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Abstract. We propose a fast splitting approach to the classical variational formulation of
the image partitioning problem which is frequently referred to as the Potts or piecewise constant
Mumford-Shah model. For vector-valued images, our approach is significantly faster than the meth-
ods based on graph cuts and on convex relaxations of the Potts model which are presently the
state-of-the-art. The computational costs of our algorithm only grow linearly with the dimension of
the data space which contrasts the exponential growth of the state-of-the-art methods. This allows
us to process images with high-dimensional codomains such as multispectral images. Our approach
produces results of a quality comparable with that of graph cuts and the convex relaxation strategies,
and we do not need an a priori discretization of the label space. Furthermore, the number of par-
titions has almost no influence on the computational costs which makes our algorithm also suitable
for the reconstruction of piecewise constant (color or vectorial) images.
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1. Introduction. Image partitioning is an important and challenging basic task
in image processing [29, 36]. Most prominently, it appears in image segmentation
where the goal is to group image parts of similar characteristics such as colors or
textures in order to extract essential information from the image [64, 59, 21, 25]. It
is a basic building block of almost every image processing pipeline and is particularly
important in medical image analysis [55] and object detection [50], to mention only
two examples. The partitioning problem also appears in the context of stereo vision
where optimal partitionings are employed for the regularization of disparity maps
[9, 73, 39, 56]. Furthermore, the problem of denoising cartoon-like images may also
be interpreted as a partitioning problem [53, 52].

The image partitioning problem is usually formulated as a minimization problem
of a certain cost functional. This functional consists of a data fidelity term providing
approximation to the data and a term taking care of the regularity of the partitioning.
Here a reasonable regularity term is the total boundary length of the partitioning
which leads to the classical Potts model [57, 30, 48, 4, 49, 9, 68]. It is given by the
minimization problem

u∗ = argminu γ · ‖∇u‖0 + ‖u− f‖22. (1.1)

Here, the data f is an image taking values in Rs and the data fidelity is measured
by an L2 norm. u is a piecewise constant function whose jump or discontinuity
set encodes the boundaries of the corresponding partitioning. Since the partition
boundaries agree with the support of the gradient ∇u (taken in the distributional
sense) we use the symbol ‖∇u‖0 to denote the length of the partition boundaries
induced by u (always assuming that these boundaries are sufficiently regular). In
contrast to this rather technical interpretation in the continuous domain setting, the
simplest interpretation of the symbol ‖∇u‖0 in a discrete setting is as the support size
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Fig. 1: The proposed method only needs 94.0 seconds (on a single CPU-core) for processing
a large color image without having to discretize the codomain (Left: Original, 768 × 512
pixel; Right: Our segmentation with γ = 1.0).

of the discrete “gradient” ∇u consisting of the directional difference operators with
respect to the coordinate axes.

The empirical model parameter γ > 0 controls the balance between the two
penalties. A large value of γ favors few large partitions which is often desired in
the context of segmentation. For image restoration, data fidelity is usually more
important. So one chooses a smaller γ.

The partitioning model (1.1) is named after R. Potts who introduced the jump
penalty in a fully discrete setting in the context of his work on statistical mechanics
[57] generalizing the Ising model. S. Geman and D. Geman [30] were the first to use
such kind of functionals in the context of image segmentation. They take a statistical
point of view and interpret minimizers of (1.1) as maximum a posteriori estimates
(again in a fully discrete setup). From a calculus of variation point of view the
problem (1.1) has been studied in a fully continuous setting in the seminal works of
D. Mumford and J. Shah [48, 49]. For this reason, the Potts model is often also called
the piecewise constant Mumford-Shah model. In the image processing context, further
early contributions are the work of A. Chambolle [14] and of D. Greig et al. [34].

1.1. State-of-the-art minimization strategies. The multivariate Potts prob-
lem (1.1) is non-convex and it is NP-hard [9] (in the discrete setting). This means
that finding a global minimizer is (at least presently) a computationally intractable
task. Nonetheless, the problem has significant importance in image processing. For
this reason, much effort has been made to find efficient approximative strategies.

A frequently used but still NP-hard simplification is to a priori choose a set of fi-
nite labels. This means that u is only allowed to take values in an a priori chosen small
finite subset of Rs. Then this simplified problem is approached by sequentially solv-
ing binary partitioning problems. These binary partitioning problems can in turn be
solved efficiently by a minimal graph cut algorithm. In this context, the α-expansion
algorithm of Boykov et al. [9] is the benchmark to compete with; see e.g. the compar-
ative study [63].

In [37, 38, 39], Hirschmüller proposes a non-iterative strategy for the Potts prob-
lem which is called cost aggregation. This method sums the energies of all piecewise
constant paths coming from different directions that end in the considered pixel and
that attain a given discrete label in that pixel. The label with the least aggregated
costs is finally assigned to that pixel. An advantage of this single-pass algorithm
is its lower computational cost. However, this comes with lower quality results in
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comparison with graph cuts.
In recent years, algorithms based on convex relaxations of the Potts problem (1.1)

have gained a lot of interest; see, e.g., [56, 43, 2, 16, 10, 32, 42]. In contrast to direct
approaches, they are less affected by certain metrization errors originating from the
discretization of the jump penalty. In particular, they yield better results when an
accurate evaluation of the boundary length is required. This is, for example, the case
in the context of inpainting of large regions [56]. As a tradeoff, their computational
cost is much higher than that of graph cuts [32].

The major limitation of the above methods (graph cuts, cost aggregation, and
convex relaxation) lies in the discrete label space. Typically, the computational costs
grow linearly with the number of the discrete labels. Since the number of discrete
labels scales exponentially with the dimension s of the codomain, the computational
costs grow exponentially in s. For example, for partitioning a typical multispectral
image with s = 33 channels, one has to deal with at least 233 labels. A recent
advance in that regard has been achieved by Strekalovskiy et al. [62]. They propose
a convex relaxation method which has a reduced scaling in terms of the label space
discretization. Its complexity is governed by the sum of the squared number of labels
per dimension. Besides complexity, another drawback of discrete label spaces is that
one has to choose a discretization beforehand which requires an appropriate guess on
the expected labels.

Another approach is to limit the number of values which u may take. In contrast
to the above methods, the possible values of u are not a priori restricted, but only the
number of different values is bounded by a certain positive integer k. For k = 2, Chan
and Vese [20] minimize the corresponding binary Potts model using active contours.
They use a level set function to represent the partitions. This level set function evolves
according to the Euler-Lagrange equations of the Potts model. A globally convergent
strategy for the binary segmentation problem is presented in [18]. The active contour
method for k = 2 was extended to vector-valued images in [19] and to larger k in [65].
We refer to [23] for an overview on level set segmentation.

The partitioning methods mentioned so far mainly appear in the context of im-
age segmentation. Here good results can be achieved despite the limitations on the
codomain of u. For the restoration of piecewise constant images, however, one rather
deals with many small partitions which makes the a priori choice of discrete labels a
challenging problem. To overcome these limitations Nikolova et al. [53, 52] propose
methods for restoration of piecewise constant images which do not require a priori
information on the number of partitions and their values. They achieve this using non-
convex regularizers which are treated using a graduated non-convexity approach. We
note that the Potts problem (1.1) does not fall into the class of problems considered
in [53, 52].

Another frequently appearing method in the context of restoration of piecewise
constant images is total variation minimization [58]. There the jump penalty ‖∇u‖0
is replaced by the total variation ‖∇u‖1. The arising minimization problem is convex
and therefore numerically tractable with convex optimization techniques [66, 3, 33, 17,
22]. However, total variation minimization tends to produce reconstructions which
do not localize the boundaries as sharp as the reconstructions based on the Potts
functional (cf. the experimental section and [61]). In order to sharpen the results
of total variation minimization, various techniques such as iterative reweighting [13],
simplex constraints [41], or iterative thresholding [11, 12] have been proposed.

Yet another approach for the nonconvex 2D Potts problem is to rewrite it as an
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“inverse” `0 minimization problem [26, 71, 1]. Here the cost for getting an `0 problem
are equality constraints in form of discrete Schwarz conditions [26] as well as a data
term of the form ‖Au− f‖2 where A is a full triangular matrix. For the resulting `0
minimization problems, typically iterative thresholding methods are applied; see [5, 6]
for related problems without constraints as well as [26, 1] for related minimization
problems with constraints. Another approach to `0 minimization problems are the
penalty decomposition methods of [44, 45, 74]. They deal with more general data
terms and constraints by a two stage iterative method. The connection with iterative
hard thresholding is that the inner loop of the two stage process usually is of iterative
hard thresholding type. The difference of the hard thresholding based methods to our
approach in this paper is that we do not have to deal with constraints and the full
matrix A but with the nonseparable regularizing term ‖∇u‖0 instead of its separable
cousin ‖u‖0. Hence we cannot use hard thresholding. A further difference is that we
use an ADMM approach instead of a majorization-minimization type approach.

1.2. Our contribution. In this work, we present a fast strategy for the Potts
problem for vector-valued images. For an n×m image f with values in Rs, we consider
a discrete domain version of (1.1) which explicitly reads

u∗ = argmin
u∈Rm×n×s

{
γ
∑
i,j

∑
(a,b)∈N

ωab · [ui,j,: 6= ui+a,j+b,:] +
∑
i,j,k

|uijk − fijk|2
}
. (1.2)

Here ui,j,: is a vector sitting at pixel (i, j) and the Iverson bracket [·] yields one, if
the expression in brackets is true, and zero otherwise. The neighborhood system N
and the nonnegative weights ω define a discrete boundary length of the corresponding
discrete partitions. In the simplest case, we may use the coordinate unit vectors as
neighborhood relation and unit weights. This corresponds to the jump penalty ‖∇1u‖0
+‖∇2u‖0 which counts the non-zero elements of the directional difference operators
∇1 and ∇2 applied to u. Since this measures the boundary length of the partitions in
the (anisotropic) Manhattan metric, the results may suffer from block artifacts; see
Figure 2. In order to avoid these effects, we consider larger neighborhoods and derive
appropriate weights to obtain a more isotropic discretization.

In order to approach the Potts problem (1.2), we reformulate it as a suitable
constrained optimization problem. We then apply the alternating direction method of
multipliers (ADMM). As a result, we obtain more accessible subproblems. The crucial
point is that these subproblems reduce to computationally tractable optimization
problems, namely univariate Potts problems. These univariate Potts problems can be
solved fast and exactly using dynamic programming. Here, we base on the classical
algorithms of [48, 49, 14] and the efficient implementation introduced in [69, 28]. In
this work, we propose an acceleration strategy for the dynamic program which, in our
experiments, resulted in a speed up of the algorithm by a factor of four to five.

Univariate subproblems appear in a different form and a different context in the
cost aggregation method. In [37, 38, 39] discretely labeled 1D subproblems with fixed
value at pixel p are used to determine the output at pixel p in an non-iterative way.
In contrast, our ADMM splitting approach naturally leads to the iterative solution of
univariate subproblems. The data for these subproblems is not discretely labeled and
the problem has no constraints.

The algorithm introduced in this article does not need any discretization in the
codomain of u. This is an advantage compared to methods based on graph cuts,
convex relaxations, and cost aggregation which require a finite set of discrete labels.
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The main feature of our algorithm is its efficiency with respect to runtime and
memory consumption. One reason is that our ADMM based method for the Potts
problem, in all our experiments, only needs a few iterations to converge. This obser-
vation confirms the statements in the literature which report on the high performance
of ADMM methods in image processing problems [33, 51, 60, 7, 72, 61]. Another
reason is that we solve the most time consuming parts of the algorithm using the
highly efficient dynamic program mentioned above.

Compared to the graph cut method of [9, 8, 40] and the convex relaxation method
of [56], the computational costs of our approach are significantly lower already for color
images with a relatively coarsely resolved discretization of the color cube [0, 1]3. The
advantage becomes even stronger for higher dimensional codomains because the com-
putational costs of our method only grows linearly in the dimension of the codomain.
This contrasts the exponential growth of the other methods. Due to the linear scal-
ing, we can even process images taking values in a high-dimensional vector space in
a reasonable time. Here a prominent example are multispectral images which may
have even more than 30 channels [27]. We illustrate in several experiments that our
method is well suited for problems with both image segmentation (Figure 1) and the
restoration of cartoon-like images (Figure 6), respectively.

We show that the proposed algorithm convergences. Due to the NP-hardness of
the problem, we cannot expect that the limit point is in general a minimizer of the
cost function (1.2). However, in practice, we attain slightly lower functional values
than graph cuts. The visual quality of our results remains at least equal and is often
even slightly better.

To support reproducibility, we provide the Matlab/Java implementation of the
algorithms under http://pottslab.de.

1.3. Organization of the article. We start out presenting the basic ADMM
strategy for the Potts problem in Section 2. In Section 3, we provide a more isotropic
discretization, and extensions for vector-valued images and images with missing data.
In Section 4, we present the dynamic program to solve the subproblems of the ADMM
iteration. Numerical experiments are the subject of Section 5.

2. ADMM splitting for the Potts problem. In this section, we present a
basic ADMM strategy for the Potts problem. For the sake of notational simplicity, we
start with scalar-valued images f ∈ Rm×n and simple (anisotropic) neighborhoods.
(We elaborate on vector-valued images and on a more isotropic discretization of the
jump penalty in Section 3.)

Consider a four-connected neighborhood, i.e., two pixels are neighbors if only
their horizontal or vertical indices differ by one. The neighborhood weights ω of (1.2)
are uniformly equal to 1. Then the jump penalty reads

‖∇u‖0 = ‖∇1u‖0 + ‖∇2u‖0 :=
∑
i,j [uij 6= ui+1,j ] +

∑
i,j [uij 6= ui,j+1]. (2.1)

Using this expression, we rewrite the Potts problem as the bivariate constrained op-
timization problem

γ ‖∇1u‖0 + γ ‖∇2v‖0 + 1
2‖u− f‖

2
2 + 1

2‖v − f‖
2
2 → min, s.t. u− v = 0,

where u, v ∈ Rm×n. The augmented Lagrangian of this so-called consensus form (cf.
5
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[54]) is given by

Lµ(u, v, λ) = γ‖∇1u‖0 + γ‖∇2v‖0 + 1
2‖u− f‖

2
2 + 1

2‖v − f‖
2
2

+ 〈λ, u− v〉+ µ
2 ‖u− v‖

2
2. (2.2)

The constraint u−v = 0 is now part of the target functional and the parameter µ > 0
regulates how strongly the difference between u and v is penalized. The dual variable
λ is an (m × n)-dimensional matrix of Lagrange multipliers, and the scalar product
is given by 〈x, y〉 =

∑
i,j xijyij . Completing the square in the last two terms of (2.2)

yields

Lµ(u, v, λ) = γ‖∇1u‖0 + γ‖∇2v‖0 + 1
2‖u− f‖

2
2 + 1

2‖v − f‖
2
2

+ µ
2 ‖u− v + λ

µ‖
2
2 −

µ
2 ‖

λ
µ‖

2
2. (2.3)

We approach this problem using ADMM. In the ADMM iteration we first fix v and λ,
and minimize Lµ(u, v, λ) with respect to u. Then we minimize Lµ(u, v, λ) with respect
to v, keeping u and λ fixed. The third step can be interpreted as gradient ascent step
in the Lagrange multiplier λ. Thus, the alternating direction method of multipliers
for the Potts problem reads

uk+1 = arg minu γ‖∇1u‖0 + 1
2‖u− f‖

2
2 + µ

2 ‖u− (vk − λk

µ )‖22,
vk+1 = arg minv γ‖∇2v‖0 + 1

2‖v − f‖
2
2 + µ

2 ‖v − (uk+1 + λk

µ )‖22,
λk+1 = λk + µ(uk+1 − vk+1).

(2.4)

Using the identity

ν(a− b)2 + µ(a− c)2 = (ν + µ)a2 − 2a(νb+ µc) + νb2 + µc2

= (ν + µ)

(
a− νb+ µc

ν + µ

)2

− (νb+ µc)2

ν + µ
+ νb2 + µc2

(2.5)

with ν = 1 we rewrite the first and the second line of (2.4) to obtain
uk+1 = arg minu

2γ
1+µ‖∇1u‖0 + ‖u− (1 + µ)

−1
(f + µvk − λk)‖22,

vk+1 = arg minv
2γ
1+µ‖∇2v‖0 + ‖v − (1 + µ)

−1
(f + µuk+1 + λk)‖22,

λk+1 = λk + µ(uk+1 − vk+1).

(2.6)

We observe that the first line of (2.6) is separable into n subproblems of the form

uk+1
:,j = arg min

h∈Rm

2γ

1 + µ
‖∇h‖0 + ‖h− (1 + µ)

−1
(f:,j + µvk:,j − λk:,j)‖22 (2.7)

for j = 1, ..., n. Likewise, the minimizer of the second line of (2.6) is given by

vk+1
i,: = arg min

h∈Rn

2γ

1 + µ
‖∇h‖0 + ‖h− (1 + µ)

−1
(fi,: + µuk+1

i,: + λki,:)‖22. (2.8)

for i = 1, ...,m. The crucial point is that these subproblems are univariate Potts
problems which can be solved exactly and efficiently using dynamic programming.
We will elaborate on the solution algorithm for these subproblems in Section 4.
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We initialize the ADMM iteration with a small positive coupling parameter µ0 > 0
and increase it during the iteration by a factor τ > 1. Hence, µ is given by the
geometric progression

µ = µk = τkµ0.

This strategy assures that u and v can evolve quite independently at the beginning
and that they are close to each other at the end of the iteration. We stop the iteration
when the difference of u and v falls below some tolerance. We note that the increment
of the coupling parameter is not used in standard ADMM approaches for convex
optimization problems. However, we use such an increment since it has turned out to
work well in our practicle applications. In particular, the geometric progression yields
satisfactory results while being very fast.

As it is typical for energy minimization methods, there is no unique theoreti-
cally founded strategy for finding the regularization parameter γ. Intuitively, γ can
be interpreted as a scale parameter: choosing a high value of γ results in a few large
partitions whereas a small γ value gives an approximation to the data having more
jumps. In connection with 1D Potts functionals, different approaches for an auto-
mated choice of γ are reported in the literature. For example, strategies based on
Akaike’s and Schwarz’ information criterion are employed to estimate γ; see, e.g., the
overview article [70]. Furthermore, strategies based on testing the residual for noise
[24] or the interval method of Winkler et al. [70] are used. The latter strategy chooses
the largest parameter interval for γ where the same solution persists. The drawback
of the previous methods is their high computational cost or their specialization to 1D
which makes them (almost) not applicable in higher dimensions. Potential alterna-
tives are general concepts from the theory of inverse problems such as the Morozov
discrepancy principle [47] or the L-curve method [35]. In this paper we choose the
parameter empirically.

Our approach to the Potts problem is summed up in Algorithm 1.

Algorithm 1: ADMM strategy to the Potts problem
Input: Image f ∈ Rm×n, model parameter γ > 0, initial value µ0 > 0, step size τ > 1.
Local: Iterated solutions u, v ∈ Rm×n, dual variable λ ∈ Rm×n, coupling parameter µ > 0.
Output: Computed result u ∈ Rm×n to the Potts problem (1.1).
begin

v ← f ; µ← µ0; λ← 0; /* init */
repeat

for j ← 1 to n do
u:,j ← Minimizer of subproblem (2.7) using Algorithm 2; /* cf. (Section 4) */

end
for i← 1 to m do

vi,: ← Minimizer of subproblem (2.8) using Algorithm 2; /* cf. (Section 4) */
end
λ← λ+ µ(u− v) ; /* update of dual variable */
µ ← τ · µ ; /* increase coupling parameter */

until reached stopping criterion;
end

We eventually show the convergence of our ADMM strategy.
Theorem 1. Algorithm 1 converges in the sense that there exists a u∗ such that

uk → u∗ and vk → u∗.
The proof is given in Appendix A.
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3. Extensions for the ADMM splitting of the Potts problem. We so far
have explained our ADMM approach to the Potts problem with scalar-valued data
and a simple neighborhood relation. We now present modifications for vector-valued
images (e.g., color images) as well as a more isotropic discretization of the boundary
length term ‖∇u‖0 of (1.1). We further deal with missing data points.

3.1. Increasing isotropy. In the last chapter we used the simple anisotropic
discretization of ‖∇u‖0 given by (2.1). That discretization favors region boundaries
which are minimal in the Manhattan metric (compare [14]). This may lead to block
artifacts in the reconstructions; see for example Figure 2b.

In order to better approximate the euclidian length we pass to eight-connected
neighborhoods. Due to symmetry, this neighborhood is given by the four vectors
N = {(1, 0), (0, 1), (−1, 1), (1, 1)}. We now derive appropriate weights ω for formula
(1.2). A minimal requirement is that jumps along straight lines with respect to the
compass and the diagonal directions are penalized by their euclidean length. For
reasons of symmetry, we have, for the compass weights ωc := ω1,0 = ω0,1, and for
the diagonal weights ωd := ω−1,1 = ω1,1. Now consider an (n × n) binary image u
which has a jump along a straight line into a compass direction. We are searching for
weights ωc, ωd such that the jump penalty for this image amounts to γn. Plugging u
into the Potts model (1.2) we get for large n the jump penalty

γ
∑
i,j

∑
(a,b)∈N

ωab · [uij 6= ui+a,j+b] ∼ γn(ωc + 2ωd).

Letting the righthand side equal to the desired penalty γn we obtain the condition

ωc + 2ωd = 1.

Proceeding in the same way with the diagonal directions, we get

2(ωc + ωd) =
√

2.

Solving this linear system of equations we obtain the weights

ωc =
√

2− 1 and ωd = 1−
√

2

2
.

We see that the above requirements already determine the weights ωc and ωd uniquely.
Using the above weights we can write the jump penalty as

‖∇u‖0 = ωc (‖∇1u‖0 + ‖∇2u‖0) + ωd (‖∇12u‖0 + ‖∇21u‖0)

:= ωc
(∑

i,j [uij 6= ui+1,j ] +
∑
i,j [uij 6= ui,j+1]

)
+ ωd

(∑
i,j [uij 6= ui−1,j+1] +

∑
i,j [uij 6= ui+1,j+1]

)
.

(3.1)

Plugging this into (1.1), we get the following splitting of the Potts problem:

γωc (‖∇1u‖0 + ‖∇2v‖0) + γωd (‖∇12w‖0 + ‖∇21z‖0)

+ 1
4 (‖u− f‖22 + ‖v − f‖22 + ‖w − f‖22 + ‖z − f‖22)→ min,

subject to the constraints

u− v = 0, u− w = 0, u− z = 0,
v − w = 0, v − z = 0, w − z = 0.

8



(a) Original (481× 321 pixel). (b) Anisotropic discretization
(13.4 sec).

(c) Near-isotropic discretiza-
tion (20.5 sec).

Fig. 2: The near-isotropic discretization produces smoother boundaries at the cost of about
double computation time (γ = 2).

Notice that we now have four coupled variables u, v, w, z (instead of the two variables
in Section 2), and that each of these are pairwise coupled. The augmented Lagrangian
then reads

Lµ = γωc (‖∇1u‖0 + ‖∇2v‖0) + γωd (‖∇12w‖0 + ‖∇21z‖0)

+ 1
4 (‖u− f‖22 + ‖v − f‖22 + ‖w − f‖22 + ‖z − f‖22)

+ 〈λ1, u− v〉+ µ
2 ‖u− v‖

2
2 + 〈λ2, u− w〉+ µ

2 ‖u− w‖
2
2

+ 〈λ3, u− z〉+ µ
2 ‖u− z‖

2
2 + 〈λ4, v − w〉+ µ

2 ‖v − w‖
2
2

+ 〈λ5, v − z〉+ µ
2 ‖v − z‖

2
2 + 〈λ6, w − z〉+ µ

2 ‖w − z‖
2
2.

(3.2)

with the six Lagrange multipliers λi ∈ Rm×n, i = 1, ..., 6. Some algebraic manipulation
yields the ADMM iteration

uk+1 = arg minu
4γωc

1+6µ‖∇1u‖0 + ‖u− u′‖22 ,
wk+1 = arg minw

4γωd

1+6µ‖∇12w‖0 + ‖w − w′‖22 ,
vk+1 = arg minv

4γωc

1+6µ‖∇2v‖0 + ‖v − v′‖22 ,
zk+1 = arg minz

4γωd

1+6µ‖∇21z‖0 + ‖z − z′‖22 ,
λk+1
i = λki + µai,

(3.3)

with the data

u′ = 1
1+6µ [f + 2µ(vk + wk + zk) + 2(−λk1 − λk2 − λk3)],

w′ = 1
1+6µ [f + 2µ(uk+1 + vk + zk) + 2(λk2 + λk4 − λk6)],

v′ = 1
1+6µ [f + 2µ(uk+1 + wk+1 + zk) + 2(λk1 − λk4 − λk5)],

z′ = 1
1+6µ [f + 2µ(uk+1 + vk+1 + wk+1) + 2(λk3 + λk5 + λk6)],

and the updates

a1 = uk+1 − vk+1, a2 = uk+1 − wk+1,
a3 = uk+1 − zk+1, a4 = vk+1 − wk+1,
a5 = vk+1 − zk+1, a6 = wk+1 − zk+1.

Compared with the anisotropic version (2.6), each iteration has additional steps
which however consist of the same building blocks as before. The essential difference
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is that we additionally solve univariate Potts problems with respect to the diago-
nal directions (lines number 2 and 4 of (3.3)). In Figure 2, we see that the extra
computational effort pays off in a visual improvement; the segment boundaries are
much smoother using this discretization. Convergence of the above algorithm can
be shown under the same conditions as for Algorithm 1. We omit the proof since it
uses the same arguments as the proof of Theorem 1. Due to the additional Lagrange
multipliers it would become excessively lengthy (without giving new insights.)

We note that the isotropy can be further increased by incorporating “knight move”
finite differences such as ui+2,j+1 − ui,j . The corresponding neighborhood system is
given by N ′ = {(1, 0), (0, 1), (−1, 1), (1, 1), (−2, 1), (−1, 2), (1, 2), (2, 1)}. Due to
symmetry, this system comes with three weights ω1, ω2, ω3; one for the compass
directions, one for the diagonal directions, and one for the knight move directions.
We postulate that jumps with respect to those basic directions are measured by their
euclidean length. This leads to the system of equations

ω1 + 2ω2 + 6ω3 = 1

2ω1 + 2ω2 + 8ω3 =
√

2

3ω1 + 4ω2 + 12ω3 =
√

5

(3.4)

which has the solution ω1 =
√

5− 2, ω2 =
√

5− 3
2

√
2, and ω3 = 1

2 (1 +
√

2−
√

5). An
ADMM iteration can be derived in analogy to (3.3). The iteration involves solving
univariate Potts problems with respect to eight directions (two compass, two diagonal,
and four knight move directions) and updating 28 Lagrange multipliers in each step.

Including finite differences with respect to diagonal directions was first proposed
by Chambolle [15]. There, the quality of a set of weights is measured by the anisotropy
which is understood as the ratio between the lengths of the longest and the shortest
unit vector. It turns out that the weights derived for the eight neighborhood coincide
with the weights we have obtained with our approach (up to a normalization factor).
However, when incorporating “knight move” finite differences, the weights derived by
our approach are different from the weights of [15]. Using the anisotropy definition of
[15] we even obtain a value of 1.03 for our weights in contrast to 1.05 for the weights
in [15]. (For comparison: the eight-neighborhood weights have anisotropy 1.08.)

This approach can be extended to a general method for further increasing isotropy
by passing to larger neighborhood systems. The rule for including new neighbors is
to add directions to the neighborhood system if they are not yet covered. Here a
direction (i, j) is not covered if its slope i/j does not yet appear in the neighborhood
system. For example, the eight neighborhood covers the slopes 0, 1,−1,∞. Hence,
the knight moves are not yet covered since its slopes are ± 1

2 and ±2 and they can
be added to the system. The next vectors to include in the neighborhood system are
(±1, 3), (±3, 1) and (±2, 3), (±3, 2), and so on. The general scheme corresponds to
the standard enumeration of the rational numbers. Conditions for the weights can be
derived as follows. Let us assume that u is a binary (n×n) image with an ideal jump
along the direction (x, y) ∈ N . We first look at lines with a slope x/y between −1
and 1 going from the left to the right boundary of the image. (If the slope of (x, y)
is not in the interval [−1, 1] then we look at the π/2-rotated image and exchange the
roles of x and y.) The euclidean length of this line is given by n

√
x2 + y2/x. Since we

want that the total jump penalty of this image equals that euclidean length we get a
10



Fig. 3: Left: Image corrupted by Gaussian noise of σ = 0.2; 60% of the pixels are missing
(marked as black); Right: Restoration using our method (γ = 0.3).

condition for the weights of the form

γ
∑
i,j

∑
(a,b)∈N

ωab · [uij 6= ui+a,j+b] = n

√
x2 + y2

x
.

It remains to evaluate the lefthand side of the equation which can be done either
manually for small neighborhood systems or with the help of a computer program
for larger neighborhood systems. (When counting the weights we assume n to be
very large so that boundary effects are negligible.) We then obtain a system of |N |
equations for the |N | unknowns. The dimension of the system can be reduced by
exploiting symmetries in the weights. We used this for example in (3.4) to reduce
the system from 8 to 3 unknowns using that ω1 = ω1,0 = ω0,1, ω2 = ω1,±1, and
ω3 = ω2,±1 = ω±2,1.

3.2. Missing data. We now consider the case where some of the pixels of the
image f are missing or destroyed. Since we do not want them to affect the recon-
struction, we exclude them from the data penalty term. This can be formulated
conveniently using a weighted L2 norm defined by ‖x‖2w =

∑
i,j wij |xij |2 with non-

negative weights wij as follows. For missing pixels Q ⊂ {1, ...,m} × {1, ..., n} the
associated Potts problem is given by

min
u∈Rm×n

γ · ‖∇u‖0 + ‖u− f‖2w (3.5)

where the missing pixels are weighted by zero, i.e.,

wij =

{
0, if (i, j) ∈ Q,
1, else.

In analogy to (2.4) we obtain the ADMM iteration
uk+1 = arg minu γ‖∇1u‖0 + 1

2‖u− f‖
2
w + µ

2 ‖u− (vk − λk

µ )‖22,
vk+1 = arg minv γ‖∇2v‖0 + 1

2‖v − f‖
2
w + µ

2 ‖v − (uk+1 + λk

µ )‖22,
λk+1 = λk + µ(uk+1 − vk+1).

11



Fig. 4: Our method processes large multispectral images in reasonable time (here 76.0 sec
for all 33 channels). Left: RGB representation of a multispectral image ([27]) with s = 33
channels and 335× 255 pixel; Right: RGB representation of the result of our method using
all channels (γ = 0.125).

Here, the weights w only influence the data fidelity terms. Using identity (2.5) with
ν = wij we get 

uk+1 = arg minu 2γ‖∇1u‖0 + ‖u− u′‖2w+µ,

vk+1 = arg minv 2γ‖∇2v‖0 + ‖v − v′‖2w+µ,

λk+1 = λk + µ(uk+1 − vk+1)

(3.6)

where u′ij =
wijfij−µvkij−λ

k
ij

wij+µ
and v′ij =

wijfij−µuk
ij+λ

k
ij

wij+µ
. Now both subproblems are

univariate Potts problems with a weighted L2 norm as data penalty term. Figure 3
shows a restoration problem with missing and noisy data.

3.3. Vector-valued images. We now extend the proposed method to vector-
valued images of the form f ∈ Rm×n×s with an s ≥ 1. Prominent examples are color
and multispectral images (Figure 4). Most of our experiments deal with color images
where we have s = 3 and the arrays f:,:,k, k = 1, ..., 3, correspond to the red, green,
and blue channels. For a multispectral image we can have about 30 channels; each
channel f:,:,k corresponds to a certain wavelength.

For vector-valued data, the data term and the jumps term are given by

‖u− f‖22 =
∑
i,j,k

|uijk − fijk|2 and ‖∇u‖0 =
∑

(a,b)∈N

ωa,b · [ui,j,: 6= ui+a,j+b,:].

Here, we have a jump if two neighboring vectors ui,j,: and ui+a,j+b,: are not equal. We
note that the jump penalty cannot be evaluated component-wise. This leads to the
following modifications of the ADMM algorithms (2.6) and (3.3). The intermediate
solutions u, v, w, z and the multipliers λi are in Rm×n×s. The updates of the Lagrange
multipliers can be carried out component-wise. The univariate Potts problems can
be solved using the same dynamic program as for the scalar-valued case with the
modifications explained in Section 4.

4. Efficient solution of univariate Potts problems. A basic building block
of our ADMM algorithm is the solver of univariate Potts problems. In particular,
the speed of our method heavily depends on the time consumed for solving these

12



subproblems. In this section, we first review the basic dynamic program for solving
univariate Potts problems. Then we extend the dynamic program to weighted L2

norms (which are needed in the context of missing data) and to vector-valued data.
Finally, we introduce a new effective acceleration strategy which decreased the runtime
in our experiments by a factor of about five.

4.1. The classical dynamic program for the solution of the univariate
Potts problem. The classical univariate Potts problem is given by

Pγ(h) = γ · ‖∇h‖0 + ‖h− f‖22 → min, (4.1)

where h, f ∈ Rn and ‖∇h‖0 =
∑
i[hi 6= hi+1] denotes the number of jumps of h.

This optimization problem can be solved exactly using dynamic programming [48,
49, 14, 69, 28, 67]. The basic idea is that a minimizer of the Potts functional for
data (f1, ..., fr) can be computed in polynomial time provided that minimizers of
the partial data (f1), (f1, f2), ..., (f1, ..., fr−1) are known. We denote the respective
minimizers for the partial data by h1, h2, ..., hr−1. In order to compute a minimizer
for data (f1, ..., fr), we first create a set of r minimizer candidates g1, ..., gr, each of
length r. These minimizer candidates are given by

g` = (h`−1, µ[`,r], ..., µ[`,r]︸ ︷︷ ︸
Length r−`+1

), (4.2)

where h0 is the empty vector and µ[`,r] denotes the mean value of data f[`,r] =

(f`, ..., fr). Among the candidates g`, one with the least Potts functional value is
a minimizer for the data f[1,r].

In [28] Friedrich et al. proposed the following O(n2) time and O(n) space al-
gorithm. They observed that the functional values of a minimizer Pγ(hr) for data
f[1,r] can be computed directly from the functional values Pγ(h1), ..., Pγ(hr−1) of the
minimizers h1, ..., hr−1 and the squared mean deviations of the data f[1,r], ..., f[r,r].
Indeed, using (4.2), the Potts functional value of the minimizer hr is given (setting
Pγ(h0) = −γ) by

Pγ(hr) = min
`=1,...,r

Pγ(h`−1) + γ + d[`,r], (4.3)

where d[`,r] denotes the squared deviation from the mean value

d[`,r] = min
y∈R
‖y − f[`,r]‖22 = ‖µ[`,r] − f[`,r]‖22.

The evaluation of (4.3) is O(1) if we precompute the first and second moments of data
f[`,r]. If `∗ denotes the minimizing argument in (4.3) then `∗ − 1 indicates the right
most jump location at step r, which is stored as J(r). The jump locations of a solution
hr are thus J(r), J(J(r)), J(J(J(r))), ...; the values of hr between two consecutive
jumps are given by the mean value of data f on this interval. Note that we only have
to compute and to store the jump locations J(r) and the minimal Potts functional
value Pγ(hr) in each iteration. The reconstruction of the minimizer from the jump
locations only has to be done once for hn at the end; it is thus uncritical.

4.2. Weighted data terms and vector-valued data. In order to apply the
above dynamic program to univariate Potts problems with weighted data terms we
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need the following modifications. The symbol µ[`,r] is now used to denote the weighted
mean given by

µ[`,r] = arg min
y∈R
‖y − f[`,r]‖2w =

∑r
i=` wifi∑r
i=` wi

. (4.4)

A straightforward computation shows that the weighted squared mean deviation d[`,r]
is given by

d[`,r] = min
y∈R
‖y − f[`,r]‖2w =

r∑
i=`

wif
2
i −

1∑r
i=` wi

(

r∑
i=`

wifi)
2.

(If all weights are zero then we let µ[`,r] = 0 and d[`,r] = 0). Towards an efficient
evaluation of this expression we rewrite it as

d[`,r] = Sr − S`−1 −
(Mr −M`−1)2

Wr −W`−1
, (4.5)

where Wr =
∑r
i=1 wi, Mr =

∑r
i=1 wifi, and Sr =

∑r
i=1 wif

2
i . The vectors W, M, and

S can be precomputed in linear time. Thus, the evaluation of the weighted squared
mean deviation costs O(1).

If data is vector-valued, i.e., if each fi is in Rs, then the vector-valued (weighted)
mean value is just given by component-wise application of (4.4). Then the corre-
sponding squared mean deviation reads

d[`,r] =

s∑
k=1

(
r∑
i=`

wif
2
i,k −

1∑r
i=` wi

(

r∑
i=`

wifi,k)2

)
. (4.6)

Precomputing moments, using (4.5) component-wise, and summing up the results
according to (4.6) moments allows us to evaluate this expression in O(s). For vector-
valued data, the total complexity of the univariate Potts problem is O(n2s) time and
O(ns) space.

4.3. A new acceleration. The dynamic program we have just described runs
through all possible pairings of right and left interval bounds r = 1, ..., n and ` =
1, ..., r, cf. Algorithm 2. This amounts to n(n+ 1)/2 iterations. We give a condition
which allows to skip certain iterations. In practice, using this condition, many of
the iterations can be omitted as we will see next. In the next theorem we use the
notations of Algorithm 2.

Theorem 2. Let r ∈ {1, ..., n}. If Pr < d[k,r] + γ for some k = 2, ..., r then, for
this r, the inner iterations ` = 2, ..., k − 1 of Algorithm 2 can be skipped.

Proof. Assume that Pr < d[k,r] + γ for some k ∈ {2, ..., r}. From Algorithm 2 we
see that the condition for introducing a new jump at location ` is

P`−1 + γ + d[`,r] ≤ Pr. (4.7)

We show that the condition cannot be fulfilled for ` ∈ {2, ..., k − 1}. To this end, we
notice that the mapping ` 7→ d[`,r] is monotonically decreasing, i.e., d[`,r] ≥ d[i,r] for
all ` ≤ i. Further, we observe that P` ≥ 0 for all ` = 1, ..., r. Hence we obtain

Pr < γ + d[k,r] ≤ γ + d[`,r] ≤ P`−1 + γ + d[`,r], for all 2 ≤ ` ≤ k.
14



Algorithm 2: Accelerated dynamic program for the univariate Potts problem
Input: Data vector f ∈ Rn, model parameter γ > 0, weights w ∈ [0,∞)n

Output: Global minimizer h of the univariate Potts problem (4.1) with weighted data term
Local : Left and right interval bounds `, r ∈ N; Potts values P ∈ Rn; first and second

cumulative moments M,S ∈ Rn+1; cumulative weights W ∈ Rn+1; temporary
values p, d ∈ R (candidate Potts value, squared mean deviation); array of
right-most jump locations J ∈ Nn;

begin
/* Find the optimal jump locations */
M0 ← 0; S0 ← 0; W0 ← 0 ; /* init cumulative moments and weights */
for r ← 1 to n do

Mr ←Mr−1 + wrfr; /* First moments */
Sr ← Sr−1 + wrf2r ; /* Second moments */
Wr ←Wr−1 + wr; /* Cumulative weights */
Pr ← Sr − 1

Wr
M2

r ; /* mean sq. deviation of f[1,r] */
Jr ← 0 ; /* init right-most jump location */
for `← r to 2 do

d← Sr − S`−1 − 1
Wr−W`−1

(Mr −M`−1)
2; /* mean sq. deviation of f[`,r] */

if Pr < d+ γ then Break; /* Acceleration (cf. Theorem 2) */
;
p← P`−1 + γ + d ; /* compute candidate Potts value p */
if p ≤ Pr then

Pr ← p ; /* store new best Potts value */
Jr ← `− 1 ; /* update right-most jump location */

end
end

end
/* Reconstruct the minimizer h from the optimal jump locations */
r ← n; `← Jr;
while r > 0 do

for i← l + 1 to r do
hi ← µ[`+1,r]; /* set mean value on partition */

end
r ← `; `← Jr; /* go to next jump */

end
end

Hence, condition (4.7) cannot be met. Therefore, we can skip the iterations ` =
2, ..., k − 1 in this case.

The accelerated dynamic program for the univariate Potts problem is outlined in
Algorithm 2. The speed-up we achieve is especially large for small jump penalties
γ since the deviation from the mean then exceeds the optimal Potts value relatively
early. Regarding the signals and images of this article, we observed a speedup by the
factor of 4 to 5 using this strategy.

5. Numerical results. In all experiments we start the iteration with the cou-
pling parameter µ = 0.01 γ, which we increment by the factor τ = 2 in each step. The
stopping criterion is ‖u − v‖22 ≤ TOL · ‖f‖22 with the tolerance TOL = 10−10. The
model parameter γ is chosen empirically. In the denoising experiments, we have run
the experiment for different values of γ in steps of 0.05 and picked the one with the
highest PSNR. In the image segmentation experiments, we have chosen a relatively
large value for γ so that the results consist of relatively few large segments. Except for
Figure 3, we use in all experiments the near-isotropic discretization of jump-penalty
given by (3.1). The experiments were conducted on a single core of an Intel Xeon with
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3.33 GHz and 16 GB RAM. The original images were taken from the Kodak Lossless
True Color Image Suite (Figure 1), from the Hyperspectral Images of Natural Scenes
2004 [27] (Figure 4), from the Berkeley Segmentation Dataset [46] (Figures 2, 3, 5),
and from Wikipedia (Figure 6). The (noise-free) images are scaled to take on values
in the cube [0, 1]s. Our Matlab/Java code is provided at http://pottslab.de.

5.1. Complexity and runtime. The time-critical parts of the proposed Potts
ADMM iteration (Algorithm 1) are the solutions of the univariate Potts problem,
which appear in the first and the second step of (2.6). There, we have to solve n and
m univariate Potts problems of length m and n, respectively, each of which amount to
quadratic runtime and linear space. More precisely, each step of the algorithm needs
O(n2ms) and O(nm2s) time and O(nms) space. Note that the required memory is
linear in the storage cost of the image f ∈ Rm×n×s. For n ∼ m, we have O(n3s) time
and O(n2s) space complexity in each step of the iteration. Expressing the complexity
in dependence of the number of pixelsN = n2, we have O(N

3
2 s) time and O(Ns) space

complexity. Typically, we require 20-40 iterations in our experiments. In practice,
the runtimes of the proposed method are in the order of one minute for medium size
color images (of about 512× 512 pixels).

There is room for acceleration which is out of the scope of this work. Paralleliza-
tion seems very promising which we expect to bring a significant speedup. Theoret-
ically, due to the separable structure of our ADMM strategy, we can achieve O(Ns)
time complexity in each iteration using n parallel processors.

5.2. Comparison to related approaches. We compare our method with two
state-of-the-art approaches to the Potts problem whose implementations are publicly
available.

The first one is the α-expansion graph cut algorithm based on max-flow/min-cut
of the library GCOptimization 3.0 of O. Veksler and A. Delong [9, 8, 40]. Here we
used the neighborhood weights of (3.1) and 8 × 8 × 8 discrete labels. The second
state-of-the-art method is the convex relaxation method of T. Pock et al. [56]. Here we
used 1000 iterations and only 4× 4× 4 labels in order to achieve reasonable runtimes.
We further compare our method with total variation minimization using the split
Bregman method [33] realized in the toolbox tvreg by P. Getreuer [31]. We used a
stopping tolerance of 10−6 and maximum 1000 iterations.

In Figure 5 we segment a noisy natural image. Total variation minimization
often does not produce sharp segment boundaries, whereas the results of the Potts
minimization strategies do so. The three Potts strategies give reasonable segmentation
results, although the graph cut and convex relaxation methods are affected by the label
space discretization.

In Figure 6, we reconstruct a cartoon image which was corrupted by Gaussian
noise. To measure the reconstruction quality, we use the peak signal-to-noise ratio
(PSNR). The PSNR of a reconstruction u with respect to the noise-free image f̄ is
given by

PSNR(u) = 10 log10

(
m · n · s · (maxi,j,k |f̄ijk|)2∑

i,j,k |f̄ijk − uijk|2

)
.

Our first observation is that total variation minimization does not completely remove
the noise although we tried to find an optimal parameter. To that end, we sampled
the parameter λ in steps of 0.05 and computed the corresponding minimizer. Then
we chose that parameter where the corresponding result had the highest PSNR. The
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(a) Original (481× 321 pixel) (b) Gaussian noise (σ = 0.3) (c) Total variation [31]
(42.5 sec)

(d) Convex relaxation [56],
43 discrete labels (9910.7 sec)

(e) Graph cut [9, 8, 40], 83 dis-
crete labels (173.1 sec)

(f) Our method (31.0 sec)

Fig. 5: Comparison of segmentations of a natural image (γ = 2.0). Total variation mini-
mization (model parameter λ = 4.0) tends to smooth out some of the segment boundaries
(c). Among the Potts segmentation approaches (d-f), the proposed method is the fastest.

results of all three methods for the Potts problem are almost free of noise. Our method
gives the highest reconstruction quality among the three Potts strategies.

We give a detailed quantitative comparison of our method with the graph cut
method and the convex relaxation method in Table 5.1. There, we compare the final
energy states of the respective solutions u∗, that is, the functional values of (1.2). We
observe that our method attains lower energy states than the other methods.

The experiments show that the proposed method is significantly faster than graph
cuts and the convex relaxation approach.

6. Conclusion. We have proposed an new splitting approach to the Potts prob-
lem. We applied our method for image segmentation as well as for the reconstruction
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(a) Original (432× 300 pixel). (b) Gaussian noise, σ = 0.3 (PSNR: 10.5).

(c) Total variation [31] (PSNR: 18.9; 4.0 sec). (d) Convex relax. [56], 43 discrete labels
(PSNR: 17.9; 9240.0 sec).

(e) Graph cut [9, 8, 40], 83 discrete labels
(PSNR: 19.2; 131.5 sec).

(f) Our method (PSNR: 19.6; 19.4 sec).

Fig. 6: Denoising a cartoon image (γ = 0.75). Total variation minimization (λ = 0.35)
does not optimally recover the piecewise constant regions of the image. The label space
discretization required by graph cuts and convex relaxation negatively affects the recon-
structions. The proposed method gives best recovery result both with respect to PSNR and
visual impression. ( c© Board of Trustees, National Gallery of Art, Washington)

of cartoon-like images. We compared it with the graph-cuts and with a method based
on a convex relaxation of the partitioning problem which are both state-of-the-art
methods.

The main benefit of our strategy is its efficiency. Especially for vector-valued
images, our method is significantly faster than the graph-cut and the convex relaxation
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Energy of solution Runtime in seconds
CR GC Our CR GC Our

γ = 0.5

Caps 17143.3 8805.2 7210.5 22412.9 321.7 97.3

Desert 9363.2 5540.4 5044.2 8842.8 91.3 25.8

Church 7448.9 4042.8 3722.7 8806.6 63.6 24.0

Peppers 9856.7 7945.5 7305.8 8930.4 88.3 25.6

Mickey 12963.6 11486.1 11305.1 8198.5 85.6 16.2

Multispectral – – 6232.0 – – 98.7

γ = 2.0

Caps 23965.8 17491.5 15796.1 22129.5 538.8 89.2

Desert 12594.8 9172.7 8803.5 8915.7 161.2 20.5

Church 11762.7 8665.6 8225.9 8973.2 126.8 20.3

Peppers 16553.7 15106.3 14305.8 9031.3 167.3 27.1

Mickey 31602.5 29025.5 28580.3 9008.6 95.7 17.6

Multispectral – – 11292.1 – – 120.4

Table 5.1: Our method achieves lower energies than the convex relaxation method (CR) of
[56] using 43 labels and the graph cut method (GC) of [9, 8, 40] using 83 discrete labels. At
the same time it is significantly faster. (The application of the graph cut method and the
convex relaxation method to the multispectral image exceeded the available memory).

approaches. At the same time, our approach has as good reconstruction quality as
these state-of-the-art methods. Furthermore, there is no need for an a priori selection
of discrete labels.

The key idea of our strategy was to split the Potts problem into coupled, computa-
tionally tractable subproblems using the alternating direction method of multipliers.
We solved these subproblems using an acceleration of a classical dynamic program. In
our experiments, the acceleration gave a gain of factor five compared to the classical
program.

While the linear memory complexity of our algorithm is already optimal, there is
still a large potential for runtime reductions by parallelization which our approach is
particularly suited to. Furthermore, the extension to Blake-Zisserman/Mumford-Shah
penalties as well as the inclusion of linear measurements are work in progress.
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Appendix A. Proof of Theorem 1. We show the statement of Theorem 1
under the more general assumption that {µk}k is a monotonically increasing sequence
fulfilling

∑∞
k=0 µ

−1/2
k < ∞, which is clearly fulfilled by the actually used geometric

progression µk = µ0τ
k.
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Proof. Our first goal is to show that the sequence {vk}k is bounded. Since the
sequence member uk+1 is a minimizer of the first line in (2.6) we get the estimate

2γ

1 + µk
‖∇1u

k+1‖0 +

∥∥∥∥uk+1 − f + µkv
k − λk

1 + µk

∥∥∥∥2
2

≤ 2γ

1 + µk

∥∥∥∥∇1
f + µkv

k − λk

1 + µk

∥∥∥∥
0

≤ 2γmn

1 + µk
.

As a consequence we obtain that∥∥∥∥uk+1 − f + µkv
k − λk

1 + µk

∥∥∥∥
2

≤ C√
1 + µk

. (A.1)

Here the positive constant C is given by C =
√

2γmn where γ is the regularization
parameter and n,m are determined by the size of the image. Likewise, the second
line of (2.6) yields ∥∥∥∥vk+1 − f + µku

k+1 + λk

1 + µk

∥∥∥∥
2

≤ C√
1 + µk

. (A.2)

Summing up the terms within the norm symbols in (A.1) and (A.2) and afterwards
using the triangle inequality we get that∥∥∥∥uk+1 + vk+1 − 2f + µkv

k + µku
k+1

1 + µk

∥∥∥∥
2

≤ 2C√
1 + µk

.

Rewriting this inequality yields∥∥∥∥uk+1 + vk+1 − 2f

1 + µk
− µk

1 + µk
(vk − vk+1)

∥∥∥∥
2

≤ 2C√
1 + µk

. (A.3)

Likewise, we subtract the terms within the norm symbols in (A.1) from that in (A.2)
and use the triangle inequality in the form ‖a− b‖2 ≤ ‖a‖2 + ‖b‖2 to obtain∥∥∥∥uk+1 − vk+1 − µk

1 + µk
vk +

µk
1 + µk

uk+1 +
2λk

1 + µk

∥∥∥∥
2

≤ 2C√
1 + µk

.

We substitute λk + µk(uk+1 − vk+1) = λk+1 which is the third line of (2.6) to get∥∥∥∥ 2λk+1

1 + µk
+
uk+1 − vk+1

1 + µk
− µk

1 + µk
(vk − vk+1)

∥∥∥∥
2

≤ 2C√
1 + µk

. (A.4)

The inequalities (A.3) and (A.4) are of the form ‖x − y‖ ≤ a and ‖z − y‖ ≤ a,
respectively. Hence, ‖x− z‖ ≤ 2a which in our case means∥∥∥∥ 2λk+1

1 + µk
+
uk+1 − vk+1

1 + µk
− uk+1 + vk+1 − 2f

1 + µk

∥∥∥∥
2

≤ 4C√
1 + µk

.

Simplifying the left-hand side of this inequality yields∥∥∥∥ λk+1

1 + µk
− vk+1 − f

1 + µk

∥∥∥∥
2

≤ 2C√
1 + µk

. (A.5)
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Equipped with these estimates, we are now going to bound the distance between
uk+2 and a convex combination of vk+1 and f. We first use (A.1) with k replaced by
k + 1 and get∥∥∥∥uk+2 − (µk+1 − 1)vk+1 + 2f

1 + µk+1

∥∥∥∥
2

=

∥∥∥∥uk+2 − f + µk+1v
k+1

1 + µk+1
+

λk+1

1 + µk+1
− λk+1

1 + µk+1
+
vk+1 − f
1 + µk+1

∥∥∥∥
2

≤ C√
1 + µk+1

+

∥∥∥∥vk+1 − f
1 + µk+1

− λk+1

1 + µk+1

∥∥∥∥
2

.

Now we apply (A.5) to get that∥∥∥∥uk+2 − (µk+1 − 1)vk+1 + 2f

1 + µk+1

∥∥∥∥
2

≤ C√
1 + µk+1

+
1 + µk

1 + µk+1

∥∥∥∥vk+1 − f
1 + µk

− λk+1

1 + µk

∥∥∥∥
2

≤
(

1 + 2

√
1 + µk√

1 + µk+1

)
C√

1 + µk+1
≤ 3C√

1 + µk+1
.

(A.6)

The last inequality is a consequence of the monotonicity of the sequence µk. Likewise,
we estimate using (A.2) with k replaced by k + 1 and (A.5)∥∥∥∥vk+2 − µk+1u

k+2 + vk+1

1 + µk+1

∥∥∥∥
2

≤
∥∥∥∥vk+2 − f + µk+1u

k+2 + λk+1

1 + µk+1

∥∥∥∥
2

+

∥∥∥∥vk+1 − f − λk+1

1 + µk+1

∥∥∥∥
2

≤ C√
1 + µk+1

+
1 + µk

1 + µk+1

∥∥∥∥vk+1 − f − λk+1

1 + µk

∥∥∥∥
2

≤ 3C√
1 + µk+1

.

(A.7)

Next, we combine (A.6) and (A.7) to get∥∥∥∥vk+2 −
µ2
k+1 + 1

(µk+1 + 1)2
vk+1 − 2µk+1

(1 + µk+1)2
f

∥∥∥∥
2

=

∥∥∥∥vk+2 − µk+1(µk+1 − 1) + µk+1 + 1

(µk+1 + 1)2
vk+1 − 2µk+1

(1 + µk+1)2
f

∥∥∥∥
2

=

∥∥∥∥vk+2 − µk+1

1 + µk+1

(µk+1 − 1)vk+1 + 2f

1 + µk+1
− vk+1

1 + µk+1
+
µk+1u

k+2

1 + µk+1
− µk+1u

k+2

1 + µk+1

∥∥∥∥
2

≤ µk+1

1 + µk+1

∥∥∥∥uk+2 − (µk+1 − 1)vk+1 + 2f

1 + µk+1

∥∥∥∥
2

+

∥∥∥∥vk+2 − µk+1u
k+2

1 + µk+1
− vk+1

1 + µk+1

∥∥∥∥
2

≤ 6C√
1 + µk+1

.

(A.8)

Using the last estimate we obtain that

‖vk+2‖2 ≤ ‖vk+2 − dkvk+1 − (1− dk)f‖2 + ‖dkvk+1 + (1− dk)f‖2

≤ 6C√
1 + µk+1

+ ‖vk+1‖2 +
2µk+1

(1 + µk+1)2
‖f‖2
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where dk =
µ2
k+1+1

(µk+1+1)2 . Resolving the recursion in vk we have

‖vk+2‖2 ≤ 6C

k∑
i=0

1√
1 + µi+1

+ 2

k∑
i=0

1

1 + µi+1
‖f‖2 + ‖v1‖2.

By assumption
∑∞
i=0 µ

−1/2
i < ∞ which implies that both sums above are bounded.

Hence, {vk}k is bounded.
Using (A.6) we get that the sequence {uk}k is bounded as well. It follows from

(A.3) that

‖vk+1 − vk‖2 → 0.

Using the monotonicity of the sequence µk (A.4) implies

λk+1

1 + µk+1
→ 0.

From (A.1) and (A.2) we conclude that

‖uk+1 − vk‖2 → 0 and ‖uk+1 − vk+1‖2 → 0.

Therefore, it is sufficient to show that {vk}k is convergent. To this end, we estimate
using (A.8)

‖vk+` − vk‖2 ≤
`−1∑
s=k

‖vs+1 − vs‖2

=

`−1∑
s=k

‖vs+1 − ds−1vs − (1− ds−1)f + (1− ds−1)(f − vs)‖2

≤
`−1∑
s=k

‖vs+1 − ds−1vs − (1− ds−1)f‖2 +

`−1∑
s=k

(1− ds−1)‖f − vs‖2

≤ C ′ ·
`−1∑
s=k

1√
1 + µs

+ C ′′
`−1∑
s=k

2µs
(µs + 1)2

for some constants C ′, C ′′ > 0 which are independent of k and l. Thus, {vk}k is a
Cauchy sequence and therefore convergent. This completes the proof.
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