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Abstract

Nitric oxide (NO) is an important signaling molecule that regulates many physiological processes in plants. One of the most
important regulatory mechanisms of NO is S-nitrosylation—the covalent attachment of NO to cysteine residues. Although
the involvement of cysteine S-nitrosylation in the regulation of protein functions is well established, its substrate specificity
remains unknown. Identification of candidates for S-nitrosylation and their target cysteine residues is fundamental for
studying the molecular mechanisms and regulatory roles of S-nitrosylation in plants. Several experimental methods that are
based on the biotin switch have been developed to identify target proteins for S-nitrosylation. However, these methods
have their limits. Thus, computational methods are attracting considerable attention for the identification of modification
sites in proteins. Using GPS-SNO version 1.0, a recently developed S-nitrosylation site-prediction program, a set of 16,610
candidate proteins for S-nitrosylation containing 31,900 S-nitrosylation sites was isolated from the entire Arabidopsis
proteome using the medium threshold. In the compartments ‘‘chloroplast,’’ ‘‘CUL4-RING ubiquitin ligase complex,’’ and
‘‘membrane’’ more than 70% of the proteins were identified as candidates for S-nitrosylation. The high number of identified
candidates in the proteome reflects the importance of redox signaling in these compartments. An analysis of the functional
distribution of the predicted candidates showed that proteins involved in signaling processes exhibited the highest
prediction rate. In a set of 46 proteins, where 53 putative S-nitrosylation sites were already experimentally determined, the
GPS-SNO program predicted 60 S-nitrosylation sites, but only 11 overlap with the results of the experimental approach. In
general, a computer-assisted method for the prediction of targets for S-nitrosylation is a very good tool; however, further
development, such as including the three dimensional structure of proteins in such analyses, would improve the
identification of S-nitrosylation sites.
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Introduction

NO is a membrane-permeable free radical that plays a central

role in a broad spectrum of physiological processes in plants,

including germination, flowering, root development, hormonal

signaling, senescence, and the establishment of adaptive responses

against biotic and abiotic stress [1–9]. NO and related nitrogen

species that are considered reactive can mediate various post-

translational modifications (PTMs), such as metal nitrosylation,

tyrosine nitration, and cysteine S-nitrosylation. Cysteine S-

nitrosylation is the term used to describe the covalent binding of

an NO group to a protein cysteine (Cys) residue. This PTM is

considered one of the most important molecular mechanisms by

which NO regulates protein functions and cell signaling and has

been shown to alter protein activities, protein-protein interactions,

and subcellular localization under both normal and pathological

conditions [10–13].

A number of indirect MS-based proteomics approaches have

been developed for the identification of S-nitrosylated proteins and

their modification sites from complex biological samples [14,15].

The biotin switch technique (BST) is the most widely used method

and is based on the conversion of S-nitrosylated Cys to

biotinylated Cys. Such labeling allows the detection of S-

nitrosylated proteins using specific anti-biotin antibodies and their

isolation by affinity chromatography using neutravidin matrices.

The proteins can then be identified using mass spectrometry. S-

nitrosoglutathione (GSNO) is the most abundant low-molecular-

weight S-nitrosothiol in plant cells and is a physiological NO

reservoir and NO donor. This molecule can transfer its NO

moiety to protein cysteine residues via trans-nitrosylation. GSNO

has often been used to generate S-nitrosylated proteins in extracts

for the subsequent isolation and identification of S-nitrosylated

proteins [16–20].

The identification of redox-sensitive cysteine residues is

important for understanding the regulatory functions of NO.

Cysteine residues exhibiting a low-pKa sulfhydryl group are

particularly susceptible to certain types of redox modification [21].

Several research groups have attempted to define consensus motifs
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for S-nitrosylation by comparing the amino acid sequences around

identified target cysteine residues. Such analyses have revealed

that the target cysteine residues often lie within an acid-base or

hydrophobic motif [22]. In contrast, other studies have revealed

that the primary sequence of the surrounding amino acid residues

has no significant effect on the reactivity of cysteines towards S-

nitrosylation at the peptide level [23]. Greco et al. (2006)

supported the idea of extending the motif beyond the primary

sequence to include hydrophobic motifs surrounding the identified

cysteine residues [24]. Recently, 70 known S-nitrosylated sites

were used to identify general structures associated with S-

nitrosylation. The results obtained revealed that proximal acid–

base motif, Cys pKa, sulfur atom exposure, and Cys conservation

or hydrophobicity in the vicinity of the modified cysteine do not

predict S-nitrosylation specificity. Instead, this analysis identified a

revised acid-base motif that is located farther from the cysteine and

in which the charged groups are exposed [25].

Many studies have been performed to identify and characterize

S-nitrosylated proteins in plants [26]. The pioneer analysis of S-

nitrosylated proteins was conducted in 2005 [16]. In this work, 63

proteins from GSNO-treated Arabidopsis cell culture extracts and

52 proteins from NO-treated leaves were identified as possible NO

targets. In addition, Romero-Puertas and colleagues found 16

Arabidopsis proteins that were differentially S-nitrosylated under

hypersensitive responses [27]. Moreover, endogenous S-nitrosy-

lated proteins have been identified in an Arabidopsis cell culture

under salt stress [28]. To date, more than two hundred proteins

have been identified as putative targets for S-nitrosylation in

Arabidopsis using proteomics approaches based on the biotin

switch assay or related techniques, however only in the minority of

them the exact S-nitrosylation sites have been identified.

Moreover, such analyses have also been performed in other plant

species such as in citrus plants exposed to salinity [29], a rice

mutant overproducing NO [30], pea-leaf peroxisomes under

abiotic stress [31], and a tobacco cell suspension treated with

cryptogein [32]. The S-nitrosylated proteins identified from plant

proteome studies have been shown to participate in major cellular

activities, notably primary and secondary metabolism, protein

folding and genetic information processing, photosynthesis,

cellular architecture, and responses to biotic and abiotic stresses

[33]. Although the number of plant proteins that have been

identified as putative targets for S-nitrosylation has drastically

increased during recent years, studies identifying the NO-sensitive

cysteine residues involved remain rare. These analyses are essential

for a better understanding of the function of protein S-

nitrosylation in plants [33].

In contrast to the technical difficulties associated with experi-

mental methods, the computational analysis of PTMs is an

attractive alternative. The use of computational predictors can

identify a number of potential candidates and rapidly generate

useful information. Currently, approximately 170 databases and

computational tools have been developed for PTM analysis [34].

The algorithms used in this field include iGPS 1.0, which is used to

predict phosphorylation [35], CSS-Palm 4.0, which is used to

predict S-palmitoylation [36], GPS-SUMO 1.0, which is used to

predict sumoylation [37], and GPS-YNO2, which is used to

predict protein nitration [38]. Moreover, several programs and

algorithms have been developed to predict cysteine residues that

are susceptible to S-nitrosylation, including SNOSite, iSNO-

PseAAC, iSNO-AAPair, and GPS-SNO 1.0 [39–42].

In this study, we used GPS-SNO 1.0 to identify candidate

proteins for S-nitrosylation within the Arabidopsis proteome

(27,416 proteins). In total, 31,907 S-nitrosylated sites were

predicted in 16,610 (approximately 61%) candidate proteins using

the medium threshold. Potential target proteins were detected in

all cellular compartments and ranged from 37% to 86% of the

total number of proteins per compartment. More than 70% of the

S-nitrosylated candidates identified were in the ‘‘chloroplast’’,

‘‘CUL4-RING ubiquitin ligase complex’’, and ‘‘membrane’’

compartments. In most compartments, the proportion of S-

nitrosylation candidates was approximately 60%. Moreover, the

10% of S-nitrosylation sites with the highest prediction confidence

were extracted for further study. This group comprised 3,190 sites

in 3,005 target proteins. These candidates were detected in all

compartments and ranged from 5% to 17% of the total number of

proteins per compartment. These targets were enriched in the

‘‘chloroplast’’ (17%), ‘‘intracellular’’ (15%), and ‘‘plasmodesmata’’

(14%) compartments. In most compartments, the percentage of

proteins predicted as S-nitrosylation candidates was approximately

10%. The high proportion of proteins identified as S-nitrosylation

candidates reflects the importance of redox signaling in these

compartments. An analysis of the functional distribution of the

predicted candidates showed that the group with the highest

prediction rate was the process ‘‘signaling’’. Moreover, a set of 46

Arabidopsis proteins, where 53 putative S-nitrosylation sites were

previously determined using a BST-based approach, was analysed

with the GPS-SNO program. The computational method

predicted 60 S-nitrosylation sites within these proteins, but only

11 overlap with the results of the BST-based approach. In general,

the currently available algorithm appears to be a useful tool for

characterizing the S-nitrosylome but requires further improvement

regarding its accuracy in identifying S-nitrosylation sites.

Materials and Methods

Data collection
First, 27,416 amino acid sequences were downloaded from the

most recent version of the Arabidopsis information resource TAIR

(TAIR10, www.arabidopsis.org). For all subsequent analyses, only

one representative gene model was used per locus.

Comparison of prediction performance
To evaluate and compare the prediction performance of four S-

nitrosylation prediction programs, we calculated 3 parameters

(accuracy, sensitivity, and specificity) according to the definitions

described previously [42]. The 4 prediction programs tested were

GPS-SNO 1.0 (using the medium threshold condition), iSNO-

PseAAC, iSNO-AAPair, and SNOSite [39-41].

Prediction of SNO sites using GPS-SNO software
Group-based Prediction System (GPS-SNO 1.0) software was

used to predict S-nitrosylation sites [42]; this program can be

executed online or downloaded at http://sno.biocuckoo.org/. In

all analyses, 27,416 Arabidopsis amino acid sequences in FASTA

format were submitted for use in predicting S-nitrosylation sites

under the medium threshold condition using the batch prediction

tool of the GPS-SNO 1.0 software. The predicted S-nitrosylation

sites were extracted into an Excel file for further analysis.

Subcellular compartmentalization of Arabidopsis proteins
To determine the cellular localization of all gene predictions in

Arabidopsis, we utilized gene ontology terms (GO) obtained from

the TAIR10 annotation release (ftp://ftp.arabidopsis.org/home/

tair/Ontologies/Gene_Ontology/) and filtered these terms for

terms categorized as ‘‘cellular component’’. The distribution of

proteins among the individual localization categories was plotted

for all categories comprising more than 100 assignments.

Prediction of Candidate Proteins for S-Nitrosylation
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MapMan analysis of the predicted candidate proteins
Protein functional classification was performed according to the

MapMan Ontology of Arabidopsis proteins, version 3.5.1R2

(http://mapman.gabipd.org/web/guest/mapman).

Results and Discussion

In recent years, many experimental methods have been

developed for the identification of S-nitrosylated proteins and

the mapping of SNO-sites. The BST and related methods have

enabled the high-throughput identification of hundreds of novel

targets for S-nitrosylation [16,18,43-45]. However, these methods

have several limitations, especially regarding the detection of low-

abundance or unstable proteins or of proteins that are present only

in specific tissues/organs that are difficult to handle, e.g.,

meristems or epidermis. Therefore, more sensitive approaches

are required. ProteoMiner is a technology allowing the enrichment

of low-abundance proteins [46]. However, the extracted proteins

are denatured by the harsh conditions required for protein elution.

Therefore, this method cannot be used in combination with the

BST until a method for enriching low-abundance proteins under

native conditions is established. Computational methods can

overcome such technical difficulties because the analyses can be

performed using the complete protein datasets that are available in

databases. Thus, a nearly complete map of candidates for S-

nitrosylation can be generated, providing a good starting point for

more detailed, experimental approaches.

1. A comparison of programs used to predict S-
nitrosylation sites

Previously, we compared three programs that are used to

predict S-nitrosylation sites in proteins [26]. Here, we extended

this study by including a fourth program and including all plant

proteins in which modified cysteine residues have been verified

using mass spectrometry and for which the physiological functions

are known (Table 1). The programs GPS-SNO 1.0, iSNO-

PseAAC, iSNO-AAPair, and SNOSite were tested. The perfor-

mances of the 4 programs in predicting S-nitrosylation were

evaluated (Table S1) as previously defined [42], using the 12

characterized S-nitrosylated proteins listed in Table 1. GPS-SNO

performed best according to the three criteria chosen (accuracy,

sensitivity, and specificity; 82.2%, 50%, and 87.9%, respectively,

Table S1). The SNOSite software predicted almost all cysteine

residues present as targets for S-nitrosylation, with accuracy and

specificity of 25% and 13%, respectively, which implies that S-

nitrosylation is very unspecific. The programs iSNO-PseAAC and

iSNO-AAPair presented higher accuracy and specificity than

SNOSite (Table S1), but their correlation with actual sites

remained low. Significantly better predictions appeared possible

when using the GPS-SNO 1.0 software, which exhibited a much

lower rate of false positives. Approximately 60% of the proteins

that were found to be S-nitrosylated using mass spectrometry were

predicted using the GPS-SNO 1.0 software (which was developed

by Xue and colleagues [42]). The authors of this program have

improved their previous algorithm, GPS 2.0 (Group-based

Prediction System), which was used for the prediction of kinase-

specific phosphorylation sites, and have released GPS 3.0 [47].

Based on this algorithm, they developed the computational

software GPS-SNO 1.0 for the prediction of S-nitrosylation sites.

The performance of the GPS 3.0 algorithm at predicting S-

nitrosylation was much better than that obtained using several

other approaches, providing an accuracy of 75.70%, a sensitivity

of 53.32% and a specificity of 80.11% under the low threshold

condition. GPS-SNO 1.0 was applied to a test set of 485

potentially S-nitrosylated proteins collected from PubMed. These

proteins were identified in large- or small-scale studies, and the

actual S-nitrosylation sites have not been experimentally deter-

mined. Of the analyzed proteins, 371 (approximately 76%) were

predicted to be S-nitrosylated at one or more potential S-

nitrosylation sites.

2. Prediction of S-nitrosylation candidate proteins using
the GPS-SNO 1.0 program

For the computer-based prediction of the S-nitrosylation of

Arabidopsis target proteins, 27,416 amino acid sequences were

extracted from the TAIR 10 database (www.arabidopsis.org)

(Table S2). Of these proteins, 25,785 (94%) contain at least one

cysteine residue; in total, 207,473 cysteine residues were found. All

of the Arabidopsis amino acid sequences were analyzed with GPS-

SNO 1.0 using the medium threshold, as recommended by Xue

and colleagues [42]. In total, 31,907 (approximately 15% of all

Cys residues) S-nitrosylation sites were predicted in 16,610

proteins (60%) (Table 2 and Table S2 and S3), suggesting that

redox-related processes are closely regulated by a small number of

redox-sensitive cysteine residues. The high number of putative

candidate proteins reflects the importance of redox-signaling in

general. Redox homeostasis during development is an evolution-

ary conserved strategy and the common origin of redox sensing

indicate that organisms evolved similar strategies for utilizing

redox-signaling during development [48]. In plant with impaired

NO/S-nitrosothiol (SNO) homeostasis the importance of balanc-

ing NO/SNO levels for plant growth and development become

apparent. For instance, S-nitrosoglutathione reductase knock-out

plants have higher SNO levels in comparison to wild type plants

and display a lot of different developmental defects, such as

delayed seed germination, reduced growth, reduced trichome

density, increased number of branched shoots, and generation of

more flowers, which are smaller and develop to smaller siliques

containing smaller seeds [49]. Moreover, leaf shape, 2,4-D

sensitivity, and hypocotyl elongation is affected [50]. But S-

nitrosylation of proteins might have not only a signaling function.

A protection of cysteine residues against irreversible oxidation is

also described [51,52]. In this way proteins can be protected

against oxidative damage and after reduction they can fulfil their

physiological function again.

On the other side, the high number of putative candidate

proteins might indicate a high rate of false-positive predictions.

Therefore, we extracted the 10% of predicted sites with the highest

prediction confidence by ranking the prediction results according

to the raw score divided by the threshold (Cutoff) for a particular

cluster. These sites (3,190) were localized to 3005 different

proteins, which comprise 18% of all predicted S-nitrosylation

candidates (Table 2 and Table S2 and S3). Similarly, computa-

tional prediction has also been used for other post-translational

modifications of target proteins. In the Arabidopsis proteome, the

phosphorylation hotspot prediction algorithm has predicted

13,677 P-hotspots in 9,599 proteins corresponding to 7,847

unique genes [53]. The cited study provides a new bioinformatic

method to identify phosphorylation hotspots and provides the basis

for further investigation of novel candidate P-hotspots. Moreover,

in the human proteome, nitration-sensitive tyrosine residues have

been predicted using GPS-YNO2, a recently described 3-

nitrotyrosine prediction algorithm [54]. In total, 9.27% (27,977)

of all tyrosine residues (301,091) were predicted to be nitration

targets. Collectively, these studies demonstrate the feasibility of

using predicted datasets for whole-proteome analyses.

Prediction of Candidate Proteins for S-Nitrosylation
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3. Subcellular compartment classification of Arabidopsis
proteins

To determine whether the identified candidates for S-nitrosyla-

tion are enriched in distinct subcellular compartments (Text S1),

all Arabidopsis proteins and the predicted candidates were

assigned to subcellular locations according to gene ontology

(GO) terms using cellular component classifications (Table S4). In

Table 3, only compartments with more than 100 representatives

are listed. An analysis of the subcellular localization of all

Arabidopsis proteins revealed that most were assigned to the

‘‘nucleus’’ (9,214 proteins) or to ‘‘membranes’’ (4,389 proteins).

The predicted S-nitrosylation candidate proteins were also located

in other compartments, comprising 37% to 86% of the total

protein content in each compartment (Table 3). Similar results

have been found experimentally in Arabidopsis suspension cell

cultures: S-nitrosylated proteins were found in almost all cell

Table 2. Prediction of Arabidopsis candidate proteins for S-nitrosylation using the GPS-SNO 1.0 software.

Arabidopsis proteome
Candidate proteins for
S-nitrosylation

The highest 10% high-confident
predicted candidates

Total number of proteins 27,416 16,610 (60%) 3,005 (18%)

Total number of Cys-NO 207,473 31,907 (15%) 3,190 (10%)

Arabidopsis amino acid sequences were extracted from TAIR 10 database (www.arabidopsis.org) and analysed by GPS-SNO 1.0 software using medium threshold
condition. The 10% of predicted sites with the highest prediction confidence were determined by ranking the prediction results according to the raw score divided by
the threshold (Cutoff) for a particular cluster.
doi:10.1371/journal.pone.0110232.t002

Table 3. Subcellular compartment classification of Arabidopsis proteins.

Compartments Total number of proteins
Candidate proteins for S-
nitrosylation

Candidate proteins for
S-nitrosylation
harboring the highest
10% high-confident
predicted sites

Chloroplast 3795 3259 (86%) 659 (17%)

CUL4-RING ubiquitin ligase complex 121 91 (75%) 13 (11%)

Membrane 4389 3257 (74%) 493 (11%)

Plasmodesmata 848 596 (70%) 116 (14%)

Vacuole 799 556 (70%) 79 (10%)

Cell wall 469 314 (67%) 45 (10%)

Plant-type cell wall 264 176 (67%) 26 (10%)

Endosome 232 153 (66%) 13 (6%)

Trans-Golgi network 219 144 (66%) 13 (6%)

Cytoplasm 3461 2222 (64%) 364 (11%)

Nucleus 9214 5924 (64%) 1118 (12%)

Extracellular region 2390 1512 (63%) 232 (10%)

Intracellular 1015 630 (62%) 148 (15%)

Cytosol 1468 903 (62%) 151 (10%)

Integral to membrane 808 503 (62%) 67 (8%)

Golgi apparatus 877 539 (61%) 65 (7%)

Plastid 289 172 (60%) 37 (13%)

Peroxisome 170 99 (58%) 17 (10%)

Mitochondrion 3048 1744 (57%) 323 (11%)

Cytosolic ribosome 304 164 (54%) 30 (10%)

Apoplast 390 208 (53%) 35 (9%)

Endoplasmic reticulum 517 270 (52%) 26 (5%)

Anchored to membrane 237 120 (51%) 16 (7%)

Ribosome 384 143 (37%) 33 (9%)

Cellular component 1917 705 (37%) 149 (8%)

Total number of proteins, number of predicted candidates for S-nitrosylation, and the number of candidates with the highest 10% prediction confidence were assigned
to their subcellular localization according to gene ontology cellular component classification. The prediction confidence was calculated by dividing the raw score value
by the cutoff value of a particular cluster.
doi:10.1371/journal.pone.0110232.t003
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compartments [28]. Moreover, a similar distribution was also

observed in animal cells [55]. Interestingly, the predicted

candidates are most enriched in the ‘‘chloroplast’’, ‘‘CUL4-RING

ubiquitin ligase complex’’, and ‘‘membrane’’ compartments (86%,

75%, and 74%, respectively), suggesting that redox-related

processes play important roles in these locations.

The nucleus is an important sub-cellular organelle that contains

almost all of the genetic information required for the regulation of

cellular processes. Interestingly, a high number of S-nitrosylation

candidates was predicted for the ‘‘nucleus’’ compartment (5,924

proteins, 64% of the total), which also contained a high proportion

of the proteins that harbored the 10% of sites that were predicted

with the highest confidence (1,118 proteins, 12% of the total).

The 10% of S-nitrosylation sites that were predicted with the

highest confidence were also found in all compartments at levels of

5% to 17% (Table 3). In particular, the compartments ‘‘chloro-

plast’’ (17%), ‘‘intracellular’’ (15%), and ‘‘plasmodesmata’’ (14%)

appeared to be enriched in the sites predicted with high

confidence. Interestingly, chloroplast proteins exhibited the

highest percentage of S-nitrosylation candidates in both analyses.

Chloroplasts are sources of redox intermediates and chloroplast

signaling pathways are triggered by the redox state of the

plastochinone pool, the thioredoxin system, and the acceptor

availability at photosystem I [56]. Moreover, discrete redox

signaling pathways regulate photosynthetic light-harvesting and

chloroplast gene transcription [57]. Production of NO in plant

cells arise from several different pathways and in different

organelles, including chloroplasts [58,59] and target sites of NO

in chloroplasts have been found in photosystem I and II, in the

cytochrome b6f complex and in carbon dioxide reduction

processes [60]. Although the chloroplast S-nitrosylome has not

been analyzed yet, alterations in ribulose-1,5-bisphosphate car-

boxylase/oxygenase S-nitrosylation inactivated its carboxylase

activity in Brassica juncea [61]. Furthermore, chloroplastic

triosephosphate isomerase (TPI) was already identified as target

for S-nitrosylation in rice, citrus, and Chlamydomonas reinhardtii,
suggesting that this type of modification might be involved in the

regulation of chloroplastic TPI activity [29,30,62,63]. Moreover,

chloroplasts have been discussed as a source and a target of

cellular redox regulation [56] and therefore might represent a

favorable microenvironment for S-nitrosylation in Arabidopsis.

Figure 1. Functional distribution of predicted candidate
proteins for S-nitrosylation has been determined using the
MapMan Ontology tool (http://mapman.gabipd.org/). Others; in-
clude all functional classes which have less than 5% of predicted
candidates.
doi:10.1371/journal.pone.0110232.g001

Figure 2. Percentage of candidate proteins for S-nitrosylation in different functional categories. Functional assignment has been done
using the MapMan Ontology tool (http://mapman.gabipd.org/web/guest/mapman).
doi:10.1371/journal.pone.0110232.g002
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In most compartments, the percentage of proteins predicted as

S-nitrosylation candidates using the medium threshold ranged

from 51% to 70%. The smallest proportion of S-nitrosylation

candidates was located in the ‘‘ribosome’’ compartment (37%).

Ribosomes comprise the basic machinery that decodes genetic

information into proteins. Increasing numbers of studies on

ribosome biogenesis have been performed on Arabidopsis.
Ribosomal protein functions have been demonstrated in embryo

biogenesis, leaf and flower development, vacuolar trafficking, and

the UV response [64–70]. However, the lowest percentages of

predicted targets among the 10% of sites predicted with the

highest confidence were found in the ‘‘endoplasmic reticulum’’

(5%), ‘‘trans-Golgi network’’ (6%), and ‘‘endosome’’ (6%) com-

partments. Several previous studies have demonstrated that S-

nitrosylated proteins were localized in various organelles, including

the cell membrane [71], mitochondria [72,73], the nucleus [74],

the endoplasmic reticulum, the Golgi and cytosol [75], the

peroxisome [31], and the apoplast [76]. This suggests that protein

S-nitrosylation can occur in all subcellular compartments [77].

4. Functional distribution of Arabidopsis S-nitrosylation
candidate proteins

To analyze the functional classification of the predicted

candidates, 16,610 predicted proteins were subjected to analysis

using the MapMan Ontology of Arabidopsis proteins (http://

mapman.gabipd.org/web/guest/mapman). Most of the candi-

dates belong to unknown categories (not assigned) or others,

including categories containing less than 5% of candidates

(Figure 1). Most of the candidates assigned to known categories

are involved in protein and RNA metabolism (22% and 11% of all

candidates, respectively), signaling (5%) and stress-related process-

es (5%). The proportion of predicted candidates in known

functional categories was calculated in relation to the total number

of proteins of each category; the results showed that approximately

60% of the proteins in each category were S-nitrosylation

candidates (Figure 2). The signaling category presented the highest

proportion of S-nitrosylation candidates (70%). A more detailed

analysis of this group revealed that 70% to 100% of the subclasses

‘‘14-3-3 family proteins’’, ‘‘light’’, ‘‘lipids’’, ‘‘MAP and receptor

kinases’’, ‘‘phosphoinositides’’, and ‘‘sugar and nutrient physiolo-

gy’’, are S-nitrosylation candidates (Table 4). 14-3-3 proteins have

previously been identified as S-nitrosylation targets in Arabidopsis
[16,28] and in mesangial cells [78]. 14-3-3 proteins represent an

emerging family of proteins and protein domains that bind to

serine/threonine-phosphorylated residues. These proteins regulate

key proteins that are involved in several physiological processes,

including intracellular signaling, apoptosis, cell cycling, and

transcriptional regulation. 14-3-3 proteins also act as adaptor

molecules that stimulate protein-protein interactions and regulate

the subcellular localization of proteins [79]. Interestingly, the 10%

of sites predicted with the highest confidence in the large-scale

prediction study showed the same functional classification pattern

as that for all S-nitrosylated proteins (Figure S1). The functional

distribution of the predicted S-nitrosylation candidates is similar to

that of the major classes of S-nitrosylated proteins that have been

identified experimentally in Arabidopsis [16,27,28,80].

5. A comparison of experimentally identified candidates
with the candidates predicted using GPS-SNO 1.0
software

Two-hundred sixty-three proteins have previously been identi-

fied experimentally in Arabidopsis thaliana as S-nitrosylation

candidates based on the BST [16,18,19,27,28,80–83]. These

proteins were detected using large- and small-scale studies, most of

which did not determine the exact S-nitrosylation sites experi-

mentally. To compare the results of the computational predictions

with experimental data, we analyzed these datasets using GPS-

SNO. Interestingly, 160 proteins (approximately 61%) that were

identified using the biotin switch approach were also predicted by

the GPS-SNO software (using the medium threshold) as S-

nitrosylation candidates.

In a more detailed analysis, Fares et al. experimentally identified

53 S-nitrosylation sites on 46 proteins in an Arabidopsis cell

suspension using BS-ICAT technology [28]. However, these

identified S-nitrosylation sites were not further verified on the

biochemical and physiological level meaning that these S-

nitrosylation sites/proteins are still candidates. This set of proteins

was also analyzed using the GPS-SNO 1.0 software under the

medium threshold condition (Table 5). This analysis revealed that

approximately 74% of proteins (34 proteins) that were identified as

S-nitrosylated using BS-ICAT were also predicted as S-nitrosyla-

tion candidates using GPS-SNO. To compare the candidate

Table 4. Percentage of predicted candidate proteins for S-nitrosylation in signaling subclasses.

Signaling subclasses Total proteins Candidate proteins for S-nitrosylation

14-3-3 proteins 15 15 (100%)

Light 117 98 (84%)

Lipids 6 5 (83%)

MAP kinases 50 40 (80%)

Receptor kinases 1067 843 (79%)

Phosphinositides 98 76 (78%)

Sugar and nutrient physiology 82 58 (71%)

G-proteins 243 157 (65%)

Unspecified 8 5 (62%)

Calcium 230 141 (61%)

Miscellaneus enzyme families 41 21 (51%)

Phosphorelay 5 1 (20%)

Functional classification of the predicted candidates has been done using the MapMan Ontology software (http://mapman.gabipd.org/web/guest/mapman).
doi:10.1371/journal.pone.0110232.t004
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Table 5. Prediction of S-nitrosylated sites from experimentally identified S-nitrosylated proteins by GPS-SNO software.

Accession number
Cys-NO site identified
by BS-ICAT

Cys-NO site predicted
by GPS-SNO NO-peptide sequence predicted by GPS-SNO

AT1G04710 C130 C184 KFEQAHNCLLPMGIT

AT1G04710 - C363 FASQFVYCRNKLGLD

AT1G04710 - C394 LGATGARCVATLLHE

AT1G04710 - C417 RFGVVSMCIGSGMGA

AT1G07890 C32 C19 YKKAVEKCRRKLRGL

AT1G07930 C87 C111 TGTSQADCAVLIIDS

AT1G09780 C100 C355 NGVSTFACSETVKFG

AT1G19570 C20 C6 **MALEICVKAAVGA

AT1G22300 C98 C98 EDELAKVCNDILSVI

AT1G35720 C111 C111 QVLMEVACTRTSTQL

AT1G47128 C233 C161 DQGGCGSCWAFSTIG

AT1G47128 C342 C342 IASSSGKCGIAIEPS

AT1G47128 - C200 DTSYNEGCNGGLMDY

AT1G56070 C370 C131 GALVVVDCIEGVCVQ

AT1G56070 - C448 ETVEDVPCGNTVAMV

AT1G60710 C198 C5 ***MAEACGVRRMKL

AT1G60710 - C254 KIVYEKVCAISEKKG

AT1G63000 C162 - -

AT1G65930 C75 C297 LMTSVLVCPDGKTIE

AT1G65930 C363 C363 TEKLEAACVGTVESG

AT1G65930 C269 - -

AT1G73010 C98 C165 GTCPPNMCKGLIIER

AT1G77120 C243 C10 TTGQIIRCKAAVAWE

AT1G77120 - C271 GVDRSVECTGSVQAM

AT1G78830 C374 - -

AT2G31390 C298 - -

AT2G39730 C175 C451 NLPVPEGCTDPVAEN

AT2G44350 C108 C210 WEPTYEDCLNLIARV

AT2G45290 C440 C440 TRNLSQQCLNALAKA

AT2G45290 - C245 EGISNEVCSLAGHWG

AT3G08580 C130 C130 PYKGIGDCFGRTIKD

AT3G09820 C323 - -

AT3G09840 C109 C425 CTEAALQCIREKMDV

AT3G09840 - C575 KARQSAPCVLFFDEL

AT3G11940 C175 C69 KRFRKAQCPIVERLT

AT3G17240 C372 - -

AT3G47370 C39 - -

AT3G51800 C178 - -

AT3G53870 C134 C97 KVNNRGLCAIAQAES

AT3G55440 C218 C13 FVGGNWKCNGTAEEV

AT3G55440 C127 C127 QGLKVIACVGETLEE

AT3G56310 C311 C117 IHVNIDDCWSNLLRD

AT3G56310 - C422 AQVDAHDCHMYVLTP

AT3G61440 C72 C16 LRRETIPCFSHTVRK

AT3G61440 - C87 QEHFQPTCSIKDRPA

AT4G09320 C43 C2 ******MCGLYINLF

AT4G09320 C268 - -

AT4G11150 C201 C121 LKDLIVQCLLRLKEP

AT4G11150 - C134 EPSVLLRCREEDLGL
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cysteine sites, the GPS-SNO program was used to predict 60

putative S-nitrosylation sites within these 34 proteins; however,

only 11 of the predicted S-nitrosylation sites corresponded to sites

identified using BS-ICAT (Table 6). These data indicate that the

GPS-SNO software predicts a different set of S-nitrosylation sites

in comparison to the BST-based approach.

Conclusions

Protein S-nitrosylation has emerged as an important field of the

study of post-translational modification and is increasingly studied

in plants. However, the proteomic approaches used to identify

proteins that are targets of S-nitrosylation are associated with a

variety of technical difficulties, such as the existence of side

reactions in multi-step procedures, the low abundance or

instability of proteins, and instrumental inaccuracy. Computation-

al methods can help to overcome these problems. Computational

analyses can be performed easily on complex protein datasets

obtained from databases, regardless of protein abundance or

instability or the existence of complex chemical reactions.

However, computational approaches also present disadvantages.

Protein S-nitrosylation is an enzyme-independent chemical

Table 5. Cont.

Accession number
Cys-NO site identified
by BS-ICAT

Cys-NO site predicted
by GPS-SNO NO-peptide sequence predicted by GPS-SNO

AT4G11650 C72 - -

AT4G13430 C376 C12 ISSSPFLCKSSSKSD

AT4G13940 C244 C42 EMPGLMACRTEFGPS

AT4G13940 C268 - -

AT4G33030 C357 C357 DIRDTVQCVEIAIAN

AT4G33030 - C9 AHLLSASCPSVISLS

AT5G02500 C319 C319 NMDLFRKCMEPVEKC

AT5G02500 - C326 CMEPVEKCLRDAKMD

AT5G02500 - C609 MKELESICNPIIAKM

AT5G14040 C104 C194 IIADIALCPFEAVKV

AT5G15490 C350 - -

AT5G25100 C104 C363 YVGTGVQCLGMVLVT

AT5G44340 C354 C354 NNVKSSVCDIAPKGL

AT5G44340 - C12 LHIQGGQCGNQIGAK

AT5G44340 - C238 ATMSGVTCCLRFPGQ

AT5G61790 C108 - -

AT5G62690 C56 C12 LHIQGGQCGNQIGAK

AT5G62690 C301 C238 ATMSGVTCCLRFPGQ

AT5G62690 - C354 NNVKSTVCDIPPTGL

AT5G66760 - C4 ****MWRCVSRGFRA

AT5G66760 - C77 EHGFNTACITKLFPT

AT5G66760 - C294 TGIYGAGCLITEGSR

AT5G66760 - C457 IVVFGRACANRVAEI

AT5G66760 C526 C526 QETLEEGCQLIDKAW

ATCG00340 C559 - -

ATCG00490 C192 - -

ATCG00490 C427 - -

S-nitrosylated Arabidopsis candidate proteins published by Fares et al. (2011) were analysed by GPS-SNO software using the medium threshold condition.
C in bold, matched cysteine residues.
doi:10.1371/journal.pone.0110232.t005

Table 6. Computational analysis of proteins, which S-nitrosylation sites were identified by BS-ICAT technology [28].

BS-ICAT GPS-SNO 1.0 medium threshold

Protein number 46 34

Total number of Cys-NO 53 60

Matched Cys-NO with BS-ICAT - 11

doi:10.1371/journal.pone.0110232.t006
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reaction that depends on many factors, all of which define whether

a given cysteine residue will be sensitive to this modification.

Although GPS-SNO 1.0 appears to predict S-nitrosylation sites

with better accuracy, sensitivity, and specificity than other

algorithms (Table S1), further research is required to improve

the accuracy of the identification of S-nitrosylated sites. In this

context, a set of non-SNO proteins would be helpful to calculate

the sensitivity and specificity of the predictor.

Of greatest importance, all developed programs, including

GPS-SNO 1.0, are based on the primary sequence of the studied

proteins. However, the 3-dimensional (3D) structure of a protein

also greatly affects its sensitivity to S-nitrosylation. The 3D

structure defines which cysteine residues are accessible, and the

amino acids surrounding a cysteine residue in the 3D structure

determine the sensitivity of this residue to S-nitrosylation.

Knowledge of the tertiary and quaternary structure of the protein

may identify additional cysteines that might not be identified based

on the primary sequence. Conversely, cysteine residues that are

predicted to be S-nitrosylation targets might be excluded because

they are inaccessible based on the spatial conformation. Therefore,

knowledge of the high-resolution structure of the microenviron-

ment around each cysteine residue is essential for defining the

physicochemical features that determine S-nitrosylation specificity.

Protein 3D structures have been already used to identify protein

phosphorylation sites [84]. In that study linear motifs and spatial

amino acid composition within a specific radial distance from the

phosphorylated amino acid residue have been included [84]. But

in general, computer-based prediction of S-nitrosylation candi-

dates from Arabidopsis can offer a starting point for experimental

verification and for further studies of S-nitrosylation in plants. The

combination of computational prediction and experimental

verification represents a good approach to better understand the

molecular mechanisms and the regulatory functions of S-

nitrosylation in plants. Nevertheless, both methods must be

developed further to improve the precision with which S-

nitrosylation targets are identified. Finally, the identified or

predicted candidates must be confirmed using recombinant

proteins, cysteine mutants and in-vivo approaches.

Supporting Information

Figure S1 Functional distribution of the 10% of candi-
dates that were predicted with the highest confidence

levels based on the MapMan Ontology of Arabidopsis
proteins (http://mapman.gabipd.org/web/guest/mapman).
Others: functional classes with less than 5% of S-nitrosylated

candidates.

(TIF)

Table S1 Comparison of the performance of four
software tools in predicting S-nitrosylation sites. Accu-

racy, sensitivity and specificity were used to evaluate the

performance.

(DOCX)

Table S2 The Arabidopsis proteome was extracted from
the TAIR 10 database, and proteins were assigned to
cellular localizations according to the gene ontology
cellular component classification.

(XLS)

Table S3 Amino acid sequences were downloaded for
Arabidopsis from TAIR (www.arabidopsis.org) and ana-
lyzed using the GPS-SNO 1.0 program and the medium
threshold. The 10% of candidates that were predicted with the

highest confidence were ranked by the raw score divided by the

cutoff of a particular cluster.

(XLSX)

Table S4 The Arabidopsis proteome was extracted from
the TAIR 10 database, and proteins were assigned to
cellular localizations according to the gene ontology
cellular component classification.

(XLS)

Text S1 Subcellular compartments assigned according
to the gene ontology cellular component classification
(http://amigo1.geneontology.org/cgi-bin/amigo/go.cgi).

(DOC)
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