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We present a time-efficient backprojection image reconstruction approach applied to frequency-domain (FD) opto-
acoustic tomography based on tissue illumination at multiple, discrete frequencies. The presentedmethod estimates
the Fourier transform of a spatial, circular profile of the underlying image using the amplitude and phase data. These
data are collected over multiple frequencies using an acoustic transducer positioned at several locations around the
sample. Fourier-transform values for absent frequencies are estimated using interpolation based on low-pass filter-
ing in the image domain. Reconstruction results are presented for synthetic measurements using numerical phan-
toms, and the results are compared with FD model-based reconstructions. © 2014 Optical Society of America
OCIS codes: (170.3880) Medical and biological imaging; (170.5120) Photoacoustic imaging; (170.6960) Tomography.
http://dx.doi.org/10.1364/OL.39.005455

Optoacoustic tomography is typically implemented using
nanosecond pulses due to the favorable signal-to-noise
characteristics offered when powerful lasers are em-
ployed. However, optoacoustic signal generation occurs
with any transient light intensity absorbed by tissue. Cor-
respondingly, sinusoidal optical intensity modulated in
frequency using chirp has been employed for optoacous-
tic imaging using raster scan of a light beam [1] or multi-
projection tomography [2]. Chirp modulation encodes
time onto frequency: time delays are encoded on differ-
ent frequency values. Detection is then based on cross
correlation of the detected signal with a reference signal
coming from the modulated source. A characteristic of
chirp-based optoacoustic detection is that the frequency
emitted onto the target at any given time is not contained
in the frequency band detected at that same time.
We have recently presented frequency-domain (FD)

optoacoustic tomography which utilizes sinusoidal opti-
cal intensity and detects complex acoustic measurements
obtained through continuous excitation of the target [3].
In contrast to chirp-based imaging, FD optoacoustic
tomography has no dependence on time or time delay.
Therefore, while it preferably utilizes multiple, distinct
frequencies, these frequencies can be emitted and de-
tected simultaneously. Independently from the number
of frequencies employed (one ormultiple), FD optoacous-
tics based on illumination with light always detect exactly
the frequency or frequencies emitted at the target.
The principle of optoacoustic imaging using FD mea-

surements was showcased using model-based image
reconstruction based on least-squares minimization
and Tikhonov regularization [3]. In this approach, a linear
model of the system is constructed, where a weight
matrix relates the acoustic measurements to the heat
source distribution (or the optical absorption). The
weight matrix elements are derived from the FD wave
equation. The model-based method presented in [3] is
a flexible approach capable of accurately reconstructing
in arbitrary geometries. This method also lends itself to
incorporation of the detector models [4]. While model-
based inversion yields high imaging accuracy, it is gener-
ally time-consuming due to the large volume of numerical

computations required. Typically several tens of seconds
are needed for a 2D image with 10,000 reconstruction
voxels. Such metrics make this method inappropriate
for real-time imaging implementations.

Instead, we propose herein a backprojection-based
algorithm for inversion of FD data, i.e., amplitude and
phase measurements of propagating acoustic waves
collected over multiple, distinct frequencies and projec-
tions. The proposed method uses fast Fourier transform
(FFT) to achieve real-time reconstruction for tissue di-
mensions as large as 2 cm and several tens of frequencies
used. Backprojection methods are common in time-
domain optoacoustic tomography, i.e., when using
short-pulse illumination [5,6]. These methods are often
based on analytical formulas, derived in time or fre-
quency domains using diffraction tomography concepts
[5,7,8]. Nevertheless, such backprojection methods have
been demonstrated often in the context of time-domain
optoacoustic tomography, and are often limited to the
specific configuration of detectors. The backprojection
FFT (BPFFT) method proposed herein is particularly de-
veloped for FD optoacoustic tomography using multiple,
distinct frequencies.

The proposed method is further applicable to arbitrary
geometries and detector configurations. For simplicity
and without loss of generality, we consider the circular
geometry depicted in Fig. 1, where the detectors are
placed around the sample at D locations θi; i � 1…D.
The sound speed is assumed to have a constant value
of ca within the sample. Let x�v� denote the unknown
absorbed energy density at voxel v. Then

x�v� � μa�v�Ia�v�; (1)

where μa�v� and Ia�v� denote the optical absorption
coefficient and the fluence at voxel v, respectively. In this
Letter we reconstruct the property x�v�. Methods devel-
oped to separate the optical absorption from fluence
terms can then be employed [9].

The acoustic signal measured at angle θ at the angular
frequency ω � 2πf can then be written as
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p�ω; θ� � −iωγ
X
v

eikrv�θ�

rv�θ�
x�v�; (2)

where k is the wave number given as k � ω∕ca. rv�θ� de-
notes the distance of the voxel v from the transducer at
projection angle θ [3]. The constant γ is given as

γ � −βυ

4πCp
eiϕa ; (3)

where β is the thermal expansion coefficient, Cp is the
specific heat capacity, υ is the dimensionless energy
conversion efficient, and ϕa is a phase constant due to
the thermo-elastic conversion of tissue [3]. γ is a multipli-
cative factor which is omitted from the formulations for
simplicity.
The diagonal line passing through the transducer loca-

tion (the diagonal shown in Fig. 1) is partitioned into N
segments of length d. Let An�θ� denote a circular slice of
the sample obtained over the nth segment for detection
angle θ, as shown in Fig. 1. Define y�n� as the summation
of the vector x within each slice

y�n� �
X

v∈An�θ�
x�v�: (4)

Subsequently, the measured pressure wave p�ω; θ� is
normalized by the respective ω as

p̄�ω; θ� � p�ω; θ��
iω

; (5)

where * denotes complex conjugate. Then p̄�ω; θ� can be
estimated as

p̄�ω; θ� �
X
v

e−ikrv�θ�

rv�θ�
x�v� ≈

XN
n�1

e−iknd
y�n�
nd −

d
2

; (6)

where rv�θ� is approximated by the detector distance
from the midpoint of the nth circular arc, i.e.,
nd − d∕2. Next, we assume M discrete frequencies emit-
ted to the target. We assume an equispaced frequency

distribution where the mth frequency ωm � 2πf m can
be expressed as

f m � f 0 � �m − 1�Δf ; m � 1…M; (7)

where Δf is the frequency step. The method is, nonethe-
less, readily generalizable to nonuniform frequency
distributions. By defining z�n� � y�n�∕nd − d∕2 and
combining Eqs. (4)–(7), we can write

p̄�ω; θ� ≈
XN
n�1

e−2πi��m−1�Δf�f 0n� dcaz�n�e−2πi�m−1��n−1�dΔfca : (8)

A variable sm�θ� can be define using the normalized
measurement p̄ as

sm�θ� � p̄�2πf m; θ�e2πi�m−1�dΔfca : (9)

Also, the complex sequence h�n� is defined as

h�n� � e−2πi
f 0
ca
ndz�n�: (10)

Then by combining Eqs. (8)–(10) we have

sm�θ� ≈
XN
n�1

h�n�
�
e−2πi�m−1��n−1�×2RΔf

Nca

�
; (11)

where R is the radius of the detector ring (Fig. 1). The
parameter α � 2RΔf∕ca is in the general case a real pos-
itive number. We approximate α by a rational number.
Specifically, let q1 and q2 be mutually prime integers such
that q2 is a power of 2 and

α ≈
q1
q2

: (12)

In this Letter, q2 � 32 was chosen and observed to re-
sult in satisfactory approximation of α. Also we define
h̄�n� as a 1 × Nq2 vector denoting the zero-padded
version of h�n�, i.e.,

h̄ � �h0N�q2−1��: (13)

Hence, Eq. (11) can be written as

sm�θ� ≈
XNq2

n�1

h̄�n�
�
e−2πi×

��q1�m−1��1�−1��n−1�
Nq2

�
: (14)

The right side of this equation is recognized as the Nq2-
point discrete Fourier transform of the complex se-
quence h̄�n�. Therefore we can write

sm�θ� ≈ FNq2�h̄�n�; q1�m − 1� � 1�; (15)

where FP�a�n�;m� denotes the mth discrete P-point
Fourier-transform value of the sequence a�n�.

Inversion is then performed via backprojection. Spe-
cifically, for every angle θ the measured signal at frequen-
cies f m formsM samples of the Nq2-point FT of h�n�. The
number N is chosen to be a power of 2 to enable appli-
cation of the FFT. In this Letter, N was chosen as

Fig. 1. Concept of the proposed BPFFT algorithm; for a given
projection angle θ (here θ � π) the reconstruction area is di-
vided to circular slices, where the nth circle has a radius of
nd. The diameter is divided into N subdivisions (red marks)
of length d. The green or blue slices denote circular slices
An�θ�, and are geometrical loci of voxels with the same contri-
bution to p�ω; θ�.
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N � 2d; d � log2�M max�1; α�� � 2; (16)

where x denotes the ceil of x. The sequence sm�θ� is a
down-sampled version (by a factor of q1) of theNq2-point
FFT of h̄�n�. Instead of up-sampling sm�θ� and then
performing inverse FFT (IFFT), we can low-pass filter
the IFFT of sm�θ� by keeping only the first N samples.
Low-pass filtering in the IFFT domain has the same
impact as interpolation in the FFT domain. However,
if the used frequencies f m are nonuniformly distributed,
then the sequence sm�θ� should be interpolated at the
locations of missing frequencies prior to IFFT.
After we perform IFFT for every angle, the first N sam-

ples of the resulting signal form an approximation of
h�n�, denoted by ~h�n�. Using Eq. (10), an estimation
of y�n�, called ~y�n�, can be obtained from ~h�n�. The
absolute value of sequence ~y�n� is then mapped to the 2D
domain image update, xθ�v�. This mapping is given as

xθ�v� � Re� ~y�n�� ×
�
nd −

d
2

�
where v ∈ An�θ�; (17)

where Re is the real part. The operation in Eq. (17) can be
recognized as the backprojection of the 1D sequence on
the right-hand side over the 2D domain.
The absorption image is then updated (starting from an

all-zero image) by the 2D projection for each angle, i.e.,
xθ�v�, as

x�v� ≈
X

i�1;…D

xθi�v�: (18)

The reconstructed image x contains blurring artifacts,
typical in backprojection algorithms. Hence, the image x
is filtered in the k-space by a 2D Ram–Lak filter, defined

as f �k1; k2� �
����������������
k21 � k22

q
, where k1 and k2 are k-space

coordinates. A summary of the proposed method is also
presented in Table 1.

The BPFFT method is verified using simulation results
for a circular phantomwith a diameter of 14 mm, contain-
ing two absorbing objects, as shown in Fig. 2(a). The ob-
jects 1 and 2 had optical absorptions of μ0 and 2μ0,
respectively. Objects 1 and 2 were a filled circle and a
ring shape, respectively. Objects were designed as such
to evaluate BPFFT’s performance in preserving content.
The parameter μ0 was set to a typical tissue optical ab-
sorption value of 0.3 cm−1. For simplicity the parameter
μ0 is not shown in the graphs. For the sample diameter of
14 mm, the parameter q1 in Eq. (12) was found to be 30.
Simulations were performed for 180 equispaced detec-
tors positioned around the sample and 45 illumination
frequencies between 300 KHz to 4.8 MHz in steps of
100 KHz. Figures 2(b)–2(e) demonstrate the evolution
of the image reconstructed using BPFFT for a different
number of detectors, when no noise is added to the mea-
surements. Figure 2(f) shows the final reconstruction,
after application of the Ram–Lak filter. The effect of
noise was additionally simulated by adding white Gaus-
sian noise to the synthetic measurement. Figure 3 shows
the reconstruction of a T-shaped object, [Fig. 3(a)] for

Fig. 2. Evolution of BPFFT across projection; (a) true image
of a numerical phantom with a diameter of 14 mm and two ab-
sorbing objects numbered 1 and 2 (respectively, filled and hol-
low) with absorptions of μ0 and 2μ0, respectively, and a
diameter of 0.8 mm. Panels (b)–(e) show reconstructed absorp-
tion images for 10°, 45°, 90°, and 180° angles. (f) Final recon-
structed image, after applying the 2-D Ram–Lak filter to (e).
45 frequencies between 300 KHz and 4.7 MHz in steps of
100 KHz were used. Detection was performed on 180 locations,
and the reconstruction resolution was 70 μm. The parameter μ0
is not shown on the depicted scales for simplicity.

Fig. 3. Reconstruction of a T-shape object in presence of noise
for an SNR of −5 dB; (a) true image, (b) BBFFT reconstruction,
(c) LSQR reconstruction with 100 iterations. 45 frequencies
between 300 KHz and 4.8 MHz, in steps of 100 KHz were
used. Detection was performed on 180 locations, and the
reconstruction resolution was 70 μm.

Table 1 Proposed BPFFT Algorithm

i. Initialization: x � 0V , j � 1.
ii. Set θ � θj and define e � 0Nq2 .

iii. Define p̄�ω; θ� � p�ω;θ�
iω .

iv. Mappinga: m � 1…M ,

e�q1�m − 1� � 1� � p̄�2πf m; θ�
v. Inverse FFT: g � F−1

Nq2
�e�.

vi. Cropping: hc � g�1;…; N�.
vii. Unweighing: for all voxels v

a. Find n; such that v ∈ An�θ�.

b. xθ�v� � Re
�
hc�n�e�

2πif 0nd
ca

�
×
�
nd � d

2

�
.

viii. Update: ∀ v; x�v� � x�v� � xθ�v�.
ix. If j ≤ D go to step ii.
x. Applying a Ram–Lak filter to x in the k-space.
xi. Termination: x → solution

aValues of q1 and q2 are defined in Eq. (12).

September 15, 2014 / Vol. 39, No. 18 / OPTICS LETTERS 5457



noisy measurements with a signal-to-noise ratio (SNR) of
∼ − 5 dB (i.e., noise power around 4.5 times stronger
than the signal power). The additive noise was simulated
using zero-mean Gaussian random variables for both the
real and imaginary parts, as explained in [3]. For this
case, 45 frequencies from 0.3 to 5 MHz and 300 detector
locations were used. The phantom had a diameter of
12 mm (q1 � 26, q2 � 32), and the reconstruction resolu-
tion was 70 μm. Figures 3(b) and 3(c) show reconstruc-
tions using BPFFT and using a model-based approach,
respectively. The model-based approach used the least-
square method (LSQR) [10] with 100 iterations [3]. The
entire BPFFT reconstruction lasted 0.10 s on a computer
with an Intel Core i7 CPU @ 3.4 GHz and 16 GB RAM. The
model-based reconstruction lasted 89.6 s.
Both circular objects can be differentiated in Fig. 2(f).

Objects 1 and 2 are further reconstructed as a circle and a
ring, respectively, both with diameters of ∼8.3 mm. The
ratios of the intensities (averaged within respective ob-
ject areas) of the reconstructed objects were 1.95, re-
spectively, which is very close to the true ratios of 2.
However, the absolute reconstructed values are almost
half of the true values. This phenomenon is due to the
limited bandwidth of the illumination frequencies. In
Fig. 3, the T-shape is well recognizable using both BPFFT
and LSQR approaches, although the latter has a much
higher accuracy. However, FPFFT reconstruction was
approximately 900 times faster than the model-based
reconstruction. This feature of BPFFT enables real-time
imaging with frame rates as high as 10 frames/s, for the
system settings of Fig. 3. Moreover, while the memory
and computation time of BPFFT grows linearly with
the sample diameter, model-based reconstruction burden
grows with the square of the sample diameter. The re-
sults were presented for a circular phantom with equi-
spaced frequencies and detection angles. Nevertheless,
the proposed approach can be readily implemented for

arbitrary geometries, detector configurations, and fre-
quency distributions with full and limited view data in
both two and three dimensions. The extension to 3D fol-
lows by defining spherical slices (instead of circular
arcs). A 1D Fourier-transform relationship, similar to
Eq. (15), then holds, with y�n� defined as the integration
of the 3D solution over the slices.

In conclusion, we presented a fast backprojection
method based on FFT for real-time reconstruction of ab-
sorption images in FD optoacoustic tomography. The
proposed method uses amplitude and phase data over
multiple, discrete frequencies to reconstruct the absorp-
tion image. Extensions for detector configurations and
spatial and frequency samplings are possible. These gen-
eralizations as well as the trade-offs governing different
systems, models, and parameters are subjects of ongoing
research.
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