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Assessing the goodness of fit of personal
risk models
Gail Gong,a Anne S. Quante,b,d Mary Beth Terryc and
Alice S. Whittemorea*†

We describe a flexible family of tests for evaluating the goodness of fit (calibration) of a pre-specified personal risk
model to the outcomes observed in a longitudinal cohort. Such evaluation involves using the risk model to assign
each subject an absolute risk of developing the outcome within a given time from cohort entry and comparing
subjects’ assigned risks with their observed outcomes. This comparison involves several issues. For example, sub-
jects followed only for part of the risk period have unknown outcomes. Moreover, existing tests do not reveal the
reasons for poor model fit when it occurs, which can reflect misspecification of the model’s hazards for the com-
peting risks of outcome development and death. To address these issues, we extend the model-specified hazards
for outcome and death, and use score statistics to test the null hypothesis that the extensions are unnecessary.
Simulated cohort data applied to risk models whose outcome and mortality hazards agreed and disagreed with
those generating the data show that the tests are sensitive to poor model fit, provide insight into the reasons for
poor fit, and accommodate a wide range of model misspecification. We illustrate the methods by examining the
calibration of two breast cancer risk models as applied to a cohort of participants in the Breast Cancer Family
Registry. The methods can be implemented using the Risk Model Assessment Program, an R package freely
available at http://stanford.edu/~ggong/rmap/. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Recent emphasis on personalized medicine has stimulated the development of models that specify an
individual’s risk of a future adverse health outcome. Such a model uses the person’s covariates to calcu-
late his or her hazard rates for future outcome development and death, and then combines these hazards
into a probability of outcome development during a specified future risk period. Typically, clinical care
(e.g., chemoprevention) decisions are based on short-term predictions (e.g., 1, 5, and 10 years), with the
length of the risk period short enough to allow useful assessment and comparison of a person’s risk for a
future adverse outcome, given his or her risk factors at the time risk assessment. Longer projections (e.g.,
breast cancer risk by age 80 years for a woman who is currently aged 40 years) are less useful for two
reasons. First, they require the assumption that her risk factors will not change during the extended future
period. Second, validation of these predictions would require longitudinal follow-up of large numbers of
subjects for long time periods, which often is infeasible.

For any given outcome and risk period, the models differ in the personal risk factors they use and
how they handle the competing risk of death. For breast cancer within 10 years, for example, the Breast
Cancer Risk Assessment Tool (BCRAT) [1–3] uses US incidence and mortality hazards to assign a
woman a probability of developing the disease before dying from other causes, while version 6 of the
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International Breast Cancer Intervention Study (IBIS) model [4] assigns her a probability of developing
breast cancer under the assumption that her mortality rate during the period is zero. The risks assigned
under these two assumptions can be expected to differ little for individuals with negligible death rates,
but they can differ substantially for those with life-threatening comorbidities. In this case, the issue of
primary concern for clinical decision-making is one’s risk of developing the outcome before dying from
other causes.

Personal risk models need validation against longitudinal cohort data independent of that used to
develop them. This paper focuses on model calibration (also called goodness of fit), which reflects how
well the model-specified outcome probabilities agree with people’s subsequent observed outcomes. We
need well-fitting models so that patients can rationally weigh the costs and benefits of preventive inter-
ventions in relation to an accurate assessment of their own risks. We also need to understand the reasons
for poor fit, when it occurs. For example, a model’s poor fit may reflect its misspecification of mortality
hazards among cohort members, whose health-care access and lifestyles may differ from those of the
population used for the model-specified death rates.

We assume that each individual in the population of interest has an unknown true probability � of
developing the outcome during the risk period. We wish to test the null hypothesis that each individual’s
model-assigned risk r equals his or her true risks �. Testing this hypothesis against longitudinal data
from subjects randomly sampled from the population is straightforward when all subjects can be classi-
fied as outcome-positive (i.e., developed the outcome during the risk period) or outcome-negative (died
without the outcome during the period or survived the period outcome-free). Then, using generalized lin-
ear models (GLMs) for binary data [5], we can take the response variable to be an indicator taking value
one for outcome-positive subjects and zero otherwise, and model the expected value � of this indicator
as a function �.�/ of a linear predictor � D ˛ C ˇT ´. Here, �.˛/ equals the model-specified outcome
probability r , and z is a vector of covariates indicating patterns of possible poor model fit. Thus, the null
hypothesis that the model is well calibrated becomes the hypothesis ˇ D 0. Two commonly used link
functions �.�/ are the logistic link

�D log Œ�= .1��/�with ˛ D log Œr= .1� r/� (1)

and the complementary log-log link

�D log Œ� log .1��/�with ˛ D log Œ� log .1� r/� (2)

The GLM likelihood-based efficient score statistic for ˇ D 0 has an asymptotic null distribution that is
central chi-square.

However, such GLMs cannot be used when some subjects are last observed alive and outcome-free
before the risk period ends, because their outcome indicators are unknown. To deal with this problem,
some investigators have simply deleted such censored subjects from the analysis. While this approach
retains the simplicity of the GLMs, it can lead to severe upward bias in outcome probability estimates
by excluding the time at risk of the censored subjects, who were outcome-free until last observed [6].

An alternative strategy is to partition subjects into K disjoint subgroups, and within each subgroup,
obtain nonparametric estimates of the subjects’ true hazards for outcome and death during the period
that starts from cohort entry and ends at a time t� years or months later, where t� is the end of the risk
period. These estimates can then be used to obtain an estimate O�k of the mean outcome probability for
comparison with the mean assigned risk Nrk among subjects in subgroup k and to obtain estimates O�2

k
of

the asymptotic variance of O�k; k D 1; : : : ; K [6, 7]. Model calibration can then be tested by comparing
the statistic

X2K D
XK

kD1

. O�k � Nrk/
2

O�2
k

(3)

to a central chi-squared distribution on K degrees of freedom (DF). In the absence of censoring, this
test is similar to the one proposed by Hosmer and Lemeshow [8] for goodness-of-fit of logistic regres-
sion models. Because of this similarity, we shall refer to the test statistic (3) as the Hosmer–Lemeshow
(HL) statistic.

However, there are disadvantages to this approach. First, the choice of subgroups is arbitrary, and for
any choice of subgroups, the distribution of risks within a subgroup can differ when different models
are evaluated using the same cohort or when different cohorts are used to assess the same model. Even
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Assigned risk

Figure 1. Box plots of BCRAT and IBIS 10-year risks as assigned to N D 1747 NY BCFR subjects, within
quartiles of assigned risk.

when investigators use a common subgroup definition (such as quartiles of assigned risk), the quartile
cut points vary across different models and different cohorts, which complicates model comparison.
This problem is aggravated by the fact that estimating the event-specific hazards and the corresponding
outcome probability can be too cumbersome for exploratory analysis involving different choices of sub-
groups. Finally, aggregating subjects into subgroups large enough for stable hazard estimation involves
loss of information on model fit at the individual risk level, because some subgroups may contain sub-
jects with substantially different risks. For example, Figure 1 shows box plots of the breast cancer risks
assigned by the BCRAT and IBIS risk models to a subset of the New York Breast Cancer Family Reg-
istry (NY BCFR) data [9] for subgroups defined by quartiles of model-assigned risk. Because the risk
distributions are right-skewed, the highest risk quartile spans a large range of risks, so that a summary
calibration measure involves substantial information loss. Importantly, the accuracy of individual risks
assigned to these high-risk women is often of greatest interest for planning preventive strategies.

Here we propose a more flexible and informative way to evaluate model calibration in the presence of
independent right censoring. Specifically, we replace the single null hypothesis of agreement between
true and assigned outcome probabilities for all individuals in the population by the joint null hypothesis
that the model-specified event-specific hazards agree with the actual hazards governing events in the pop-
ulation during the risk period. We test this joint hypothesis by extending the model-specified hazards for
outcome and death via a proportional hazards model. We then use the full (not partial) likelihood-based
score statistics to test the null hypothesis that the regression coefficients in the extended hazards are zero.
This approach, which builds on the work of Breslow [10], is analogous to the GLMs of Equations (1) and
(2) for binary data and enjoys their flexibility and exploratory advantages. In the absence of censoring,
the extensions form a pair of GLMs for the binary outcome and death responses, with the exploratory
covariates z contributing via a complementary log-log link of the form (2).

We begin by describing these score statistics and illustrating them with examples. We then report the
results of simulations evaluating the size and power of the tests and comparing them with that of the HL
test of Equation (3). Finally, we illustrate the issues by evaluating the fit of risk models for a woman’s
10-year risk of breast cancer as applied to a subset of the participants in the NY BCFR cohort [9].

2. Methods

We wish to test the null hypothesis that the outcome and mortality hazards of a specific risk model agree
with those of a given population, by comparing the model predictions with longitudinal data from a ran-
dom sample of N subjects from the population. To do so, we use the risk model to assign each subject
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a probability r of developing the outcome of interest within t� months or years since cohort entry, on
the basis of his or her covariates ascertained at cohort entry. (See Appendix A for description of how the
model assigns outcome probabilities.) To develop the proposed calibration tests, we expand the model’s
hazards for outcome and death, and then test the null hypothesis that the unknown parameters in the
expansions are zero, that is, that the model fits the subjects’ survival data. Specifically, let ´ij denote
the i th subject’s values for a vector of covariates related to outcome (j D 1) and death (j D 2). These
covariates may be risk factors, functions of the assigned risks such as multinomial subgroup indicators,
or simply unit scalars ´ij D 1. We take the subject’s expanded hazard rates as

�ij .t I ´i /D �ij .t/e
ˇT
j
´ij ; j D 1; 2; (4)

where t is time since cohort entry, �ij .t/ denotes the model-specified hazard for an event of type j , and
´ij are column vectors of dimension K. The subject’s observed data have the form .ti ; yi1; yi2/ where
ti is the minimum of t�, time of outcome development, time of death, and time of censoring, and yij is
an indicator assuming the value 1 if event j is observed at time ti and zero otherwise, j D 1; 2. Under
the assumption that the censoring times are independent of times to outcome and death, the subject’s
contribution to the likelihood function for ˇ D .ˇ1; ˇ2/ is

Li .ˇ/D
Y2

jD1

h
�ij .ti / e

ˇT
j
´ij
iyij

e�ƒij .ti /e
ˇT
j
´ij

; j D 1; 2; i D 1; : : : ; N; (5)

where ƒij .t/ D
R t
0 �ij .u/du is the subject’s model-specified cumulative hazard. Note that Li .ˇ/ is a

full likelihood rather than a partial likelihood as defined by Cox [11]. Differentiating logLi .ˇ/ with
respect to ˇj gives the subject’s contributions to the efficient score and null observed information for
ˇj as

Uij D
@

@ˇ j

�
logLi .ˇ/

�
ˇjD0

D
�
yij �ƒij .ti /

�
´ij and Vij Dƒij .ti / ´ij´

T
ij ; j D 1; 2: (6)

(Note that any time at risk of death after outcome occurrence is excluded from Equation (6). This
approach is appropriate because the mortality rates of outcome-positive and outcome-negative subjects
may differ, and accounting for this difference would involve a more complex multi-state process for both
the risk model(s) under evaluation and the evaluation itself. Moreover because the evaluation concerns
model calibration within a short (e.g., 5 years) period, time at risk after this period is excluded.)

Equation (6) gives the score test statistic corresponding to events of type j as

Tj D U
T
j V

�1
j Uj D

�XN

iD1
U Tij

��XN

iD1
Vij

��1 �XN

iD1
Uij

�
; j D 1; 2: (7)

Under the null hypothesis that the model hazards are correctly specified for the population of interest, the
outcome-based statistic T1 and mortality-based statistic T2 have asymptotic chi-squared distributions on
K DF. In addition, a summary test of agreement between total observed and predicted numbers of events
(both outcomes and deaths) can be obtained by setting ´i1 D ´i2 D ´i for all subjects and ˇ1 D ˇ2 D ˇ.
This gives the combined test statistic

TC D U
T
CV

�1
C UC D

�XN

iD1
U TiC

��XN

iD1
ViC

��1 �XN

iD1
UiC

�
(8)

where the subscript ‘C’ denotes summation over the values j D 1; 2. Calculating these test statistics
requires extracting the model-specified cumulative hazards at arbitrary follow-up times t . If the model
software does not provide this information, it can be approximated as described in Appendix B.

Regression models of the form (4) and their corresponding test statistics (7) and (8) provide a flexible
framework that can be informative in evaluating model calibration. The investigator can vary the choice
of regression model to examine different types of model fit and the fit for various subgroups of sub-
jects. The choice of regression model can help determine whether the model misspecifies the outcome
hazards, the mortality hazards, or both. In addition, the choice of covariate vector ´ can help determine
population subgroups of individuals for whom the model fits poorly. The following examples illustrate
the flexibility of the approach.
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Example 1
The covariates might be scalar weights ´ij D wij determined by the subjects’ assigned risk or risk fac-
tors, to allow focus on those whose attributes are of particular interest. Then the test statistics (7) and (8)
have the Poisson regression form

Tj D

�
Oj �Ej

�2
Ej

; where Oj D
XN

iD1
wijyij and Ej D

XN

iD1
wijƒij .ti / (9)

correspond to observed and expected counts of events of type j; j D 1; 2;C. These test statistics have
asymptotic null distributions that are chi-squared on one DF.

Example 2
We might choose as covariates a common vector ´i D .´i1,: : :,ziK/T of indicators for membership in
one of the K subgroups S1,: : :,SK in a partition of the subjects, as determined by personal risk factors
or assigned risks. Then the test statistics (7) and (8) become

Tj D
XK

kD1

�
Oj .k/�Ej .k/

�2
Ej .k/

; with Oj .k/D
X

i2Sk
yij and Ej .k/D

X
i2Sk

ƒij .ti / (10)

denoting observed and expected counts of events of type j in subgroup k; k D 1; : : : ; K; j D 1; 2;C.
The asymptotic null distributions of these test statistics are chi-squared onK DF. Subjects for whom the
model fits poorly can be examined by plotting standardized residuals (SRs) of the form

SRj .k/D
Oj .k/�Ej .k/p

Ej .k/
; k D 1; : : : ; K; j D 1; 2;C (11)

against subgroup-specific mean values of covariates or assigned risk. As we shall show in the application
to breast cancer data, these SR plots allow visual inspection of model inadequacy and can help reveal
the reasons for poor model fit.

We are currently implementing the these test statistics in the Risk Model Assessment Program, an R
package freely available at http://stanford.edu/~ggong/rmap/.

3. Simulations

We used simulations to explore the performance of the proposed statistics and to examine the utility of
residual plots for exploratory analyses. To do so, we considered the problem of evaluating a set of risk
models using data from cohorts consisting of N D 1000 and N D 10; 000 subjects randomly selected
from a given population and followed for outcome occurrence or death during a 10-year period. The
following is a brief description of how we generated and analyzed the data, and the summary measures
we used to assess goodness of model fit.

3.1. Data generation

For each of the N subjects, we randomly and independently sampled times to censoring (j D 0),
outcome (j D 1), and death (j D 2) according to independent exponential distributions with hazard
parameters �j ; j D 0; 1; 2. We then recorded the subject’s observed data as .ti ; yi1; yi2/ where
ti D min.ti0;ti1; ti2; t�/, with t� D 10 years and tij denoting time to censoring (j D 0), outcome
development (j D 1), and death (j D 2), and where yij takes value 1 if ti D tij and zero otherwise,
j = 1,2. We assumed that the hazard parameters governing the distributions of censoring and death do
not vary across subjects, with �0 D 0:056 and �2 D 0:0042. We also assumed that the hazard parame-
ters �i1 governing the distribution of times to outcome development are log normally distributed in the
population, with log�i1 D ci1Cci2. The covariate pairs (ci1, ci2) were sampled from a bivariate Gaussian
distribution with parameters .�;†/, where � D .�6:155; 0:500/ and † D diag .0:640; 0:562/. These
parameter values were chosen to approximate those seen in the NY BCFR data—they correspond to a 3%
risk of death and a 4% mean risk of developing the outcome in the 10-year risk period, in the absence of
competing risks.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3179–3190
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3.2. Data analysis

We checked how well three risk models were calibrated to the population from which the data were
generated. All three models assign risk according to Equation (A.1), but they differ with respect to their
outcome and mortality hazards. The correct model specifies the same hazards used to generate the data.
The biased outcome model specifies the correct mortality hazard, but its outcome hazard depends only on
the first covariate ci1. The biased mortality model specifies the correct outcome hazard but misspecifies
the mortality hazard as �2 D 0:0084 (twice the correct value).

For each of these three risk models, we evaluated the performance of 12 calibration tests corresponding
to three choices of covariates z and four types of test statistic. The first covariate choice was the constant
´ij � 1, which provides a test of overall agreement between observed and predicted numbers of events
(outcomes and deaths). The resulting test statistic has a null asymptotic chi-squared distribution onK D
1 DF. (We also examined tests obtained using covariates ´ij D wi D exp .jri � Nr j/ = exp .rmax � Nr//,
which weighs a subject’s contribution in proportion to the distance between his or her assigned risk and
the mean for all subjects, and found that this test performed similarly to the unweighted version). The
remaining two covariate choices were indicators for membership in quintiles of assigned risk and in
quintiles of the covariate ci2 that is omitted from the biased outcome model. Here, the resulting statistics

Table I. Size and powera of tests for risk model calibration using simulated cohorts of size N .

Risk model

Correct outcome and Biased outcome Biased mortality
Test statistic death hazards hazardb hazardc

N D 1000

Overall (´i D 1/ X21 (HL)d 0.049 0.966 0.049
TC (Combined) 0.054 0.849 0.884

T1 (Outcome based) 0.056 0.989 0.056
T2 (Mortality based) 0.053 0.058 0.991

Risk stratifiede X25 (HL) 0.087 0.684 0.074
TC (Combined) 0.051 0.769 0.630

T1 (Outcome based) 0.052 0.963 0. 052
T2 (Mortality based) 0.056 0.057 0.907

Covariate stratifiedf X25 (HL) 0.112 0.967 0.098
TC (Combined) 0.041 0.967 0.596

T1 (Outcome based) 0.065 0.999 0.065
T2 (Mortality based) 0.057 0.059 0.903

N D 10000

Overall (´i D 1/ X21 (HL) 0.041 1.000 0.064
TC (Combined) 0.054 1.000 1.000

T1 (Outcome based) 0.048 1.000 0.048
T2 (Mortality based) 0.053 0.053 1.000

Risk stratified X25 (HL) 0.071 1.000 0.064
TC (Combined) 0.042 1.000 1.000

T1 (Outcome based) 0.044 1.000 0.044
T2 (Mortality based) 0.038 0.053 1.000

Covariate stratified X25 (HL) 0.061 1.000 0.056
TC (Combined) 0.054 1.000 1.000

T1 (Outcome based) 0.051 1.000 0.051
T2 (Mortality based) 0.046 0.046 1.000

aProportion of 1600 replications in which T exceeded the 95th percentile of a chi-squared distribution with
K degrees of freedom (K D 1 for unweighted and weighted statistics; K D 5 for all others).
bModel omits covariate c2 (see text).
cModel misspecifies the mortality rate as double its correct value.
dGoodness-of-fit test of text equation (3).
eIn quintiles of assigned risk.
fIn quintiles of covariate c2 omitted by biased outcome model.
HL, Hosmer–Lemeshow.
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have null asymptotic chi-squared distributions on K D 5 DF. The four types of test statistic were as
follows: (i) the HL statistic of Equation (3); (ii) the combined statistic TC (obtained by setting ´i1 D ´i2
and ˇ1 D ˇ2 D ˇ/; (iii) the outcome-based statistic T1 .ˇ1 D ˇ; ˇ2 D 0//; and (iv) the mortality-based
statistic T2 .ˇ1 D 0; ˇ2 D ˇ/. For each risk model and each test, we examined the proportion of 1600
replications in which the test statistic exceeded the 95th percentile of its chi-squared distribution. We
also examined SRs to determine those subsets of subjects for whom the model fit poorly.

3.3. Simulation results

Table I shows the size and power of the 12 tests as applied to the correct, biased-outcome, and biased-
mortality risk models. Several patterns are evident. For the correct risk model (column 1), the nominal
and actual sizes of the tests agree well, with occasional exceptions for the HL test, which tends occa-
sionally to incorrectly reject a well-calibrated model. However, differences emerge when the risk model
misspecifies the hazards. For the model that misspecifies the outcome hazard, the outcome-based test

Quintile of covariate c2

Figure 2. Box plots of three types of standardized residuals corresponding to three risk models. (A. correct
model; B. biased outcome model; C. biased mortality model) as applied to simulated data from 1600 cohorts,
each of size N D 1000 subjects. Each box plot in a panel corresponds to the residuals of subjects stratified by
quintiles of the covariate c2. The three types of residuals are determined by the score test (combined, outcome

based, mortality based).

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3179–3190
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is most sensitive to poor fit, and the HL and combined tests show similar sensitivity, as measured by
the statistical power of the test. In contrast, for the model that misspecifies the mortality hazard, the
mortality-based and combined tests outperform the HL test.

Figure 2 shows box plots of SRs obtained from the simulations involving N D 1000 subjects, with
subjects classified in quintiles of the covariate c2 that is omitted from the biased outcome model. The
columns correspond to the three risk models (correct, biased outcome, biased mortality), and the rows
correspond to the three tests (combined, outcome based, mortality based). These SRs are asymptotically
standard normal deviates under the null hypothesis that the model is well calibrated to the population
from which the subjects were sampled. The first column of Figure 2 shows that the SRs for all three tests
behave as expected when the correct model is applied to the data. In contrast, the second column (for
the model that omits the covariate c2/ indicates that combined and outcome-based SRs show trends of
increasing poor fit with increasing quintile of c2, while the mortality-based SRs conform to their null
expectation, as they should. These results suggest that we can use SR patterns to identify covariates
whose addition to a risk model will improve model fit without having to construct an expanded model
that includes the covariate of interest. Finally, the third column of Figure 2 shows that when the risk
model overestimates the population mortality hazard, the SRs from both the combined and mortality-
based tests are systematically negative, while those from the outcome-based test show the expected null
behavior. These results suggest that examination of outcome-specific and mortality-specific SRs can
reveal reasons for poor model fit, and a simple way to determine covariates whose addition to a risk
model would substantially improve its calibration.

4. Application to cohort data

We now use the proposed tests to evaluate how well the BCRAT and IBIS models predict the 10-year
breast cancer risks of a cohort of women recruited and followed at the New York site of the BCFR
[9, 12]. Eligible subjects (N D 1857) were those who at cohort entry reported a family history of breast
or ovarian cancer or a personal history of ovarian cancer but not breast cancer (see [9] for details).
During the first 10 years after cohort entry, 83 subjects developed breast cancer, 55 died without breast
cancer, 989 were last observed alive and breast-cancer-free before 10 years, and 730 were alive and
breast-cancer-free at 10 years.

4.1. The risk models

We used each of the two risk models (BCRAT and IBIS) to calculate each subject’s 10-year cumula-
tive hazards for outcome and death, and then used these cumulative hazards in the test statistics and
SR plots. Both models assign 10-year breast cancer probabilities according to the Appendix formulae
(A.1)–(A.3).

The BCRAT breast cancer hazard depends on a subject’s age at risk assessment, race, and other
personal covariates such as age at menarche, age at first birth, number of affected first-degree female
relatives, number of breast biopsies, and history of atypical hyperplasia. This empiric model specifies
this hazard by combining race-specific and age-specific breast cancer incidence rates with hazard ratios
determined from the estimated odds-ratios in a case-control study of breast cancer [1–3]. For the mortal-
ity hazards, the model uses all-cause mortality rates among US females, specific for age and race (white,
non-white). We adapted the code and hazard rates of the BCRAT software [13] to assign each subject
values for her BCRAT cumulative hazards ƒij .ti / for breast cancer (j D 1) and death (j D 2), as
evaluated at her time ti of last observation.

The IBIS breast cancer hazards depend on a two-locus genetic model with one locus containing infor-
mation on BRCA genes and the other locus containing information on a latent, dominantly acting low
penetrance gene, plus nongenetic risk factors similar to but not identical with those used by BCRAT [4].
Version 6.0.0 of the IBIS risk evaluator specifies the mortality hazards as zero, although version 7.0.0
allows user-specified mortality hazards. To evaluate the proposed test statistics, we used the zero mor-
tality hazards of Version 6.0.0, and checked how well the observed deaths in the cohort agree with this
specification. (Note from Equations (9) and (10) that the assumption of zero mortality hazards implies
that all IBIS-based expected death counts are zero.) We first assigned each subject a 10-year risk ri
using the IBIS software available at the web link (IBIS Breast Cancer Risk Evaluation Tool) (IBIS risk
evaluator –Version 6.0.0) [14]. We then approximated her cumulative breast cancer hazardƒi1 .ti / using
Equation (B.1) with ri .t�/ taken as her IBIS-assigned 10-year risk. We took her cumulative mortality
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Mean assigned risk (%)

Figure 3. Attribute diagrams and plots of standardized residuals for BCRAT and IBIS models as applied to the
NY BCFR cohort by quartile of assigned risk.

hazard ƒi2 .ti / D 0 and evaluated the accuracy of this assumption by taking the null variance of the
mortality-based score statistic as

V2 D
XN

iD1
Vi2 D

XN

iD1
yi2´i2´

T
i2 (12)

Here yi2 is an indicator assuming the value one if she died at time ti and zero otherwise, and ´i2 D
(´i21,: : :,zi24/T is a vector of indicators for membership in one of the four quartiles of assigned risk.

4.2. Results

We estimated the cohort’s overall cumulative breast cancer risk during the 10-year period as 6.25%
(95% confidence interval 5.02%–7.76%), using survival analysis that accommodates censoring and
the competing risk of death [7]. This estimate significantly exceeds the mean risk of 3.20% assigned
by the BCRAT model (p < 0:001) but agrees more closely with the risk of 5.49% assigned by
IBIS (p D 0:98). The top panel of Figure 3 shows attribute diagrams (ADs) for the two mod-
els, on the basis of quartiles of model-assigned risk. Under the null hypothesis that a model is well
calibrated, the points and confidence intervals of its AD should lie close to the diagonal line. The
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BCRAT AD shows that observed risks significantly exceed the mean assigned risks in the first three
quartiles, while the results for IBIS show less discrepancy. The HL statistics of Equation (3) support
this conclusion, with values X24 D 19:28 (p < 0:001) for BCRAT and X24 D 1:22 (p D 0:27)
for IBIS. These results suggest that the breast cancer risks assigned by BCRAT are too low for
this cohort. However, we shall see that the quartile-specific SRs for breast cancer and death offer a
different interpretation.

Table II shows quartile-specific and overall counts of observed and expected breast cancers and deaths
for the two models. Also shown are the quartile-specific SRs of (11) and the corresponding stratified cal-
ibration test statistics (10). These SRs are plotted in the lower three panels of Figure 3. The SRs of
a well-calibrated model should lie within the band defined by the dashed lines in these panels. It is
evident from both Table II and Figure 3 that the BCRAT-based expected counts for both breast can-
cer and death are too high compared with the cohort observations. This excess of BCRAT prediction
over observation is particularly high for the deaths, indicating that the US mortality rates specified
by BCRAT are substantially higher than those observed in this cohort. Thus, the BCRAT underesti-
mation of 10-year risk shown in the AD reflects the model’s overestimation of these competing death
rates. In contrast to the negative BCRAT SRs, those for IBIS are largely positive and show the statisti-
cally significant excess of observed (O D 55) versus predicted (E D 0) deaths in Version 6.0.0 of the
IBIS model.

These results should be interpreted with caution, for two reasons. First, in a cohort of this sample size
(N D 1857 subjects), some SRs will have large absolute values purely by chance. Second, the ADs

Table II. Calibration of BCRAT and IBIS risk models to the NY BCFR breast
cancer cohort.

Quartile of assigned risk
<25% 25–49% 50–74% 75%C Total

Number of subjects
All 464 465 464 464 1857

BCRAT
Breast cancer Observed 5 19 25 34 83

Expected 6.24 26.62 52.44 142.02 227.32
SRa �0.50 �1.48 �3.79 �9.06 98.89d

Deathb Observed 7 13 21 14 55
Expected 11.10 37.70 78.37 149.80 276.97
SR �1.23 �4.02 �6.48 �11.10 182.87d

Both events Observed 12 32 46 48 138
Expected 17.33 64.32 130.81 291.83 504.29
SR �1.28 �4.03 �7.41 �14.27 276.42d

IBIS
Breast cancer Observed 6 13 22 42 83

Expected 2.80 8.44 15.58 60.73 87.55
SR 1.91 1.57 1.63 �2.40 14.53c

Death Observed 9 17 16 13 55
Expectede 0 0 0 0 0
SRf 3 4.12 4.00 3.61 55.01d

Both events Observed 15 30 38 55 138
Expected 2.80 8.44 15.58 60.73 87.55
SRf 3.55 4.28 3.99 �0.67 47.29d

aQuartile column entries are standardized residuals SRD .Ok �Ek/ =
p
Ek , and total

column entries are test statistics T D
P4
kD1 .Ok �Ek/

2 =Ek .
bWithin 10 years of follow-up.
cp < 0:01 based on �24 distribution.
dp < 0:001 based on �24 distribution.
eFrom Equation (10), all expected death counts for this model are zero, since version
6.0.0 of the IBIS risk evaluator specifies that mortality hazards equal to zero.
fCalculated by using Equation (12) to estimate the variance V2 of an observed death
count as the count itself.
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and SR plots are not directly comparable. On the one hand, an AD shows 10-year observed risks as
calculated by cumulating the nonparametric hazard estimates for both types of event until 10 years after
cohort entry. In contrast, the SRs are deviances between event counts as observed and as predicted at
the subjects’ actual event times (which are typically less than 10 years). Despite these differences, the
SRs provide useful information regarding the reasons for the poor model fit reflected in the overall test
statistics and ADs.

The ease with which SRs can be plotted and evaluated allows flexibility in identifying population
subgroups for which model calibration is poor. For example, we also plotted the model-specific SRs
obtained by stratifying subjects by age at cohort entry, race/ethnicity, and number of blood relatives
with breast or ovarian cancer (data not shown). These plots revealed subgroups for whom model fit was
particularly poor. Identifying these subgroups and the reasons for the poor fit (outcome discrepancies,
mortality discrepancies, or both) can help identify specific needs for improvement in model performance.

5. Discussion

We have noted that evaluating the calibration of personal risk models for long-term adverse events is
needed to help patients and their caregivers make rational decisions about preventive interventions with
potential adverse side effects. Despite this need, evaluating model calibration has received less atten-
tion in the literature than evaluating model discrimination. We also have noted the complications of
evaluating model calibration when some subjects cannot be followed for the full risk period, a com-
mon feature of large, long-term cohort studies with staggered cohort entry. For this common situation,
we have proposed simple and flexible efficient score tests that avoid some of the limitations of the com-
monly used HL test. We also have presented results of simulations showing that the score tests have good
performance characteristics, and we have applied the tests to cohort data on 10-year risk of developing
breast cancer.

The simulations and application to data show that in the presence of poor model fit, the score tests can
help determine the reasons for the poor fit and inform investigators about changes needed to improve
fit. For example, plotting residuals corresponding to categories of a new marker can reveal how much
adding the marker to a risk model is likely to improve its calibration. In addition, mortality-based resid-
ual plots can reveal model misspecification of death rates. This is an overlooked reason for poor model
fit, which can occur when the model’s death rates are higher than those of the selected and well-educated
participants in long-term cohort studies. By decomposing the calibration tests into components due to
misspecification of the hazards for outcome and mortality, the methods provide leads to the reasons for
discrepancies between observed and predicted outcomes.

Appendix A. Assigning model risks

The risk model software uses the covariates of subject i at cohort entry to assign him or her an outcome
probability

ri D r .ai /D

Z aiCt
�

ai

hi1.u/e
�ŒHi1.u/CHi2.u/�du (A.1)

where ai denotes the subject’s age at cohort entry and hij .u/ denotes the subject’s model-assigned haz-
ard at age u with Hij .u/ D

R u
0 hij .v/dv, for outcome development (j D 1) and death (j D 2). It is

convenient to transform these hazards from functions hij of age to functions �ij of time t since cohort
entry, via the relation

�ij .t/D hij .ai C t / and ƒij .t/DHij .ai C t /�Hij .ai / ; 06 t 6 t�; i D 1; : : : ; N; j D 1; 2 (A.2)

With this transformation, the subject’s model-assigned risk (A.1) can be written

ri D

Z t�

0

�i1.u/e
�.ƒi1Cƒi2/.u/du (A.3)
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Appendix B. Calculating model-specified cumulative hazards

Some online risk models may not provide the code needed to extract the model’s cumulative hazards
for outcome and death at subjects’ last observation times, as needed to compute the test statistics. If the
software allows user-specified mortality hazards, specifying these hazards as zero gives Equation (6) as
ri .ti /D 1�e

�ƒi1.ti /, which then gives the cumulative outcome hazards asƒi1 .ti /D� log Œ1� ri .ti /�.
If the model software does not provide assigned risks ri .t/ at arbitrary follow-up times t but the out-
come hazard rates can be assumed approximately constant in the risk period (0; t�), then ƒi1 .ti / can be
approximated as

ƒi1 .ti /�
ti

t�
ƒ1j

�
t�
�
D�

ti

t�
ln
�
1� ri

�
t�
��

(B.1)
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