respectively). EC model predictions correlated high with the PM_{2.5} absorbance model predictions (median R² 0.68 and 0.72, respectively). Predictor variables were similar though 361 not identical as in the absorbance models. The high correlations between absorbance and EC model 362 predictions is consistent with those of the measurements ³³. Traffic-related pollutants can be modeled 363 effectively with land use regression models, because availability of traffic intensity and-or road 364 365 category and length data representing source strength is relatively good (e.g. compared to wood burning); traffic emissions are emitted at low height and traffic emission factors are relatively 366 homogeneous (e.g. compared to industrial emissions). In our study, we further overrepresented traffic 367 368 sites (35-50% of the all sites) because of prior evidence that motorized traffic was an important source of intra-urban spatial variation. Previous studies have also generally reported high explained 369 variances for models for EC or surrogates of EC ²³. In some areas more moderate explained variances 370

were reported, e.g. in Vancouver, attributed to the impact of difficult to characterize wood burning
emissions ²³.

373

374 **OC** and **PAH models.** The lower explained variance of the OC and PAH (ΣPAH, B[a]P, chrysene) models compared to EC is probably due to the contribution of less well characterized sources in 375 addition to traffic to OC and PAH concentrations. In the NPACT study, cross-validation R² values 376 377 for the spatial part of intra-urban spatiotemporal models were higher for EC than for OC (0.81 versus 0.56 for the six cities combined). One PAH LUR model was previously reported for daily PAH 378 379 concentrations in Fresno, California³⁰. The spatiotemporal model included length of highway in a 380 500m buffer, proximity to roads and neighborhood use of gas for heating as spatial variables, in 381 addition to temporal weather data. The authors reported an index of agreement (which can range from 0 to 100%) of 67% suggesting overall good fit of the PAH models. 382 383 In most of our models traffic variables were included but OC and PAH have multiple sources 384 including wood burning and industrial emissions ³³. OC further includes both primary and secondary 385 organic components ³⁷. Land use regression models cannot represent atmospheric formation processes well, hence the secondary component of OC was not accounted for. We did not have 386 387 detailed information on sources such as wood burning and industrial emissions available. Non-traffic sources were represented by more general variable such as: population density or industrial land use. 388 The available industrial land use data does not include type of industry, e.g. steel and metal industry 389 390 which is one of the PAH sources. The limited number of monitoring sites in the direct neighborhood of industry further contributed to the limited inclusion of industry in our models. For most study 391 392 areas, industry was present within 5000 m buffers for the majority of sites, but in buffers of 1000m and smaller no industry was present for a large fraction of sites. Consistently, in the three models 393 394 with industry, the 5000 m buffer was included. Identification of large industrial point sources and 395 better databases incorporating type of industry and stack height of emissions may be needed.

396	We previously observed lower explained variance of LUR models for elements with significant non-
397	traffic sources (e.g. potassium, silica, sulfur) compared to elements for which traffic is the dominant
398	source (copper, iron) ²⁶ . The moderate explained variance was attributed as well to lack of variables
399	describing specific sources of the elements but also to low intra-urban contrasts in elemental
400	concentrations ²⁶ . The latter explanation did not apply to our OC and PAH observations. The three
401	previous LUR studies on modeling of wood smoke also recognized the problem of obtaining good
402	data on the spatial distribution of wood burning emissions ²⁷⁻²⁹ . In the Seattle and Vancouver studies,
403	neighborhood data from property databases was used ^{27,28} . In the Montreal study, chimney density
404	was used as a proxy for wood burning ²⁹ . The three studies reported only moderate levels of
405	explained variance – 57% in Seattle ^{28,38} , 58% in Vancouver ^{27,28} and 40% for the global model in
406	Montreal ²⁹ .

408 Representation of traffic predictors

The most common representations are road length and traffic intensity (load) in buffers and distance 409 to a (major) road. We also used the product of traffic intensity and inverse distance, because this 410 combined variable better represents the processes of emission and dispersion than separate traffic 411 intensity and distance variables ³⁶. The combined variables were included in only few models, 412 possibly due to insufficient quality of the variables derived from GIS e.g. distance ³⁶. 413 Several LUR models included both traffic intensity and road length variables, though typically not at 414 the same scale. Because of concern about the completeness and quality of traffic intensity data, we 415 416 offered both traffic load and road length in model development. Traffic load is more specific. The inclusion of traffic intensity in many models suggests quality was sufficient in most study areas. 417 Road length represents traffic emissions but also emissions related to population, which may explain 418 that mixed models performed reasonably well for urban background sites as well. 419

- 420
- 421

423 Differences between study areas

We found substantially larger differences in model R² between study areas for OC and PAH 424 compared to EC. Model performance and structure may differ because of variability in measured 425 426 concentrations, size and complexity of the study area, completeness and quality of predictor variables, quality of geo-coding and availability of predictor variables representing the major source 427 of a component.^{24,26}. On average, the models with the lowest R^2 were found in Helsinki and 428 429 Copenhagen. The lack or poor performance of models for PAH and OC may be due to a smaller influence of motorized traffic emissions relative to other sources. No difference in measured PAH 430 concentrations between street and urban background locations was found in these two cities only ³³. 431 432 The OC models for these two cities were the only models without traffic predictors. As discussed before, sources other than traffic were less well represented by variables used during LUR models 433 development. The high R^2 in London and Paris may be due to the larger diversity in the study areas 434 incorporating two very large cities and smaller towns. The moderate model R^2 for Catalonia could be 435 due to the limited availability of traffic intensity data for the cities outside Barcelona²⁴. 436

437

438 **Performance at street and background sites**

The generally better performance of models for street compared to urban background locations is 439 440 likely due to the higher contrast of concentrations at street locations and better representation of the source. The overall model is affected heavily by the street locations. In studies with more sampling 441 sites, investigators have built models separately for the background and local scale ²³. Relatively poor 442 models for particularly the urban background sites were often related to models with a single 443 444 predictor; models with predictors with a sizable (>50%) number of zero values e.g. natural land in small buffers; models with predictors largely restricted to major roads such as traffic load in 50 meter 445 buffers. We included predictors with at least five non-zero observations, but could have been more 446 447 restrictive.

449	Hopanes/steranes models. Although traffic is the main source for hopanes/steranes, we found
450	relatively low level of explained variance (median $R^2 = 38\%$). The low model R2 might be caused by
451	low within study area contrast in hopanes/steranes concentrations, as indicated by the relatively low
452	street to urban background ratio of 1.31 at the monitoring sites ³³ . In Catalonia where the
453	concentration contrast was highest, traffic related variables were not included in the
454	\sum hopanes/steranes model, possibly because the traffic variables we used do not describe motor oil
455	emission. Taken together, hopanes /steranes do not contribute much to additional characterization of
456	human exposure of particulate matter air pollution.
457	
458	Strengths and limitations. The advantage of our study was the standardization of every stage of
459	the project. Annual averages of the pollutants used for LUR models development were obtained
460	according to standardized protocols across all study areas. LUR models were developed centrally
461	according to a standardized protocol. This allowed us to obtain comparable LUR models in ten
462	European study areas for various pollutants
463	Care must be taken if using some of the poorer LUR models in health studies, for example by
464	incorporating the cross validation R^2 in a sensitivity analysis. Also use of models with high R^2 , but
465	giving predicted values which correlate highly with other pollutants (e.g. EC vs $PM_{2.5}$ or NO_x) must
466	be evaluated carefully in order to distinguish health effects caused by the pollutant of interest.
467	A limitation of our study was the lack of specific GIS variables for especially industry or wood
468	smoke. More specific GIS data for these sources are difficult to obtain. We evaluated source-specific
469	emission data in some areas, but these did not explain variation over the available GIS variables,
470	probably because of a too-large spatial scale.
471	A further limitation of our study was the small number of sites available in the study areas for the
472	LUR model development. It has been reported that small number of site selected for LUR models
-, L	Lett model development. It has been reported that small humber of site selected for LOK models

474 ^{39,40}. Since we had only one measurement per season we could not develop reliable models for each
475 season.

Application in epidemiology. Though EC model performance was good in all areas, predictions 476 of the EC models correlated highly with the predictions from the PM_{2.5} absorbance models which 477 have already been applied in ESCAPE epidemiological studies. In most study areas, the squared 478 correlation was above 0.5 (~R=0.7), used as a rule of thumb to determine whether the independent 479 480 effect of two pollutants can be assessed ⁴¹. Though application of model predicted EC in 481 epidemiological studies likely will result in similar associations with health as the model predicted 482 PM2.5 absorbance, there may be some benefit of applying EC models to compare with previous US studies that have used EC as a metric ⁶. Furthermore, as EC to absorbance concentration ratios varied 483 across study areas (Supplementary information Table S8), effect estimates could be more 484 485 homogenous between studies, if EC is associated more closely with health than PM_{2.5} absorbance. Model performance was moderate for OC and the correlations of OC model predictions with the 486 487 prediction of mostly traffic-related PM_{2.5} absorbance were moderate overall. Correlations of OC with 488 PM_{2.5} were higher, but still moderate and highly variable across study areas. In six areas the squared correlation was below 0.5. Depending on the locations of cohort studies, OC may be a useful 489 490 additional indicator. In the NPACT study, some associations between OC and cardiovascular morbidity were found ⁶. 491

492

Performance of PAH models was also moderate and their predictions correlated on average
moderately with PM_{2.5} absorbance and PM_{2.5} predictions with very high variation of the correlations
across study areas. Application in epidemiological studies will depend on the locations of cohorts.
PAH have been implicated as causal agents for lung cancer and non-malignant respiratory disease
and not merely as another indicator for traffic tailpipe emissions ³⁰.

- 498
- 499

500	ASSOCIATED CONTENT
501	Supporting information
502	Additional information containing: (1)Map with 10 European study areas, (2) description of predictor
503	variables, (3) Spearman correlation between B[a]P, chrysene and traffic and wood smoke markers,
504	(4) mean and contrast of annual averages of organics components for 10 European study areas, (5)
505	description of land use regression model for Σ PAH, (6) description of land use regression model for
506	chrysene (7) description of land use regression model for Σ hopanes/steranes, (8) average of the model
507	R2 and LOOCV R2 for EC, OC, B[a]P, ΣPAH and chrysene per study area, (9) linear regression between
508	EC and PM2.5absorbance for 10 study areas, (10) graph of measured vs modelled concentration of
509	presented pollutants. This material is available free of charge via the Internet at http://pubs.acs.org
510 511 512	 AUTHOR INFORMATION
513	Corresponding Author
514	* Phone: +31 (0)65 109 62 97
514 515	 * Phone: +31 (0)65 109 62 97 E-mail: aleksandra.jedynska@tno.nl
514 515 516	 * Phone: +31 (0)65 109 62 97 E-mail: aleksandra.jedynska@tno.nl Notes
514 515 516 517	 * Phone: +31 (0)65 109 62 97 E-mail: aleksandra.jedynska@tno.nl Notes The authors declare no competing financial interest.
514 515 516 517 518	 * Phone: +31 (0)65 109 62 97 E-mail: aleksandra.jedynska@tno.nl Notes The authors declare no competing financial interest.
514 515 516 517 518 519	 * Phone: +31 (0)65 109 62 97 E-mail: aleksandra.jedynska@tno.nl Notes The authors declare no competing financial interest.
514 515 516 517 518 519 520	 * Phone: +31 (0)65 109 62 97 E-mail: aleksandra.jedynska@tno.nl Notes The authors declare no competing financial interest. ACKNOWLEDGEMENTS We would like to thank everybody who participated in the air sampling, measurements, data
514 515 516 517 518 519 520 521	 * Phone: +31 (0)65 109 62 97 E-mail: aleksandra.jedynska@tno.nl Notes The authors declare no competing financial interest. ACKNOWLEDGEMENTS We would like to thank everybody who participated in the air sampling, measurements, data management and the project supervision. This work was supported by the Netherlands Ministry of
514 515 516 517 518 519 520 521 522	 * Phone: +31 (0)65 109 62 97 E-mail: aleksandra.jedynska@tno.nl Notes The authors declare no competing financial interest. ACKNOWLEDGEMENTS We would like to thank everybody who participated in the air sampling, measurements, data management and the project supervision. This work was supported by the Netherlands Ministry of Infrastructure and Environment and the 7th European Framework projects TRANSPHORM
514 515 516 517 518 519 520 521 522 523	 * Phone: +31 (0)65 109 62 97 E-mail: aleksandra.jedynska@tno.nl Notes The authors declare no competing financial interest. ACKNOWLEDGEMENTS We would like to thank everybody who participated in the air sampling, measurements, data management and the project supervision. This work was supported by the Netherlands Ministry of Infrastructure and Environment and the 7th European Framework projects TRANSPHORM (ENV.2009.1.2.2.1) and ESCAPE under grant agreement number: 211250.

- 524
- 525

527 References

- 1. Brunekreef, B.; Holgate, S. T. Air pollution and health. *The Lancet* 2002, *360*, 1233-1242.
- 2. Pope, C. A.,3rd; Dockery, D. W. Health effects of fine particulate air pollution: lines that connect.
 J. Air Waste Manag. Assoc. 2006, *56*, 709-742.
- 3. WHO Regional Office for Europe, Review of evidence on health aspects of air pollution REVIHAAP Project. 2013.
- 4. Stanek, L. W.; Sacks, J. D.; Dutton, S. J.; Dubois, J. B. Attributing health effects to apportioned
 components and sources of particulate matter: An evaluation of collective results. *Atmos. Environ.* 2011, 45, 5655-5663.
- 5. Kelly, F. J.; Fussell, J. C. Size, source and chemical composition as determinants of toxicity
 attributable to ambient particulate matter. *Atmos. Environ.* 2012, *60*, 504-526.
- 6. Vedal, S.; Campen, M. J.; McDonald, J. D.; Larson, T. V.; Sampson, P. D.; Sheppard, L.;
 Simpson, C. D.; Szpiro, A. A. National Particle Component Toxicity (NPACT) initiative report on cardiovascular effects. *Res. Rep. Health Eff. Inst.* 2013, (178), 5-8.
- 541 7. Lippmann, M.; Chen, L. C.; Gordon, T.; Ito, K.; Thurston, G. D. National Particle Component
 542 Toxicity (NPACT) Initiative: integrated epidemiologic and toxicologic studies of the health
 543 effects of particulate matter components. *Res. Rep. Health Eff. Inst.* 2013, (177), 5-13.
- 8. Penner, J. E.; Novakov, T. Carbonaceous particles in the atmosphere: A historical perspective to
 the Fifth International Conference on Carbonaceous Particles in the Atmosphere. *Journal of Geophysical Research: Atmospheres (1984–2012)* 1996, *101*, 19373-19378.
- 547 9. Cyrys, J.; Heinrich, J.; Hoek, G.; Meliefste, K.; Lewne, M.; Gehring, U.; Bellander, T.; Fischer, P.;
 548 van Vliet, P.; Brauer, M.; Wichmann, H. E.; Brunekreef, B. Comparison between different
 549 traffic-related particle indicators: elemental carbon (EC), PM2.5 mass, and absorbance. *J. Expo.*550 *Anal. Environ. Epidemiol.* 2003, *13*, 134-143.
- Heal, M. R.; Quincey, P. The relationship between black carbon concentration and black smoke:
 A more general approach. *Atmos. Environ.* 2012, *54*, 538-544.
- 11. Schaap, M.; Denier van der Gon, H. A. C. On the variability of Black Smoke and carbonaceous
 aerosols in the Netherlands. *Atmos. Environ.* 2007, *41*, 5908-5920.
- Keuken, M.; Jonkers, S.; Zandveld, P.; Voogt, M. Elemental carbon as an indicator for evaluating
 the impact of traffic measures on air quality and health. *Atmos. Environ.* 2012, *61*, 1-8.
- Janssen, N. A.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; van Bree, L.; ten Brink, H.; Keuken,
 M.; Atkinson, R. W.; Anderson, H. R.; Brunekreef, B.; Cassee, F. R. Black carbon as an
 additional indicator of the adverse health effects of airborne particles compared with PM10 and
 PM2.5. *Environ. Health Perspect.* 2011, *119*, 1691-1699.

561 562 563 564	 Kim, S. Y.; Peel, J. L.; Hannigan, M. P.; Dutton, S. J.; Sheppard, L.; Clark, M. L.; Vedal, S. The temporal lag structure of short-term associations of fine particulate matter chemical constituents and cardiovascular and respiratory hospitalizations. <i>Environ. Health Perspect.</i> 2012, <i>120</i>, 1094- 1099.
565 566 567	 Son, J. Y.; Lee, J. T.; Kim, K. H.; Jung, K.; Bell, M. L. Characterization of fine particulate matter and associations between particulate chemical constituents and mortality in Seoul, Korea. <i>Environ. Health Perspect.</i> 2012, 120, 872-878.
568 569 570	 Ostro, B.; Reynolds, P.; Goldberg, D.; Hertz, A.; Burnett, R. T.; Shin, H.; Hughes, E.; Garcia, C.; Henderson, K. D.; Bernstein, L. Assessing Long-Term Exposure in the California Teachers Study. <i>Environ. Health Perspect.</i> 2011, <i>119</i>, A242.
571 572	17. Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. <i>Atmos. Environ.</i> 2008 , <i>42</i> , 2895-2921.
573 574 575	 Nielsen, T.; Jørgensen, H. E.; Larsen, J. C.; Poulsen, M. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects. <i>Sci. Total Environ.</i> 1996, 189–190, 41-49.
576 577 578 579	 Delfino, R. J.; Staimer, N.; Tjoa, T.; Arhami, M.; Polidori, A.; Gillen, D. L.; George, S. C.; Shafer, M. M.; Schauer, J. J.; Sioutas, C. Associations of primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort. <i>Epidemiology</i> 2010, <i>21</i>, 892-902.
580 581 582	20. EUD (European Union Directive) Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. <i>Official Journal L</i> 2005, <i>23</i> , 0003-0016.
583 584	21. Cass, G. R. Organic molecular tracers for particulate air pollution sources. <i>TrAC Trends in Analytical Chemistry</i> 1998 , <i>17</i> , 356-366.
585 586 587	 McDonald, J. D.; Eide, I.; Seagrave, J.; Zielinska, B.; Whitney, K.; Lawson, D. R.; Mauderly, J. L. Relationship between composition and toxicity of motor vehicle emission samples. <i>Environ. Health Perspect.</i> 2004, <i>112</i>, 1527-1538.
588 589 590	 Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. <i>Atmos. Environ.</i> 2008, <i>42</i>, 7561-7578.
591 592 593 594	 Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsai, M.; Künzli, N.; Schikowski, T.; Marcon, A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe – The ESCAPE project. <i>Atmos. Environ.</i> 2013, <i>72</i>, 10-23.
595 596 597 598	25. Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dedele, A.; Dons, E.; de Nazelle, A.; et al. Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. <i>Environ. Sci. Technol.</i> 2012, <i>46</i> , 11195-11205.

599	 de Hoogh, K.; Wang, M.; Adam, M.; Badaloni, C.; Beelen, R.; Birk, M.; Cesaroni, G.; Cirach,
600	M.; Declercq, C.; Dedele, A.; et al. Development of Land Use Regression Models for Particle
601	Composition in Twenty Study Areas in Europe. <i>Environ. Sci. Technol.</i> 2013,47, 5778 - 5786.
602	 Larson, T.; Su, J.; Baribeau, A.; Buzzelli, M.; Setton, E.; Brauer, M. A spatial model of urban
603	winter woodsmoke concentrations. <i>Environ. Sci. Technol.</i> 2007, <i>41</i> , 2429-2436.
604	 Su, J. G.; Buzzelli, M.; Brauer, M.; Gould, T.; Larson, T. V. Modeling spatial variability of
605	airborne levoglucosan in Seattle, Washington. <i>Atmos. Environ.</i> 2008, 42, 5519-5525.
606 607 608 609	29. Smargiassi, A.; Brand, A.; Fournier, M.; Tessier, F.; Goudreau, S.; Rousseau, J.; Benjamin, M. A spatiotemporal land-use regression model of winter fine particulate levels in residential neighbourhoods. <i>Journal of Exposure Science and Environmental Epidemiology</i> 2012 , <i>22</i> , 331-338.
610 611 612	30. Noth, E. M.; Hammond, S. K.; Biging, G. S.; Tager, I. B. A spatial-temporal regression model to predict daily outdoor residential PAH concentrations in an epidemiologic study in Fresno, CA. <i>Atmos. Environ.</i> 2011 , <i>45</i> , 2394-2403.
613 614 615 616	31. Eeftens, M.; Tsai, M.; Ampe, C.; Anwander, B.; Beelen, R.; Bellander, T.; Cesaroni, G.; Cirach, M.; Cyrys, J.; de Hoogh, K.; et al. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 – Results of the ESCAPE project. <i>Atmos. Environ.</i> 2012, <i>62</i> , 303-317.
617	32. Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z. J.; Weinmayr, G.; Hoffmann, B.;
618	Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; et al. Effects of long-term exposure to air
619	pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre
620	ESCAPE project. <i>The Lancet</i> 2014, 383, 785-795.
621	33. Jedynska, A.; Hoek, G.; Eeftens, M.; Cyrys, J.; Keuken, M.; Ampe, C.; Beelen, R.; Cesaroni, G.;
622	Forastiere, F.; Cirach, M.; et al. Spatial variations of PAH, hopanes/steranes and EC/OC
623	concentrations within and between European study areas. <i>Atmos. Environ.</i> 2014, <i>87</i> , 239-248.
624	 Cyrys, J.; Eeftens, M.; Heinrich, J.; Ampe, C.; Armengaud, A.; Beelen, R.; Bellander, T.;
625	Beregszaszi, T.; Birk, M.; Cesaroni, G.; et al. Variation of NO2 and NOx concentrations
626	between and within 36 European study areas: Results from the ESCAPE study. <i>Atmos. Environ.</i>
627	2012, <i>62</i> , 374-390.
628 629 630	35. Cavalli, F.; Viana, M.; Yttri, K. E.; Genberg, J.; Putaud, J. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. <i>Atmos. Meas. Tech. Discuss.</i> 2009 , <i>2</i> , 2321-2345.
631	 Hoek, G.; Beelen, R.; Kos, G.; Dijkema, M.; Zee, Saskia C van der; Fischer, P. H.; Brunekreef,
632	B. Land use regression model for ultrafine particles in Amsterdam. <i>Environ. Sci. Technol.</i> 2010,
633	45, 622-628.
634	37. Saarikoski, S.; Timonen, H.; Saarnio, K.; Aurela, M.; Järvi, L.; Keronen, P.; Kerminen, V.;
635	Hillamo, R. Sources of organic carbon in fine particulate matter in northern European urban air.
636	<i>Atmos.Chem.Phys</i> 2008 , <i>8</i> , 6281-6295.

- 38. Larson, T.; Henderson, S. B.; Brauer, M. Mobile monitoring of particle light absorption
 coefficient in an urban area as a basis for land use regression. *Environ. Sci. Technol.* 2009, 43,
 4672-4678.
- 39. Basagaña, X.; Rivera, M.; Aguilera, I.; Agis, D.; Bouso, L.; Elosua, R.; Foraster, M.; de Nazelle,
 A.; Nieuwenhuijsen, M.; Vila, J.; Künzli, N. Effect of the number of measurement sites on land
 use regression models in estimating local air pollution. *Atmos. Environ.* 2012, *54*, 634-642.
- 40. Wang, M.; Beelen, R.; Basagana, X.; Becker, T.; Cesaroni, G.; de Hoogh, K.; Dedele, A.;
 Declercq, C.; Dimakopoulou, K.; Eeftens, M.; et al. Evaluation of land use regression models for
 NO2 and particulate matter in 20 European study areas: the ESCAPE project. *Environ. Sci. Technol.* 2013.
- 41. Wang, M.; Beelen, R.; Stafoggia, M.; Raaschou-Nielsen, O.; Andersen, Z. J.; Hoffmann, B.;
 Fischer, P.; Houthuijs, D.; Nieuwenhuijsen, M.; Weinmayr, G.; et al. Long-term exposure to
 elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts:
 Results from the ESCAPE and TRANSPHORM projects. *Environ. Int.* 2014, *66*, 97-106.

