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Kurzdarstellung
Krebs ist keineswegs eine neue Krankheit. Sie ist schon seit Jahrhunderten bekannt,
aber anders als damals werden die Menschen heutzutage um viele Jahre älter und da
Krebs sich oftmals erst im hohen Alter zeigt, gibt es heute auch viel mehr an Krebs
erkrankte Menschen als früher. Deshalb ist Krebs zu einem Hauptproblem in Gesund-
heitsfragen geworden und Krebsforschung extrem wichtig.
Das Ziel ist es natürlich, jeden Menschen, der an Krebs erkrankt ist, heilen zu kön-
nen. Doch da es viele verschiedene Arten davon gibt, muss auch für jede spezielle
Art eine eigene Therapie gefunden werden. Und dafür gibt es viele Möglichkeiten. Es
gibt zahlreiche Chemotherapeutika, von denen man mit einer, oder auch mit mehreren
therapieren kann. Zudem kann man mit Strahlentherapie behandeln, oder auch mit
einer Kombination davon. Doch es gäbe noch viele weitere Methoden. Da das Thema
dieser Arbeit die kombinierte Therapie ist, beginnt sie mit einem Überblick über den
biologischen Hintergrund von Krebs, Chemo- und Radiotherapie. Dann wird mit der
Behandlung von mathematischen Modellen begonnen, welche Tumorwachstum model-
lieren. Weiter geht es mit der Modellierung des Wachstums von Tumoren, welche mit
Radiotherapie behandelt werden. Im nächsten Kapitel wird das Wachstum von Tumoren
behandelt, die mit Chemotherapie behandelt wurden. Um einen allgemeinen Überblick
über die Wechselwirkungen zwischen Körper und Chemotherapeutika zu bekommen,
wird in diesem Kapitel mit einer Zusammenfassung der in der Pharmakokinetik und
Pharmakodynamik verwendeten Modelle begonnen. Danach wird ein Zellpopulations-
modell und ein Zellzyklus-spezifisches Modell behandelt. Letztendlich werden die Mo-
delle aus den beiden vorangegangen Kapiteln zusammengeführt und Modelle behandelt,
die kombinierte Radio- und Chemotherapie beinhalten, wie das erweiterte LQ-Modell,
ein Zellpopulationsmodell und ein räumliches Modell.
Zusätzlich gibt es am Ende jedes Kapitels einen Abschnitt, in dem die Modelle an Daten
getestet werden. Gegebenfalls werden die Modelle auch angepasst, damit sie bestmöglich
der Realität entsprechen. Doch man muss natürlich beachten, dass diese Modelle damit
keine Allgemeingültigkeit haben, da sie sehr von den Versuchsbedingungen, der verwen-
deten Zelllinie, der Chemotherapeutika und vielem mehr abhängen.
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1. Introduction

1. Introduction
Cancer is far from being a new disease. It is well known since centuries, by the Egyptians
for example. But since cancer is a disease which mainly shows up not until the latter
decades of life only a small part of the people got ill in comparison to today. Today it
is one major problem in health issues and thus cancer research is extremely important
[KS05]. Specific research began when about 170 years ago Johannes Müller discovered
that tumors are made up of cells. Scientists searched for the difference between a normal
and a cancer cell. In the following a huge amount of information about the cancer cell
has been collected [KS05].
Over the years many different therapies arose, but there is not the one and only therapy
to treat cancer. As you can see in section 2.1 there are many different types of cancer and
thus for every single one a particular therapy has to be found. And there are many ways
to treat: with one or several of the diverse chemotherapeutic drugs, with radiotherapy
or with both radio- and chemotherapy. Since the issue of this thesis is the combined
therapy, chapter 2 gives a summary over cancer itself, over chemotherapy, especially over
a drug called vinblastine and finally also over radiotherapy. The treatment schedule can
be very important, too. This can be seen in section 5.4. Subsequent to the chapter
about the biological background, chapter 3 gives an overview over mathematical models
for tumor growth. Chapter 4 reviews a model for tumor growth including radiotherapy
and chapter 5 covers different models for chemotherapy, beginning with a summary over
the pharmacokinetics and pharmacodynamics, which describe how the body system and
the drug interact. Chapter 5 continues with a cell population model and a cell cycle
specific model. Finally in chapter 6 chemo- and radiotherapy are combined, first in the
LQ-model, then in a cell population and finally in a spatial model.
At the end of every chapter, we fit the introduced models to data, which is provided by
[AH14]. The idea is to test if the model can cover the reality and if it considers all effects
of the therapy. If not, the model is adjusted, according to the data. But you have to
keep in mind that the models are not universal, because they depend on the particular
cell line, the drug and the general experimental setup.
In the last chapter some conclusions and an outlook for possible further research are
shown.
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2. Biological Background

2. Biological Background
2.1. Tumor Growth
To characterize cancer most simple, it arises when genes cause cells to malfunction and
interact with the body in an abnormal, hyper-proliferative manner. Among a series of
other mechanisms, this can happen by increased cell proliferation or reduced apoptosis,
the programmed cell death [Mac10]. Cancer initiation, or carcinogenesis, is a complicate
process that includes the malfunction of particular genes. The growth rate of normal
tissue is regulated by growth promoting and growth inhibiting signals. Two types of
genes are most relevant for these processes, the oncogenes and the tumor suppressor
genes (TSGs). The oncogenes respond or create growth signals and support thereby
cell cycle progression. Tumor suppressor genes on the other hand respond to inhibitory
signals and retard or stop the cell cycle, in order to ensure correct cell repair. Under
certain conditions they can also cause apoptosis. So the reason why carcinogenesis starts
is a genetic mutation or an epigenetic alteration that causes a malfunction of one of these
genes. This malfunction is either an over-expression of oncogenes or an under-expression
of TSGs. It can happen in a small number of cells or even in one single cell. If this cell
succeeds to avoid the DNA repair mechanisms and the numerous checkpoints, a whole
colony of hyper-proliferative, damaged cells can arise. This can take years, but it can
also be accelerated by external influences [Mac10, KS05].
Since differentiated cells can divide only a limited number of times before they reach a
quiescent state or apoptosis, it has been proposed that cancer arises more likely from
mutated somatic stem cells than from differentiated cells [Mac10]. But cancer cells do
not necessarily divide faster than normal cells, they could also divide more often and
thus over a longer period of time. A timespan after which a normal cell would be already
quiescent or dead [Bri03].

G2

M

G1

S

R checkpoint

G2/M checkpoint

G0

Figure 2.1: Cell cycle, based on a figure in [Mac10].
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2. Biological Background

To understand this mechanisms better and since many treatments are brought into line
with the cell cycle, it will be discussed in more detail. The cell cycle is a series of stages
which regulate the cell division. There are five different stages: The G1, S, G2, M
and the G0 phase, see figure 2.1. In the first phase, the G1 phase (gap 1) not much
seems to happen, but the cell grows, synthesizes proteins, constructs new organelles and
prepares for DNA replication. The next stage is the S phase (synthesis) in which the
DNA is replicated and other cell components increase. In the G2 phase (gap 2) further
preparations are made. This time in the cell nucleus, in preparation for cell division.
In the M phase (mitosis), the final phase, the nuclear membrane breaks down, the two
copies of the DNA are separated and integrated into two different nuclei (mitosis). Also
all organelles and the cytoplasm are divided in order to put them with the nuclei in two
daughter cells (cytokinesis). In the cell cycle there are also checkpoints to control the
cycle progression. There it is possible to stop it, to check for DNA damage and to repair
it. At the R checkpoint at the end of the G1 phase the cell can either continue the cycle
or transition into the G0 phase (quiescent state). Here the cells have the same DNA
content as in the G1 phase. Most of the normal, noncancerous cells are resting in this
phase. There are further checkpoints in the G2 and the M phase. At this checkpoints
the DNA is also checked for damage and repaired if necessary. If a repair should fail,
apoptosis is induced [Mac10, KS05, Eis79, Kno88].
In the early stages of tumor growth the tumor has no own vasculature and thus no own
blood supply. Hence the tumor has to get all needed substances like oxygen, nutrients
or growth factors from the surrounding vascularized tissue. These ”substrates” diffuse
from the nearby tissue and create a substrate gradient from the external source to the
tumor, the internal sink. Oxygen is extraordinary important here. After a diffusing
distance of about 100− 200µm the substrate concentration drops down to a level where
metabolism is not possible anymore. Thus in this inner part of the tumor, the cells
become hypoxic. Cells are hypoxic, if their oxygen supply is deficient. Further inside,
the oxygen and glucose levels are so critically low that the cells start to die. Hence if
the tumor is big enough, it has three layers. As you can see in figure 2.2 the outer one
consists of proliferating cells, the next one of hypoxic cells and the inner layer consists
of necrotic cells [Mac10]. It seems that the width of the outer rim which consists of
proliferating cells tends to be constant. Nevertheless, an avascular tumor cannot grow
indefinitely large [Bri03].
It was already said above that cells that are part of a proliferating cell populations
are more likely to become cancerous than other cells. There are different types of can-
cer. Carcinomas are cancers of the epithelial cells, which form the surfaces and cavities
throughout the body and add up to 90% of all cancers. Lymphomas are cancers of
the immune system. The last one are Leukemias, which were known as cancers of the
haematopoietic system, which is responsible for the blood cell production [Bri03]. But
there are recent discussions about leukemia being a stem-cell disorder.
Of course there are further classifications of the different types of cancer, according to
the location of the tumor. In figure 2.3 there are the 20 most common cancers in Ger-
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2. Biological Background

necrotic cells

hypoxic cells

proliferating cells

Figure 2.2: Three layer scheme, representing a slide of the tumor.

many. The data is from the International Agency for Research on Cancer [FSE+14]. As
you can see, breast cancer is the most common type of cancer with 716 cases in the year
2012. Since the 1970s this number has increased. Among others this is due to the fact
that the life expectation increased and the screening methods became more sensitive,
which causes a better detection. So the number of cases increased, but fortunately the
number of deaths decreased [AMA14].
There are many risk factors of cancer, which are classified as modifiable and non-
modifiable risks. The modifiable risks of breast cancer are for example diet, alcohol
consumption, body mass index, exogenous estrogen use, smoking, and physical inactiv-
ity. Non-modifiable risks of breast cancer are age, race/ethnicity, genetics/family history,
and age at menarche. There are also potentially modifiable risks like the woman’s age
at the birth of her first child, her age at menopause, or her breast-feeding status. The
mammographic breast density seems to correlate with the risk of getting breast cancer,
too [AMA14].

4



2. Biological Background

Gallbladder
Multiple myeloma

Ovary
Other pharynx

Oesophagus
Brain, nervous system

Lip, oral cavity
Liver

Leukemia
Corpus uteri

Non-Hodgkin lymphoma
Stomach
Pancreas

Melanoma of skin
Kidney

Bladder
Lung

Colorectum
Prostate

Breast

0 200200 400400 600600 800800

Male Female

Number of new cases/deaths × 100

28
52
37
59
53
66
24
67
50
69
56
70
23
86
76
81
72
109
21
111
54
145
96
159
161
163
26
168
75
185
53
283
434
507
254
635
125
682
168
716

Figure 2.3: The 20 most common types of cancer in Germany in the year 2012. New cases
are represented by the blue bars and the cases of death by the purple bars. Data from
[FSE+14].
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2. Biological Background

2.2. Chemotherapy
The broadest definition of chemotherapy covers any therapeutic intervention using chem-
icals and includes the use of any pharmaceutical compound. But in common it is the
use of cytotoxic drugs to treat malignant diseases [KS05].
It is often heard that the origins of modern chemotherapy research were during World
War II when the few survivors of an attack with mustard gas in 1943, which is named
after its smell and was used in World War I chemical warfare, were examined. They
showed a reduction of bone marrow cells and thus anemia. This reawakened the interest
about the discovery which was originally made in 1919 [PV10, Wei07]. In 1942 research
to the effects on mustard gas began at Yale University in Connecticut. They discovered
that intravenous doses of mustard gas caused a temporarily regression of a lymphoma
[Wei07]. Long before that, about 15 centuries ago, herbs and botanicals were used to
treat tumors. Later also arsenical therapy was used systemically, which did not receive
much attention, because it was considered dangerous. Then in 1865 the first instance
of effective chemotherapy was found. Potassium arsenite was used to to treat chronic
myelogenous leukemia. Even today arsenicals are still used to treat cancer [Pap01].
The focus of the research was to find new agents which kill neoplastic cells more likely
than normal tissue or at least agents that only cause tolerable side effects. Indeed many
more agents are found during the years, but still three basic questions are unanswered:

• How do the agents kill cancer cells?

• Why are cancer cells killed more likely than normal cells by these agents?

• How do cancer cells get resistant to agents that were effective in treating these
tumors at the beginning?

These questions led to discovery of some of the more recent, molecularly designed agents
[Wei07].
Despite the intention to find agents that affect the normal tissue as slightly as possible,
all targets of the cytotoxic agents in the malignant dividing cell are also present in a
normal dividing cell. Thus all fast dividing cells in the body, such as bone marrow, skin,
hair follicle, and gastrointestinal mucosa are also impaired, nearly as much as the tumor
itself. So the solution could be to adjust the treatment regime, since tumor cells often
have no well-functioning DNA repair mechanisms. Thus the aim is to find a regime
where the normal cells have enough time between two treatments to repair themselves,
but the tumor cells cannot handle this. But also different normal tissues need different
time spans to recover. White blood cells need for example only 1 - 3 days, but red blood
cells in contrast need 120 days [KS05].
Another important aspect of chemotherapy are the various side effects. There are early
side effects which can already occur after hours and late side effects which occur only
after months, or even years, after the treatment has ended. Early side effects appear
quite frequently and usually disappear again. There are for example nausea, alopecia and
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2. Biological Background

myelosuppression, to mention just a few. Late side effects are very rare, but when they
appear they are usually permanent and can even be disabling. Late side effects would
be for example cardiotoxicity, premature menopause and pulmonary fibrosis [KS05].
Another ”side effect” of the chemotherapeutic agents is that drug resistance develops
sooner or later for all various agents and for all types of cancer. Thus whole colonies of
drug resistant tumor cells develop and become bigger and bigger. Multi-drug protocols
are the reaction to this. Often they apply combinations of drugs with distinct and
complementary modes of cell killing. Thus the only chance for a tumor cell to survive
this treatment is being resistant to all drugs that are used in this multi-drug protocol.
But the probability of a cell to be resistant to all administered drugs is really very low,
since the different surviving probabilities have to be multiplied [Wei07].
To test how the drugs are delivered with the maximum therapeutic effect, they were
tested with the focus on the effects of the drugs on cultured tumor cells and on tumor
xenografts (grown largely in laboratory mice). Thereby two different fields arose: The
pharmacokinetics and the pharmacodynamics. The pharmacokinetics are dealing with
the rates at which an administered drug is

(a) absorbed into the system,

(b) distributed in the various tissues,

(c) metabolized and

(d) excreted.

But this cannot tell us how the cells really respond to the drug. For this purpose there is
the second field, the pharmacodynamics [Wei07]. Thus the pharmacokinetics deal with
the question what the body does to the drug while the pharmacodynamics deal with the
question what the drug does to the body [PV10].
At the end of this subsection we want to go into a particular chemotherapeutic drug
called vinblastine. Its molecular structure can be seen in figure 2.4 [Fva10]. It is produced
naturally from a plant called Vinca rosea, a periwinkle plant which grows in Madagascar
[Wei07, CCK07]. Thus it belongs to a class called Vinca alkaloids [MHM+06, CCK07].
The reason why vinblastine is affective against cancer is its functionality. It belongs
to a class of antimetabolites which affects the normal cell function by inhibiting the
microtubule assembly [Wei07, CCK07]. It binds to tubulin, a structural protein. Since it
is the basic block of the microtubule, vinblastine inhibits its accumulation. Microtubule
themselves are hollow cylindrical protein structures and thus structural components of
cells. An important purpose of them is to form the mitotic spindle. Since this spindle is
responsible for the separation of the chromosomes during cell division, the cell division is
stopped at the metaphase stage of the cell cycle by vinblastine [CCK07]. To understand
better what is happening, see figure 2.5. It shows the different stages of the meta- or
M-Phase. It is quite obvious that without the microtubule, the chromosomes cannot
divide and thus no cell division is possible anymore.
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2. Biological Background

Vinca alkaloids are used in lymphomas, lung cancers, breast cancers and head-and-neck
squamous cell carcinomas [Wei07, CCK07]. In particular vinblastine is used in Hodgkin’s
disease and testicular neoplasms [SSS84].

Figure 2.4: Molecular structure of vinblastine. Figure from [Fva10].

Prophase Metaphase

Mikrotubuli

Anaphase Telophase Cytokinesis

Figure 2.5: M-Phase.
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2.3. Radiotherapy
The foundation of the radiation oncology was laid in 1895 when Röntgen discovered X-
rays. Soon it was discovered that the X-rays in form of electromagnetic radiation cause
damage of the normal tissue in the form of burn, and even tissue necrosis [Wei07]. The
first cure of cancer which was caused by radiotherapy was in 1899 [CHN09], but radiation
was not really used until the end of World War II when they figured out how to direct
the rays in relatively narrow fields. Further problems were the little knowledge about the
effects of the radiation and the inability to control the doses of the administered X-rays
properly [CHN09]. By directing the rays they were able to focus the diagnosed tumor.
By treating the tissue which is adjacent to the tumor after a surgery with radiation the
post-surgical relapse could be reduced. Thus adjacent radiation therapy has become an
important clinical tool [Wei07, CHN09]. Since 90% of tumor recurrence arises in the
tissue adjacent to the tumor, it is very important to focus on this. This adjacent tissue
is defined as a 10mm margin which contains actual or potential cancer cells [EAC+05].
Thus in the case of breast cancer one would concentrate on this area instead of treating
the whole breast.
One of the central issues of radiobiology is to understand which factors influence ra-
diosensitivity. Radiosensitivity is the response of the cells to a particular radiation dose.
These radiation doses are measured in Gray, where 1 Gray = 1 Gy = 1 Joule / Kg. The
main effect of radiation is that it causes molecular excitation and the ejection of fast
electrons from the atoms of the cell, which is called ionization. Molecular excitation is
degraded as heat, which is quite harmless, but in the ionization process free radicals are
produced. Radicals have an unpaired valence electron or an open electron shell. Thus
they are very unstable and reactive towards other substances which can cause reversible
and irreversible changes to the cell nucleus. This again can involve DNA lesions, includ-
ing single and double DNA strand breaks [CHN09].
The reason why radiotherapy is working on cancer is more or less the same as the one
for chemotherapy. Normal cells have the ability to repair DNA damage in the majority
of cases. If not, cell apoptosis is induced. Tumor cells however often show absence of this
ability. So the damage on the tumor cells is bigger than the damage on the normal cells.
The extend of this damage depends on the radiosensitivity of the tumor cells which is
influenced by many factors. First of all proliferating cells are more radiosensitive than
resting cells, i.e. cells in the G0 phase. Second a low oxygen concentration, called hy-
poxia, decreases radiosensitivity. Thus the tumor cells which lie internally are damaged
much less than the proliferating cells in the outer shell.
But of course, also radiotherapy has its side effects. If the DNA damage of a normal
cell is repaired incorrect and also apoptosis fails, the cell keeps on living with the DNA
damage. If this cell splits into two new cells, the DNA damage is transferred to both
daughter cells. The two daughter cells can transfer the damaged DNA again and so on.
Thus genomic instability and subsequent carcinogenesis can arise [CHN09].
There are different radiotherapies used. The first one is the external beam radiotherapy
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2. Biological Background

(EBRT) which is the standard therapy. It is delivered in, for example, 25 fractions of 2
Gray, given in a timespan of 4 to 6 weeks. In the time between two fractions, the healthy
cells have time to repair the damage caused by the radiotherapy. Another, newer treat-
ment is the targeted intraoperative radiotherapy (TARGIT) where a single high dose
of radiation is delivered directly into the tumor bed. This happens during the surgery,
while the patient is still sedated [ECAV06].
The most influential processes in tumor radiotherapy are known as the 5 R’s [CHN09].
These five R’s of radiobiology are

• Radiosensitivity,

• Repair,

• Redistribution over the cell cycle,

• Reoxygenation and

• Repopulation.

10



3. Modelling Tumor Growth

3. Modelling Tumor Growth
This section deals with some important models for tumor growth. These models are
based on the assumption that the tumor cells are homogeneous and form a solid avascular
tumor. Since the nutrient supply is diffusion limited, the tumor cannot grow indefinitely.
Thus an avascular tumor stays so small that it cannot be seen in vivo [Bri03]. The critical
tumor size is defined by the avascular threshold, which is about 105 − 106 cells [BW02,
Fol95]. Anyway an avascular tumor is not defined by its size. We also assume that
the tumor is growing continuously. Here and also in the whole thesis only deterministic
models and no stochastic models are considered.

3.1. Homogeneous Tumor Growth Models
Exponential Growth Equation The easiest model of tumor growth is the exponen-
tial growth equation. Here the only further assumption is, that the tumor cells grow
exponentially. With N(t) being the number of tumor cells at time t the model reads as

dN

dt
= rN (3.1a)

N(0) = N0, (3.1b)

with the solution

N(t) = N0e
rt, (3.2)

where N0 is the initial number of tumor cells at time t = 0 and the term r > 0 is the
net rate at which the cells proliferate [Pre03]. Here all nutrients and other vital growth
factors are available unrestrictedly. Thus according to equation (3.2) the number of
tumor cells would grow without a limit. But since in vivo there are restrictions another
model is needed.

Logistic Growth Equation There is not unlimited space and there are also not unlim-
ited nutrients. Thus at a certain point the number of cells stop growing and converge
to a limit K > 0, the carrying capacity [Bri03, Pre03, All07]. Including this fact in the
exponential growth equation yields

dN

dt
= rN

(
1− N

K

)
with r,K > 0 (3.3a)

N(0) = N0, (3.3b)

with the solution

N(t) = N0K

N0 + e−rt(K −N0) . (3.4)
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3. Modelling Tumor Growth

If one is interested in the way of finding the solutions of the differential equations,
please have a look at [Web13], where the analytical solutions are found with the aid of
substitution and bernoulli equations. This model is still not perfect, since it is not very
flexible. The maximum growth rate is always at K/2 which does not always correspond
to the reality. Thus another, more flexible model is needed.

Generalized Logistic Growth Equation With the aim to vary the equation’s maximum
we introduce a new parameter α. It allows a better control of the tumor growth. If α < 1
the model reaches the saturation faster and if α > 1 it reaches the saturation slower
than the logistic growth equation [Web13].

dN

dt
= r

α
N

(
1−

(
N

K

)α)
with α > 0 (3.5a)

N(0) = N0. (3.5b)

One can see easily that if α = 1, equation (3.5a) is identical to the logistic growth
equation. The solution of (3.5) reads as

N(t) = N0K

(Nα
0 + e−rt(Kα −Nα

0 ))
1
α

, (3.6)

[Pre03]. To see the difference between the three discussed models better, please have a
look at figure 3.1.
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3. Modelling Tumor Growth

Figure 3.1: Different tumor growth models: The exponential growth equation is represented
by the black line, the logistic growth equation by the blue line and the generalized logistic
growth equation is depicted by the green line for α = 0.5 and by the red line for α = 2.
Further parameters are r = 0.0289 1

h , K = 100 cells and N0 = 10 cells. The curves are
obtained by the corresponding analytical solutions (3.2), (3.4) and (3.6).
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3.2. Fitting the model to data
Now we want to apply the generalized logistic growth model to the data. This data was
measured in the Institute of Radiobiology at the Helmholtz Zentrum München. In this
experiment breast cancer cells from the cell line T47D were put in a 96-well plate and let
grow in a hanging drop for three days. After these three days the resulting spheroid was
put in a gravity plate where it stayed for another day. The time t was set to zero and
the area of the spheroid was measured for the first time. There were control tumors and
tumors which were treated with radiation or chemotherapy or both. First the radiation
was administered once and after that the chemotherapeutic drug, called vinblastine, was
administered. The drug stayed in the nutrient solution for six days before it was washed
away. The area of the spheroid was measured again on the days 3, 6, 9 and 12. More
details to this process follow in the next sections. In this section we focus on the tumor
growth without treatment.
Since the generalized logistic growth model returns the number of cells and the dataset
only includes the mean image region area, we need to convert the data. For this purpose
we take the formula and the parameters from [Web13], since in that thesis also cell counts
were available. In that thesis equation (3.6) was used with the parameters α = 0.325,
K = 0.069 cells, N0 = 0.001 cells and r = 0.000013 1

µm2 . The correlation between the
mean area and the cell number per µm2 can be seen in figure 3.2.

Figure 3.2: Coherence of the mean area and the cell number per µm2. The used formula is the
solution of the generalized logistic growth equation (3.6) and the parameters are chosen as
follows: α = 0.325, K = 0.069 cells, N0 = 0.001 cells and r = 0.000013 1

µm2 . Formula and
parameters are taken from [Web13].
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3. Modelling Tumor Growth

Days 0 3 6 9 12
Area (µm2) 79312.42 131492.7 194451.8 222105.0 233064.7

Number of cells 596.3 2424.5 6986.6 9581.6 10659

Table 1: Mean area measured over a period of 12 days and number of cells. Data taken from
[AH14].

Knowing these correlation, it is easy to calculate the needed data which can be seen in
table 1. So now we can compare the data with the generalized logistic growth model. In
order to get appropriate parameters for the model, we use algorithm 1. The idea behind
this algorithm is to get a minimal error between the data points and the model curve.
For calculating the error, we use the weighted sum of squares which reads

error =
n∑
i=1

(
Datai −Modeli

Modeli

)2

, (3.7)

where Modeli is the i-th point which is calculated with the model equation and Datai
is the corresponding i-th point of the dataset [Web13]. To find the best fit, we use
algorithm 1 and set N0 = 596.3 cells, according to the data. Additionally we can set
r = ln 2

60h = 0.0116 1
h
, since this parameter is known for the cell line T47D [Web13]. The

algorithm returns α = 0.2030 and K = 13380 cells with an error of 0.0297. Figure 3.3
shows the model curve with the found parameters and the data points. This and all
further simulations in the next chapters are made with the technical computing language
MATLAB from MathWorks R©. The codes for the simulations and algorithm are attached
in the appendix.
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3. Modelling Tumor Growth

Figure 3.3: Generalized logistic growth model versus data. Used parameters for the model
curve: r = 0.0116 1

h , N0 = 596.3 cells, α = 0.2030 and K = 13380 cells, which were put in
equation (3.6). Data points taken from [AH14].
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4. Modeling Radiotherapy
This section recapitulates the basic model of tumor growth including radiotherapy, which
is described in detail in [Web13] and based on a model in [Pre03]. Once again the tumor
is assumed to be solid, homogeneous and in an avascular state.

4.1. Mathematical Model
To model the tumor growth, the generalized logistic growth model (3.5) is used. To
include radiation, we need an additional term. The model reads as follows

dN

dt
= r

α
N

(
1−

(
N

K

)α)
− µAN with µ > 0 (4.1a)

N(0) = N0, (4.1b)

where A is the amount of radiation which is administered in Gray. Since the treatment
is continuous it holds that A = a ∀ t ≥ 0. If a = 0 no radiation is administered and
the system of equations (4.1) is reduced to the generalized logistic growth model. The
parameter µ describes how much the cells are damaged by radiation per Gray.
The solution of (4.1) is given by

N(t) = N0K(
Nα

0 r

r−αµA + e−rt+αµAt
(
Kα − Nα

0 r

r−αµA

)) 1
α

. (4.2)

For the detailed calculation please have a look at [Web13].
Equation (4.1) has two equilibria. An equilibrium is clarified by the following definition:

Definition 1. Let (X,Φ) a dynamical system. Then xe ∈ X is an equilibrium (state
point) of this system, if and only if

Φ(t, xe) = xe ∀t ∈ R(Z).

[Sch13]. Thus the trivial equilibria is

N̂1 = 0

and the nontrivial one is

N̂2 = K
(

1− αµA

r

) 1
α

.

For the following we need another definition:

Definition 2. Let (X, d(·, ·)) be a metric space.

• The equilibrium xe ∈ X of (X,Φ) is called stable (in the sense of Lyapunov) if
∀ε > 0 ∃ δ > 0 :
d(x0, xe) < δ ⇒ d(xe,Φ(t, xo)) < ε ∀ t ≥ 0.
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4. Modeling Radiotherapy

• Otherwise xe is called unstable.

• xe ∈ X is called asymptotically stable if it is stable and there is b > 0, such that
d(x0, xe) < b⇒ limt→∞ d(Φ(t, x0), xe) = 0.

[Sch13]. N̂1 is asymptotically stable if A > r
αµ

and unstable if A < r
αµ

. Analogously N̂2
is asymptotically stable if A < r

αµ
and unstable if A > r

αµ
. Thus A is our bifurcation

parameter and if A > r
αµ

the number of tumor cells converges to zero as t → ∞,
which means that the tumor can be eradicated. Figure 4.1 shows tumor growth without
radiation and two times with different dosages of radiation. With A = 0.25Gy the tumor
tends to the trivial equilibrium N̂1 = 0 cells, but the radiation dosage A = 0.05Gy is
not sufficient and thus the tumor tends to the nontrivial equilibrium.

Figure 4.1: Continuous Radiation: The black line represents tumor growth without radiation,
the blue line depicts tumor growth including radiation with A = 0.05Gy and the red line
with A = 0.25Gy. The remaining parameters are N0 = 10 cells, K = 100 cells, α = 2 and
r = 0.0578 1

h . The curves are made with the analytical solutions (3.6) and (4.2)

4.2. Fitting the model to data
Again the T47D cell line was used to measure the area of the tumor after 0, 3, 6, 9
and 12 days. The experiment was performed in the same way as it is described in sec-
tion 3.2. The only difference is that the cells were treated with radiotherapy this time.
In the beginning of day zero they were radiated with a dosage of 2, 4, 6 and 8 Gray
respectively, where 1 Gray was administered in 2 minutes. The radiation source was
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4. Modeling Radiotherapy

127Cs, which emits γ-rays. Algorithm 2 finds the best approximation by varying µ in
equation (4.2). We expect µ to be comparable small, since the cell line T47D is known
to be radioresistant. The error is calculated like before with equation (3.7). The other
parameters are chosen according to the previous section: K = 13380 cells, α = 0.2030
and r = 0.0116 1

h
. Table 2 shows the normalized data we want to approximate.

Number of cells Days
Radiation (Gy) 0 3 6 9 12

2 596.3 2048.9 4636.0 5681.7 7167.2
4 596.3 1801.4 3063.3 3950.6 4194.8
6 596.3 2145.8 3130.3 2819.0 4072.0
8 596.3 1968.3 2319.7 1939.2 2944.5

Table 2: Number of cells treated with radiotherapy over a period of 12 days. Data taken from
[AH14].

We get the best fit with the following parameters: For A = 2Gy the algorithm re-
turns µ = 0.0024 1

Gy·h with an error of 0.0154, for A = 4Gy the algorithm returns µ =
0.0023 1

Gy·h with an error of 0.0284, for A = 6Gy the algorithm returns µ = 0.0015 1
Gy·h

with an error of 0.2196 and for A = 8Gy the algorithm returns µ = 0.0015 1
Gy·h with an

error of 0.3343. Figure 4.2 shows the resulting curves. The values of µ fit in with the
assumption that the death rate by radiotherapy are dose dependent insofar, that there
are different ones for dosages of more than 5 Gray and for dosages of less than 5 Gray
[EAC+05, ECAV06].
In the cases A = 6Gy and A = 8Gy the errors a quite big, but a look at figure 4.2 gives a
possible explanation. In these two cases the data points spread quite far away. After day
6 many of the cells die, but after day 9 the population recovers quite fast. The question
is, if this depends on the treatment or if another reason causes this behavior. We will re-
turn to this question in the next section, since we do not have any explanation right now.
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4. Modeling Radiotherapy

Figure 4.2: Model of tumor growth including radiation versus data points. Used parameters:
r = 0.0116 1

h , N0 = 596.3 cells, K = 13380 cells and α = 0.2030. Additional parameters:
µ = 0.0024 1

Gy·h for A = 2Gy, µ = 0.0023 1
Gy·h for A = 4Gy, µ = 0.0015 1

Gy·h for A = 6Gy
and µ = 0.0015 1

Gy·h for A = 8Gy. Used equation: (4.2). Data points from [AH14].
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5. Modeling Chemotherapy
This chapter covers the treatment of a tumor with a chemotherapeutic drug. Among
other things also here a cell population model will be considered. Already decades ago
the influence of chemotherapeutic drugs on tumor cells was modeled mathematically.
The log-kill hypothesis was stated very early, which claims that a specific amount of a
therapeutic drug kills the same percentage of a cell population rather than always the
same number of cells [Ski64].
Like before we assume the tumor in this section to be avascular, i.e. in an early stage
of growth. We assume also that the tumor has no structure. Since the tumor has no
vasculature the problem arises that the drug has to diffuse through the solid tumor to
reach all tumor cells. These diffusion gradients can considerably limit the medication
access [FEF+09].
This chapter begins with two sections about pharmacokinetics and pharmacodynamics
to give a general summary how the system of the body and the drug interact. The next
section covers a continuous cell population model. The last model which is discussed
in this chapter is a cell cycle specific model. This model shows how important the
treatment schedule is, if more than one drug is used.

5.1. Pharmacokinetics
This section will give a general overview about pharmacokinetics. Pharmacokinetics
started in the 1920s and 1930s with papers about the disposition of ethyl ether, the
elimination of ethyl alcohol and the mathematics associated with pharmacokinetic mod-
eling [WB94]. It includes absorption, distribution, metabolism and excretion, also known
as ADME. The goal is to be able to estimate the time course of the drugs and the ef-
fects on the body properly. The effectiveness of a given dosage of a particular drug
is determined by the concentration of this drug in the body [DK06]. Since the plasma
concentration time profile of many drugs is not a straight line, a one compartment model
is not sufficient here. Thus we use a two compartment model to model these processes
in the body, as in figure 5.1.

Central(1) Peripheral(2)
k12

k21

k10

Figure 5.1: Generalized open two-compartment pharmacokinetic model.
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The drug is distributed in the central compartment and also eliminated from there.
It also distributes in other regions (peripheral compartment), but with different rates.
The distribution rate into the peripheral compartment is defined by the microconstant
k12 and the distribution back in the central compartment by k21. The two distribution
rate constants are significantly slower than k10 and are consequently the rate limiting
factors [Riv11, RP13]. The concentration of the drug can be represented by the following
biexponential equation:

c(t) = Ae−αt +Be−βt, (5.1)
with the two slopes α and β and the corresponding intercepts A and B [SSS84]. We
denote c0 := c(0) = A+B.

Figure 5.2: Biexponential Function. Based on figures in [Riv11] and [RP13].

If α = β the equation would represent a one compartment model. By definition α� β
and β is accordingly the terminal slope. Following this, the rate of drug disposition
reads as

dc1

dt
= −(k12 + k10)c1 + k21c2, (5.2)

where c1 and c2 are the concentrations of the compound in the central and peripheral
compartment, respectively. The slopes, the corresponding intersects and the microcon-
stants are related to each other in the following way:

k21 = (A · α +B · β)/(A+B),
k10 = (α · β)/k21,

k12 = α + β − k21 − k10.
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Furthermore each slope has a corresponding half life T1/2. The half life is the time which
is needed for a quantity to drop down to the half of its value. It can be calculated as

T1/2(α) = ln 2/α Distribution,
T1/2(β) = ln 2/β Elimination,

[Riv11, RP13]. There are different volumes of distribution, like the volume of the central
compartment Vc, the volume of the peripheral compartment Vp and Vt := Vc + Vp. The
volume of the central compartment for example is calculated as

Vc = D

c0
= D

A+B
, (5.3)

where D is the administered dosage [Riv11, RP13]. Another volume is the apparent
volume of distribution Vd, which is often used when clinical dosage regiments are con-
structed. It reads as

Vd = D

AUC β
, (5.4)

where AUC is called area under the curve and can be calculated with the following
equation:

AUC =
∫ 0

∞
c(t) d t = A

α
+ B

β
. (5.5)

The last important thing here is the systemic or plasma clearance CL:

CL = k10Vc = βVd = D

AUC , (5.6)

[Riv11, RP13, SSS84].

5.2. Pharmacodynamics
This section gives a summary of the basic models of pharmacodynamics, which are based
on the receptor theory. Most drugs work by interacting with receptors. This leads to
a change in the receptor and therefore to a signal or stimulus. The stimulus in turn
leads to other possible actions and finally to a biological response, see figure 5.3. This
response is assumed to correlate with the number of receptors occupied by the drug.
The law of mass action describes the receptor occupancy in the following way:

C + R
kon


koff

RC, (5.7)

where C is the molar concentration of the drug, R the molar concentration of the un-
occupied receptors and RC the molar concentration of the drug’s receptor complex.
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STIMULUS RESPONSE

Drug

Cell Membrane

Receptor

Figure 5.3: Sketch of the drug-receptor interaction. Based on a figure in [Ros12].

kon and koff are the rate constants for the forward and backward process, respectively
[Ros12]. In an equilibrium the rates for the forward and backward process are equal and
thus in an equilibrium it holds that

(RT −RC) · C · kon = RC · koff , (5.8)

where RT is the total molar concentration of receptors [Ros12]. Using the drug’s disso-
ciation constant Kd = koff

kon
, equation (5.8) is equivalent to

RC = RT · C
Kd + C

⇔ RC

RT

= C

Kd + C
. (5.9)

Kd is equal to the drug concentration when the half of all receptors are occupied, see
figure 5.4. It is also an inverse measure of the drug’s affinity for the receptors. The
number of occupied receptors RC is limited by the total number of receptors in a system.
Thus the relationship between the occupancy and the concentration has a hyperbolic
shape, see figure 5.4 [Ros12, D’A04].
Since the response to a drug is also assumed to correlate with the number or fraction
of occupied receptors, the relationship between the drug concentration and the response
can also be represented by a hyperbolic shape. Thus the fraction of maximum response
E

Emax
is defined by

E

Emax
= α · RC

RT

, (5.10)

where E is the response, Emax the systems maximum possible response and 0 < α < 1
an efficacy term, called the intrinsic activity. The value of the stimulus is denoted by S
and can be expressed as

S = e · RC
RT

, (5.11)
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Figure 5.4: Correlation between fraction of receptors occupied (RC/RT ) and drug concentra-
tion C. Based on a figure in [Ros12].

where e > 0 is the efficacy. Since the stimulus does not represent the fraction of max-
imum response, e can be also greater than 1, compared with α [Ros12, D’A04]. The
system converts this stimulus into a biological response. This can be expressed as

E

Emax
= f(S), (5.12)

where f is a hyperbolic function, in order to represent the capacity-limited characteris-
tics of the relationship between the drug response and drug concentration. A possible
hyperbolic function would be

f(S) = S

1 + S
.

The next and last parameter which is used in this model is the intrinsic efficacy χ, which
is defined by

χ = e

RT

, (5.13)

[Ros12].

5.3. Cell Population Model
This section begins with a simple model for the delivery of drugs. Infusion is a realistic
case since sometimes the drug cannot be given orally and thus they have to be injected
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directly. One way to do this is with serial injections, the other one is continuous infusion
[EK05]. In the model the number of tumor cells at time t is represented by N(t) and
the number of drug units in circulation is represented by c(t). So the model reads as

dN

dt
= growth rate

of cells − drug-induced
death rate (5.14a)

dc

dt
= rate drug

infused − rate of uptake
by cells − rate of removal by

the circulation , (5.14b)

[EK05]. So the next step is to find appropriate terms for the different rates. For the
growth rate of the tumor cells the logistic growth model (3.3) can be used [Web13, Pre03]:

dN

dt
= rN

(
1− N

K

)
N(0) = N0.

To model the drug induced death rate the most common term reads as

drug-induced
death rate = νcN,

where ν is the drug-induced death rate, see for example [PKS+07, BW02, EC13]. Thus
equation (5.14a) reads in mathematical terms as

dN

dt
= rN

(
1− N

K

)
− νcN

N(0) = N0.
(5.15)

Now the change of the drug concentration has to be modeled in the same way. There is a
model in [KGR13] which is quite complicated since the change of the drug concentration
is modeled very exactly:

dc

dt
= κ|at region︸ ︷︷ ︸

supply, release, activation︸ ︷︷ ︸
DRUG PRODUCTION

+ D∆c︸ ︷︷ ︸
diffusion

− u · ∇c︸ ︷︷ ︸
advection︸ ︷︷ ︸

DRUG TRANSPORT

− αc︸︷︷︸
decay, deactivation

− βc|at cell︸ ︷︷ ︸
cellular uptake︸ ︷︷ ︸

DRUG ELIMINATION

c(0) = c0,

(5.16)

where κ is a constant rate of drug supply, release or activation that takes place in a
part of the domain which may be a blood vessel (supply), nanoparticle (release), or low
oxygen area (activation). D is a constant diffusion coefficient, u is the velocity of the
interstitial fluid, α is a decay or deactivation rate constant and β is a rate constant of
drug uptake by the cell [KGR13].

26



5. Modeling Chemotherapy

To examine the model better, a simpler model for the change of drug concentration is
used here. The whole model reads as

dN

dt
= rN

(
1− N

K

)
− νcN =: f(N) (5.17a)

dc

dt
= C(t)− λc− γcN =: f(c) (5.17b)

N(0) = N0

c(0) = c0,

where ν is the rate at which the tumor cells are killed by the drug, λ is the drugs half-
life (or decay rate), γ denotes the rate at which the drug becomes ineffective as a result
of cell kill, and C(t) represents the rate at which the drug is delivered to the tumor.
For all parameters we assume: ν, λ, γ > 0 [Pre03]. There are two ways to deliver the
chemotherapeutic drug: continuous and periodic. This is modeled in the following way:

Continuous Infusion: C(t) = c∞ ∀t ≥ 0 (5.18a)

Periodic Infusion: C(t) =
{
c∞ n < t < n+ τ
0 n+ τ < t < n+ 1 . (5.18b)

If C(t) = 0 equation (5.17a) becomes the logistic growth equation and thus N → K as
t→∞.
If the drug is administered continuously to the tumor, then N(t) as well as c(t) will
converge to an equilibrium [Pre03]. To obtain these equilibria, it is necessary to set
d
dt

= 0 in equations (5.17a) and (5.17b). We get

rN
(

1− N

K

)
− νcN = 0

⇔ rN
(

1− N

K
− ν

r
c
)

= 0 and (5.19)

c∞ − λc− γcN = 0. (5.20)

The first equilibrium is quite simple to see. It reads as

(N̂1, ĉ1) = (0, c∞
λ

). (5.21)

The second equilibrium is not that simple to see. If N 6= 0 equation (5.19) yields that(
1− N

K
− ν

r
c
)

!= 0 (5.22)

and thus
c = r

ν

(
1− N

K

)
. (5.23)
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So after inserting (5.23) in equation (5.20) we get

0 =c∞ −
λr

ν

(
1− N

K

)
− γrN

ν

(
1− N

K

)
=N2 γr

νK
−N

(
γr

ν
− λr

νK

)
+ c∞ −

λr

ν

=N2 + λ

γ

(
1− Kγ

λ

)
N − λK

γ

(
c∞ν

λr
− 1

)
. (5.24)

Hence the second equilibrium is represented by the equations (5.23) and (5.24). Since
equation (5.24) is not very meaningful about the value of N , it will be examined further.
The roots of N are

N± =
−λ
γ

(
1− γK

λ

)
±
√

λ2

γ2

(
1− γK

λ

)2
− 4λK

γ

(
c∞ν
λr
− 1

)
2 . (5.25)

So to get two real roots it has to hold that

λ2

γ2

(
1− γK

λ

)2
− 4λK

γ

(
c∞ν

λr
− 1

)
> 0. (5.26)

If the tumor and the drug are already determined, the parameters λ, γ and ν are fixed.
Thus c∞ will be our bifurcation parameter. To get the bifurcation point the following
equation has to be solved for cmax∞ :

λ2

γ2

(
1− γK

λ

)2
− 4λK

γ

(
cmax∞ ν

λr
− 1

)
= 0

⇔ cmax∞ ν

λr
− 1 = γ

4λK
λ2

γ2

(
1− γK

λ

)2

⇔ cmax∞ = λr

ν

(
λ

4Kγ

(
1− γK

λ

)2
+ 1

)
. (5.27)

So there are no real roots for N if

c∞ > cmax∞ = λr

ν

(
λ

4Kγ

(
1− γK

λ

)2
+ 1

)
, (5.28)

and thus only the equilibrium N̂1 = 0 exist which means that the number of tumor cells
tends to zero as t → ∞. So if the administered dose of the drug is high enough, the
tumor will vanish. In a real case you also have to keep in mind the consequences of
the drug for the normal tissue. So the question remains: To which equilibria will N
and c converge if the drug dose is not high enough to allow only one equilibrium, i.e. if
c∞ < cmax∞ ?
To answer this question we need another definition:
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Definition 3. Lyapunov’s indirect method
For ODE-systems in Rn: Let v be a C1 vector field in Rn and xe an equilibrium point of
the dynamical system generated by v. Consider the Jacobian (matrix) Jv(xe) ∈ Rn×n:

• Reλ < 0 ∀ eigenvalues λ of Jv(xe)
⇒ xe is asymptotically stable

• Reλ > 0 for (at least) one eigenvalue λ of Jv(xe)
⇒ xe is unstable

[Sch13]. According to this definition, the Jacobian matrix of f(N) and f(c), given in
(5.17a) and (5.17b) respectively, will be computed:

J(N, c) =
(
df(N)
dN

df(N)
dc

df(c)
dN

df(c)
dc

)
=
(
r
(
1− 2N

K

)
− νc −νN

−γc −λ− γN

)
. (5.29)

The stationary point from (5.21) is inserted to see if it is stable or not:

J(0, c∞
λ

) =
(
r − ν c∞

λ
0

−γc∞
λ

−λ

)
. (5.30)

Since it is a lower triangular matrix, the diagonal yields the eigenvalues x1 and x2
immediately:

x1 = −λ < 0 (5.31)

x2 = r − νc∞
λ

< 0 if c∞ >
rλ

ν
. (5.32)

Thus for c∞ > rλ
ν

the stationary point (N̂1, ĉ1) from (5.21) is asymptotically stable and
for c∞ < rλ

ν
it is unstable.

Next the nontrivial stationary points will be examined. Since the term
(
1− γK

λ

)
switches

its sign depending on whether γK
λ
< 1 or γK

λ
> 1 there are two cases.

In the case γK
λ
> 1 there are two physically realistic solutions for N if λr

ν
< c∞ < cmax∞ .

For c∞ = λr
ν

one root of N is zero which is the trivial equilibrium and if c∞ < λr
ν

one
root of N is smaller than zero which would be unrealistic. Thus for 0 ≤ c∞ ≤ λr

ν
there

is only one nontrivial realistic solution [Pre03].
In the case γK

λ
< 1 the sign of the term

(
1− γK

λ

)
switches and thus we have one

nontrivial, realistic solution for 0 ≤ c∞ ≤ λr
ν

and for λr
ν
< c∞ < cmax∞ we have no

nontrivial solution, since both roots of N are negative [Pre03], see figure 5.5.
But this tells nothing about the stability of the nontrivial equilibria. Thus the Jacobian
is needed again. The stability of the stationary points is analyzed different as in [Pre03].
Let j1, j2, j3 and j4 be the entries of the matrix J , i.e.

J =
(
j1 j2
j3 j4

)
.
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Figure 5.5: Bifurcation diagrams showing how the tumor size N depends on c∞. Above case:
γK/λ < 1 with parameters K = λ = ν = r = 1, γ = 0.5. Below case: γK/λ > 1 with
parameters K = λ = ν = r = 1, γ = 2. Figure based on [Pre03].

Let I be the unit matrix, then:

det(J − x · I) = det
(
j1 − x j2
j3 j4 − x

)
= (j1 − x)(j4 − x)− j2j4 = x2 − (j1 + j4)x+ (j1j4 − j2j3)
= x2 − trace(J)x+ det(J).

Thus the eigenvalues x1/2 of J can be calculated as follows:

x1/2 =
trace(J)±

√
(trace(J))2 − 4 det(J)

2 . (5.33)

If a nontrivial equilibria is asymptotically stable it has to hold that x1/2 < 0. By looking
at (5.33) it can be seen that if det(J) < 0 there is always one positive eigenvalue. If
det(J) > 0 and trace(J) > 0 there is also at least one positive eigenvalue. Only if
det(J) > 0 and trace(J) < 0 both eigenvalues can be negative.
We differentiate again between the two cases γK

λ
< 1 and γK

λ
> 1. In the first case the

parameters are chosen as in figure 5.5:

K = λ = ν = r = 1, γ = 1
2 .
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Thus the equations (5.23) and (5.25) reduce to
c = 1−N and

N± = −1±
√

9− 8c∞
2 ,

and hence the Jacobian J(N, c) reads as

J(N, c) =
(

(1− 2N)− c −N
−1

2c −1− 1
2N

)
=
(
−N −N

−1
2 + 1

2N −1− 1
2N

)
.

Now the trace and the determinant can be calculated easily:

trace(J) = −1− 3
2N < 0

det(J) =
(

1 + 1
2N

)
N +N

(1
2N −

1
2

)
= N2 + 1

2N > 0.

Hence the nontrivial (realistic) equilibrium is stable.
In the second case γK

λ
> 1, we choose the parameters as follows:

K = λ = ν = r = 1, γ = 2.
This time the equations (5.23) and (5.25) reduce to

c = 1−N and

N± =
1
2 ±

√
9
4 − 2c∞
2 ,

and hence the Jacobian reads as

J(N, c) =
(

(1− 2N)− c −N
−2c −1− 2N

)
=
(
−N −N

−2 + 2N −1− 2N

)
.

Like before the trace and the determinant can be calculated. They read as follows:
trace(J) = −1− 3N < 0

det(J) = N (1 + 2N) +N (2N − 2) = 4N2 −N.

Thus we need to determine when the determinant is greater than zero, i.e.
4N2 −N > 0.

Since we only consider the cases where N > 0 this is equivalent to
4N − 1 > 0

⇔ 4N > 1

⇔ 1± 2
√

9
4 − 2c∞ > 1

⇔ ±
√

9
4 − 2c∞ > 0.
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Hence only the greater one of the nontrivial equilibria is stable. The other one is unstable
and acts like a boundary between the two stable steady states (the greater nontrivial
and the trivial one) [Pre03]. This is illustrated in figure 5.6. The stable solutions are
represented by solid lines and the unstable solutions by a dotted line. Figure 5.7 shows
the different direction fields including the equilibria for different values of γ and c∞.

Figure 5.6: Bifurcation diagrams with stability analysis. The parameters in the cases γK/λ < 1
and γK/λ > 1 are the same as in figure 5.5. Solid lines represent stable solutions and the
dotted line represents an unstable solution. Based on a figure in [Pre03].

32



5. Modeling Chemotherapy

Figure 5.7: Direction fields. Used parameters are ν = K = r = λ = 1. Left column: γ = 0.5
and thus γK/λ < 1. Right column: γK/λ > 1 with γ = 2. In the first row one has c∞ < λr

ν ,
in the second row c∞ = λr

ν and in the last row λr
ν < c∞ < cmax∞ . The x-axis corresponds

to the cell number N and the y-axis to the drug concentration c. Figures are made with
pplane in Matlab.

5.4. Cell Cycle Specific Model
In this section a pulsed model will be discussed first, which can be found in [RDIK11].
After that the more realistic piecewise continuous model will be touched upon.
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5.4.1. Pulsed Model

Here a certain fraction µ of tumor cells (or cells generally) is killed immediately, like after
a bolus injection. Let N(nτ) be the number of cells before, and N(nτ+τ) = N((n+1)τ)
the number of cells after a single injection. Introducing the survival fraction η = 1− µ
yields

N((n+ 1)τ) = (1− µ)N(nτ) = ηN(nτ). (5.34)
To keep the model simple the tumor cells are assumed to grow exponentially. This is a
justifiable assumption since, because of the treatment, the number of tumor cells should
be kept away from their capacity. So the number of cells at time nτ is

N(nτ) = N(0)ernτ . (5.35)

Since there are many different treatments and therefore also many different chemothera-
peutic drugs disposable for almost every type of cancer, the treatment with two different
drugs A and B will be considered in more detail. Of course the model is simply expand-
able to more than two drugs. For this purpose we have now different killing and survival
rates, namely
µi = killing fraction of drug i,
ηi = 1− µi = survival fraction of drug i.
An advantage of using more than one drug can be the synergistic effects of some drugs.
But it is also possible that specific drugs have an antagonistic effect if they are used
together [RDIK11]. Now a sequence of injections can be modeled. Let τ be the time
between two treatments. In the first case m injections of drug A are followed by m
injections of drug B. Thus the number of cells after the whole treatment is

N(2mτ) = (ηAerτ )m(ηBerτ )mN(0) = (ηAηBe2rτ )mN(0). (5.36)

In the second case after each injection of drug A there is an injection of drug B. Thus
after one injection of each there are

N(2τ) = (ηAerτ )(ηBerτ )N(0) (5.37)

cells and consequently after m such cycles

N(2mτ) = (ηAηBe2rτ )mN(0). (5.38)

You can see that the equations (5.36) and (5.38) are equivalent. Thus it does not
matter in which order the drugs are applied. But it is well-known that the order of
drug treatment has a crucial influence on the efficacy of the treatment. To undo this
inaccuracy we will extend this model to a cell cycle specific model.
There are many ways to model a cycle specific treatment. In [RDIK11] they only consider
proliferating cells and differentiate between cells in the phases G1 and S and cells in
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N1 N2

κ1

κ2

γ1 γ2

ν1 ν2

Figure 5.8: Two Compartment Cell Cycle Model: In this model the cells are divided into the
two compartments N1 and N2, which are proliferating with rates γ1 and γ2 respectively and
dying with rates ν1 and ν2 respectively. The cells transition from one compartment into the
other with rates κ1 and κ2.

the phases G2 and M , whereas in [PA95] they differentiate between proliferating cells
and cells in the phase G0, i.e. quiescent cells. Here a more generalized model will be
discussed.
In Figure 5.8 the cells are divided into two compartments with N1 and N2 tumor cells
respectively, which are proliferating with rates γ1 and γ2 and dying with rates ν1 and
ν2 respectively. The cells transition from one compartment into the other with rates κ1
and κ2. Now the differential equations, which describe the change in N1 and N2 can be
established. In the following all parameters κi, γi, νi > 0, i = 1, 2.

dN1

dt
= γ1N1 − κ1N1 + κ2N2 − ν1N1 = (γ1 − κ1 − ν1)N1 + κ2N2 (5.39a)

dN2

dt
= γ2N2 − κ2N2 + κ1N1 − ν2N2 = (γ2 − κ2 − ν2)N2 + κ1N1. (5.39b)

Here we assume the cells to have a positive net growth rate, i.e. γi > νi, for i = 1, 2.
Unfortunately this equations cover not all cell cycle models. It is mentioned above that
the first compartment can be chosen to be the cells in the G1 and S phase and the
second compartment to be the cells in the G2 and M phase [RDIK11]. So the cells in
the first compartment have two copies of DNA and the ones in the second compartment
have four copies. So when the cells in compartment one pass into compartment two
the number of cells stays the same. But when the cells from compartment two pass
into compartment one, mitosis occurs and the number of cells is doubled. Hence the
differential equation would look a bit different:

dN1

dt
= −κ1N1 + 2κ2N2 − ν1N1 (5.40a)

dN2

dt
= −κ2N2 + κ1N1 − ν2N2. (5.40b)

Please note that in this special case the γ-term does not have to be considered. But
since this is just a slight change and the further procedure would be the same, the model
will be based on the equations (5.39). Written in vector form the system of equations
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(5.39) yields

dN

dt
=
(
dN1
dt
dN2
dt

)
=
(
γ1 − κ1 − ν1 κ2

κ1 γ2 − κ2 − ν2

)(
N1
N2

)

=
(
γ1 − κ1 − ν1 κ2

κ1 γ2 − κ2 − ν2

)
N =: CN.

(5.41)

There are further assumptions which can be made on our equations. For example one
could neglect the ν-terms, since the normal cell death is minimal compared to the cell
death caused by chemotherapy. Considering the model in [PA95], where compartment
one represents cycling cells and compartment two the resting cells, it holds that γ2 = 0
since the resting cells do not proliferate. Further it can be assumed that (γ1−κ1−ν1) < 0
since the majority of the cycling cells become resting cells and only a small proportion
keeps cycling. The solution for the differential equation (5.41) is given by

N(t) = eCtN(0) =: MN(0), (5.42)

with the growth matrix M = eCt.
Like before the treatment with the drugs A and B can be modeled. With the assumption
that each drug kills different amounts of cells in the different compartments the following
parameters are needed:
µji = killing fraction of drug i in compartment j,
ηji = 1− µi = survival fraction of drug i in compartment j.
Now the treatment matrices Ti, i = A,B, can be constructed:

TA =
(
η1
A 0
0 η2

A

)
, TB =

(
η1
B 0
0 η2

B

)
, (5.43)

which depict the treatment with drug A and drug B respectively. If one compartment
represents the resting cells (for example compartment two, like in the example before)
we can assume η2

A = η2
B = 1 since the drugs have nearly no effect on resting cells. Please

note, that in general ηji is not a constant but rather decreasing function of the drug dose
d, i.e. ηji (d) with 0 < ηji (d) < 1.
Next the different orders of treatments with different drugs can be modeled. The pulsing
periodic condition is

N((n+ 1)τ) = TAN(nτ) (5.44)
for the drug A and

N((n+ 1)τ) = TBN(nτ) (5.45)
for the drug B. The time between two treatments is again τ . As before first the
treatment, where m doses of drug A are followed by m doses of drug B is considered.
Hence the number of cells after the whole treatment is

N(2mτ) = (TBM)m(TAM)mN(0). (5.46)

36



5. Modeling Chemotherapy

In the second case, where m times each dose of drug A is followed by a dose of drug B
the number of cells left is

N(2mτ) = (TBMTAM)mN(0). (5.47)

Since the matrix product is only commutative in special cases, it holds in general that

(TBM)m(TAM)m 6= (TBMTAM)m, (5.48)

which means that the equations (5.46) and (5.47) are usually not the same. Thus the
order of the treatment of the different drugs has an impact on the effectiveness of the
whole treatment.

5.4.2. Piecewise Continuous Case

This paragraph will cover the piecewise continuous case. Here the treatment is added
to equation (5.41) in the following way:

dN

dt
=
(
γ1 − κ1 − ν1 κ2

κ1 γ2 − κ2 − ν2

)
N −

(
g1(t) 0

0 g2(t)

)
N, (5.49)

which describes the chemotherapeutic treatment with only one drug. Since the piecewise
continuous case is treated, the function gi(t) (i = 1, 2) is a piecewise continuous function
which describes how the treatment impacts the different compartments. As it is often
the case, there are many ways to model gi(t). In the case, where N1 represents the
number of proliferating cells and N2 the number of resting cells, we can set

g2(t) = 0, (5.50)

since there is almost no effect of the drugs on quiescent cells. For the proliferating cells
an exponential decay function is chosen, namely

g1(t) = he−δ(t−nτ), nτ ≤ t < (n+ 1)τ, (5.51)

where h is the cell kill parameter, and δ is the decay of the drug. It can be seen easily in
figure (5.9) that a large value of δ signifies a high decay of the drug. This corresponds
to a high survival fraction ηji in the pulsed case. In contrast to the pulsed case, in the
piecewise case the cells are destroyed over the whole period, and not instantly.
There is one aspect, we have not considered here, but which we have to keep in mind. Of
course, not only the tumor cells are killed by the drug, also the normal tissue is affected.
Hence it is the aim to find the right way between killing the tumor and hopefully not to
damage the normal tissue too much.
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Figure 5.9: Exponential Decay Function.

5.5. Fitting the model to data
Also in this section we try to fit the mathematical model to given data points. The
normalized data from [AH14] can be seen in table 3.

Number of cells Days
Concentration of drug (µM) 0 3 6 9 12

0.3 596.3 1479.5 2303.3 2134.1 3480.3
1 596.3 1337.8 2694.8 2730.1 2984.1
3 596.3 1260.3 2427.1 2538.9 1959.4
10 596.3 959.1 1639.7 1624.0 1212.8
30 596.3 924.3 1827.5 1657.2 1405.2

Table 3: Number of cells treated with chemotherapy over a period of 12 days. Data taken from
[AH14].

This time the T47D cells were treated with a chemotherapeutic drug called vinblastine.
On day zero 1µM of the 1000µM stock was taken and mixed with the drug, such that
different solutions, like a 10µM , solution were formed. After six days of chemotherapy
the drug was washed away. Since there is only one infusion at the beginning, it can
be represented by the initial value. Thus c∞ = 0µM

h
. We begin with the two initial

concentrations c0 = 0.3µM and c0 = 10µM , respectively, to model the treatment. Since
we do not have any data about the drug concentration after day zero, it is very difficult
to find appropriate values for the parameters λ and γ. Additionally these two parameters
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would imply another two degrees of freedom. Thus we simplify this equation and set
λ = 0 1

h
and γ = 0.00002 1

cells·h in advance. The parameter r = 0.0116 1
h

is set according
to the previous modeling. K and ν are set by algorithm 3 in order to find the best
approximation. Algorithm 3 goes through possible values of K and ν and plugs them in
the numerical solution of the system (5.17) including (5.18a), which is obtained by the
forward euler method. Then the values which yield the smallest error are returned. For
c0 = 0.3µM the algorithm returns the parameter values ν = 0 1

µMh
and K = 4320 cells

with an error of 0.167 and for c0 = 10µM the parameter values ν = 0 1
µMh

and K = 1860
cells with an error of 0.1453. Figure 5.10 shows the resulting curves.

Figure 5.10: Modeling tumor growth including chemotherapy. Used parameters: λ = 0 1
h ,

γ = 0.00002 1
cells·h , r = 0.0116 1

h , c∞ = 0µMh and N0 = 596.3. Additionally for c0 = 0.3µM :
ν = 0 1

µMh and K = 4320 cells. And for c0 = 10µM : ν = 0 1
µMh and K = 1860 cells.

Parameters were plugged in the numerical solution of (5.17) including (5.18a).

Since the errors are quite high and also the curves do not look satisfying, the next step
is to include the parameter α = 0.203 from the generalized logistic growth equation in
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equation (5.17a):

dN

dt
= r

α
N

(
1−

(
N

K

)α)
− νcN. (5.52)

This time the algorithm returns the parameter values ν = 0.001 1
µMh

and K = 3320 cells
with an error of 0.0745 for c0 = 0.3µM and ν = 0 1

µMh
and K = 1710 cells with an error

of 0.1142 for c0 = 10µM . Figure 5.11 shows the corresponding curves.

Figure 5.11: Modeling tumor growth including chemotherapy. Used parameters: λ = 0 1
h ,

γ = 0.00002 1
cells·h , r = 0.0116 1

h , α = 0.203, c∞ = 0µMh , N0 = 596.3. Additionally for
c0 = 0.3µM : ν = 0, 001 1

µMh and K = 3320 cells. And for c0 = 10µM : ν = 0 1
µMh and

K = 1710 cells. The parameters were plugged in the numerical solutions of the model (5.52)
and (5.17b) including (5.18a).

For c0 = 0.3µM this seems to be the best fit we get since the last two data points
spread quite far. Apparently after day 6 relatively many cells die, but after day 9 the
population recovers quite fast. Since this happens also with the cells which are treated
only with radiotherapy in the same way, it does not seem to be related to the treatment,
but rather has another cause. Therefore we will not discuss this circumstance further.
Besides that for c0 = 10µM it seems that the model does not cover everything. In the
model the number of cells can either rise or fall, but it cannot increase first and then
decrease after some time. This can also be seen in figure 5.7. Thus we have to include
another aspect in the model. For this purpose we include a Hill-function in our model.
We do this by replacing the drug concentration c in equation 5.52 by the Hill-function

cp

Qp + cp
, (5.53)

where p and Q are positive constants, which are determined from experimental data
[Mur89a]. This formula can be obtained from the pharmacodynamical equation (5.9),
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too. Thus the whole model reads as

dN

dt
= r

α
N

(
1−

(
N

K

)α)
− ν cp

Qp + cp
N (5.54a)

dc

dt
= c∞ − λc− γcN (5.54b)

N(0) = N0 (5.54c)
c(0) = c0. (5.54d)

With algorithm 4 we try to find the best fitting by varying K, ν, p and Q. Also this
time the algorithm uses the numerical solutions of the model, which are obtained by
the forward euler method. From now on we also include the initial drug concentrations
c0 = 1µM , c0 = 3µM and c0 = 30µM . The following parameters are fixed: N0 = 596.3
cells, c∞ = 0µM , α = 0.203, r = 0.0116 1

h
, λ = 0 1

h
and γ = 0.00002 1

cells·h . The
best fitting, which can be seen in figure 5.12, is obtained with the following further
parameters: K = 3300 cells, ν = 0.0001 1

h
, p = 1 and Q = 0.01µM for c0 = 0.3µM

with an error of 0.0744, K = 3400 cells, ν = 0.0001 1
h
, p = 3 and Q = 0.506µM for

c0 = 1µM with an error of 0.0395, K = 2800 cells, ν = 0 1
h
, p = 1 and Q = 0.01µM for

c0 = 3µM with an error of 0.1143, K = 1700 cells, ν = 0 1
h
, p = 1 and Q = 0.01µM for

c0 = 10µM with an error of 0.1142 and K = 1900 cells, ν = 0 1
h
, p = 1 and Q = 0.01µM

for c0 = 30µM with an error of 0.1297. It can be seen very easily that including the
Hill-function does not give us satisfying results either. Thus we try another attempt.
As it is mentioned in section 2.2 vinblastine inhibits the microtubule assembly and thus
the affected cell cannot proliferate anymore. So with time the proliferating rate will
decrease, since more and more cells are still alive, but do not proliferate. Thus instead
of using the constant proliferating rate r(t) = 0.0116 1

h
for all t, we now use a linear

function r(t) which starts at r(0) = 0.0116 1
h

:= r0 and decreases continuously to a rate
r∗ = r(t = 300h). The rate r∗ could also be negative and in this case it would not be a
proliferating rate anymore, but rather a dying rate. Thus the function which describes
the proliferation rate over the whole time reads as

r(t) = r0 + r∗ − r0

300h t = 0.0116 1
h

+
r∗ − 0.0116 1

h

300h t. (5.55)

Thus the model reads as

dN

dt
= r(t)

α
N

(
1−

(
N

K

)α)
− νcN (5.56a)

dc

dt
= c∞ − λc− γcN (5.56b)

N(0) = N0 (5.56c)
c(0) = c0. (5.56d)
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Figure 5.12: Modeling tumor growth including chemotherapy. Used parameters: λ = 0 1
h ,

γ = 0.00002 1
cells·h , r = 0.0116 1

h , α = 0.203, c∞ = 0µMh and N0 = 596.3 cells. Additional
parameters: K = 3300 cells, ν = 0.0001 1

h , p = 1 and Q = 0.01µM for c0 = 0.3µM ,
K = 3400 cells, ν = 0.0001 1

h , p = 3 and Q = 0.506µM for c0 = 1µM , K = 2800 cells,
ν = 0 1

h , p = 1 and Q = 0.01µM for c0 = 3µM , K = 1700 cells, ν = 0 1
h , p = 1 and

Q = 0.01µM for c0 = 10µM and K = 1900 cells, ν = 0 1
h , p = 1 and Q = 0.01µM for

c0 = 30µM . The parameters were plugged in the numerical solutions of the model (5.54).
The figure top left is without treatment for comparison. Parameters and equation are the
same as in figure 3.3.

So algorithm 5 varies this time also r∗ to find the best approximation. The way of
doing this is the same as before. The following parameter values are returned: r∗ =
0.006 1

h
, ν = 0.0025 1

µMh
and K = 3700 cells with an error of 0.0708 for c0 = 0.3µM ,

r∗ = −0.003 1
h
, ν = 0.0100 1

µMh
and K = 9100 cells with an error of 0.0245 for c0 = 1µM ,

r∗ = −0.006 1
h
, ν = 0.0045 1

µMh
and K = 13500 cells with an error of 0.0117 for c0 = 3µM ,

r∗ = −0.006 1
h
, ν = 0.0020 1

µMh
andK = 11200 cells with an error of 0.0098 for c0 = 10µM

and r∗ = −0.006 1
h
, ν = 0.0005 1

µMh
and K = 8200 cells with an error of 0.0442 for
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c0 = 30µM . As we assumed before, the error for c0 = 0.3µM improved not really, but
the error for c0 = 10µM is much better. The results can be seen in figure 5.13. The first
figure top left shows the tumor growth without any treatment for comparison.

Figure 5.13: Modeling tumor growth including chemotherapy. Used parameters: λ = 0 1
h ,

γ = 0, 00002 1
cells·h , r = 0.0116 1

h , N0 = 596.3 cells, c∞ = 0µMh and α = 0.203. Additionally
for c0 = 0.3µM : r∗ = 0.006 1

h , ν = 0, 0025 1
µMh and K = 3700 cells. For c0 = 1µM :

r∗ = −0.003 1
h , ν = 0.0100 1

µMh and K = 9100 cells. For c0 = 3µM : r∗ = −0.006 1
h ,

ν = 0.0045 1
µMh and K = 13500 cells. For c0 = 10µM : r∗ = −0.006 1

h , ν = 0.0020 1
µMh

and K = 11200 cells. And for c0 = 30µM : r∗ = −0.006 1
h , ν = 0.0005 1

µMh and K = 8200
cells. The parameters were plugged in the numerical solutions of the model (5.56)including
(5.18a). For comparison the top left figure shows the tumor growth without treatment, i.e.
c0 = 0µM . The parameters are the same as in figure 3.3.

So this model yields quite good results, although there are two problems left. The first
problem is that the model is not homogeneous anymore because of the non-constant
proliferation rate r(t). The second problem is that the carrying capacity K as well as
the proliferation rate r are not the same as in the basic case without any treatment. We
will first wade into the second problem. We can see in the above simulations, that with

43



5. Modeling Chemotherapy

fixed parameters, the number of tumor cells can either rise or fall, but it cannot rise first
and than fall after some time. Thus we only get satisfying results, if the dying rate of
chemotherapy is small enough at the beginning such that the number of tumor cells can
increase and then high enough such that the number of tumor cells decreases. Thus the
dying rate has to increase over time. But since the drug concentration decreases, the
dying rate and the drug concentration cannot correlate linearly. We try another approach
and use the efficacy of the drug. We assume that over time, the drug concentration inside
the tumor cells increase linearly, depending on the particular initial drug concentration.
Thus the efficacy ε can be represented by the formula

ε = ν
c0t

Q+ c0t
, (5.57)

which can be obtained by the equations (5.9) or (5.53). Q is again a positive constant
which is given by the data. The model reduces to a one dimensional differential equation,
which reads

dN

dt
= r

α
N

(
1−

(
N

K

)α)
− ν c0t

Q+ c0t
N (5.58a)

N(0) = N0. (5.58b)

The results which are returned by algorithm 6 can be seen in figure 5.14. The following
parameters and errors are returned: Q = 2µMh and ν = 0.014 1

h
with and error of 0.0699

for c0 = 0.3µM , Q = 11µMh and ν = 0.014 1
h

with and error of 0.0474 for c0 = 1µM ,
Q = 143µMh and ν = 0.021 1

h
with and error of 0.0953 for c0 = 3µM , Q = 162µMh and

ν = 0.022 1
h

with and error of 0.1081 for c0 = 10µM , Q = 300µMh and ν = 0.020 1
h

with
and error of 0.1336 for c0 = 30µM .
The values for ν do not differ very much. For c0 = 0.3µM and c0 = 1µM they are
actually the same and also for c0 = 3µM , c0 = 10µM and c0 = 30µM they are nearly
the same. Only the value of the parameter Q is definitely not the same for different
concentrations. In figure 5.15 one can see how Q is related to c0. But since Q can be
seen as an accumulation parameter for the drug concentration inside the cell, it makes
no sense for this parameter to change for different drug concentrations.
So there are again to problems. Also the model (5.58) is inhomogeneous and thus
the analysis we can do on the model is very limited. The second problem is that all
parameters should be nearly the same for all different drug concentrations. We try a new
attempt by representing ε by a differential equation instead of a hyperbolic function:

dε

dt
= (d · c0)ε

(
1− ε

E

)
, (5.59)

where ε is the efficacy of the drug, d · c0 is the growth rate of the efficacy, E is the
maximal efficacy, c0 is the drug concentration at time t = 0 and ε0 is the initial efficacy
at time t = 0. So like before the efficacy is increasing in time, depends on the drug
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Figure 5.14: Modeling tumor growth including efficacy of chemotherapy with hill-equation.
Parameters: r = 0.0116 1

h , K = 13380 cells, α = 0.203, N0 = 596.3 cells. Additionally
Q = 2µMh and ν = 0.014 1

h for c0 = 0.3µM , Q = 11µMh and ν = 0.014 1
h for c0 = 1µM ,

Q = 143µMh and ν = 0.021 1
h for c0 = 3µM , Q = 162µMh and ν = 0.022 1

h for c0 = 10µM ,
Q = 300µMh and ν = 0.020 1

h for c0 = 30µM . Figure is obtained by using the numerical
solution of model (5.58).

concentration, and reaches a capacity after some time. This leads us to a complete new
model, which will be discussed in detail in section 6.2:

dN

dt
= r

α
N

(
1−

(
N

K

)α)
− εN (5.60a)

dε

dt
= (d · c0)ε

(
1− ε

E

)
(5.60b)

N(0) = N0 (5.60c)
ε(0) = ε0. (5.60d)

Of course, one could also include the decrease of the drug concentration by adding the
differential equation (5.17b) to the system and substituting c0 by c in equation (5.60b).
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Figure 5.15: c0-Q-correlation.

But this makes the model much more complicated, since it is a three dimensional system
then and the resulting errors are not reduced further.
So this time we fix all the parameters we got from the basic model without treatment:
r = 0.0116 1

h
, K = 13380 cells, α = 0.203 and N0 = 596.3 cells. Additionally we set

E = 1, since the maximal efficacy can be set to 100% = 1. Testing yields that the
best initial efficacy is around ε0 = 0.012 1

h
and the growth rate parameter d is around

d = 0.0003 1
µMh

for all different drug concentrations. As a result we get an error of 0.0859
for c0 = 0.3µM , an error of 0.0559 for c0 = 1µM , an error of 0.1095 for c0 = 3µM , an
error of 0.0629 for c0 = 10µM and an error of 3.4415 ·106 for c0 = 30µM . As one can see
in figure 5.16, model (5.60) seems to be able to cope with the data in nearly all cases.
Solely for the drug concentration c0 = 30µM , the model seems to fail. A possible reason
could be that this drug concentration is so high that the cells are not able to absorb
the same percentage of the drug quantity as in the other cases, since there is a limit of
how much drug the cells can absorb in a particular amount of time. In figure 5.17 two
exemplary curves for the efficacy can be seen. There you can see that in both cases the
capacity of the efficacy is not reached.
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Figure 5.16: Modeling tumor growth including chemotherapy with the efficacy approach. Pa-
rameters: r = 0.0116 1

h , K = 13380 cells, α = 0.203, N0 = 596.3 cells, E = 1 1
h , ε0 = 0.012 1

h
and d = 0.0003 1

µMh . Figure is obtained by using the analytical solution of equation (5.60b)
and the numerical solution of equation (5.60a).
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Figure 5.17: Efficacy curves. Parameters are the same as in figure 5.16. Figure is obtained by
using the analytical solution of equation (5.60b).
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6. Combined Therapy
This section covers models of tumor growth, treated with a combined therapy, i.e. with
radio- and chemotherapy. A possible advantage of combined therapies is a synergistic
effect, i.e. an effect that is greater than the sum of the single effects. But also an an-
tagonistic effect is possible. Like before we consider a solid, homogeneous and avascular
tumor with no structure first. After that we will finish this chapter with a spatial model
which considers the three layer scheme.

6.1. Improved LQ-Model
Since the linear quadratic model is one of the most used models in radiotherapy and has
many variations, it will be discussed in this section. The aim is to get a model which
also includes chemotherapy besides the radiotherapy. Since the standard LQ-model and
its more complex variations have already been discussed in [Web13], it will be discussed
rather short in this section. For more detailed background [OMH09] and [CHN09] are
recommended.
The equation to start with is

Y = αD + βD2 with α, β > 0, (6.1)

which describes the yield of lethal lesions. Here D is the radiation dose of the radio-
therapy in Gy, αD are the lethal lesions caused by a single radiation dose and βD2

the lesions caused by different ones. Thus α represents the single-hit double-strand
breaks and β depicts the combination of two sub-lethal single-strand breaks which form
a double-strand break. DNA double strand breaks can be repaired in two ways: ho-
mologous recombination or non-homologous end-joining mechanisms. It was mentioned
before that tumor cells lack of such repair mechanisms. Thus the genetic damage is car-
ried on and in about 1-2% of all radiation induced double-strand breaks the cell cannot
survive any longer because of this mutations [EAC+05]. If the radiation dose is given in
n portions of dose d instead one dose D, equation (6.1) can be written as

Y = n(αd+ βd2) with α, β > 0. (6.2)

Thus the LQ-model reads as follows:

S = S∗

S0
= exp(−Y ) = e−n(αd+βd2), (6.3)

where S represents the survival fraction, which is obtained from the fraction of the
number of cells left after radiation S∗ and the initial number of cells S0. Figure 6.1
shows how the surviving fraction depends on different radiation dosages and different
α/β ratios. Now the chemotherapy has to be included in this model. There are two ways
to do this. The first one is based on the assumption that the effect of chemotherapy is
the sensitization of the tumor to radiotherapy. The second is based on the assumption
that the chemotherapy has its own killing effect [JD05, BBJ+10].
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Figure 6.1: LQ-model. On the left side: The red line represents 2Gy, the green one represents
4Gy and the blue line 8Gy. On the right side: The ratio α/β = 1.5Gy is depicted by the
red line, the ration α/β = 10Gy by the green line and the ratio α/β = 20Gy by the blue
line. Equation (6.3) was used to obtain the curves.

Sensitization Effect Based on the assumption above in this paragraph a dose d of
radiation operates like a radiation dose ds when it is given together with a chemothera-
peutic drug. Of course it would be very helpful to know something about the value of s
for a specific drug. But right now nothing about this can be stated. Replacing d by ds
in equation (6.2) yields

Ytotal = n(αds+ βd2s2), (6.4)

and the survival fraction becomes analogously

Stotal = e−n(αds+βd2s2). (6.5)

Some dose-surviving fraction-curves depending on different values of s are depicted in
figure 6.2. In figure 6.1 we see that less radiation is needed to almost extinct the tumor,
i.e. survival fraction=0.1% , if the ratio α/β is greater. But for a particular tumor in a
particular tissue this ratio is fixed. Thus the only way to (almost) extinct the tumor is to
use enough radiation. For α/β = 10Gy the needed radiation dose is about 11Gy. But in
figure 6.2 it is shown that the needed amount of radiation can be changed with s. So if s
is high enough, i.e. s = 2, the needed radiation dose can be reduced from 11Gy to about
6.5Gy, which is a quite big reduction. Of course, one has to find a chemotherapeutic
drug which causes the value s = 2. And even if this drug is found, one has to check
the side effects of the drug combined with radiotherapy. Because even if the amount
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of radiation is reduced, the burden for the patient, treated with a combined therapy
instead of radiotherapy alone, can be increased.

Figure 6.2: LQ-model with sensitization effect: s = 1 is represented by the red line, s = 1.1
by the green line and s = 2 by the blue line. Further parameters are α = 0.2985Gy−1 and
β = 0.02985Gy−2. Used equation: (6.5).

Own Killing Effect With the assumption that the chemotherapy has its own killing
effect, we have have to add this ”cell kill effect” to Y :

Ytotal = n(αd+ βd2) + YC . (6.6)

Thus YC is the cell kill effect of the chemotherapeutic drug from all cycles of chemother-
apy. The survival fraction reads accordingly

Stotal = e−n(αd+βd2)+YC = e−n(αd+βd2)eYC = SeYC (6.7)
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6.1.1. Biological Effective Dose

With the biological effective dose (BED) you can see if two different treatment schedules
have the same total effect on the same tissue [OMH09, CHN09]. It is defined as

BED : = − lnS
α

= αnd+ βnd2

α

= D

(
1 + β

α
d

)
︸ ︷︷ ︸

relative effectiveness

.

(6.8)

From the definition you can see that an increased BED, i.e. an increased biological
effect, results in a reduced survival fraction S and vice versa. In equation (6.8) we can
include the chemotherapeutic effects again [JD05].

Sensitization Effect Like before the radiation dose d is replaced by ds in the definition
of the BED. In order to do this, D has to be split into the fractions nd:

BEDtotal = nds

(
1 + β

α
ds

)
. (6.9)

If only few of the radiation fractions are sensitized by chemotherapy the total BED is
calculated as follows:

BEDtotal = BEDof sensitized fractions + BEDof unsensitized fractions . (6.10)

Own Killing Effect According to the section before also the total BED is the sum of
the BED of the radiotherapy and the BED of the chemotherapy, i.e.

BEDtotal = BEDof radiotherapy +equivalent BEDof chemotherapy . (6.11)

6.1.2. Tumor Control Probability

The tumor control probability (TCP) is the probability that no tumor cell survives the
treatment [OMH09, CHN09]. Like before the initial number of cells is denoted by S0 and
the number of cells which are left after treatment is denoted by S∗. By assumption S∗ is
random with Poisson distribution P (S∗). Of course, there are many other distributions
possible, for example a binomial distribution [Web13]. Per definition the TCP is the
probability that no tumor cell is left and thus

TCP := P (0). (6.12)
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Since P (S∗) is assumed to be Poisson distributed we get

P (S∗ = k) = λk · e
−λ

k! , (6.13)

with the expected value λ = S0 · S and hence

TCP = P (0) = e−S0·S. (6.14)

For later purposes equation (6.14) is written slightly different:

TCP = e−S0·S = e−S0·e−αBED = e−S0·e
−αD(1+ β

αd)
. (6.15)

Based on [JD05] chemotherapy is included once again.

Sensitization Effect The easiest way to include chemotherapy here is to take equation
(6.15) and replace d by ds:

TCPtotal = e−S0·e
−αDs(1+ β

αds)
. (6.16)

With this equation we can devise a formula to calculate s. For that purpose a randomized
trial with two arms is needed. On both radiation is given, but only one arm gets
chemotherapy additionally. This yields the following state:
Radiotherapy alone → survival outcome 1
Radiotherapy + Chemotherapy → survival outcome 2
These two conditions correspond to two TCP’s. So dividing the first TCP by the other
one yields an equation to calculate s:

ln TCP
ln TCPtotal

= −S0 · e−αD(1+ β
α
d)

−S0 · e−αDs(1+ β
α
ds)

⇔ ln
(

ln TCP
ln TCPtotal

)
= αDs

(
1 + β

α
ds

)
− αD

(
1 + β

α
d

)

⇔ s

(
1 + β

α
ds

)
−
(

1 + β

α
d

)
− 1
αD

ln
(

ln TCP
ln TCPtotal

)
= 0

⇔ β

α
ds2 + s−

(
1 + β

α
d

)
− 1
αD

ln
(

ln TCP
ln TCPtotal

)
= 0. (6.17)

Hence the positive root for s can be calculated:

s =
−1 +

√
1 + 4dβ

α

(
−
(
1 + β

α
d
)
− 1

αD
ln
(

ln TCP
ln TCPtotal

))
2dβ

α

. (6.18)
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In [JD05] an example is given: Assume that TCP = 0.45, TCPtotal = 0.67, α = 0.3Gy−1

and d = 2Gy is given for 30 fractions of radiation. Thus D = 60Gy. Let α
β

= 10Gy. Then
the solution for s is 1.03. This is a quite small value since all fractions of radiotherapy
are sensitized by the chemotherapeutic drug.
In the next part the value of s is considered in the case that not all fractions are sensitized.
Equation (6.10) is used to calculate the total TCP of the therapy where m1 fractions of
radiation are sensitized, and m2 are not.

TCPcombined = e−S0·e
−αm1ds(1+ β

αds)−αm2d(1+ β
αd)

. (6.19)

This time equation (6.15) is divided by (6.19):

m1d
2s2β

α
+m1ds+m2d

(
1 + β

α
d

)
− nd

(
1 + β

α
d

)
− 1
α

ln
(

ln TCP
ln TCPcombined

)
= 0.

(6.20)

This equation can be simplified slightly by using the fact that m1 +m2 = n:

m1d
2s2β

α
+m1ds−m1d

(
1 + β

α
d

)
− 1
α

ln
(

ln TCP
ln TCPcombined

)
= 0. (6.21)

Again the positive root of s can be calculated:

s =
−m1d+

√
m2

1d
2 + 4m1d2 β

α

(
m1d

(
1 + β

α
d
)

+ 1
α

ln
(

ln TCP
ln TCPcombined

))
2m1d2 β

α

=
−1 +

√
1 + 4 1

m1

β
α

(
m1d

(
1 + β

α
d
)

+ 1
α

ln
(

ln TCP
ln TCPcombined

))
2m1d2 β

α

. (6.22)

Like one would expect, the value of s depends only on m1, the number of sensitized
fractions, and not on n.

Own Killing Effect According to equation (6.11) the TCP for the combined therapy
reads as follows

TCPtotal = e−S0·S = e−S0·e−Ytotal = e−S0·e−YR−YC , (6.23)
where YR is the radiation cell kill and YC the equivalent and independent chemotherapy
cell kill from before. To obtain YC we divide equation (6.15) by equation (6.23):

ln TCP
ln TCPtotal

= S0e
−YR

S0e−YR−YC
= eYC

⇔ YC = ln
(

ln TCP
ln TCPtotal

)
. (6.24)
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6.2. Cell Population Model
In this section I will combine the radiotherapeutic treatment from section 4.1 with the
chemotherapeutic treatment from the end of section 5.5. Analogously to this sections
we assume the tumor to be homogeneous, solid and in an avascular stage. To model
the tumor growth we use the generalized logistic growth model and for the different
treatments we use the terms which have been introduced in the models (4.1) and (5.60)
respectively.

6.2.1. Mathematical Model

Let N be the number of tumor cells and ε the efficacy of the drug. With the assumptions
made above the model reads

dN

dt
= r

α
N

(
1−

(
N

K

)α)
− µAN − εN =: f(N) (6.25a)

dε

dt
= (d · c0)ε

(
1− ε

E

)
=: f(ε) (6.25b)

N(0) = N0

ε(0) = ε0,

where r > 0 is the proliferation rate of the tumor cells, α > 0 is the parameter of the
generalized logistic growth equation, K > 0 is the carrying capacity, A is the amount of
radiation which is administered in Gray, µ > 0 is the rate the tumor cells are killed by
the radiation, d · c0 is the growth rate of the efficacy, where c0 is the drug concentration
at time t = 0 and E is the maximal efficacy.
If no treatment is administered, then c0 = 0 and also A = 0 and equation (6.25a) reduces
to the generalized logistic growth equation. Since we want to consider a combined
treatment, we assume that both A > 0 and c0 > 0.
First we want to find the equilibria and figure out, for what values of A and c0 they are
stable. For this purpose we calculate first the Jacobian matrix J(N, ε):

J(N, c) =
(
df(N)
dN

df(N)
dε

df(ε)
dN

df(ε)
dε

)

=
 r
α
− r(α+1)

α

(
N
K

)α
− µA− ε N

0 dc0
(
1− 2 ε

E

) . (6.26)

We continue and set f(ε) = 0. This is equivalent to

dc0ε
(

1− ε

E

)
= 0.

Obviously this equation holds true if ε = 0 or ε = E. If ε = 0, f(N) = 0 reduces to
r

α
N

(
1−

(
N

K

)α)
− µAN = 0. (6.27)
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One solution of this equation is N = 0 and our first equilibrium is consequently

(N̂1, ε̂1) = (0, 0).

In order to investigate the stability of this equilibrium, we plug it in the Jacobian:

J(N̂1, ε̂1) =
(
r
α
− µA 0
0 dc0

)
. (6.28)

Since this matrix is diagonal, the eigenvalues of it are the diagonal entries. Since dc0 > 0,
it never happens that both eigenvalues are smaller than zero and thus this eigenvalue is
never stable.
The other solution of equation (6.27) is N = K

(
1− αµA

r

)1/α
and thus

(N̂2, ε̂2) = (K
(

1− αµA

r

)1/α
, 0).

Also this equilibrium can never be stable since the Jacobian

J(N̂2, ε̂2) =
 r
α
− r(α+1)

α

(
1− αµA

r

)
− µA K

(
1− αµA

r

)1/α

0 dc0

 (6.29)

is a triangular matrix and thus one eigenvalue is the diagonal entry dc0 > 0.
In the second case ε = E, f(N) = 0 is equivalent to

r

α
N

(
1−

(
N

K

)α)
− µAN − EN = 0. (6.30)

The first solution is N = 0 which yields the equilibrium

(N̂3, ε̂3) = (0, E).

Hence

J(N̂3, ε̂3) =
(
r
α
− µA− E 0

0 −dc0

)
. (6.31)

So one eigenvalue is −dc0 < 0. The other eigenvalue r
α
− µA− E is less than zero if

A >
r

αµ
− E

µ

Thus the equilibrium (N̂3, ε̂3) = (0, E) is stable if A > r
αµ
− E

µ
, and unstable otherwise.

Equation (6.30) is equivalent to

N = K

(
1− α(µA+ E)

r

) 1
α

.
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Hence the last equilibrium is

(N̂4, ε̂4) = (K
(

1− α(µA+ E)
r

) 1
α

, E),

which yields

J(N̂4, ε̂4) =
 r
α
− r(α+1)

α

(
1− α(µA+E)

r

)
− µA− E K

(
1− α(µA+E)

r

)1/α

0 −dc0

 . (6.32)

As before −dc0 is always less than zero. The second eigenvalue r
α
− r(α+1)

α

(
1− α(µA+E)

r

)
−

µA is less than zero if A < r
αµ
− E

µ
and unstable otherwise. To see how the final number

of tumor cells changes with increasing radiation dosage A, see figure 6.3.

Figure 6.3: Final number of tumor cells, depending on the radiation dosage. Parameters:
r = 0.0116 1

h , K = 2000000 cells, α = 0.203, E = 0.05 1
h , µ = 0.002 1

Gy·h .

In figure 6.4 you can see how the tumor cell population increases and decreases, depend-
ing on different radiation dosages and drug concentrations.

6.2.2. Fitting the model to data

Also in this section we want to prove if our model can reflect the reality. For this
purpose we compare the model to data points, which are from [AH14]. This time the
cells got a radiation treatment at the beginning, as it is described in section 4.2 and
additionally a chemotherapeutic treatment, as it is described in section 5.5. We consider
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Figure 6.4: Number of tumor cells, depending on different radiation dosages and drug concen-
trations. Parameters: r = 0.0116 1

h , K = 13380 cells, α = 0.203, E = 1 1
h , µ = 0.002 1

Gy·h ,
N0 = 596.3 cells, ε0 = 0.01 1

h , d = 0.0004 1
µM ·h . To obtain the curves, the analytical solution

(3.6), the analytical solution of equation (6.25b) and the numerical solution of equation
(6.25a) were used.

the same radiation dosages and drug concentrations as in the single treatments, in order
to compare the results. c0 = 30µM is the only drug concentration we do not consider,
since we saw in section 5.5 that this concentration is not as efficient as the other drug
concentrations. Thus we cannot compare it well with the other concentrations.
We start with the drug concentration c0 = 0.3µM and all different radiation dosages
A = 2Gy, A = 4Gy, A = 6Gy and A = 8Gy. The corresponding normalized data
can be seen in table 4. The following parameters are fixed according to the previous
calculations and experimental settings: r = 0.0116 1

h
, α = 0.203, N0 = 596.3, µ =

(0.0024, 0.0023, 0.0015, 0.0015) 1
Gy·h for A = (2, 4, 6, 8)Gy and E = 1 1

h
. To see if the model

can cope with the data, we try to find a good approximation by finding appropriate values
for ε0 and d with algorithm 7. The principle of this algorithm is the same as in the others.
It returns the following results: For A = 2Gy we get ε0 = 0.008 1

h
and d = 0.012 1

µM ·h
with an error of 0.0032, for A = 4Gy we get ε0 = 0.004 1

h
and d = 0.009 1

µM ·h with an
error of 0.007, for A = 6Gy we get ε0 = 0.004 1

h
and d = 0.016 1

µM ·h with an error of
0.0352 and for A = 8Gy we get ε0 = 0.003 1

h
and d = 0.017 1

µM ·h with an error of 0.0212.
For the corresponding curves, see the blue lines in figure 6.5. For comparison there are
the red lines which represent the curves which are calculated with the parameter values
ε0 = 0.012 1

h
and d = 0.0003 1

µM ·h from the previous simulations in section 5.5.
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Number of cells Days
Radiation (Gy) 0 3 6 9 12

2 596.3 1258.1 1695.7 1588.9 1283.0
4 596.3 1202.1 1992.4 2242.5 2191.6
6 596.3 1037.9 1842.7 1905.6 1442.5
8 596.3 1195.5 1606.8 1424.7 1416.8

Table 4: Number of tumor cells treated with radio- and chemotherapy, c0 = 0.3µM . Data
taken from [AH14].

Figure 6.5: Modeling tumor growth including radio- and chemotherapy. Used parame-
ters: r = 0.0116 1

h , α = 0.203, N0 = 596.3 cells, c0 = 0.3µM , E = 1 1
h and µ =

(0.0024, 0.0023, 0.0015, 0.0015) 1
Gy·h for A = (2, 4, 6, 8)Gy. Additionally for the blue lines:

ε0 = 0.008 1
h and d = 0.012 1

µM ·h for A = 2Gy, ε0 = 0.004 1
h and d = 0.009 1

µM ·h for A = 4Gy,
ε0 = 0.004 1

h and d = 0.016 1
µM ·h for A = 6Gy and ε0 = 0.003 1

h and d = 0.017 1
µM ·h for

A = 8Gy. For the red lines: ε0 = 0.012 1
h and d = 0.0003 1

µM ·h . The parameters were
plugged in the numerical solutions of the model (6.25).
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Number of cells Days
Radiation (Gy) 0 3 6 9 12

2 596.3 1208.9 1507.9 1436.8 850.9
4 596.3 1005.3 1663.7 1537.5 1403.4
6 596.3 1156.8 1669.3 1742.6 1097.7
8 596.3 967.5 1485.0 1542.5 1136.1

Table 5: Number of tumor cells treated with radio- and chemotherapy, c0 = 1µM . Data taken
from [AH14].

Number of cells Days
Radiation (Gy) 0 3 6 9 12

2 596.3 1268.2 1708.5 1197.2 892.7
4 596.3 965,0 1667.3 1492.7 1531.6
6 596.3 925.6 1594.8 1359.8 764.6
8 596.3 982.9 1377.4 1371.2 1079.1

Table 6: Number of tumor cells treated with radio- and chemotherapy, c0 = 3µM . Data taken
from [AH14].

We continue with the drug concentration c0 = 1µM . The normalized data can be seen
in table 5. The fixed parameters are the same as for c0 = 0.3µM . This time algorithm 7
returns the following results: For A = 2Gy we get ε0 = 0.007 1

h
and d = 0.005 1

µM ·h with
an error of 0.0123, for A = 4Gy we get ε0 = 0.005 1

h
and d = 0.004 1

µM ·h with an error of
0.0257, for A = 6Gy we get ε0 = 0.003 1

h
and d = 0.007 1

µM ·h with an error of 0.0212 and
for A = 8Gy we get ε0 = 0.003 1

h
and d = 0.006 1

µM ·h with an error of 0.0277. For the
corresponding curves, see the blue lines in figure 6.6. Also here there are the red lines
which represent the curves which are calculated with the parameter values ε0 = 0.012 1

h

and d = 0.0003 1
µM ·h from the previous simulations in section 5.5.

Next is the drug concentration c0 = 3µM . The normalized data can be seen in table 6.
The fixed parameters are the same as before. This time algorithm 7 returns the following
results: For A = 2Gy we get ε0 = 0.006 1

h
and d = 0.002 1

µM ·h with an error of 0.0654, for
A = 4Gy we get ε0 = 0.006 1

h
and d = 0.0009 1

µM ·h with an error of 0.0365, for A = 6Gy
we get ε0 = 0.005 1

h
and d = 0.002 1

µM ·h with an error of 0.0917 and for A = 8Gy we get
ε0 = 0.003 1

h
and d = 0.002 1

µM ·h with an error of 0.0177. For the corresponding curves,
see the blue lines in figure 6.7. Also here there are the red lines which represent the
curves which are calculated with the parameter values ε0 = 0.012 1

h
and d = 0.0003 1

µM ·h
from the previous simulations in section 5.5.
We continue with the drug concentration c0 = 10µM . This time algorithm 7 returns
the following results: For A = 2Gy we get ε0 = 0.011 1

h
and d = 0.00003 1

µM ·h with an
error of 0.0253, for A = 4Gy we get ε0 = 0.008 1

h
and d = 0.0001 1

µM ·h with an error of
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Figure 6.6: Modeling tumor growth including radio- and chemotherapy. Used parame-
ters: r = 0.0116 1

h , α = 0.203, N0 = 596.3 cells, c0 = 1µM , E = 1 1
h and µ =

(0.0024, 0.0023, 0.0015, 0.0015) 1
Gy·h for A = (2, 4, 6, 8)Gy. Additionally for the blue lines:

ε0 = 0.007 1
h and d = 0.005 1

µM ·h for A = 2Gy, ε0 = 0.005 1
h and d = 0.004 1

µM ·h for A = 4Gy,
ε0 = 0.003 1

h and d = 0.007 1
µM ·h for A = 6Gy and ε0 = 0.003 1

h and d = 0.006 1
µM ·h for

A = 8Gy. For the red lines: ε0 = 0.012 1
h and d = 0.0003 1

µM ·h . The parameters were
plugged in the numerical solutions of the model (6.25).

Number of cells Days
Radiation (Gy) 0 3 6 9 12

2 596.3 1134.1 1274.6 1097.1 711.1
4 596.3 1079.4 1305.0 1383.0 1619.8
6 596.3 905.6 1566.5 1568.2 1023.8
8 596.3 1138.6 1443.0 1280.1 905.1

Table 7: Number of tumor cells treated with radio- and chemotherapy, c0 = 10µM . Data taken
from [AH14].
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0.0166, for A = 6Gy we get ε0 = 0.005 1
h

and d = 0.0005 1
µM ·h with an error of 0.0616 and

for A = 8Gy we get ε0 = 0.003 1
h

and d = 0.0007 1
µM ·h with an error of 0.0226. For the

corresponding curves, see the blue lines in figure 6.8. Also here there are the red lines
which represent the curves which are calculated with the parameter values ε0 = 0.012 1

h

and d = 0.0003 1
µM ·h from the previous simulations in section 5.5.

In most of the cases the red lines lie distinctly below the curves. Thus the model which
combines radio- and chemotherapy predicts much more cell death as it actually happens
according to the data points. Hence the combined therapy is not as good as the sum
of the single therapies. Of course one have to keep in mind that already the number
of cells which was used here, was only an approximation. Thus one has always to be
cautious about stating facts. For a better comparison there are the best fitting curves
for the single therapies together with the particular best fitting curves of the combined
therapy outlined in one graph each, see figure 6.9.
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Figure 6.7: Modeling tumor growth including radio- and chemotherapy. Used parame-
ters: r = 0.0116 1

h , α = 0.203, N0 = 596.3 cells, c0 = 3µM , E = 1 1
h and µ =

(0.0024, 0.0023, 0.0015, 0.0015) 1
Gy·h for A = (2, 4, 6, 8)Gy. Additionally for the blue lines:

ε0 = 0.006 1
h and d = 0.002 1

µM ·h for A = 2Gy, ε0 = 0.006 1
h and d = 0.0009 1

µM ·h for
A = 4Gy, ε0 = 0.005 1

h and d = 0.002 1
µM ·h for A = 6Gy and ε0 = 0.003 1

h and d = 0.002 1
µM ·h

for A = 8Gy. For the red lines: ε0 = 0.012 1
h and d = 0.0003 1

µM ·h . The parameters were
plugged in the numerical solutions of the model (6.25).
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Figure 6.8: Modeling tumor growth including radio- and chemotherapy. Used parame-
ters: r = 0.0116 1

h , α = 0.203, N0 = 596.3 cells, c0 = 10µM , E = 1 1
h and µ =

(0.0024, 0.0023, 0.0015, 0.0015) 1
Gy·h for A = (2, 4, 6, 8)Gy. Additionally for the blue lines:

ε0 = 0.011 1
h and d = 0.0003 1

µM ·h for A = 2Gy, ε0 = 0.008 1
h and d = 0.00011 1

µM ·h
for A = 4Gy, ε0 = 0.005 1

h and d = 0.0005 1
µM ·h for A = 6Gy and ε0 = 0.003 1

h and
d = 0.0007 1

µM ·h for A = 8Gy. For the red lines: ε0 = 0.012 1
h and d = 0.0003 1

µM ·h . The
parameters were plugged in the numerical solutions of the model (6.25).
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Figure 6.9: Single and Combined therapy outlined in one graph. Only radiotherapy is repre-
sented by the green line, only chemotherapy by the blue line and the combined therapy is
represented by the red line. The black line depicts the tumor growth without therapy. The
curves are obtained in the same way as in the figures 3.3, 4.2, 5.16, 6.5, 6.6, 6.7 and 6.8.
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6.3. Spatial Model

necrotic cells

hypoxic cells

proliferating cells

R(t)

RH(t)

RN(t)

Figure 6.10: Three layer scheme, representing a slide of the tumor.

In comparison to the previous sections this section will cover a spatial model. Thus
instead of the number of tumor cells, this time the length of the radius will give us
information about the size of the tumor. In our spatial model also the internal structure
of the tumor will be considered. As we saw in section 2.1 an avascular tumor may consist
of three layers. The outer tumor radius is denoted by R(t), the quiescent radius, which
separates the proliferating and quiescent layer is denoted by RH(t) and the necrotic
radius, which separates the quiescent and the necrotic layer is denoted by RN(t), see
figure 6.10. All of them depend on the time t, since with time the tumor changes its
size. Thus this section deals with a moving boundary problem. The next important
parameter in this model is the concentration of a chemical g(r, t) at time t and radius r
(the radius is enough to represent the location, since the tumor is assumed to be radially
symmetric). This chemical could be nutrients or oxygen, for example. R(t) and g(r, t)
are defined by equations, which are derived by the principle of mass balance, whereas
RH(t) and RN(t) are defined implicitly by particular chemical concentration thresholds
gH and gN . gN represents the maximal nutrient concentration at which necrosis occurs
and gH depicts the concentration where the cells start to proliferate [Pre03]. A common
diffusion equation looks like

∂h

∂t
= D∇2h+ ρh, (6.33)

where D (distance2/time) is the diffusion coefficient of the substance and ρ (time−1) is
the rate of increase or decrease of the substance h [Mur89b]. Thus the constant diffusion
equation for nutrients reads as

∂g

∂t
= Dg∇2g − Γ?H(r −RN), (6.34)

where Dg is the diffusion coefficient of the chemical drug g and denotes the degree
of random motion [Pre03, Bri03]. −Γ?H(r − RN) is the reaction term and describes

67



6. Combined Therapy

the consumption of nutrients at a rate Γ?. Since only quiescent and proliferating cells
consume nutrients (at the same rate) the Heaviside function H is included here. Thus
it is one for radii which are longer than the necrotic radius and zero otherwise. By
assumption the tumor is radially symmetric and thus with polar coordinates the diffusion
term reads

Dg∇2g = Dg
1
r2

∂

∂r

(
r2∂g

∂r

)
. (6.35)

The differential equation for the radius R reads

1
3
dR3

dt
= R2dR

dt

=
∫ R

RH
sγgr2 d r︸ ︷︷ ︸

total rate of cell proliferation

−
∫ R

0
s(λA + λNH(RN − r) + νc+ µA)r2 d r︸ ︷︷ ︸

total rate of cell death

. (6.36)

The total rate of cell proliferation is proportional to the nutrient concentration g and
the proliferation rate γ > 0. Moreover the integral starts at RH and consequently it
is only greater than zero for a radius r > RH , since necrotic and quiescent cells do
not proliferate. The total rate of cell death consists of different terms. The constant
λA > 0 depicts the rate of apoptosis, i.e. normal cell death, whereas λN > 0 is the
rate of necrosis. Since necrosis only happens in the region which is inside RN , the
Heaviside function is needed again. s is another positive constant. The term νc depicts
the cell death caused by the chemotherapy and µA depicts the cell death caused by the
radiotherapy. Since the radiation reaches all tumor cells equally, we set A(r, t) = A const
[Web13]. The chemotherapy however affects the cells in the outer parts of the tumor
more than the ones in the inner parts. Thus c(r, t) is not constant, but rather represented
by another diffusion equation:

∂c

∂t
= Dc

1
r2

∂

∂r

(
r2 ∂c

∂r

)
− Γ1H(r −RH)− Γ2H(r −RN)H(RH − r). (6.37)

The equation is very similar to equation (6.34). There is again a diffusion term, this
time with a different diffusion parameter Dc. In contrast to equation (6.34), there are
two different reaction terms. −Γ1H(r − RH) describes the rate the chemotherapeutic
drug is consumed by cells in the proliferating area and −Γ2H(r−RN)H(RH−r) depicts
the rate the drug is consumed by the quiescent cells.
Previously it was mentioned that RH and RN are defined implicitly by the nutrient
concentration. Now it is time to define these radii more concrete [Pre03]:

• g(r, t) > gH∀ r ∈ (0, R)
⇒ RN = RH = 0

• ∃ r ∈ (0, R(t)) s.t. gN < g(r, t) ≤ cH
⇒ RN = 0 < RH < R with g(RH , t) = gH
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• ∃ r ∈ (0, R(t)) s.t. g(r, t) ≤ cN < cH
⇒ 0 < RN < RH < R with g(RN , t) = gN and g(RH , t) = gH

The last thing which is needed are the boundary and initial conditions for both g an c.
We start with the conditions which affect the nutrient concentration [Pre03]:
• ∂g

∂r
= 0 at r = 0

• g = g∞ on r = R(t)

• g, ∂g
∂r

continuous across r = RH(t) and r = RN(t)

• g(r, 0) = g0(r), R(t = 0) = R0

The initial and boundary conditions for the drug concentration c are nearly the same:
• ∂c

∂r
= 0 at r = 0

• c = c∞(t) on r = R(t)

• c, ∂c
∂r

continuous across r = RH(t) and r = RN(t)

• c(r, 0) = c0(r), R(t = 0) = R0

The only difference is that the concentration of the drug outside the tumor is time
dependent, since it is possible to give chemotherapy in certain time slots.

Nondimensionalization To analyze the model correctly, the model needs to be brought
into a dimensionless form. To do this, the typical nutrient concentration G, the drug
concentration C, the typical lengthscale X and timescale T are introduced. The choice
of G, C, X and T is based on typical measurements. So far, they remain unspecified
[Pre03]. So the dimensionless variables read as

g∗ = g

G
, c∗ = c

C
, t∗ = t

T
, r∗ = r

X
,

R∗ = R

X
, RH

∗ = RH

X
, RN

∗ = RN

X
.

So writing the model equations (6.34), (6.36) and (6.37) in terms of the dimensionless
variables yields

∂g

∂t
=
(
DgT

X2

) 1
r∗2

∂

∂r∗

(
r∗2

∂g∗

∂r∗

)
− Γ?TH(r∗ −RN

∗) (6.38a)

∂c

∂t
=
(
DcT

X2

) 1
r∗2

∂

∂r∗

(
r∗2

∂c∗

∂r∗

)
− Γ1TH(r∗ −R∗H)

− Γ2TH(r∗ −R∗N)H(R∗H − r∗)
(6.38b)

R∗2
dR∗

dt∗
=
∫ R∗

0
s{g∗GTH(r∗ −R∗N)− TλA − TλNH(R∗N − r∗)

− Tνc∗C − TµA}r∗2 d r∗.
(6.38c)
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There are several different timescales implicit in the model equations, which are for
example the

• Nutrient diffusion timescale X2

D

• Tumor doubling timescale 1
sG

• Nutrient consumption timescale 1
Γ?

• Drug consumption timescales 1
Γ1

and 1
Γ2

Now the longest timescale should be used, since changes in the spatial structure of
the tumor are simulated and analyzed. Experimental parameter measurements show
that the tumor doubling timescale 1

sG
corresponds to weeks and is therefore the longest

timescale [Pre03]. Thus we choose
T = 1

sG
.

Furthermore the following quasi-steady assumptions are made

O(Γ?) = O(Dg/X
2)� O(1/T )

O(Γ1) = O(Dc/X
2)� O(1/T )

O(Γ2) = O(Dc/X
2)� O(1/T ).

Including all assumptions from above and exclude ·s for clearness, the model (6.38) can
be reduced to

0 = 1
r∗2

∂

∂r∗

(
r∗2

∂g∗

∂r∗

)
− Γ∗?H(r∗ −RN

∗) (6.39a)

0 = 1
r∗2

∂

∂r∗

(
r∗2

∂c∗

∂r∗

)
− Γ∗1H(r∗ −R∗H)− Γ∗2H(r∗ −R∗N)H(R∗H − r∗) (6.39b)

R∗2
dR∗

dt∗
=
∫ R∗

0
{γg∗H(r∗ −R∗N)− λ∗A − λ∗NH(R∗N − r∗)− ν∗c∗ − µ∗A}r∗

2 d r∗, (6.39c)

where Γ∗? = Γ?X2

Dg

, Γ∗1 = Γ1X
2

Dc

, Γ∗2 = Γ2X
2

Dc

, γ = 1
C
,

λ∗A = λA
GC

, λ∗N = λN
GC

, ν∗ = ν

G
, µ∗ = µ

GC
,

with the following boundary and initial conditions of the nutrient and the drug concen-
trations:

• R∗H = 0 if g∗ > g∗H ∀ r and otherwise g∗(R∗H , t∗) = g∗H

• R∗N = 0 if g∗ > g∗N ∀ r and otherwise g∗(R∗N , t∗) = g∗N

• ∂g∗

∂r∗
= 0 at r∗ = 0
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• g∗ = g∗∞ on r∗ = R∗

• ∂c∗

∂r∗
= 0 at r∗ = 0

• c∗ = c∗∞(t) on r∗ = R∗

• R∗(0) = R∗0,

where g∗H = gH
G
, g∗N = gN

G
, g∗∞ = g∞

G
, c∗∞(t) = c∞(t)

C

To keep the model clear, the superscript stars are omitted in the following.

6.3.1. Model Analysis and Simplification

Since an avascular tumor does not have three layers from the beginning, this section
also considers the prestages. There are three stages in total. In the first stage there
are only proliferating cells. Later, when the tumor becomes bigger, the substrate level
(for example the oxygen level) in the interior of the tumor drops down to a level where
proliferation is not possible anymore. Thus these cells become quiescent and the tumor
consists of two layers now. In the third stage finally, the tumor is even bigger and the
substrate concentration drops down to a level where the cells start to become necrotic.
Hence in this stage the tumor consists of three layers as discussed above.

First stage Since the tumor consists of proliferating cells only, it holds that RN =
RH = 0 and g > gH ∀ r ∈ (0, R). Thus equation (6.39a) reads as

0 = 1
r2

∂

∂r

(
r2∂g

∂r

)
− Γ?,

which can be solved easily:

g(r, t) = Γ?
6 r

2 − p1

r
+ p2,

with p1, p2 ∈ R. Including the boundary conditions yields

g(r, t) = g∞ −
Γ?
6 (R2 − r2). (6.40)

This can be done in the same way for the drug concentration. Applying the condition
RN = RH = 0 to equation (6.39b) yields

0 = 1
r2

∂

∂r

(
r2 ∂c

∂r

)
− Γ1.
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The solution can be computed in the same way as above. Including the boundary
conditions yields the exact solution

c(r, t) = c∞(t)− Γ1

6 (R2 − r2). (6.41)

Further the condition g > gH ∀ r ∈ (0, R) is equal to

g∞ −
Γ?
6 (R2 − r2) > gH

⇔ 6
Γ?

(g∞ − gH) > R2 − r2.

Thus at this stage it has to hold for the tumor radius R(t) that

0 < R2(t) < 6
Γ?

(g∞ − gH).

Hence if R2(t) → 6
Γ? (g∞ − gH), i.e. the tumor radius tends to the maximum for which

only proliferating cells exist, the nutrient concentration g → gH for r → 0. Now we
can plug in the solutions (6.40) and (6.41) and the condition RN = RH = 0 in equation
(6.39c) to get an equation for the radius R:

R2dR

dt
=
∫ R

0
{γ(g∞ −

Γ?
6 (R2 − r2))− λA − ν(c∞(t)

− Γ1

6 (R2 − r2))− µA}r2 d r

⇒ R2dR

dt
=1

3R
3γg∞ −

1
3R

5 Γ?
6 γ + 1

5R
5 Γ?

6 γ −
1
3R

3λA −
1
3R

3νc∞(t)

+ 1
3R

5 Γ1

6 ν −
1
5R

5 Γ1

6 ν −
1
3µAR

3

⇔ dR

dt
=1

3R
(
γg∞ −

1
15R

2Γ?γ − λA − νc∞(t) + 1
15R

2Γ1ν − µA
)
. (6.42)

Second stage In this stage only proliferating and quiescent cells exist. Thus we have
the following conditions:

(a) RN = 0

(b) g(r, t) > gN ∀ r ∈ (0, R)

(c) g(RH , t) = gH

Hence the solution for the nutrient concentration is the same as in the first stage, namely

g(r, t) = g∞ −
Γ?
6 (R2 − r2). (6.43)

To find the solution for the drug concentration, two cases are needed:
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• r > RH

(6.39b) ⇔ 0 = 1
r2

∂
∂r

(
r2 ∂c

∂r

)
− Γ1

• r < RH

(6.39b) ⇔ 0 = 1
r2

∂
∂r

(
r2 ∂c

∂r

)
− Γ2

Thus the solution for the drug concentration, which can be computed in the same way
as the solution of the nutrient concentration in the first stage, reads

c(r, t) =
{
c∞(t)− Γ1

6 (R2 − r2) if RH < r < R
c∞(t)− Γ2

6 (R2 − r2) if 0 < r < RH
. (6.44)

Condition (c) is equivalent to

gH = g∞ −
Γ?
6 (R2 −R2

H) (6.45)

⇔ R2
H = R2 − 6

Γ?
(g∞ − gH), (6.46)

and condition (b) is the same as
6
Γ?

(g∞ − gN) > R2 − r2. (6.47)

Since RH has to be greater than zero we have two boundaries for the radius R(t) in this
stage. Condition (c) yields a lower bound and condition (b) an upper bound (which is
obtained in the same way as in the first stage):

6
Γ?

(g∞ − gH) < R2(t) < 6
Γ?

(g∞ − gN). (6.48)

Now we can establish an equation for the radius, by plugging in the solutions for the
concentrations as well as condition (a) in equation (6.39c). Simple calculation yields

R2dR

dt
=
∫ RH

0
{−λA − ν(c∞(t)− Γ2

6 (R2 − r2))− µA}r2 d r

+
∫ R

RH
{γ(g∞ −

Γ?
6 (R2 − r2))− λA − ν(c∞(t)− Γ1

6 (R2 − r2))}r2 d r

⇒ dR

dt
=1

3R
(

(γg∞ − µA)
(

1− R3
H

R3

)
− λA − νc∞(t)

)

+ 1
3R

3
(

1
15 (−γΓ? + νΓ1) + 1

6 (γΓ? + νΓ2 − νΓ1) R
3
H

R3

)
(6.49)

+ 1
3R

3
(

1
10 (−γΓ? − νΓ2 + νΓ1) R

5
H

R5

)
.

In this calculation it is also considered that quiescent cells do not proliferate and are not
damaged by radiotherapy.
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Third stage In this final stage there are proliferating, quiescent and also necrotic cells.
Thus the following assumptions are necessary:

(a) g(RH , t) = gH

(b) g(RN , t) = gN

Since proliferating and quiescent cells need the same amount of nutrients, but necrotic
cells need no nutrients at all, the nutrient concentration in the region for all r < RN is
different as in the region where r > RN . With the above assumptions the concentration
reads as

g(r, t) =
{
gN 0 < r ≤ RN

gN + Γ?
6r (r −RN)2(r + 2RN) RN < r < R,

(6.50)

[Pre03]. Depending on the layer, the concentration of the drug varies, too. Since necrotic
cells are not doing any cell metabolism, they are not consuming any drug. Thus for
all r ≤ RN the drug concentration stays the same. Since we do not have boundary
conditions for c, we take the same concentration for the necrotic core as for the rim
r = RN . Thus the drug concentration reads as

c(r, t) =


c∞(t)− Γ2

6 (R2 −R2
N) if 0 < r < RN

c∞(t)− Γ2
6 (R2 − r2) if RN < r < RH

c∞(t)− Γ1
6 (R2 − r2) if RH < r < R .

(6.51)

Analogous to the second stage, the tumor needs a minimal size to be in the third stage.
Here the following has to hold for the radius:

R2(t) > 6
Γ?

(g∞ − gN). (6.52)

The conditions for RH stay the same as in the second stage. Analogously we can now
relate RN and gN :

R2
N = R2 − 6

Γ?
(g∞ − gN). (6.53)
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So there is only one thing left to do. Including the conditions and solutions for the
concentrations in equation (6.39c) yields

R2dR

dt
=
∫ RN

0
{−λA − λN}r2 d r +

∫ RH

RN
{−λA − ν(c∞(t)− Γ2

6 (R2 − r2))r2 d r

+
∫ R

RH
{γ(gN + Γ?

6r (r −RN)2(r + 2RN))}r2 d r

−
∫ R

RH
{λA − ν(c∞(t)− Γ1

6 (R2 − r2))− µA}r2 d r

dR

dt
=R3

[
(γgN − µA)

(
1− R3

H

R3

)
− νc∞

(
1− R3

N

R3

)
−
(
λA + λN

R3
N

R3

)]

+ γΓ?R3

6

[
1
5

(
1− R5

H

R5

)
− R2

N

R2

(
1− R3

H

R3

)
+ R3

N

R3

(
1− R2

H

R2

)]

+ νΓ1R
3

6

[
1
3

(
1− R3

H

R3

)
− 1

5

(
1− R5

H

R5

)]

+ νΓ2R
3

6

[
1
3

(
R3
H

R3 −
R3
N

R3

)
− 1

5

(
R5
H

R5 −
R5
N

R5

)]
.

(6.54)

Since this model is finally finished, the data analysis can start.

6.3.2. Fitting the model to data

Once again we want to know how well the model fits the data. For this question we
need to know which model we have to take, since in every stage the tumor growth and
death is modeled different. Thus we need to make the following assumptions. If the
tumor radius is larger than 200µm the tumor has a necrotic core and if the radius is
larger than 100µm there are quiescent cells. These assumptions arose from histological
examination [TG55, DS81]. Thus the model is chosen by the following simple rule:

• R < 100µm ⇒ First Stage ⇒ Using equation (6.42)

• 100µm < R < 200µm ⇒ Second Stage ⇒ Using equations (6.49) and (6.46)

• 200µm ⇒ Third Stage ⇒ Using equations (6.54), (6.53) and (6.46)

Since the data stemmed from an in-vitro experiment, the external nutrient concentration
can be set to one. The other nutrient concentration boundaries can be obtained from
the model boundaries above. To get gH for example, just plug in R = 100 and RH = 0
in equation (6.45). Thus the nutrient concentrations are:

• g∞ = 1

• gH = 1− Γ?
6 1002

75



6. Combined Therapy

• gN = 1− Γ?
6 2002

Since we want to compare the model to the given data from [AH14] and the data only
includes the tumor area, we have to convert the area into the radius. This is quite easy
with the formula

Radius =
√
Area

π

and the results can be seen in table 8.

Days 0 3 6 9 12
Area (µm2) 79312.42 131492.7 194451.8 222105.0 233064.7
Radius (µm) 158.890 204.586 248.789 265.891 272.372

Table 8: Mean area measured over a period of 12 days. Data taken from [AH14].

We want to start with the case where no radiation and no chemotherapeutic drug is
administered to obtain the parameters λA, λN , γ and Γ? first. Since no radiation and
no chemotherapeutic drug is administered, we set A = 0 and c∞(t) = 0. Algorithm
8 returns the best approximation with an error of 0.0030 for the following parameters:
λA = λN = 0, γ = 0.03 and Γ? = 0.00012. According to the definition of the model λA
and λN are greater than zero. But we can assume that both values are so small that we
can approximate them with zero. The fitting can be seen in figure 6.11. This simulation
and all further ones are made with MATLAB and with the numerical solutions of the
above mentioned equations, obtained by the euler method. In all simulations the blue
line represents the outer radius R, the red line represents the radius RH and the green
line represents RN .
The next step is to include radiation. The available data can be seen in table 9. The
radii are normalized in order to compare them.

Radius of Tumor Days
Radiation (Gy) 0 3 6 9 12

2 158.890 198.014 230.050 239.573 251.654
4 158.890 193.470 212.807 223.183 225.769
6 158.890 199.823 213.748 209.756 224.324
8 158.890 196.593 202.409 196.075 211.284

Table 9: Mean radius of tumor treated with radiotherapy. Data taken from [AH14].

We vary µ and keep all other parameters as before. The other parameters are fixed, so
λA = λN = 0, g∞ = 1, γ = 0.03 and Γ? = 0.00012. We get the following results, which
can be seen in figure 6.12: For A = 2 we get µ = 0.0034 with an error of 0.0013. For
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Figure 6.11: Approximation of the radius without treatment. Used parameters: g∞ = 1,
λA = λN = 0, γ = 0.03 and Γ? = 0.00012. Data points taken from [AH14].

A = 4 we get µ = 0.0032 with an error of 0.0032. For A = 4 we get µ = 0.0022 with an
error of 0.0114 and for A = 8 we get µ = 0.0021 with an error of 0.0172. Like in the cell
population model the values of µ are almost the same for drug dosages greater than 5
Gray, but differ from the similar values for drug dosages less than 5 Gray.
Now we will include only chemotherapy. The normalized radii are shown in table 10.

Radius of Tumor Days
Concentration of drug (µM) 0 3 6 9 12

0.3 158.890 187.719 202.966 200.259 218.354
1 158.890 185.684 210.558 211.043 214.376
3 158.890 183.276 206.101 207.743 198.439
10 158.890 173.483 190.881 190.559 180.951
30 158.890 172.535 194.972 191.632 186.101

Table 10: Mean radius of tumor treated with chemotherapy. Data taken from [AH14].

Like in the fitting without treatment we choose g∞ = 1, λA = λN = 0, γ = 0.03 and
Γ? = 0.00012. Additionally we choose Γ2 = 0, since vinblastine inhibits cell division
and thus only proliferating cells are affected. ν and Γ1 and are varied to get the best
approximation. Algorithm 10 returns the following results: ν = 0.0365 and Γ1 = 0.0004
are returned with an error of 0.0026 for c∞(0) = 0.3, ν = 0.0132 and Γ1 = 0.002 are
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Figure 6.12: Approximation of the radius including radiotherapy. Used parameters: g∞ = 1,
λA = λN = 0, γ = 0.03 and Γ? = 0.00012. Additional parameters: µ = 0.0034 for A = 2,
µ = 0.0032 for A = 4, µ = 0.0022 for A = 6 and µ = 0.0021 for A = 8. Data points taken
from [AH14].
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returned with an error of 0.0014 for c∞(0) = 1, ν = 0.0074 and Γ1 = 0.007 are returned
with an error of 0.0030 for c∞(0) = 3, ν = 0.0036 and Γ1 = 0.023 are returned with an
error of 0.0035 for c∞(0) = 10 and ν = 0.0003 and Γ1 = 0.017 are returned with an error
of 0.0115 for c∞(0) = 30. The curves can be seen in figure 6.13.
Now it is time to combine both treatments, i.e. radio- and chemotherapy. The normal-
ized radii can be seen in table 11 and 12 for c∞(0) = 0.3 and c∞(0) = 10, respectively.

Radius of Tumor Days
Radiation (Gy) 0 3 6 9 12

2 158.890 182.110 191.982 189.793 182.746
4 158.890 180.725 197.622 201.778 200.964
6 158.890 176.152 195.129 196.287 186.861
8 158.890 180.306 189.976 185.993 185.810

Table 11: Mean radius of tumor treated with radio- and chemotherapy, c∞(0) = 0.3. Data
taken from [AH14].

Radius of Tumor Days
Radiation (Gy) 0 3 6 9 12

2 158.890 178.539 182.275 177.517 164.145
4 158.890 177.064 195.070 185.027 190.254
6 158.890 171.778 189.521 189.557 175.654
8 158.890 178.820 186.495 182.585 171.600

Table 12: Mean radius of tumor treated with radio- and chemotherapy, c∞(0) = 10. Data
taken from [AH14].

We start with c∞(0) = 0.3 and set all parameters according to the previous calculations:
g∞ = 1, λA = λN = 0, Γ? = 0.00012, γ = 0.03, µ = (0.0034, 0.0032, 0.0022, 0.0021) for
A = (2, 4, 6, 8), ν = 0.0365, Γ1 = 0.0004 and Γ2 = 0. The results can be seen in figure
6.14. The following values for the minimal error, which is again calculated by (3.7), are
returned: For A = 2 we get an error of 0.0161, for A = 4 we get an error of 0.00075, for
A = 6 we get an error of 0.0136 and for A = 8 we get an error of 0.0220.
We continue with c∞(0) = 10 and the following parameters: g∞ = 1, λA = λN = 0, γ =
0.03, Γ? = 0.00012, µ = (0.0034, 0.0032, 0.0022, 0.0021) for A = (2, 4, 6, 8), ν = 0.0036,
Γ1 = 0.023 and Γ2 = 0. This time we get the following results: For A = 2 we get an
error of 0.0178, for A = 4 we get an error of 0.0033, for A = 6 we get an error of 0.0081
and for A = 8 we get an error of 0.0093. The results can be seen in figure 6.15.
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Figure 6.13: Approximation of the radius including chemotherapy. Used parameters: g∞ = 1,
λA = λN = 0, γ = 0.03, Γ? = 0.00012 and Γ2 = 0. Additional parameters: ν = 0.0365 and
Γ1 = 0.0004 for c∞(0) = 0.3µM , ν = 0.0132 and Γ1 = 0.002 for c∞(0) = 1, ν = 0.0074 and
Γ1 = 0.007 for c∞(0) = 3, ν = 0.0036 and Γ1 = 0.023 for c∞(0) = 10 and ν = 0.0003 and
Γ1 = 0.017 for c∞(0) = 30. Data points taken from [AH14].
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Figure 6.14: Approximation of the radius including radio- and chemotherapy, c∞(0) =
0.3. Used parameters: g∞ = 1, λA = λN = 0, Γ? = 0.00012, γ = 0.03, µ =
(0.0034, 0.0032, 0.0022, 0.0021) for A = (2, 4, 6, 8), ν = 0.0365, Γ1 = 0.0004 and Γ2 = 0.
Data points taken from [AH14].
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Figure 6.15: Approximation of the radius including radio- and chemotherapy, c∞(0) =
10. Used parameters: g∞ = 1, λA = λN = 0, γ = 0.03, Γ? = 0.00012, µ =
(0.0034, 0.0032, 0.0022, 0.0021) for A = (2, 4, 6, 8), ν = 0.0036, Γ1 = 0.023 and Γ2 = 0.
Data points taken from [AH14].

For A = 4 and both drug concentrations, a really good fitting is returned, but for the
other three radiations dosages the last data points are located below the curve. This
suggests the assumption that the efficacy of the combined therapy is even better than
the sum of the single therapies. But since the errors are still very small and the distances
between data points and the calculated curves are also not really wide, this can also be
a coincidence. Moreover the results from section 6.2.2 suggest clearly the opposite, in
particular that the combined therapy is not as good as the sum of the single therapies.
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7. Conclusion
7.1. Discussion
In this thesis I elucidated different combined therapy models. For this purpose I started
to state models for tumor growth without any therapy, included first radiotherapy alone
and then chemotherapy alone. To model chemotherapy I used two different approaches.
The first was a cell population model and the second a cell cycle model which I got
by combining two different preexisting cell cycle models. After each of these chapters I
compared the models with collected data for a breast cancer cell line. Comparing the
data with the generalized logistic growth model for tumor growth without treatment
and with the radiation model yielded quite good fits. In the case of chemotherapy I
forbore to compare the given data to the cell cycle model, since the drug vinblastine
does not kill cells in a specific phase of the cell cycle. But comparing the data with
the cell population model did not give satisfying results either. Thus I advanced the
model by including a linear decreasing proliferation rate, since vinblastine inhibits cell
proliferation. This addition improved the fitting very much, but also this model implied
problems, like inhomogeneity and changing of parameters, which should not change. So
I stated a new model, which includes the efficacy of the drug. This model yielded quite
good fits.
The last chapter finally covered the combined therapy. Getting started I presented an
already existing extension of the LQ-model. I also forbore to compare this model with
the data, since no time course could be included. Next I developed a cell population
model for the combined therapy by combining two cell population models from previous
chapters. This model yielded quite good fits. Finally I covered a spatial model, whereby
I included the chemotherapeutic treatment. Also this model was compared with the
given data. It turned out that fitting this model to the data yielded a quite good fit,
without the need for improvements of the model.
Altogether all final models were able to cope with the data. However the spatial model
yielded results that were converse to the results of the cell population model. But
there are many possible reasons for that. For example the number of cells for the cell
population model was only estimated according to a previous cell counting experiment,
and not measured directly. Moreover the area which was measured was maybe not an
exact sphere and thus the approximation with the radius is not an exact translation.

7.2. Outlook
Since in the area measuring process only the fluorescing cells were considered, it would be
possible that only a subpopulation was measured instead of all tumor cells. This could
be also the reason, why the initially stated cell population model for chemotherapy was
not able to cope with the data. Since vinblastine inhibits the proliferation of cells, a
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simple two compartment model with proliferating and quiescent cells could be a solution:
dP

dt
= r

α
P

(
1−

(
P +Q

K

)α)
− νcP − kPQP + kQPQ

dQ

dt
= kPQP − kQPQ

dc

dt
= C(t)− λc− γcN =: f(c)

P (0) = P0

Q(0) = Q0

c(0) = c0,

where P is the number of proliferating cells, Q is the number of quiescent cells, r is the
proliferation rate, K the carrying capacity, α the parameter of the generalized logistic
growth equation, ν is the dying rate of the proliferating cells due to the chemotherapeutic
drug, kPQ the rate proliferating cells become quiescent and kQP the rate quiescent cells
become proliferating. Such a two compartment model was already stated in [Web13]
for radiotherapy and is similar to the cell-cycle specific model in this thesis. Here only
the number of proliferating cells would be considered and compared with the data. But
unfortunately considering this model and fitting it to the data would go beyond the con-
straints of this thesis. Figure 7.1 shows how the tumor growth including chemotherapy
could look like.

Figure 7.1: Proliferating and quiescent cell model. The red line represents the proliferating
cells, the blue line the quiescent cells and the black line represents all cells together. Used
parameters are K = 100 cells, α = 2, r = 0.0578 1

h , λ = 0.002 1
h , c∞ = 0µMh , c0 = 0.1µM ,

γ = 0 1
cells·h , ν = 0.02 1

µMh , P0 = 9 cells, Q0 = 1 cells, kPQ = 0.005 cellsh and kQP = 0.001 cellsh .
Parameters were plugged in the numerical solution of the above stated model.

Another attempt could be to postulate a new model for tumor growth including radio-
therapy, similar to the model (5.60) which was established for tumor growth including

84



7. Conclusion

chemotherapy:

dN

dt
= r

α
N

(
1−

(
N

K

)α)
− εN

dε

dt
= dAε

(
1− ε

E

)
N(0) = N0

ε(0) = ε0.

This time ε represents the efficacy of the radiotherapy and the growth of this efficacy
depends on the amount of radiation A.
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A. List of Variables

Variables used in Section 3
t time
N(t) number of tumor cells at time t
N0 number of tumor cells at time t = 0
r > 0 net proliferation rate
K > 0 carrying capacity
α > 0 control variable of the generalized logistic growth equation

Variables used in Section 4
t time
N(t) number of tumor cells at time t
N0 number of tumor cells at time t = 0
r > 0 net proliferation rate
K > 0 carrying capacity
α > 0 control variable of the generalized logistic growth equation
µ > 0 rate of damage of radiation
A amount of radiation in Gy

Variables used in Section 5.1
c(t) drug concentration at time t
c0 drug concentration at time t = 0
k12 microconstant, defining distribution from compartment 1 to com-

partment 2
k21 microconstant, defining distribution from compartment 2 to com-

partment 1
k10 microconstant, defining distribution from compartment 1 outbound
α slope
β slope
A to α corresponding intercept
B to β corresponding intercept
T1/2 half life
Vc Volume of the central compartment
Vp Volume of the peripheral compartment
Vt total Volume
D administered dosage
Vd Volume of distribution
AUC area under the curve
CL plasma clearance
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Variables used in Section 5.2
C molar concentration of the drug
R molar concentration unoccupied receptors
RC molar concentration of the drug’s receptor complex
kon rate constant for the forward process
koff rate constant for the backward process
RT total molar concentration of receptors
Kd drug’s dissociation constant
E response
Emax maximum possible response
α intrinsic activity
S value of stimulus
e efficacy
χ intrinsic efficacy

Variables used in Section 5.3
t time
N(t) number of tumor cells at time t
N0 number of tumor cells at time t = 0
c(t) concentration of chemotherapeutic drug at time t
c0 concentration of chemotherapeutic drug at time t = 0
r > 0 net proliferation rate
K > 0 carrying capacity
ν > 0 drug induced death rate
κ constant rate of drug supply, release or activation
D constant diffusion coefficient
u velocity of the interstitial fluid
α decay or deactivation rate constant
β rate constant of drug uptake by the cell
λ > 0 drugs half-life (or decay rate)
γ > 0 rate at which the drug becomes ineffective as a result of cell kill
C(t) rate at which the drug is delivered to the tumor
c∞ constant drug-delivering-rate

Variables used in Section 5.4
t time
N(t) number of tumor cells at time t
τ duration of one chemotherapy session
n treatment session
r > 0 net proliferation rate
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µji > 0 killing fraction of drug i in compartment j
ηji > 0 survival fraction of drug i in compartment j
m number of injections
γ > 0 proliferating rate
ν > 0 dying rate
κ > 0 transition rate
M growth matrix
T treatment matrix
d drug dose
g(t) piecewise continuous function which describes how the treatment

impacts the tumor cells at time t
h cell kill parameter
δ decay of the drug

Variables used in Section 5.5
t time
N(t) number of tumor cells at time t
N0 number of tumor cells at time t = 0
c(t) concentration of chemotherapeutic drug at time t
c0 concentration of chemotherapeutic drug at time t = 0
r > 0 net proliferation rate
K > 0 carrying capacity
ν > 0 drug induced death rate
λ > 0 drugs half-life (or decay rate)
γ > 0 rate at which the drug becomes ineffective as a result of cell kill
C(t) rate at which the drug is delivered to the tumor
c∞ constant drug-delivering-rate
r0 proliferation rate at time t = 0h
r∗ proliferation rate at time t = 300h
p positive constant of Hill-function
Q positive constant of Hill-function
ε(t) efficacy of the drug at time t
ε0 efficacy of the drug at time t = 0
d parameter of the growth rate of the efficacy
E maximal efficacy

Variables used in Section 6.1
Y yield of lethal lesions.
α > 0 single-hit double-strand breaks
β > 0 combination of two sub-lethal single-strand breaks which form a

double-strand break
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D total radiation dose in Gy
n number of radiation fractions
d radiation fraction in Gy
S survival fraction
S0 initial number of cells
S∗ number of cells left after radiation
s value of change of a radiation dose d by giving it with a chemother-

apeutic drug
λ expected value of the Poisson distribution
BED Biological Effective Dose
TCP Tumor Control Probability
m1 number of sensitized fractions
m2 number of non-sensitized fractions

Variables used in Section 6.2
t time
N(t) number of tumor cells at time t
N0 number of tumor cells at time t = 0
r > 0 net proliferation rate
K > 0 carrying capacity
α > 0 control variable of the generalized logistic growth equation
ν > 0 drug induced death rate
µ > 0 rate of damage of radiation
A amount of radiation in Gy
ε(t) efficacy of the drug at time t
ε0 efficacy of the drug at time t = 0
d parameter of the growth rate of the efficacy
c0 concentration of chemotherapeutic drug at time t = 0
E maximal efficacy

Variables used in Section 6.3
t time
r radius
R(t) outer tumor radius at time t
RH(t) quiescent radius at time t
RN(t) necrotic tumor radius at time t
g(r, t) nutrient concentration at time t and radius r
gH concentration where the cells start to proliferate
gN maximal nutrient concentration at which necrosis occurs
h substrate concentration
D diffusion coefficient
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ρ rate of increase or decrease
Dg diffusion coefficient of the nutrients
Γ? consumption rate of nutrients
λA > 0 rate of apoptosis
λN > 0 rate of necrosis
s > 0 constant
γ > 0 proliferation rate
ν > 0 drug induced death rate
c(r, t) concentration of chemotherapeutic drug at time t and radius r
µ > 0 rate of damage of radiation
A amount of radiation in Gy
Γ1 consumption rate of nutrients by proliferating cells
Γ2 consumption rate of nutrients by quiescent cells
g∞ external nutrient concentration
g0(r) initial nutrient concentration at radius r
c∞(t) external drug concentration at time t
c0(r) initial drug concentration at radius r
R0 outer radius at time t = 0
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B. MatLab Codes
Used for figure 3.1 on page 13.

1 t =0 : 0 . 001 : 300 ; %time
2 l=length ( t ) ;
3 r =0.0289; %p r o l i f e r a t i n g ra t e
4 N0=10; %i n i t i a l number o f c e l l s
5 K=100; %car ry ing capac i ty
6 alpha1 =0.5 ;
7 alpha2 =2; %gene ra l l o g i s t i c equat ion parameters
8

9 %number o f c e l l s ( ex p o n e t i a l grwoth equat ion )
10 N1=N0∗exp( r ∗ t ) ;
11 %number o f c e l l s ( l o g i s t i c grwoth equat ion )
12 N2=N0∗K∗ ones (1 , l ) . / ( N0∗ ones (1 , l )+exp(−r ∗ t )∗ (K−N0 ) ) ;
13 %number o f c e l l s ( g e n e r a l i z e d l o g i s t i c grwoth equat ion )
14 N3=N0∗K∗ ones (1 , l ) . / ( N0ˆ alpha1 ∗ ones (1 , l )+ . . .
15 exp(−r ∗ t )∗ (Kˆ alpha1−N0ˆ alpha1 ) ) . ˆ ( 1 / alpha1 ) ;
16 %number o f c e l l s ( g e n e r a l i z e d l o g i s t i c grwoth equat ion )
17 N4=N0∗K∗ ones (1 , l ) . / ( N0ˆ alpha2 ∗ ones (1 , l )+ . . .
18 exp(−r ∗ t )∗ (Kˆ alpha2−N0ˆ alpha2 ) ) . ˆ ( 1 / alpha2 ) ;
19

20 %f i g u r e compi l ing
21 f=f igure ;
22 plot ( t , N1 , ’ k ’ , t , N2 , ’b ’ , t , N3 , ’ g ’ , t , N4 , ’ r ’ ) ;
23 xlabel ( ’ time t ’ )
24 ylabel ( ’ number o f tumor c e l l s N ’ )
25 set (gca , ’YLim ’ , [ 0 1 2 0 ] )

Used for figure 3.2 on page 14.

1 %parameter s e t t i n g
2 K=0.069;
3 N0=0.001;
4 r =0.000013;
5 alpha =0.325;
6 x =0:1 :300000 ; %area
7

8 %number o f c e l l s per square micrometer
9 n o c e l l s=K∗N0 . / ( N0ˆ alpha+(Kˆalpha−N0ˆ alpha )∗exp(−r ∗x ) ) . ˆ ( 1 / alpha ) ;

10

11 %f i g u r e compi l ing
12 f=f igure ;
13 plot (x , n o c e l l s , ’ k ’ )
14 xlabel ( ’ Area (\mumˆ2) ’ )
15 ylabel ( ’ Ce l l Number per \mumˆ2 ’ )
16 grid on
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Algorithm 1: Used to find the parameters α and K in section 3.2 on page 14.

1 %parameter s e t t i n g
2 N0=596.2603 ;
3 r=log ( 2 ) / 6 0 ;
4 a lphas = 0 : 0 . 0 0 1 : 1 ;
5 Ks=1000:10 :100000 ;
6 t =0 :72 :288 ;
7

8 error=i n f ;
9 alpha=−1;

10 K=−1;
11

12 %given data po in t s
13 data = [596 . 2603 , 2424 . 5 , 6986 . 6 , 9581 . 6 , 10659 ] ;
14

15 %f i n d i n g o f bes t alpha and K with the a id o f the a n a l y t i c a l s o l u t i o n o f the
16 %g e n e r a l i z e d l o g i s t i c grwoth equat ion
17 for i =1: length ( a lphas )
18 for j =1: length (Ks)
19 model=Ks( j )∗N0 . / ( N0ˆ alphas ( i )+(Ks( j )ˆ a lphas ( i ) . . .
20 −N0ˆ alphas ( i ) )∗exp(−r ∗ t ) ) . ˆ ( 1 / a lphas ( i ) ) ;
21 e=sum( ( ( data−model ) . / model ) . ˆ 2 ) ;
22 i f e< error
23 error=e ;
24 alpha=alphas ( i ) ;
25 K=Ks( j ) ;
26 end
27 end
28 end

Used for figure 3.3 on page 16.

1 %parameter s e t t i n g
2 N0=596.2603 ;
3 r=log ( 2 ) / 6 0 ;
4 alpha =0.2030;
5 K=13380;
6

7 %data po in t s
8 t1 =0 :72 :288 ;
9 data = [596 . 2603 , 2424 . 5 , 6986 . 6 , 9581 . 6 , 10659 ] ;

10

11 %curve g iven by the a n a l y t i c a l s o l u t i o n o f the l o g i s t i c growth equat ion ;
12 %alpha and K are g iven accord ing to a lgor i thm 1
13 t2 = 0 : 0 . 1 : 3 0 0 ;
14 curve=K∗N0 . / ( N0ˆ alpha+(Kˆalpha−N0ˆ alpha )∗exp(−r ∗ t2 ) ) . ˆ ( 1 / alpha ) ;
15

16 %f i g u r e compi l ing
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17 f=f igure ;
18 plot ( t1 , data , ’ ∗k ’ )
19 hold on
20 plot ( t2 , curve , ’b ’ )
21 xlabel ( ’ time t ( hours ) ’ )
22 ylabel ( ’ number o f tumor c e l l s N ’ )

Used for figure 4.1 on page 18.

1 %parameter s e t t i n g
2 N0=10;
3 K=100;
4 alpha =2;
5 r=log ( 2 ) / 1 2 ;
6 t =0 :1 :300 ;
7 mu=0.3; %damaging ra t e per Gy
8 A1=0.05; %r a d i a t i o n dosages
9 A2=0.25;

10

11 %number o f c e l l s without treatment
12 N=K∗N0 . / ( ( ( N0ˆ alpha )+(Kˆalpha−N0ˆ alpha )∗exp(−r ∗ t ) ) . ˆ ( 1 / alpha ) ) ;
13 %number o f c e l l s , t r ea t ed with d i f f e r e n t dosages o f r a d i a t i o n
14 N1=K∗N0 . / ( ( ( N0ˆ alpha ∗ r )/ ( r−alpha ∗mu∗A1)+(Kˆalpha−(N0ˆ alpha ∗ r ) / . . .
15 ( r−alpha ∗mu∗A1))∗exp(−r ∗ t+alpha ∗mu∗A1∗ t ) ) . ˆ ( 1 / alpha ) ) ;
16 N2=K∗N0 . / ( ( ( N0ˆ alpha ∗ r )/ ( r−alpha ∗mu∗A2)+(Kˆalpha−(N0ˆ alpha ∗ r ) / . . .
17 ( r−alpha ∗mu∗A2))∗exp(−r∗2+alpha ∗mu∗A2∗ t ) ) . ˆ ( 1 / alpha ) ) ;
18

19 %f i g u r e compi l ing
20 f=f igure ;
21 plot ( t ,N, ’ k ’ )
22 hold on
23 plot ( t , N1 , ’b ’ )
24 plot ( t , N2 , ’ r ’ )
25 xlabel ( ’ time t ( hours ) ’ )
26 ylabel ( ’ number o f tumor c e l l s ’ )

Algorithm 2: Used to find the parameter µ in section 4.2 on page 18 and for figure 4.2
on page 20.

1 %parameter s e t t i n g
2 N0=596.3;
3 alpha =0.2030;
4 r=log ( 2 ) / 6 0 ;
5 t1 =0:1/60 :300 ;
6 mus = 0 : 0 . 0 0 0 1 : 0 . 0 2 ;
7 K=13380;
8 A=2:2 : 8 ;
9
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10 %data po in t s
11 t =0 :72 :288 ;
12 data = [ 5 9 6 . 3 , 2 0 4 8 . 9 , 4 6 3 6 . 0 , 5 6 8 1 . 7 , 7 1 6 7 . 2 ;
13 5 9 6 . 3 , 1 8 0 1 . 4 , 3 0 6 3 . 3 , 3 9 5 0 . 6 , 4 1 9 4 . 8 ;
14 5 9 6 . 3 , 2 1 4 5 . 8 , 3 1 3 0 . 3 , 2 8 1 9 . 0 , 4 0 7 2 . 0 ;
15 5 9 6 . 3 , 1 9 6 8 . 3 , 2 3 1 9 . 7 , 1 9 3 9 . 2 , 2 9 4 4 . 5 ] ;
16

17 model=zeros ( length (A) , length ( t1 ) ) ;
18 curve=zeros ( length (A) , length ( t1 ) ) ; %f i n a l curve
19 t e s t=zeros ( s ize ( data ) ) ;
20 error=i n f ∗ ones ( 4 , 1 ) ;
21 e=zeros ( 4 , 1 ) ;
22 mu=zeros ( 4 , 1 ) ; %f i n a l va lue s f o r mu
23

24 %f i n d i n g the bes t va lue f o r mu with the a id o f the a n a l y t i c a l
25 %s o l u t i o n s f o r tumor growth i n c l u d i n g r a d i a t i o n
26 for i =1: length (mus)
27 for j =1: length (A)
28 %i n t e r v a l , where r a d i a t i o n i s admin i s tered
29 model ( j , : )=K∗N0 . / ( ( ( N0ˆ alpha ∗ r )/ ( r−alpha . . .
30 ∗mus( i )∗A( j ))+(Kˆalpha−(N0ˆ alpha ∗ r )/ ( r−alpha ∗mus( i )∗A( j ) ) ) . . .
31 ∗exp(−r ∗ t1+alpha ∗mus( i )∗A( j )∗ t1 ) ) . ˆ ( 1 / alpha ) ) ;
32 t e s t=model ( j , [1 ,72∗60+1 ,144∗60+1 ,216∗60+1 ,288∗60+1]) ;
33 e=sum( ( ( data ( j , : )− t e s t ) . / t e s t ) . ˆ 2 ) ;
34 i f e < error ( j )
35 error ( j )= e ;
36 mu( j )= mus( i ) ;
37 curve ( j , : )= model ( j , : ) ;
38 end
39 end
40 end
41

42 %compi l ing f i g u r e
43 f=f igure ;
44 subplot ( 2 , 2 , 1 )
45 plot ( t , data ( 1 , : ) , ’ ∗k ’ )
46 hold on
47 plot ( t1 , curve ( 1 , : ) , ’ b ’ )
48 xlabel ( ’ time t ( hours ) ’ )
49 ylabel ( ’ number o f tumor c e l l s ’ )
50 t i t l e ( ’A=2 ’ )
51 subplot ( 2 , 2 , 2 )
52 plot ( t , data ( 2 , : ) , ’ ∗k ’ )
53 hold on
54 plot ( t1 , curve ( 2 , : ) , ’ b ’ )
55 xlabel ( ’ time t ( hours ) ’ )
56 ylabel ( ’ number o f tumor c e l l s ’ )
57 t i t l e ( ’A=4 ’ )
58 subplot ( 2 , 2 , 3 )
59 plot ( t , data ( 3 , : ) , ’ ∗k ’ )
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60 hold on
61 plot ( t1 , curve ( 3 , : ) , ’ b ’ )
62 xlabel ( ’ time t ( hours ) ’ )
63 ylabel ( ’ number o f tumor c e l l s ’ )
64 t i t l e ( ’A=6 ’ )
65 subplot ( 2 , 2 , 4 )
66 plot ( t , data ( 4 , : ) , ’ ∗k ’ )
67 hold on
68 plot ( t1 , curve ( 4 , : ) , ’ b ’ )
69 xlabel ( ’ time t ( hours ) ’ )
70 ylabel ( ’ number o f tumor c e l l s ’ )
71 t i t l e ( ’A=8 ’ )

Used for figure 5.2 on page 22.

1 %parameter s e t t i n g
2 alpha =1;
3 beta=2;
4 A=3;
5 B=4;
6 t = 0 : 0 . 0 0 1 : 3 ;
7 c=A∗exp(− alpha ∗ t )+B∗exp(−beta∗ t ) ; %b i ex po ne n t i a l f u c t i o n
8 d=(A+B−0.4)+(−alpha ∗A−beta∗B)∗ t ; %s l ope
9 e=A∗exp(− alpha∗3)+B∗exp(−beta∗3)+(−alpha ∗A∗exp(− alpha∗3)−beta ∗ . . .

10 B∗exp(−beta ∗3) )∗ ( t−3); %s l ope
11 g=e ( 1 ) ;
12

13 %f i g u r e compi l ing
14 f=f igure ;
15 plot ( t , c , ’ k ’ , t , d , ’ k−− ’ , t , e , ’ k−− ’ ) ;
16 xlabel ( ’ time t ’ )
17 ylabel ( ’ concent ra t i on c ( t ) ’ )
18 set (gca , ’YLim ’ , [ 0 7 . 5 ] )
19 set (gca , ’ YTick ’ , 7 )
20 set (gca , ’ YTickLabel ’ , ’ c 0 ’ )
21 set (gca , ’XLim ’ , [ 0 3 ] )
22 set (gca , ’ XTick ’ , 3 )
23 set (gca , ’ XTickLabel ’ , ’ ’ )
24 text (−0.1 , 6 . 6 , ’A ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ )
25 text (−0.1 , g , ’B ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ )
26 text ( 0 . 3 , 2 , ’ \ alpha ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ )
27 text (1 , 0 . 9 , ’ \beta ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ )

Used for figure 5.4 on page 25.

1 x = 0 : 0 . 0 0 1 : 2 0 ; %drug concent ra t i on s c a l e
2 y=x . / ( ones (1 , length ( x))+x ) ; %RC/R T
3 x2 = 0 : 0 . 1 : 1 ; %h o r i z o n t a l l i n e
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4 y2=0.5∗ ones (1 , length ( x2 ) ) ;
5 x3 = 0 : 0 . 1 : 1 0 ; %h o r i z o n t a l l i n e
6 y3 =(10/11+0.01)∗ ones (1 , length ( x3 ) ) ;
7 y4 = 0 : 0 . 1 : 0 . 5 ; %v e r t i c a l l i n e
8 x4=ones (1 , length ( y4 ) ) ;
9

10 %compi l ing f i g u r e
11 f=f igure ;
12 plot (x , y , ’ k ’ ) ;
13 hold on
14 plot ( x2 , y2 , ’ : k ’ ) ;
15 plot ( x3 , y3 , ’ : k ’ ) ;
16 plot ( x4 , y4 , ’ : k ’ ) ;
17 xlabel ( ’ Drug Concentrat ion ’ )
18 ylabel ( ’RC/R T ’ )
19 set (gca , ’YLim ’ , [ 0 1 ] )
20 set (gca , ’ YTick ’ , [ 0 0 . 5 10/11+0.01])
21 set (gca , ’ YTickLabel ’ , [ 0 0 . 5 1 ] )
22 set (gca , ’XLim ’ , [ 0 1 0 ] )
23 set (gca , ’ XTick ’ , 1 )
24 set (gca , ’ XTickLabel ’ , ’K d ’ )

Used for figure 5.5 on page 30 and for figure 5.6 on page 32.

1 %parameter s e t t i n g
2 K=1; %car ry ing capac i ty
3 lambda=1; %drugs h a l f l i f e
4 nu=1; %ra t e at which the tumor c e l l s are k i l l e d by the drug
5 r =1; %net p r o l i f e r a t i n g ra t e
6 gamma1=0.5; %r a t e s at which the drug becomes i n e f f e c t i v e as a r e s u l t
7 gamma2=2; %o f c e l l k i l l
8 %b i f u r c a t i o n po in t s
9 cmax1=lambda∗ r /nu∗( lambda /(4∗K∗gamma1)∗(1−gamma1∗K/lambda )ˆ2+1);

10 cmax2=lambda∗ r /nu∗( lambda /(4∗K∗gamma2)∗(1−gamma2∗K/lambda )ˆ2+1);
11 c i n f i n i t y 1 =0 :0 .001 : cmax1 ; %admin i s te red amount o f drug
12 c i n f i n i t y 2 =0 :0 .001 : cmax2 ;
13 l 1=length ( c i n f i n i t y 1 ) ;
14 l 2=length ( c i n f i n i t y 2 ) ;
15 K1=1∗ones (1 , l 1 ) ; %ca r ry ing capac i ty
16 K2=1∗ones (1 , l 2 ) ;
17 lambda1=1∗ones (1 , l 1 ) ; %drugs h a l f l i f e
18 lambda2=1∗ones (1 , l 2 ) ;
19 nu1=1∗ones (1 , l 1 ) ; %ra t e at which the tumor c e l l s are k i l l e d by the drug
20 nu2=1∗ones (1 , l 2 ) ;
21 r1=1∗ones (1 , l 1 ) ; %net p r o l i f e r a t i n g ra t e
22 r2=1∗ones (1 , l 2 ) ;
23 gamma1=0.5∗ ones (1 , l 1 ) ;%r a t e s at which the drug becomes i n e f f e c t i v e as a
24 gamma2=2∗ones (1 , l 2 ) ; %r e s u l t o f c e l l k i l l
25 o1=ones (1 , l 1 ) ;
26 o2=ones (1 , l 2 ) ;
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27

28 %number o f c e l l s
29 N11=0.5∗(− lambda1 . /gamma1 . ∗ ( o1−gamma1 .∗K1. / lambda1 ) + . . .
30 ( lambda1 . ˆ 2 . / gamma1 . ˆ 2 . ∗ ( o1−gamma1 .∗K1. / lambda1 ) . ˆ 2 − . . .
31 4∗ lambda1 .∗K1. /gamma1 . ∗ ( c i n f i n i t y 1 .∗ nu1 . / ( lambda1 .∗ r1 ) −1 ) ) . ˆ ( 1 / 2 ) ) ;
32 N12=0.5∗(− lambda1 . /gamma1 . ∗ ( o1−gamma1 .∗K1. / lambda1 ) − . . .
33 ( lambda1 . ˆ 2 . / gamma1 . ˆ 2 . ∗ ( o1−gamma1 .∗K1. / lambda1 ) . ˆ 2 − . . .
34 4∗ lambda1 .∗K1. /gamma1 . ∗ ( c i n f i n i t y 1 .∗ nu1 . / ( lambda1 .∗ r1 ) −1 ) ) . ˆ ( 1 / 2 ) ) ;
35 N21=0.5∗(− lambda2 . /gamma2 . ∗ ( o2−gamma2 .∗K2. / lambda2 ) + . . .
36 ( lambda2 . ˆ 2 . / gamma2 . ˆ 2 . ∗ ( o2−gamma2 .∗K2. / lambda2 ) . ˆ 2 − . . .
37 4∗ lambda1 .∗K2. /gamma2 . ∗ ( c i n f i n i t y 2 .∗ nu2 . / ( lambda2 .∗ r2 ) −1 ) ) . ˆ ( 1 / 2 ) ) ;
38 N22=0.5∗(− lambda2 . /gamma2 . ∗ ( o2−gamma2 .∗K2. / lambda2 ) − . . .
39 ( lambda2 . ˆ 2 . / gamma2 . ˆ 2 . ∗ ( o2−gamma2 .∗K2. / lambda2 ) . ˆ 2 − . . .
40 4∗ lambda1 .∗K2. /gamma2 . ∗ ( c i n f i n i t y 2 .∗ nu2 . / ( lambda2 .∗ r2 ) −1 ) ) . ˆ ( 1 / 2 ) ) ;
41

42 %compi l ing f i r s t f i g u r e
43 f 1=f igure ;
44 subplot ( 2 , 1 , 1 )
45 plot ( c i n f i n i t y 1 , N11 , ’b ’ , c i n f i n i t y 1 , N12 , ’b ’ ) ;
46 xlabel ( ’ drug dosage c {\ i n f t y } ’ )
47 ylabel ( ’ tumor s i z e N ’ )
48 set (gca , ’YLim ’ , [ 0 1 ] )
49 set (gca , ’XLim ’ , [ 0 1 . 4 ] )
50

51 subplot ( 2 , 1 , 2 )
52 plot ( c i n f i n i t y 2 , N21 , ’b ’ , c i n f i n i t y 2 , N22 , ’b ’ ) ;
53 xlabel ( ’ drug dosage c {\ i n f t y } ’ )
54 ylabel ( ’ tumor s i z e N ’ )
55 set (gca , ’YLim ’ , [ 0 1 ] )
56 set (gca , ’XLim ’ , [ 0 1 . 4 ] )
57

58 %compi l ing second f i g u r e ( with s t a b i l i t y a n a l y s i s )
59 f 2=f igure ;
60 subplot ( 2 , 1 , 1 )
61 plot ( c i n f i n i t y 1 , N11 , ’b ’ , c i n f i n i t y 1 , N12 , ’b ’ ) ;
62 xlabel ( ’ drug dosage c {\ i n f t y } ’ )
63 ylabel ( ’ tumor s i z e N ’ )
64 set (gca , ’YLim ’ , [ 0 1 ] )
65 set (gca , ’XLim ’ , [ 0 1 . 4 ] )
66

67 subplot ( 2 , 1 , 2 )
68 plot ( c i n f i n i t y 2 , N21 , ’b ’ , c i n f i n i t y 2 , N22 , ’ : b ’ ) ;
69 xlabel ( ’ drug dosage c {\ i n f t y } ’ )
70 ylabel ( ’ tumor s i z e N ’ )
71 set (gca , ’YLim ’ , [ 0 1 ] )
72 set (gca , ’XLim ’ , [ 0 1 . 4 ] )

Used for figure 5.9 on page 38.
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1 %parameter s e t t i n g
2 h=1; % c e l l k i l l parameter
3 d e l t a 1 =5; % decay o f the drug
4 d e l t a 2 =2.5 ;
5 tau =1; % time step
6 t 1 = 0 : 0 . 0 0 1 : 1 . 1 ; % time t
7 t 2 = 0 : 0 . 0 0 1 : 4 ;
8 n = f loor ( t 2 ) ;
9

10 g 1=h∗exp(−d e l t a 1 ∗( t 1 ) ) ; % exponent i a l decay func t i on
11 g 2=h∗exp(−d e l t a 2 ∗( t 1 ) ) ;
12 g 3=h∗exp(−d e l t a 1 ∗( t 2−n∗ tau ) ) ;
13

14 %compi l ing f i g u r e
15 f=f igure ;
16 subplot ( 2 , 1 , 1 )
17 a 1=plot ( t 1 , g 1 , t 1 , g 2 , ’ r ’ ) ;
18 legend ( ’ \ d e l t a 1 ’ , ’ \ d e l t a 2=\d e l t a 1 /2 ’ ) ;
19 axis equal ;
20 xlabel ( ’ time t ’ )
21 ylabel ( ’ g=heˆ{−\gamma( t−n\ tau )} ’ )
22 set (gca , ’YLim ’ , [ 0 1 ] )
23 set (gca , ’ YTick ’ , 1 )
24 set (gca , ’ YTickLabel ’ , ’ h ’ )
25 set (gca , ’XLim ’ , [ 0 1 . 1 ] )
26 set (gca , ’ XTick ’ , 1 )
27 set (gca , ’ XTickLabel ’ , ’ ’ )
28 text ( 0 . 0 1 , −0.05 , ’n\ tau ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ )
29 text ( 0 . 9 9 , −0.05 , ’ (n+1)\ tau ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ )
30

31 subplot ( 2 , 1 , 2 )
32 plot ( t 2 , g 3 ) ;
33 axis equal
34 xlabel ( ’ time t ’ )
35 ylabel ( ’ g=heˆ{−\gamma( t−n\ tau )} ’ )
36 set (gca , ’YLim ’ , [ 0 1 ] )
37 set (gca , ’ YTick ’ , 1 )
38 set (gca , ’ YTickLabel ’ , ’ h ’ )
39 set (gca , ’XLim ’ , [ 0 4 ] )
40 set (gca , ’ XTick ’ , 1 )
41 set (gca , ’ XTickLabel ’ , ’ ’ )
42 text ( 0 . 0 1 , −0.05 , ’ (n−2)\ tau ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ )
43 text (1 , −0.05 , ’ (n−1)\ tau ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ )
44 text (2 , −0.05 , ’n\ tau ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ )
45 text (3 , −0.05 , ’ (n+1)\ tau ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ )
46 text ( 3 . 9 9 , −0.05 , ’ (n+2)\ tau ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ )

Algorithm 3: Used to find the parameters ν and K in section 5.5 on page 38, for figure
5.10 on page 39 and for figure 5.11 on page 40.
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1 %data po in t s
2 data = [ 5 9 6 . 3 , 1 4 7 9 . 5 , 2 3 0 3 . 3 , 2 1 3 4 . 1 , 3 4 8 0 . 3 ;
3 5 9 6 . 3 , 9 5 9 . 1 , 1 6 3 9 . 7 , 1 6 2 4 . 0 , 1 2 1 2 . 8 ] ;
4 tdata =0 :72 :288 ;
5 %parameter s e t t i n g
6 N0=596.3;
7 c i n f =0; %drug i n f u s i o n
8 alpha =1; %or alpha =0.203;
9 r=log ( 2 ) / 6 0 ;

10 c0 = [ 0 . 3 , 1 0 ] ; %i n i t i a l drug concent ra t i on
11 lambda=0;
12 gamma=0.00002;
13 Ks=0:10 :5000 ;
14 nus = 0 : 0 . 0 0 0 1 : 0 . 0 0 1 5 ;
15 s =1; %s t e p s i z e f o r forward e u l e r method
16 t =0: s : 3 0 1 ;
17 t1 =0: s : 1 4 4 ;
18 t2 =145: s : 3 0 1 ;
19 NC=zeros ( length ( c0 ) , length ( t ) , 2 ) ;
20 NC( : , 1 , 1 )=N0∗ ones (1 , length ( c0 ) ) ;
21 NC( : , 1 , 2 )= c0 ;
22 error=i n f ∗ ones ( length ( c0 ) , 1 ) ;
23 e=zeros ( length ( c0 ) , 1 ) ;
24 nu=zeros ( length ( c0 ) , 1 ) ; %best f i t t i n g nu
25 K=zeros ( length ( c0 ) , 1 ) ; %best f i t t i n g K
26 c u r v e c e l l=zeros ( length ( c0 ) , length ( t ) ) ;
27 curvedrug=zeros ( length ( c0 ) , length ( t ) ) ;
28

29 %varying K and nu to f i n d the best f i t with the a id o f the e u l e r method
30 %NC( . , . , 1 ) = number o f tumor c e l l s
31 %NC( . , . , 2 ) = drug concent ra t i on
32 for m=1: length (Ks)
33 for i =1: length ( nus )
34 for h=1: length ( c0 )
35 for l =1: length ( t1 )−1
36 %i n t e r v a l l , where drug i s admin i s te red
37 NC(h , l +1,1)=NC(h , l ,1)+ s ∗( r / alpha ∗NC(h , l ,1)∗(1−(NC(h , l , 1 ) . . .
38 /Ks(m))ˆ alpha)−nus ( i )∗NC(h , l , 2 )∗NC(h , l , 1 ) ) ;
39 NC(h , l +1,2)=NC(h , l ,2)+ s ∗( c i n f−lambda∗NC(h , l , 2 ) . . .
40 −gamma∗NC(h , l , 2 )∗NC(h , l , 1 ) ) ;
41 i f NC(h , l +1,2)<0
42 NC(h , l +1 ,2)=0;
43 end
44 i f NC(h , l +1,1)<0
45 NC(h , l +1 ,1)=0;
46 end
47 end
48 for l=length ( t1 ) : length ( t )−1
49 %i n t e r v a l l , where the drug i s washed away
50 NC(h , l +1,1)=NC(h , l ,1)+ s ∗( r / alpha ∗NC(h , l ,1)∗(1−(NC(h , l , 1 ) . . .
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51 /Ks(m))ˆ alpha)−nus ( i )∗NC(h , l , 2 )∗NC(h , l , 1 ) ) ;
52 NC(h , l +1 ,2)=0;
53 i f NC(h , l +1,1)<0
54 NC(h , l +1 ,1)=0;
55 end
56 end
57 model=NC(h , [ 1 , 7 3 , 1 4 5 , 2 1 7 , 2 8 9 ] , 1 ) ;
58 e=sum( ( ( data (h , : )−model ) . / model ) . ˆ 2 ) ;
59 i f e < error (h)
60 nu(h)=nus ( i ) ;
61 K(h)=Ks(m) ;
62 c u r v e c e l l (h , : )=NC(h , : , 1 ) ;
63 curvedrug (h , : )=NC(h , : , 2 ) ;
64 error (h)=e ;
65 end
66 end
67 end
68 end
69

70 %f i g u r e compi l ing
71 f=f igure ;
72 subplot ( 2 , 2 , 1 )
73 plot ( tdata , data ( 1 , : ) , ’ ∗k ’ )
74 hold on
75 plot ( t , c u r v e c e l l ( 1 , : ) , ’ b ’ )
76 xlabel ( ’ time t ( hours ) ’ )
77 ylabel ( ’ number o f tumor c e l l s ’ )
78 t i t l e ( ’ c 0 =0.3 \muM’ )
79 xlim ( [ 0 3 0 0 ] )
80 subplot ( 2 , 2 , 2 )
81 plot ( tdata , data ( 2 , : ) , ’ ∗k ’ )
82 hold on
83 plot ( t , c u r v e c e l l ( 2 , : ) , ’ b ’ )
84 xlabel ( ’ time t ( hours ) ’ )
85 ylabel ( ’ number o f tumor c e l l s ’ )
86 t i t l e ( ’ c 0=10 \muM’ )
87 xlim ( [ 0 3 0 0 ] )
88

89 %only f o r alpha =1; s tays the same f o r alpha =0.203
90 subplot ( 2 , 2 , 3 )
91 plot ( t , curvedrug ( 1 , : ) , ’ g ’ )
92 xlabel ( ’ time t ( hours ) ’ )
93 ylabel ( ’ drug concent ra t i on ’ )
94 xlim ( [ 0 3 0 0 ] )
95 subplot ( 2 , 2 , 4 )
96 plot ( t , curvedrug ( 2 , : ) , ’ g ’ )
97 xlabel ( ’ time t ( hours ) ’ )
98 ylabel ( ’ drug concent ra t i on ’ )
99 xlim ( [ 0 3 0 0 ] )

Algorithm 4: Used to find the parameters ν, K, p and Q in section 5.5 on page 38 and
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for figure 5.12 on page 42.

1 %data po in t s
2 data = [ 5 9 6 . 3 , 1 4 7 9 . 5 , 2 3 0 3 . 3 , 2 1 3 4 . 1 , 3 4 8 0 . 3 ;
3 596 .3 , 1337 .8 , 2694 .8 , 2730 .1 , 2 9 8 4 . 1 ;
4 596 .3 , 1260 .3 , 2427 . 1 , 2538 .9 , 1 9 5 9 . 4 ;
5 5 9 6 . 3 , 9 5 9 . 1 , 1 6 3 9 . 7 , 1 6 2 4 . 0 , 1 2 1 2 . 8 ;
6 5 9 6 . 3 , 9 2 4 . 3 , 1 8 2 7 . 5 , 1 6 5 7 . 2 , 1 4 0 5 . 2 ] ;
7 tdata =0 :72 :288 ;
8

9 %parameter s e t t i n g
10 N0=596.3;
11 c i n f =0;
12 alpha =0.203;
13 r=log ( 2 ) / 6 0 ;
14 lambda=0;
15 gamma=0.00002;
16 c0 = [ 0 . 3 , 1 , 3 , 1 0 , 3 0 ] ;
17 nus =0 . 00001 : 0 . 0 0001 : 0 . 00 01 ;
18 Ks=1000:100 :4000 ;
19 p=1:3; %p o s i t i v e parameter from Hi l l−equat ion
20 Q= 0 : 0 . 0 1 : 0 . 1 5 ; %p o s i t i v e parameter from Hi l l−equat ion
21

22 s =1; %time step f o r e u l e r method
23 t =0: s : 3 0 1 ; %time s c a l e s
24 t1 =0: s : 1 4 4 ;
25 t2 =145: s : 3 0 1 ;
26

27 NC=zeros ( length ( c0 ) , length ( t ) , 2 ) ;
28 NC( : , 1 , 1 )=N0∗ ones (1 , length ( c0 ) ) ;
29 NC( : , 1 , 2 )= c0 ;
30 error=i n f ∗ ones ( length ( c0 ) , 1 ) ;
31 e=zeros ( length ( c0 ) , 1 ) ;
32 nu=zeros ( length ( c0 ) , 1 ) ; %best f i t t i n g nu
33 K=zeros ( length ( c0 ) , 1 ) ; %best f i t t i n g K
34 p f i n a l=zeros ( length ( c0 ) , 1 ) ; %best f i t t i n g p
35 Qf ina l=zeros ( length ( c0 ) , 1 ) ; %best f i t t i n g Q
36 c u r v e c e l l=zeros ( length ( c0 ) , length ( t ) ) ;
37 curvedrug=zeros ( length ( c0 ) , length ( t ) ) ;
38

39 %varying K, nu , Q and p to f i n d the best f i t with the a id o f the e u l e r
40 %method
41 for n=1: length (Q)
42 for j =1: length (p)
43 for m=1: length (Ks)
44 for i =1: length ( nus )
45 for h=1: length ( c0 )
46 for l =1: length ( t1 )−1
47 NC(h , l +1,1)=NC(h , l ,1)+ s ∗( r / alpha ∗NC(h , l , 1 ) ∗ . . .
48 (1−(NC(h , l , 1 ) / Ks(m))ˆ alpha)−nus ( i )∗NC(h , l , 2 ) . . .
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49 ˆp( j )/ (Q(n)+NC(h , l , 2 ) ˆ p( j ) )∗NC(h , l , 1 ) ) ;
50 NC(h , l +1,2)=NC(h , l ,2)+ s ∗( c i n f−lambda∗NC(h , l , 2 ) − . . .
51 gamma∗NC(h , l , 2 )∗NC(h , l , 1 ) ) ;
52 i f NC(h , l +1,2)<0
53 NC(h , l +1 ,2)=0;
54 end
55 i f NC(h , l +1,1)<0
56 NC(h , l +1 ,1)=0;
57 end
58 end
59 for l=length ( t1 ) : length ( t )−1
60 NC(h , l +1,1)=NC(h , l ,1)+ s ∗( r / alpha ∗NC(h , l , 1 ) ∗ . . .
61 (1−(NC(h , l , 1 ) / Ks(m))ˆ alpha)−nus ( i )∗NC(h , l , 2 ) . . .
62 ˆp( j )/ (Q(n)+NC(h , l , 2 ) ˆ p( j ) )∗NC(h , l , 1 ) ) ;
63 NC(h , l +1 ,2)=0;
64 i f NC(h , l +1,1)<0
65 NC(h , l +1 ,1)=0;
66 end
67 end
68 model=NC(h , [ 1 , 7 3 , 1 4 5 , 2 1 7 , 2 8 9 ] , 1 ) ;
69 e=sum( ( ( data (h , : )−model ) . / model ) . ˆ 2 ) ;
70 i f e < error (h)
71 nu(h)=nus ( i ) ;
72 K(h)=Ks(m) ;
73 p f i n a l (h)=p( j ) ;
74 Qf ina l (h)=Q(n ) ;
75 c u r v e c e l l (h , : )=NC(h , : , 1 ) ;
76 curvedrug (h , : )=NC(h , : , 2 ) ;
77 error (h)=e ;
78 end
79 end
80 end
81 end
82 end
83 end
84

85 %number o f c e l l s without treatment f o r comparison
86 K=13380;
87 curve=K∗N0 . / ( N0ˆ alpha+(Kˆalpha−N0ˆ alpha )∗exp(−r ∗ t ) ) . ˆ ( 1 / alpha ) ;
88

89 %f i g u r e compi l ing
90 f=f igure ;
91 subplot ( 3 , 2 , 1 )
92 plot ( t , curve , ’b ’ )
93 xlabel ( ’ time t ( hours ) ’ )
94 ylabel ( ’ number o f tumor c e l l s ’ )
95 t i t l e ( ’ c 0=0 \muM’ )
96 xlim ( [ 0 3 0 0 ] )
97 subplot ( 3 , 2 , 2 )
98 plot ( tdata , data ( 1 , : ) , ’ ∗k ’ )
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99 hold on
100 plot ( t , c u r v e c e l l ( 1 , : ) , ’ b ’ )
101 xlabel ( ’ time t ( hours ) ’ )
102 ylabel ( ’ number o f tumor c e l l s ’ )
103 t i t l e ( ’ c 0 =0.3 \muM’ )
104 xlim ( [ 0 3 0 0 ] )
105 subplot ( 3 , 2 , 3 )
106 plot ( tdata , data ( 2 , : ) , ’ ∗k ’ )
107 hold on
108 plot ( t , c u r v e c e l l ( 2 , : ) , ’ b ’ )
109 xlabel ( ’ time t ( hours ) ’ )
110 ylabel ( ’ number o f tumor c e l l s ’ )
111 t i t l e ( ’ c 0=1 \muM’ )
112 xlim ( [ 0 3 0 0 ] )
113 subplot ( 3 , 2 , 4 )
114 plot ( tdata , data ( 3 , : ) , ’ ∗k ’ )
115 hold on
116 plot ( t , c u r v e c e l l ( 3 , : ) , ’ b ’ )
117 xlabel ( ’ time t ( hours ) ’ )
118 ylabel ( ’ number o f tumor c e l l s ’ )
119 t i t l e ( ’ c 0=3 \muM’ )
120 xlim ( [ 0 3 0 0 ] )
121 subplot ( 3 , 2 , 5 )
122 plot ( tdata , data ( 4 , : ) , ’ ∗k ’ )
123 hold on
124 plot ( t , c u r v e c e l l ( 4 , : ) , ’ b ’ )
125 xlabel ( ’ time t ( hours ) ’ )
126 ylabel ( ’ number o f tumor c e l l s ’ )
127 t i t l e ( ’ c 0=10 \muM’ )
128 xlim ( [ 0 3 0 0 ] )
129 subplot ( 3 , 2 , 6 )
130 plot ( tdata , data ( 5 , : ) , ’ ∗k ’ )
131 hold on
132 plot ( t , c u r v e c e l l ( 5 , : ) , ’ b ’ )
133 xlabel ( ’ time t ( hours ) ’ )
134 ylabel ( ’ number o f tumor c e l l s ’ )
135 t i t l e ( ’ c 0=30 \muM’ )
136 xlim ( [ 0 3 0 0 ] )

Algorithm 5: Used to find the parameters ν, K and r∗ in section 5.5 on page 38 and
for figure 5.13 on page 43.

1 %data po in t s
2 data = [ 5 9 6 . 3 , 1 4 7 9 . 5 , 2 3 0 3 . 3 , 2 1 3 4 . 1 , 3 4 8 0 . 3 ;
3 596 .3 , 1337 .8 , 2694 .8 , 2730 .1 , 2 9 8 4 . 1 ;
4 596 .3 , 1260 .3 , 2427 . 1 , 2538 .9 , 1 9 5 9 . 4 ;
5 5 9 6 . 3 , 9 5 9 . 1 , 1 6 3 9 . 7 , 1 6 2 4 . 0 , 1 2 1 2 . 8 ;
6 5 9 6 . 3 , 9 2 4 . 3 , 1 8 2 7 . 5 , 1 6 5 7 . 2 , 1 4 0 5 . 2 ] ;
7 tdata =0 :72 :288 ;
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8 %parameter s e t t i n g
9 N0=596.3;

10 c i n f =0;
11 alpha =0.203;
12 r=log ( 2 ) / 6 0 ;
13 c0 = [ 0 . 3 , 1 , 3 , 1 0 , 3 0 ] ;
14 lambda=0;
15 gamma=0.00002;
16 Ks=0:100 :14000 ;
17 nus = 0 : 0 . 0 0 0 5 : 0 . 0 1 2 ;
18 r s = −0 .01 :0 . 001 :0 . 01 ; %net p r o l i f e r a t i o n ra t e at time t=301
19

20 s =1;
21 t =0: s : 3 0 1 ;
22 t1 =0: s : 1 4 4 ;
23 t2 =145: s : 3 0 1 ;
24 NC=zeros ( length ( c0 ) , length ( t ) , 2 ) ;
25 NC( : , 1 , 1 )=N0∗ ones (1 , length ( c0 ) ) ;
26 NC( : , 1 , 2 )= c0 ;
27

28 error=i n f ∗ ones ( length ( c0 ) , 1 ) ;
29 e=zeros ( length ( c0 ) , 1 ) ;
30 nu=zeros ( length ( c0 ) , 1 ) ;
31 K=zeros ( length ( c0 ) , 1 ) ;
32 r f i n a l=zeros ( length ( c0 ) , 1 ) ;
33 c u r v e c e l l=zeros ( length ( c0 ) , length ( t ) ) ;
34 curvedrug=zeros ( length ( c0 ) , length ( t ) ) ;
35

36 %varying K and nu and r ∗ to f i n d the best f i t with the a id o f the e u l e r
37 %method
38 for j =1: length ( r s )
39 r a t e=r+( r s ( j )−r )/301∗ t ;
40 for m=1: length (Ks)
41 for i =1: length ( nus )
42 for h=1: length ( c0 )
43 for l =1: length ( t1 )−1
44 NC(h , l +1,1)=NC(h , l ,1)+ s ∗( r a t e ( l )/ alpha ∗NC(h , l , 1 ) ∗ . . .
45 (1−(NC(h , l , 1 ) / Ks(m))ˆ alpha)−nus ( i )∗NC(h , l , 2 ) ∗ . . .
46 NC(h , l , 1 ) ) ;
47 NC(h , l +1,2)=NC(h , l ,2)+ s ∗( c i n f−lambda∗NC(h , l , 2 ) − . . .
48 gamma∗NC(h , l , 2 )∗NC(h , l , 1 ) ) ;
49 i f NC(h , l +1,2)<0
50 NC(h , l +1 ,2)=0;
51 end
52 i f NC(h , l +1,1)<0
53 NC(h , l +1 ,1)=0;
54 end
55 end
56 for l=length ( t1 ) : length ( t )−1
57 NC(h , l +1,1)=NC(h , l ,1)+ s ∗( r a t e ( l )/ alpha ∗NC(h , l , 1 ) ∗ . . .
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58 (1−(NC(h , l , 1 ) / Ks(m))ˆ alpha)−nus ( i )∗NC(h , l , 2 ) ∗ . . .
59 NC(h , l , 1 ) ) ;
60 NC(h , l +1 ,2)=0;
61 i f NC(h , l +1,1)<0
62 NC(h , l +1 ,1)=0;
63 end
64 end
65 model=NC(h , [ 1 , 7 3 , 1 4 5 , 2 1 7 , 2 8 9 ] , 1 ) ;
66 e=sum( ( ( data (h , : )−model ) . / model ) . ˆ 2 ) ;
67 i f e < error (h)
68 nu(h)=nus ( i ) ;
69 K(h)=Ks(m) ;
70 r f i n a l (h)= r s ( j ) ;
71 c u r v e c e l l (h , : )=NC(h , : , 1 ) ;
72 curvedrug (h , : )=NC(h , : , 2 ) ;
73 error (h)=e ;
74 end
75 end
76 end
77 end
78 end
79

80 %number o f c e l l s without treatment
81 K=13380;
82 curve=K∗N0 . / ( N0ˆ alpha+(Kˆalpha−N0ˆ alpha )∗exp(−r ∗ t ) ) . ˆ ( 1 / alpha ) ;
83

84 %compi l ing f i g u r e
85 f=f igure ;
86 subplot ( 3 , 2 , 1 )
87 plot ( t , curve , ’b ’ )
88 xlabel ( ’ time t ( hours ) ’ )
89 ylabel ( ’ number o f tumor c e l l s ’ )
90 t i t l e ( ’ c 0=0 \muM’ )
91 xlim ( [ 0 3 0 0 ] )
92 subplot ( 3 , 2 , 2 )
93 plot ( tdata , data ( 1 , : ) , ’ ∗k ’ )
94 hold on
95 plot ( t , c u r v e c e l l ( 1 , : ) , ’ b ’ )
96 xlabel ( ’ time t ( hours ) ’ )
97 ylabel ( ’ number o f tumor c e l l s ’ )
98 t i t l e ( ’ c 0 =0.3 \muM’ )
99 xlim ( [ 0 3 0 0 ] )

100 subplot ( 3 , 2 , 3 )
101 plot ( tdata , data ( 2 , : ) , ’ ∗k ’ )
102 hold on
103 plot ( t , c u r v e c e l l ( 2 , : ) , ’ b ’ )
104 xlabel ( ’ time t ( hours ) ’ )
105 ylabel ( ’ number o f tumor c e l l s ’ )
106 t i t l e ( ’ c 0=1 \muM’ )
107 xlim ( [ 0 3 0 0 ] )
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108 subplot ( 3 , 2 , 4 )
109 plot ( tdata , data ( 3 , : ) , ’ ∗k ’ )
110 hold on
111 plot ( t , c u r v e c e l l ( 3 , : ) , ’ b ’ )
112 xlabel ( ’ time t ( hours ) ’ )
113 ylabel ( ’ number o f tumor c e l l s ’ )
114 t i t l e ( ’ c 0=3 \muM’ )
115 xlim ( [ 0 3 0 0 ] )
116 subplot ( 3 , 2 , 5 )
117 plot ( tdata , data ( 4 , : ) , ’ ∗k ’ )
118 hold on
119 plot ( t , c u r v e c e l l ( 4 , : ) , ’ b ’ )
120 xlabel ( ’ time t ( hours ) ’ )
121 ylabel ( ’ number o f tumor c e l l s ’ )
122 t i t l e ( ’ c 0=10 \muM’ )
123 xlim ( [ 0 3 0 0 ] )
124 subplot ( 3 , 2 , 6 )
125 plot ( tdata , data ( 5 , : ) , ’ ∗k ’ )
126 hold on
127 plot ( t , c u r v e c e l l ( 5 , : ) , ’ b ’ )
128 xlabel ( ’ time t ( hours ) ’ )
129 ylabel ( ’ number o f tumor c e l l s ’ )
130 t i t l e ( ’ c 0=30 \muM’ )
131 xlim ( [ 0 3 0 0 ] )

Algorithm 6: Used to find the parameters ν and Q in section 5.5 on page 38 and for
figure 5.14 on page 45.

1 %data po in t s
2 data = [ 5 9 6 . 3 , 1 4 7 9 . 5 , 2 3 0 3 . 3 , 2 1 3 4 . 1 , 3 4 8 0 . 3 ;
3 596 .3 , 1337 .8 , 2694 .8 , 2730 .1 , 2 9 8 4 . 1 ;
4 596 .3 , 1260 .3 , 2427 . 1 , 2538 .9 , 1 9 5 9 . 4 ;
5 5 9 6 . 3 , 9 5 9 . 1 , 1 6 3 9 . 7 , 1 6 2 4 . 0 , 1 2 1 2 . 8 ;
6 5 9 6 . 3 , 9 2 4 . 3 , 1 8 2 7 . 5 , 1 6 5 7 . 2 , 1 4 0 5 . 2 ] ;
7 tdata =0 :72 :288 ;
8

9 %parameter s e t t i n g
10 N0=596.3;
11 alpha =0.203;
12 r=log ( 2 ) / 6 0 ;
13 c0 = [ 0 . 3 , 1 , 3 , 1 0 , 3 0 ] ;
14 K=13380;
15 Q=1:300; %p o s i t i v e parameter from Hi l l−equat ion
16 nu = 0 : 0 . 0 0 1 : 0 . 1 ;
17 s =1;
18 t =0: s : 3 0 1 ;
19 t1 =0: s : 1 4 4 ;
20 t2 =145: s : 3 0 1 ;
21 NC=zeros ( length ( c0 ) , length ( t ) , 2 ) ;
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22 NC( : , 1 , 1 )=N0∗ ones (1 , length ( c0 ) ) ;
23

24 error=i n f ∗ ones ( length ( c0 ) , 1 ) ;
25 e=zeros ( length ( c0 ) , 1 ) ;
26 Qf ina l=zeros ( length ( c0 ) , 1 ) ;
27 n u f i n a l=zeros ( length ( c0 ) , 1 ) ;
28 c u r v e c e l l=zeros ( length ( c0 ) , length ( t ) ) ;
29 curvedrug=zeros ( length ( c0 ) , length ( t ) ) ;
30

31 %varying Q and nu and to f i n d the best f i t with the a id o f the e u l e r
32 %method
33 for k=1: length (nu)
34 for i =1: length (Q)
35 for h=1: length ( c0 )
36 NC(h , : , 2 )= nu( k )∗ c0 (h)∗ t . / (Q( i )+c0 (h)∗ t ) ;
37 for l =1: length ( t )−1
38 NC(h , l +1,1)=NC(h , l ,1)+ s ∗( r / alpha ∗NC(h , l , 1 ) ∗ . . .
39 (1−(NC(h , l , 1 ) /K)ˆ alpha)−NC(h , l , 2 )∗NC(h , l , 1 ) ) ;
40 i f NC(h , l +1,2)<0
41 NC(h , l +1 ,2)=0;
42 end
43 i f NC(h , l +1,1)<0
44 NC(h , l +1 ,1)=0;
45 end
46 end
47 model=NC(h , [ 1 , 7 3 , 1 4 5 , 2 1 7 , 2 8 9 ] , 1 ) ;
48 e=sum( ( ( data (h , : )−model ) . / model ) . ˆ 2 ) ;
49 i f e < error (h)
50 n u f i n a l (h)=nu( k ) ;
51 Qf ina l (h)=Q( i ) ;
52 c u r v e c e l l (h , : )=NC(h , : , 1 ) ;
53 curvedrug (h , : )=NC(h , : , 2 ) ;
54 error (h)=e ;
55 end
56 end
57 end
58 end
59

60 %number o f c e l l s without treatment
61 K=13380;
62 curve=K∗N0 . / ( N0ˆ alpha+(Kˆalpha−N0ˆ alpha )∗exp(−r ∗ t ) ) . ˆ ( 1 / alpha ) ;
63

64 %compi l ing f i g u r e
65 f=f igure ;
66 subplot ( 3 , 2 , 1 )
67 plot ( t , curve , ’b ’ )
68 xlabel ( ’ time t ( hours ) ’ )
69 ylabel ( ’ number o f tumor c e l l s ’ )
70 t i t l e ( ’ c 0=0 \muM’ )
71 xlim ( [ 0 3 0 0 ] )
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72 subplot ( 3 , 2 , 2 )
73 plot ( tdata , data ( 1 , : ) , ’ ∗k ’ )
74 hold on
75 plot ( t , c u r v e c e l l ( 1 , : ) , ’ b ’ )
76 xlabel ( ’ time t ( hours ) ’ )
77 ylabel ( ’ number o f tumor c e l l s ’ )
78 t i t l e ( ’ c 0 =0.3 \muM’ )
79 xlim ( [ 0 3 0 0 ] )
80 subplot ( 3 , 2 , 3 )
81 plot ( tdata , data ( 2 , : ) , ’ ∗k ’ )
82 hold on
83 plot ( t , c u r v e c e l l ( 2 , : ) , ’ b ’ )
84 xlabel ( ’ time t ( hours ) ’ )
85 ylabel ( ’ number o f tumor c e l l s ’ )
86 t i t l e ( ’ c 0=1 \muM’ )
87 xlim ( [ 0 3 0 0 ] )
88 subplot ( 3 , 2 , 4 )
89 plot ( tdata , data ( 3 , : ) , ’ ∗k ’ )
90 hold on
91 plot ( t , c u r v e c e l l ( 3 , : ) , ’ b ’ )
92 xlabel ( ’ time t ( hours ) ’ )
93 ylabel ( ’ number o f tumor c e l l s ’ )
94 t i t l e ( ’ c 0=3 \muM’ )
95 xlim ( [ 0 3 0 0 ] )
96 subplot ( 3 , 2 , 5 )
97 plot ( tdata , data ( 4 , : ) , ’ ∗k ’ )
98 hold on
99 plot ( t , c u r v e c e l l ( 4 , : ) , ’ b ’ )

100 xlabel ( ’ time t ( hours ) ’ )
101 ylabel ( ’ number o f tumor c e l l s ’ )
102 t i t l e ( ’ c 0=10 \muM’ )
103 xlim ( [ 0 3 0 0 ] )
104 ylim ( [ 0 4000 ] )
105 subplot ( 3 , 2 , 6 )
106 plot ( tdata , data ( 5 , : ) , ’ ∗k ’ )
107 hold on
108 plot ( t , c u r v e c e l l ( 5 , : ) , ’ b ’ )
109 xlabel ( ’ time t ( hours ) ’ )
110 ylabel ( ’ number o f tumor c e l l s ’ )
111 t i t l e ( ’ c 0=30 \muM’ )
112 xlim ( [ 0 3 0 0 ] )
113 ylim ( [ 0 4000 ] )

Used for figure 5.15 on page 46.

1 %parameter s e t t i n g
2 c0 = [ 0 . 3 , 1 , 3 , 1 0 , 3 0 ] ;
3 Q=[2 ,11 ,143 ,162 ,300 ] ;
4

5 %f i g u r e compi l ing
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6 f=f igure ;
7 plot ( c0 ,Q, ’ k ’ )
8 hold on
9 plot ( c0 ,Q, ’ ∗b ’ )

10 xlabel ( ’ I n i t i a l drug concent ra t i on c 0 ’ )
11 ylabel ( ’ Parameter Q’ )

Used for figure 5.16 on page 47 and for figure 5.17 on page 48.

1 %data po in t s
2 data = [ 5 9 6 . 3 , 1 4 7 9 . 5 , 2 3 0 3 . 3 , 2 1 3 4 . 1 , 3 4 8 0 . 3 ;
3 596 .3 , 1337 .8 , 2694 .8 , 2730 .1 , 2 9 8 4 . 1 ;
4 596 .3 , 1260 .3 , 2427 . 1 , 2538 .9 , 1 9 5 9 . 4 ;
5 5 9 6 . 3 , 9 5 9 . 1 , 1 6 3 9 . 7 , 1 6 2 4 . 0 , 1 2 1 2 . 8 ;
6 5 9 6 . 3 , 9 2 4 . 3 , 1 8 2 7 . 5 , 1 6 5 7 . 2 , 1 4 0 5 . 2 ] ;
7 tdata =0 :72 :288 ;
8

9 %parameter s e t t i n g
10 N0=596.3;
11 c i n f =0;
12 alpha =0.203;
13 r=log ( 2 ) / 6 0 ;
14 c0 = [ 0 . 3 , 1 , 3 , 1 0 , 3 0 ] ;
15 K=13380;
16 E=1; %maximal e f f i c a c y
17 e0 =0.012; %i n i t i a l e f f i c a c y
18 d=0.0003∗ ones ( 1 , 5 ) ; %growth ra t e o f e f f i c a c y
19 s =1;
20 t =0: s : 3 0 1 ;
21 t1 =0: s : 1 4 4 ;
22 t2 =145: s : 3 0 1 ;
23 NC=zeros ( length ( c0 ) , length ( t ) , 2 ) ;
24 NC( : , 1 , 1 )=N0∗ ones (1 , length ( c0 ) ) ;
25

26 error=i n f ∗ ones ( length ( c0 ) , 1 ) ;
27 e=zeros ( length ( c0 ) , 1 ) ;
28 c u r v e c e l l=zeros ( length ( c0 ) , length ( t ) ) ;
29 curvedrug=zeros ( length ( c0 ) , length ( t ) ) ;
30

31 for h=1: length ( c0 )
32 NC(h , : , 2 )=E∗ e0 . / ( e0+(E−e0 )∗exp(−d(h)∗ c0 (h)∗ t ) ) ;
33 for l =1: length ( t )−1
34 NC(h , l +1,1)=NC(h , l ,1)+ s ∗( r / alpha ∗NC(h , l ,1)∗(1−(NC(h , l , 1 ) /K ) . . .
35 ˆ alpha)−NC(h , l , 2 )∗NC(h , l , 1 ) ) ;
36 i f NC(h , l +1,2)<0
37 NC(h , l +1 ,2)=0;
38 end
39 i f NC(h , l +1,1)<0
40 NC(h , l +1 ,1)=0;
41 end

109



B. MatLab Codes

42 end
43 model=NC(h , [ 1 , 7 3 , 1 4 5 , 2 1 7 , 2 8 9 ] , 1 ) ;
44 e=sum( ( ( data (h , : )−model ) . / model ) . ˆ 2 ) ;
45 i f e < error (h)
46 c u r v e c e l l (h , : )=NC(h , : , 1 ) ;
47 curvedrug (h , : )=NC(h , : , 2 ) ;
48 error (h)=e ;
49 end
50 end
51

52 %number o f c e l l s without treatment
53 K=13380;
54 curve=K∗N0 . / ( N0ˆ alpha+(Kˆalpha−N0ˆ alpha )∗exp(−r ∗ t ) ) . ˆ ( 1 / alpha ) ;
55

56 %compi l ing f i g u r e
57 f 1=f igure ;
58 subplot ( 3 , 2 , 1 )
59 plot ( t , curve , ’b ’ )
60 xlabel ( ’ time t ( hours ) ’ )
61 ylabel ( ’ number o f tumor c e l l s ’ )
62 t i t l e ( ’ c 0=0 \muM’ )
63 xlim ( [ 0 3 0 0 ] )
64 subplot ( 3 , 2 , 2 )
65 plot ( tdata , data ( 1 , : ) , ’ ∗k ’ )
66 hold on
67 plot ( t , c u r v e c e l l ( 1 , : ) , ’ b ’ )
68 xlabel ( ’ time t ( hours ) ’ )
69 ylabel ( ’ number o f tumor c e l l s ’ )
70 t i t l e ( ’ c 0 =0.3 \muM’ )
71 xlim ( [ 0 3 0 0 ] )
72 ylim ( [ 0 4000 ] )
73 subplot ( 3 , 2 , 3 )
74 plot ( tdata , data ( 2 , : ) , ’ ∗k ’ )
75 hold on
76 plot ( t , c u r v e c e l l ( 2 , : ) , ’ b ’ )
77 xlabel ( ’ time t ( hours ) ’ )
78 ylabel ( ’ number o f tumor c e l l s ’ )
79 t i t l e ( ’ c 0=1 \muM’ )
80 xlim ( [ 0 3 0 0 ] )
81 ylim ( [ 0 4000 ] )
82 subplot ( 3 , 2 , 4 )
83 plot ( tdata , data ( 3 , : ) , ’ ∗k ’ )
84 hold on
85 plot ( t , c u r v e c e l l ( 3 , : ) , ’ b ’ )
86 xlabel ( ’ time t ( hours ) ’ )
87 ylabel ( ’ number o f tumor c e l l s ’ )
88 t i t l e ( ’ c 0=3 \muM’ )
89 xlim ( [ 0 3 0 0 ] )
90 ylim ( [ 0 4000 ] )
91 subplot ( 3 , 2 , 5 )
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92 plot ( tdata , data ( 4 , : ) , ’ ∗k ’ )
93 hold on
94 plot ( t , c u r v e c e l l ( 4 , : ) , ’ b ’ )
95 xlabel ( ’ time t ( hours ) ’ )
96 ylabel ( ’ number o f tumor c e l l s ’ )
97 t i t l e ( ’ c 0=10 \muM’ )
98 xlim ( [ 0 3 0 0 ] )
99 ylim ( [ 0 4000 ] )

100 subplot ( 3 , 2 , 6 )
101 plot ( tdata , data ( 5 , : ) , ’ ∗k ’ )
102 hold on
103 plot ( t , c u r v e c e l l ( 5 , : ) , ’ b ’ )
104 xlabel ( ’ time t ( hours ) ’ )
105 ylabel ( ’ number o f tumor c e l l s ’ )
106 t i t l e ( ’ c 0=30 \muM’ )
107 xlim ( [ 0 3 0 0 ] )
108 ylim ( [ 0 4000 ] )
109

110 f 2=f igure ;
111 subplot ( 1 , 2 , 1 )
112 plot ( t , curvedrug ( 1 , : ) , ’ g ’ )
113 xlabel ( ’ time t ( hours ) ’ )
114 ylabel ( ’ e f f i c a c y o f drug ’ )
115 t i t l e ( ’ c 0 =0.3 \muM’ )
116 axis square
117 xlim ( [ 0 3 0 0 ] )
118 subplot ( 1 , 2 , 2 )
119 plot ( t , curvedrug ( 4 , : ) , ’ g ’ )
120 xlabel ( ’ time t ( hours ) ’ )
121 ylabel ( ’ e f f i c a c y o f drug ’ )
122 t i t l e ( ’ c 0=10 \muM’ )
123 axis square
124 xlim ( [ 0 3 0 0 ] )

Used for figure 6.1 on page 50.

1 %parameter s e t t i n g
2 r a t i o = 0 . 5 : 0 . 0 1 : 2 0 ; %r a t i o ( alpha / beta ) s c a l e
3 alpha =1/3.35;
4 beta=linspace ( ( alpha / 0 . 5 ) , ( alpha /20) , length ( r a t i o ) ) ;
5 D1=2; %d i f f e r e n t r a d i a t i o n dosages
6 D2=4;
7 D3=8;
8

9 %d i f f e r e n t s u r v i v i a l f r a c t i o n s , depending on the d i f f e r e n t dosages
10 S1=100∗exp(−alpha .∗D1−beta .∗D1 . ˆ 2 ) ;
11 S2=100∗exp(−alpha .∗D2−beta .∗D2 . ˆ 2 ) ;
12 S3=100∗exp(−alpha .∗D3−beta .∗D2 . ˆ 2 ) ;
13

14 %compi l ing l e f t f i g u r e
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15 f=f igure ;
16 subplot ( 1 , 2 , 1 )
17 semilogy ( r a t i o , S1 , ’ Color ’ , ’ r ’ )
18 hold on
19 semilogy ( r a t i o , S2 , ’ Color ’ , ’ g ’ )
20 hold on
21 semilogy ( r a t i o , S3 , ’ Color ’ , ’ b ’ )
22 axis square
23 xlabel ( ’ r a t i o \ alpha /\ beta ’ )
24 ylabel ( ’ Surv iva l f r a c t i o n (%) ’ )
25 xlim ( [ 0 2 0 ] )
26 ylim ( [ 0 . 1 1 0 0 ] )
27 set (gca , ’ YTick ’ , [ 0 . 1 , 1 , 1 0 , 1 0 0 ] )
28 set (gca , ’ XTick ’ , [ 0 : 2 : 2 0 ] )
29

30 alpha =1/3.35;
31 beta1=alpha / 1 . 5 ;
32 beta2=alpha /10 ;
33 beta3=alpha /20 ;
34 D= 0 : 0 . 0 5 : 1 5 ; %dosage s c a l e
35

36 %d i f f e r e n t s u r v i v i a l f r a c t i o n s , depending on d i f f e r e n t beta va lue s
37 S1=100∗exp(−alpha .∗D−beta1 .∗D. ˆ 2 ) ;
38 S2=100∗exp(−alpha .∗D−beta2 .∗D. ˆ 2 ) ;
39 S3=100∗exp(−alpha .∗D−beta3 .∗D. ˆ 2 ) ;
40

41 %compi l ing r i g h t f i g u r e
42 subplot ( 1 , 2 , 2 )
43 semilogy (D, S1 , ’ Color ’ , ’ r ’ )
44 hold on
45 semilogy (D, S2 , ’ Color ’ , ’ g ’ )
46 hold on
47 semilogy (D, S3 , ’ Color ’ , ’ b ’ )
48 axis square
49 xlabel ( ’ Dose (Gy) ’ )
50 ylabel ( ’ Surv iva l f r a c t i o n (%) ’ )
51 xlim ( [ 0 1 5 ] )
52 ylim ( [ 0 . 1 1 0 0 ] )
53 set (gca , ’ YTick ’ , [ 0 . 1 , 1 , 1 0 , 1 0 0 ] )
54 set (gca , ’ XTick ’ , [ 0 : 1 : 1 5 ] )

Used for figure 6.2 on page 51.

1 %parameter s e t t i n g
2 alpha =1/3.35;
3 beta=alpha /10 ;
4 D= 0 : 0 . 0 5 : 1 5 ; %dosage s c a l e
5

6 s1 =1; %d i f f e r e n t s e n s i t i z a t i o n f a c t o r s
7 s2 =1.1 ;
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8 s3 =2;
9

10 %d i f f e r e n t s u r v i v i a l f r a c t i o n s , depending on d i f f e r e n t s e n s i t i z a t i o n
11 %f a c t o r s
12 S1=100∗exp(−alpha ∗D−beta∗D.ˆ2∗ s1 ˆ 2 ) ;
13 S2=100∗exp(−alpha ∗D−beta∗D.ˆ2∗ s2 ˆ 2 ) ;
14 S3=100∗exp(−alpha ∗D−beta∗D.ˆ2∗ s3 ˆ 2 ) ;
15

16 %compi l ing f i g u r e
17 f=f igure ;
18 semilogy (D, S1 , ’ Color ’ , ’ r ’ )
19 hold on
20 semilogy (D, S2 , ’ Color ’ , ’ g ’ )
21 hold on
22 semilogy (D, S3 , ’ Color ’ , ’ b ’ )
23 axis square
24 xlabel ( ’ Dose (Gy) ’ )
25 ylabel ( ’ Surv iva l f r a c t i o n (%) ’ )
26 xlim ( [ 0 1 5 ] )
27 ylim ( [ 0 . 1 1 0 0 ] )
28 set (gca , ’ YTick ’ , [ 0 . 1 , 1 , 1 0 , 1 0 0 ] )
29 set (gca , ’ XTick ’ , [ 0 : 1 : 1 5 ] )

Used for figure 6.3 on page 57.

1 %parameter s e t t i n g
2 r =0.0116;
3 K=2000000;
4 alpha =0.203;
5 E=0.05;
6 mu=0.002;
7 A= 0 : 0 . 0 0 1 : 6 ;
8

9 %c a l c u l a t i o n o f the f i n a l number o f tumor c e l l s
10 N=K∗( ones ( s ize (A))− alpha ∗(mu∗A+ones ( s ize (A) )∗E) . / r ) . ˆ ( 1 / alpha ) ;
11 N(A>(r /( alpha ∗mu)−E/mu))=0;
12

13 %f i g u r e compi l ing
14 f=f igure ;
15 plot (A,N)
16 xlabel ( ’ Radiat ion dose A (Gy) ’ )
17 ylabel ( ’ F ina l number o f tumor c e l l s N ’ )

Used for figure 6.4 on page 58.

1 %parameter s e t t i n g
2 N0=596.3;
3 alpha =0.203;
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4 r=log ( 2 ) / 6 0 ;
5 c0 = [ 0 . 3 , 1 0 ] ;
6 K=13380;
7 E=1; %maximal e f f i c a c y
8 e0 =0.01; %i n i t i a l e f f i c a c y
9 d=0.0004; %e f f i c a c y grwoth ra t e

10 s =1;
11 mu=0.002;
12 A= [ 2 , 8 ] ;
13 t =0: s : 3 0 1 ;
14 t1 =0: s : 1 4 4 ;
15 t2 =145: s : 3 0 1 ;
16 NC=zeros ( length (A) , length ( c0 ) , length ( t ) , 2 ) ;
17 NC( : , : , 1 , 1 ) =N0∗ ones ( length (A) , length ( c0 ) ) ;
18

19 %curves are obta ined with the a n a l y t i c a l s o l u t i o n f o r the e f f i c a c y equat ion
20 %and the numerica l s o l u t i o n ( e u l e r method ) o f the tumor c e l l number
21 %equat ion
22 for k=1: length (A)
23 for h=1: length ( c0 )
24 NC(k , h , : , 2 )=E∗ e0 . / ( e0+(E−e0 )∗exp(−d∗ c0 (h)∗ t ) ) ;
25 for l =1: length ( t )−1
26 NC(k , h , l +1,1)=NC(k , h , l ,1)+ s ∗( r / alpha ∗NC(k , h , l , 1 ) ∗ . . .
27 (1−(NC(k , h , l , 1 ) /K)ˆ alpha)−A( k )∗mu∗NC(k , h , l ,1)−NC(k , h , l , 2 )∗NC(k , h , l , 1 ) ) ;
28 i f NC(k , h , l +1,2)<0
29 NC(k , h , l +1 ,2)=0;
30 end
31 i f NC(k , h , l +1,1)<0
32 NC(k , h , l +1 ,1)=0;
33 end
34 end
35 end
36 end
37

38 %number o f c e l l s without treatment
39 K=13380;
40 curve=K∗N0 . / ( N0ˆ alpha+(Kˆalpha−N0ˆ alpha )∗exp(−r ∗ t ) ) . ˆ ( 1 / alpha ) ;
41

42 %compi l ing f i g u r e
43 f=f igure ;
44 plot ( t , curve , ’ k ’ )
45 hold on
46 plot ( t , squeeze (NC( 1 , 1 , : , 1 ) ) , ’ b ’ )
47 plot ( t , squeeze (NC( 1 , 2 , : , 1 ) ) , ’ g ’ )
48 plot ( t , squeeze (NC( 2 , 1 , : , 1 ) ) , ’ y ’ )
49 plot ( t , squeeze (NC( 2 , 2 , : , 1 ) ) , ’ r ’ )
50 xlabel ( ’ time t ( hours ) ’ )
51 ylabel ( ’ number o f tumor c e l l s ’ )
52 xlim ( [ 0 3 0 0 ] )
53 legend ( ’ no Drug and A=0 Gy ’ , ’ c {\ i n f t y }=0.3 \muM and A=2 Gy ’ , . . .
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54 ’ c {\ i n f t y }=10 \muM and A=2 Gy ’ , ’ c {\ i n f t y }=0.3 \muM and A=8 Gy ’ , . . .
55 ’ c {\ i n f t y }=10 \muM and A=8 Gy ’ , ’ Locat ion ’ , ’ NorthWest ’ )

Algorithm 7: Used to find the parameters ε0 and d in section 6.2.2 on page 57, for
figure 6.5 on page 59, for figure 6.6 on page 61, for figure 6.7 on page 63 and for figure

6.8 on page 64.

1 %data po in t s
2 c0 =0.3 ;
3 data =[596.3 , 1258 .1 , 1695 .7 , 1588 .9 , 1 2 8 3 . 0 ;
4 596 .3 , 1202 .1 , 1992 .4 , 2242 .5 , 2 1 9 1 . 6 ;
5 596 .3 , 1037 .9 , 1842 .7 , 1905 .6 , 1 4 4 2 . 5 ;
6 596 .3 , 1195 .5 , 1606 .8 , 1424 .7 , 1 4 1 6 . 8 ] ;
7

8 % c0 =1;
9 % data =[ 596 .3 , 1208 .9 , 1507 .9 , 1436 .8 , 8 5 0 . 9 ;

10 % 596.3 , 1005 .3 , 1663 .7 , 1537 .5 , 1 4 0 3 . 4 ;
11 % 596.3 , 1156 .8 , 1669 .3 , 1742 .6 , 1 0 9 7 . 7 ;
12 % 596.3 , 967 .5 , 1485 .0 , 1542 .5 , 1 1 3 6 . 1 ] ;
13

14 % c0 =3;
15 % data =[ 596 .3 , 1268 .2 , 1708 .5 , 1197 .2 , 8 9 2 . 7 ;
16 % 596.3 , 965 .0 , 1667 .3 , 1492 .7 , 1 5 3 1 . 6 ;
17 % 596.3 , 925 .6 , 1594 .8 , 1359 .8 , 7 6 4 . 6 ;
18 % 596.3 , 982 .9 , 1377 .4 , 1371 .2 , 1 0 7 9 . 1 ] ;
19

20 % c0 =10;
21 % data =[596.3 , 1134 .1 , 1274 .6 ,1097 .1 , 7 1 1 . 1 ;
22 % 596.3 , 1079 .4 , 1305 .0 , 1383 .0 , 1 6 1 9 . 8 ;
23 % 596.3 , 905 .6 , 1566 .5 , 1568 .2 , 1 0 2 3 . 8 ;
24 % 596.3 , 1138 .6 , 1443 .0 , 1280 .1 , 9 0 5 . 1 ] ;
25

26 tdata =0 :72 :288 ;
27

28 %parameter s e t t i n g
29 N0=596.3;
30 alpha =0.203;
31 r=log ( 2 ) / 6 0 ;
32 K=13380;
33 E=1;
34 e0 = 0 : 0 . 0 0 1 : 0 . 0 2 ;
35 d = [ 0 : 0 . 0 0 0 1 : 0 . 0 0 1 , 0 . 0 0 2 : 0 . 0 0 1 : 0 . 0 2 ] ;
36 A=2:2 : 8 ;
37 mu= [ 0 . 0 0 2 4 , 0 . 0 0 2 3 , 0 . 0 0 1 5 , 0 . 0 0 1 5 ] ;
38

39 s =1;
40 t =0: s : 3 0 1 ;
41 t1 =0: s : 1 4 4 ;
42 t2 =145: s : 3 0 1 ;
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43 NC=zeros ( length (A) , length ( t ) , 2 ) ;
44 NC( : , 1 , 1 )=N0∗ ones (1 , length (A) ) ;
45

46 error=i n f ∗ ones ( length (A) , 1 ) ;
47 e r r o r 2=i n f ∗ ones ( length (A) , 1 ) ;
48 e 0 f i n a l=zeros ( length (A) , 1 ) ; %f i n a l i n i t i a l e f f i c a c y
49 d f i n a l=zeros ( length (A) , 1 ) ; %f i n a l e f f i c a c y growth ra t e
50 c u r v e c e l l=zeros ( length (A) , length ( t ) ) ; %best f i t t i n g curve
51 c u r v e c e l l 2=zeros ( length (A) , length ( t ) ) ; %curve with prev ious
52 %parameters f o r comparison
53

54 %varying e p s i l o n 0 and d to f i n d the bes t f i t with the a id o f the e u l e r
55 %method ; blue l i n e s
56 for h=1: length (A)
57 for k=1: length ( e0 )
58 for i =1: length (d)
59 NC(h , : , 2 )=E∗ e0 ( k ) . / ( e0 ( k)+(E−e0 ( k ) )∗exp(−d( i )∗ c0∗ t ) ) ;
60 for l =1: length ( t )−1
61 NC(h , l +1,1)=NC(h , l ,1)+ s ∗( r / alpha ∗NC(h , l ,1)∗(1−(NC(h , l , 1 ) . . .
62 /K)ˆ alpha)−mu(h)∗A(h)∗NC(h , l ,1)−NC(h , l , 2 )∗NC(h , l , 1 ) ) ;
63 i f NC(h , l +1,2)<0
64 NC(h , l +1 ,2)=0;
65 end
66 i f NC(h , l +1,1)<0
67 NC(h , l +1 ,1)=0;
68 end
69 end
70 model=NC(h , [ 1 , 7 3 , 1 4 5 , 2 1 7 , 2 8 9 ] , 1 ) ;
71 e=sum( ( ( data (h , : )−model ) . / model ) . ˆ 2 ) ;
72 i f e < error (h)
73 c u r v e c e l l (h , : )=NC(h , : , 1 ) ;
74 error (h)=e ;
75 e 0 f i n a l (h)=e0 ( k ) ;
76 d f i n a l (h)=d( i ) ;
77 end
78 end
79 end
80 end
81

82 e0 =0.012;
83 d=0.0003;
84 %red l i n e s
85 for h=1: length (A)
86 NC(h , : , 2 )=E∗ e0 . / ( e0+(E−e0 )∗exp(−d∗ c0∗ t ) ) ;
87 for l =1: length ( t )−1
88 NC(h , l +1,1)=NC(h , l ,1)+ s ∗( r / alpha ∗NC(h , l ,1)∗(1−(NC(h , l , 1 ) . . .
89 /K)ˆ alpha)−mu(h)∗A(h)∗NC(h , l ,1)−NC(h , l , 2 )∗NC(h , l , 1 ) ) ;
90 i f NC(h , l +1,2)<0
91 NC(h , l +1 ,2)=0;
92 end
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93 i f NC(h , l +1,1)<0
94 NC(h , l +1 ,1)=0;
95 end
96 end
97 model=NC(h , [ 1 , 7 3 , 1 4 5 , 2 1 7 , 2 8 9 ] , 1 ) ;
98 e r r o r 2 (h)=sum( ( ( data (h , : )−model ) . / model ) . ˆ 2 ) ;
99 c u r v e c e l l 2 (h , : )=NC(h , : , 1 ) ;

100 end
101

102 %compi l ing f i g u r e
103 f=f igure ;
104 subplot ( 2 , 2 , 1 )
105 plot ( tdata , data ( 1 , : ) , ’ ∗k ’ )
106 hold on
107 plot ( t , c u r v e c e l l ( 1 , : ) , ’ b ’ )
108 plot ( t , c u r v e c e l l 2 ( 1 , : ) , ’ r ’ )
109 xlabel ( ’ time t ( hours ) ’ )
110 ylabel ( ’ number o f tumor c e l l s ’ )
111 t i t l e ( ’A=2 Gy ’ )
112 xlim ( [ 0 3 0 0 ] )
113 subplot ( 2 , 2 , 2 )
114 plot ( tdata , data ( 2 , : ) , ’ ∗k ’ )
115 hold on
116 plot ( t , c u r v e c e l l ( 2 , : ) , ’ b ’ )
117 plot ( t , c u r v e c e l l 2 ( 2 , : ) , ’ r ’ )
118 xlabel ( ’ time t ( hours ) ’ )
119 ylabel ( ’ number o f tumor c e l l s ’ )
120 t i t l e ( ’A=4 Gy ’ )
121 xlim ( [ 0 3 0 0 ] )
122 subplot ( 2 , 2 , 3 )
123 plot ( tdata , data ( 3 , : ) , ’ ∗k ’ )
124 hold on
125 plot ( t , c u r v e c e l l ( 3 , : ) , ’ b ’ )
126 plot ( t , c u r v e c e l l 2 ( 3 , : ) , ’ r ’ )
127 xlabel ( ’ time t ( hours ) ’ )
128 ylabel ( ’ number o f tumor c e l l s ’ )
129 t i t l e ( ’A=6 Gy ’ )
130 xlim ( [ 0 3 0 0 ] )
131 subplot ( 2 , 2 , 4 )
132 plot ( tdata , data ( 4 , : ) , ’ ∗k ’ )
133 hold on
134 plot ( t , c u r v e c e l l ( 4 , : ) , ’ b ’ )
135 plot ( t , c u r v e c e l l 2 ( 4 , : ) , ’ r ’ )
136 xlabel ( ’ time t ( hours ) ’ )
137 ylabel ( ’ number o f tumor c e l l s ’ )
138 t i t l e ( ’A=8 Gy ’ )
139 xlim ( [ 0 3 0 0 ] )

Used for figure 6.9 on page 66.
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1 %parameter s e t t i n g
2 N0=596.3;
3 alpha =0.203;
4 r=log ( 2 ) / 6 0 ;
5 K=13380;
6 E=1;
7 c0 = [ 0 . 3 , 1 , 3 , 1 0 ] ;
8 e0 =0.012;
9 e0comb = [ 0 . 0 0 8 , 0 . 0 0 7 , 0 . 0 0 6 , 0 . 0 1 1 ;

10 0 . 0 0 4 , 0 . 0 0 5 , 0 . 0 0 6 , 0 . 0 0 8 ;
11 0 . 0 0 4 , 0 . 0 0 3 , 0 . 0 0 5 , 0 . 0 0 5 ;
12 0 . 0 0 3 , 0 . 0 0 3 , 0 . 0 0 3 , 0 . 0 0 3 ] ;
13 dcomb = [ 0 . 0 1 2 , 0 . 0 0 5 , 0 . 0 0 2 , 0 . 0 0 0 3 ;
14 0 . 0 0 9 , 0 . 0 0 4 , 0 . 0 0 0 9 , 0 . 0 0 0 1 ;
15 0 . 0 1 6 , 0 . 0 0 7 , 0 . 0 0 2 , 0 . 0 0 0 5 ;
16 0 . 0 1 7 , 0 . 0 0 6 , 0 . 0 0 2 , 0 . 0 0 0 7 ] ;
17 d=0.0003;
18 A=6:2 : 8 ;
19 mu= [ 0 . 0 0 2 4 , 0 . 0 0 2 3 , 0 . 0 0 1 5 , 0 . 0 0 1 5 ] ;
20

21 s =1;
22 t =0: s : 3 0 1 ;
23 t1 =0: s : 1 4 4 ;
24 t2 =145: s : 3 0 1 ;
25 e f f i c a c y=zeros ( length ( t ) , 2 ) ;
26

27 c e l l s=zeros ( length ( t ) , 3 ) ;
28 c e l l s (1 ,2)=N0 ;
29 c e l l s (1 ,3)=N0 ;
30

31 %tumor growth without treatment
32 curve=K∗N0 . / ( N0ˆ alpha+(Kˆalpha−N0ˆ alpha )∗exp(−r ∗ t ) ) . ˆ ( 1 / alpha ) ;
33

34 f=f igure ;
35

36 for h=1: length (A)
37 for i =1: length ( c0 )
38 %e f f i c a c y f o r the combined model
39 e f f i c a c y ( : , 1 )=E∗e0comb (h , i ) . / ( e0comb (h , i )+(E−e0comb (h , i ) ) ∗ . . .
40 exp(−dcomb(h , i )∗ c0 ( i )∗ t ) ) ;
41 %e f f i c a c y f o r chemotherapy a lone
42 e f f i c a c y ( : , 2 )=E∗ e0 . / ( e0+(E−e0 )∗exp(−d∗ c0 ( i )∗ t ) ) ;
43 for l =1: length ( t )−1
44 %tumor growth i n c l u d i n g combined therapy
45 c e l l s ( l +1,3)= c e l l s ( l ,3)+ s ∗( r / alpha ∗ c e l l s ( l ,3)∗(1−( c e l l s ( l , 3 ) . . .
46 /K)ˆ alpha)−mu(h)∗A(h)∗ c e l l s ( l ,3)− e f f i c a c y ( l , 1 )∗ c e l l s ( l , 3 ) ) ;
47 %tumor growth i n c l u d i n g chemotherapy
48 c e l l s ( l +1,2)= c e l l s ( l ,2)+ s ∗( r / alpha ∗ c e l l s ( l ,2)∗(1−( c e l l s ( l , 2 ) . . .
49 /K)ˆ alpha)− e f f i c a c y ( l , 2 )∗ c e l l s ( l , 2 ) ) ;
50 end
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51 %tumor growth i n c l u d i n g rad iotherapy
52 c e l l s ( : , 1 )=K∗N0 . / ( ( ( N0ˆ alpha ∗ r )/ ( r−alpha ∗mu(h)∗A(h))+(Kˆalpha − . . .
53 (N0ˆ alpha ∗ r )/ ( r−alpha ∗mu(h)∗A(h ) ) )∗exp(−r ∗ t+alpha ∗mu(h)∗A(h ) . . .
54 ∗ t ) ) . ˆ ( 1 / alpha ) ) ;
55 subplot (2 ,2 ,4∗h−4+i )
56 plot ( t , c e l l s ( : , 1 ) , ’ g ’ )
57 hold on
58 plot ( t , c e l l s ( : , 2 ) , ’ b ’ )
59 plot ( t , c e l l s ( : , 3 ) , ’ r ’ )
60 plot ( t , curve , ’ k ’ )
61 xlabel ( ’ time t ( hours ) ’ )
62 ylabel ( ’ number o f tumor c e l l s ’ )
63 t i t e l =[ ’A=’ num2str(A(h ) ) ’Gy and c {\ i n f t y}= ’ num2str( c0 ( i ) ) . . .
64 ’ \muM’ ] ;
65 t i t l e ( t i t e l )
66 xlim ( [ 0 3 0 0 ] )
67 axis square
68 end
69 end

Algorithm 8: Used to find the parameters Γ?, γ, λA and λN in section 6.3.2 on page 75
and for figure 6.11 on page 77.

1 %data po in t s
2 t1 =0 :72 :288 ;
3 data = [ 1 5 8 . 8 9 0 , 2 0 4 . 5 8 6 , 2 4 8 . 7 8 9 , 2 6 5 . 8 9 1 , 2 7 2 . 3 7 2 ] ;
4

5 h=1; %time s t ep s f o r e u l e r
6 t2 =0:h : 3 0 1 ;
7 R0= [ 1 5 8 . 8 9 0 , 0 , 0 ] ; %s t a r t po int f o r e u l e r from data
8 Rs=zeros ( length ( t2 ) , length (R0 ) ) ; %Rs ( . , 1 )=R( . )
9 %Rs ( . ,2 )=R H ( . )

10 %Rs ( . ,3 )=R N ( . )
11 Rs (1 , : )=R0 ;
12

13 %parameter s e t t i n g
14 g i n f =1; %nut r i en t concent ra t i on
15 lambdaAs = 0 : 0 . 0 1 : 1 ; %ra t e o f apopto s i s
16 lambdaNs = 0 : 0 . 0 1 : 1 ; %ra t e o f n e c r o s i s
17 gammas = 0 : 0 . 0 1 : 1 ; %p r o l i f e r a t i o n ra t e
18 Gamma stars = 0 . 0 0 0 1 : 0 . 0 0 0 0 1 : 0 . 0 0 0 2 ; %nut r i en t d i f f u s i o n ra t e
19 error=i n f ;
20

21 %s o l u t i o n i s c a l c u l a t e d with the forward e u l e r method ;
22 %parameters are var i ed to get the best f i t
23 for i =1: length ( Gamma stars )
24 gH=gin f −100ˆ2∗Gamma stars ( i ) / 6 ; %nut r i en t concent ra t i on t h r e s h o l d s
25 gN=gin f −200ˆ2∗Gamma stars ( i ) / 6 ;
26 for j =1: length (gammas)
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27 for k=1: length ( lambdaAs )
28 for l =1: length ( lambdaNs )
29 for t =1:( length ( t2 )−1)
30 s=t +1;
31 i f Rs( t ,1)<=100
32 Rs( s ,1)=Rs( t ,1)+h∗1/3∗Rs( t , 1 ) ∗ ( gammas( j )∗ g in f − . . .
33 1/(15)∗Rs( t , 1 )ˆ2∗Gamma stars ( i )∗gammas( j ) − . . .
34 lambdaAs ( k ) ) ;
35 Rs( s ,2 )=0 ;
36 Rs( s ,3 )=0 ;
37 e l s e i f Rs( t ,1)<200
38 Rs( t ,2)= sqrt ( ( Rs( t ,1))ˆ2−6/ Gamma stars ( i ) ∗ . . .
39 ( g in f−gH ) ) ;
40 Rs( t ,3 )=0 ;
41 Rs( s ,1)=Rs( t ,1)+h∗1/3∗Rs( t , 1 ) ∗ ( gammas( j )∗ g i n f ∗ . . .
42 (1−(Rs( t , 2 ) / Rs( t ,1))ˆ3)− lambdaAs ( k))+h ∗ 1 / 3 ∗ . . .
43 (Rs( t ,1))ˆ3∗ (−1/(15)∗gammas( j ) ∗ . . .
44 Gamma stars ( i )+1/6∗gammas( j )∗Gamma stars ( i ) ∗ . . .
45 (Rs( t , 2 ) / Rs( t ,1))ˆ3)−h∗1/3∗(Rs( t , 1 ) )ˆ3∗1/10 . . .
46 ∗gammas( j )∗Gamma stars ( i )∗ ( Rs( t , 2 ) / Rs( t , 1 ) ) ˆ 5 ;
47 else
48 Rs( t ,2)= sqrt ( ( Rs( t ,1))ˆ2−6/ Gamma stars ( i ) ∗ . . .
49 ( g in f−gH ) ) ;
50 Rs( t ,3)= sqrt ( ( Rs( t ,1))ˆ2−6/ Gamma stars ( i ) ∗ . . .
51 ( g in f−gN ) ) ;
52 Rs( s ,1)=Rs( t ,1)+h∗1/3∗Rs( t , 1 ) ∗ ( gammas( j )∗gN∗ (1 − . . .
53 (Rs( t , 2 ) / Rs( t ,1))ˆ3)− lambdaAs ( k)−lambdaNs ( l ) . . .
54 ∗(Rs( t , 3 ) / Rs( t ,1))ˆ3)+ h∗gammas( j ) ∗ . . .
55 Gamma stars ( i )∗1/6∗ (Rs( t , 1 ) ) ˆ 3∗ ( 1 / 5∗ ( 1 − . . .
56 (Rs( t , 2 ) / Rs( t ,1))ˆ5) − ( Rs( t , 3 ) / Rs( t , 1 ) ) ˆ 2 ∗ . . .
57 (1−(Rs( t , 2 ) / Rs( t , 1 ) )ˆ3)+( Rs( t , 3 ) / Rs( t , 1 ) ) ˆ 3 . . .
58 ∗(1−(Rs( t , 2 ) / Rs( t , 1 ) ) ˆ 2 ) ) ;
59 end
60 end
61 model=[Rs ( 1 , 1 ) , Rs (73 , 1 ) , Rs (145 , 1 ) , Rs (217 , 1 ) , Rs ( 2 8 9 , 1 ) ] ;
62 e=sum( ( ( data−model ) . / model ) . ˆ 2 ) ;
63 i f e< error
64 error=e ;
65 lambdaA=lambdaAs ( k ) ;
66 lambdaN=lambdaNs ( l ) ;
67 gamma=gammas( j ) ;
68 Gamma star=Gamma stars ( i ) ;
69 Rf ina l=Rs ;
70 end
71 end
72 end
73 end
74 end
75

76 %compi l ing f i g u r e
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77 f=f igure ;
78 plot ( t1 , data , ’ ∗k ’ )
79 hold on
80 plot ( t2 , R f ina l ( : , 1 ) )
81 plot ( t2 , R f ina l ( : , 2 ) , ’ r ’ )
82 plot ( t2 , R f ina l ( : , 3 ) , ’ g ’ )
83 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
84 xlabel ( ’Time t ( hours ) ’ )
85 ylabel ( ’ Radius (\mu m) ’ )
86 legend ( ’ data po in t s ’ , ’R ’ , ’R H ’ , ’R N ’ , ’ Locat ion ’ , ’ SouthEast ’ )

Algorithm 9: Used to find the parameters µ in section 6.3.2 on page 75 and for figure
6.12 on page 78.

1 %data po in t s
2 t1 =0 :72 :288 ;
3 data =[158 . 890 , 198 . 014 , 230 . 050 , 239 . 573 , 251 . 654 ;
4 15 8 . 89 0 , 1 93 . 470 , 212 . 80 7 , 2 23 . 1 83 , 225 . 769 ;
5 15 8 . 89 0 , 1 99 . 823 , 213 . 74 8 , 2 09 . 7 56 , 224 . 324 ;
6 1 5 8 . 8 9 0 , 1 9 6 . 5 9 3 , 2 0 2 . 4 0 9 , 1 9 6 . 0 7 5 , 2 1 1 . 2 8 4 ] ;
7

8 %parameter s e t t i n g
9 g i n f =1;

10 lambdaA=0;
11 lambdaN=0;
12 gamma=0.03;
13 Gamma star =0.00012;
14 A= [ 2 , 4 , 6 , 8 ] ; %r a d i a t i o n dosages
15 mus = 0 : 0 . 0 0 0 1 : 0 . 0 2 ; %dying ra t e per Gy
16

17 h=2/60; %time s t ep s f o r e u l e r
18 t2 =0:h : 3 0 1 ;
19 R0=repmat ( [ 1 5 8 . 8 9 0 ; 0 ; 0 ] , 1 , 4 ) ; %s t a r t po int f o r e u l e r from data
20 Rs=zeros ( length ( t2 ) , 3 , length (A) ) ;
21 Rs ( 1 , : , : ) =R0 ;
22

23 error=ones (4 ,1 )∗ i n f ;
24 mu=zeros ( 4 , 1 ) ;
25 Rf ina l=zeros ( s ize (Rs ) ) ;
26 mode l f i na l=zeros ( s ize ( data ) ) ;
27

28 gH=gin f −100ˆ2∗Gamma star /6 ;
29 gN=gin f −200ˆ2∗Gamma star /6 ;
30

31 %s o l u t i o n i s c a l c u l a t e d with the forward e u l e r method ;
32 %parameters are var i ed to get the best f i t
33 for i =1: length (A)
34 for j =1: length (mus)
35 for t =1: length ( t2 )−1
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36 s=t +1;
37 i f Rs( t , 1 , i )<=100
38 Rs( s , 1 , i )=Rs( t , 1 , i )+h∗1/3∗Rs( t , 1 , i )∗ (gamma∗ g in f −1 / . . .
39 (15)∗Rs( t , 1 , i )ˆ2∗Gamma star∗gamma−lambdaA−mus( j ) . . .
40 ∗A( i ) ) ;
41 Rs( s , 2 , i )=0;
42 Rs( s , 3 , i )=0;
43 e l s e i f Rs( t , 1 , i )<200
44 Rs( t , 2 , i )=sqrt ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gH ) ) ;
45 Rs( t , 3 , i )=0;
46 Rs( s , 1 , i )=Rs( t , 1 , i )+h∗1/3∗Rs( t , 1 , i )∗ ( (gamma∗ g in f−mus . . .
47 ( j )∗A( i ))∗(1−(Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ3)− lambdaA)+h ∗ . . .
48 1/3∗(Rs( t , 1 , i ))ˆ3∗(−1/(15)∗gamma∗Gamma star +1/6∗ . . .
49 gamma∗ Gamma star ∗(Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ3)−h ∗ . . .
50 1/3∗(Rs( t , 1 , i ))ˆ3∗1/10∗gamma∗Gamma star ∗ . . .
51 (Rs( t , 2 , i )/Rs( t , 1 , i ) ) ˆ 5 ;
52 else
53 Rs( t , 2 , i )=sqrt ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gH ) ) ;
54 Rs( t , 3 , i )=sqrt ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gN ) ) ;
55 Rs( s , 1 , i )=Rs( t , 1 , i )+h∗1/3∗Rs( t , 1 , i )∗ ( (gamma∗gN− . . .
56 mus( j )∗A( i ))∗(1−(Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ3)− lambdaA− . . .
57 lambdaN∗(Rs( t , 3 , i )/Rs( t , 1 , i ))ˆ3)+h∗gamma∗ . . .
58 Gamma star∗1/6∗(Rs( t , 1 , i ))ˆ3∗(1/5∗(1−(Rs( t , 2 , i ) / . . .
59 Rs( t , 1 , i ))ˆ5)−(Rs( t , 3 , i )/Rs( t , 1 , i ) ) ˆ 2∗ ( 1 − . . .
60 (Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ3)+(Rs( t , 3 , i )/Rs( t , 1 , i ) ) . . .
61 ˆ3∗(1−(Rs( t , 2 , i )/Rs( t , 1 , i ) ) ˆ 2 ) ) ;
62 end
63 end
64 model=[Rs (1 , 1 , i ) , Rs(72∗30+1 ,1 , i ) , Rs(144∗30+1 ,1 , i ) , . . .
65 Rs(216∗30+1 ,1 , i ) , Rs(288∗30+1 ,1 , i ) ] ;
66 e=sum( ( ( data ( i , : )−model ) . / model ) . ˆ 2 ) ;
67 i f e < error ( i )
68 error ( i )=e ;
69 mu( i )=mus( j ) ;
70 Rf ina l ( : , : , i )=Rs ( : , : , i ) ;
71 mode l f i na l ( i , : )= model ;
72 end
73 end
74 end
75

76 %compi l ing f i g u r e
77 f=f igure ;
78 subplot ( 2 , 2 , 1 )
79 plot ( t1 , data ( 1 , : ) , ’ ∗k ’ )
80 hold on
81 plot ( t2 , R f ina l ( : , 1 , 1 ) )
82 plot ( t2 , R f ina l ( : , 2 , 1 ) , ’ r ’ )
83 plot ( t2 , R f ina l ( : , 3 , 1 ) , ’ g ’ )
84 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
85 axis square
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86 xlabel ( ’Time t ( hours ) ’ )
87 ylabel ( ’ Radius (\mum) ’ )
88 t i t l e ( ’A=2 ’ )
89

90 subplot ( 2 , 2 , 2 )
91 plot ( t1 , data ( 2 , : ) , ’ ∗k ’ )
92 hold on
93 hold on
94 plot ( t2 , R f ina l ( : , 1 , 2 ) )
95 plot ( t2 , R f ina l ( : , 2 , 2 ) , ’ r ’ )
96 plot ( t2 , R f ina l ( : , 3 , 2 ) , ’ g ’ )
97 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
98 axis square
99 xlabel ( ’Time t ( hours ) ’ )

100 ylabel ( ’ Radius (\mum) ’ )
101 t i t l e ( ’A=4 ’ )
102

103 subplot ( 2 , 2 , 3 )
104 plot ( t1 , data ( 3 , : ) , ’ ∗k ’ )
105 hold on
106 plot ( t2 , R f ina l ( : , 1 , 3 ) )
107 plot ( t2 , R f ina l ( : , 2 , 3 ) , ’ r ’ )
108 plot ( t2 , R f ina l ( : , 3 , 3 ) , ’ g ’ )
109 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
110 axis square
111 xlabel ( ’Time t ( hours ) ’ )
112 ylabel ( ’ Radius (\mum) ’ )
113 t i t l e ( ’A=6 ’ )
114

115 subplot ( 2 , 2 , 4 )
116 plot ( t1 , data ( 4 , : ) , ’ ∗k ’ )
117 hold on
118 plot ( t2 , R f ina l ( : , 1 , 4 ) )
119 plot ( t2 , R f ina l ( : , 2 , 4 ) , ’ r ’ )
120 plot ( t2 , R f ina l ( : , 3 , 4 ) , ’ g ’ )
121 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
122 axis square
123 xlabel ( ’Time t ( hours ) ’ )
124 ylabel ( ’ Radius (\mum) ’ )
125 t i t l e ( ’A=8 ’ )

Algorithm 10: Used to find the parameters Γ1 and ν in section 6.3.2 on page 75 and for
figure 6.13 on page 80.

1 %data po in t s
2 t1 =0 :72 :288 ;
3 data =[158 . 890 , 187 . 719 , 202 . 966 , 200 . 259 , 218 . 354 ;
4 1 5 8 . 8 9 , 1 8 5 . 6 8 4 , 2 1 0 . 5 5 8 , 2 1 1 . 0 4 3 , 2 1 4 . 3 7 6 ;
5 1 5 8 . 8 9 , 1 8 3 . 2 7 6 , 2 0 6 . 1 0 1 , 2 0 7 . 7 4 3 , 1 9 8 . 4 3 9 ;
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6 15 8 . 89 0 , 1 73 . 483 , 190 . 88 1 , 1 90 . 5 59 , 180 . 951 ;
7 1 5 8 . 8 9 , 1 7 2 . 5 3 5 , 1 9 4 . 9 7 2 , 1 9 1 . 6 3 2 , 1 8 6 . 1 0 1 ] ;
8

9 h=1; %time s t ep s f o r e u l e r
10 t2 =0:h : 3 0 1 ;
11 R0=repmat ( [ 1 5 8 . 8 9 0 ; 0 ; 0 ] , 1 , 5 ) ; %s t a r t po int f o r e u l e r from data
12 Rs=zeros ( length ( t2 ) , 3 , 5 ) ;
13 Rs ( 1 , : , : ) =R0 ;
14

15 %parameter s e t t i n g
16 g i n f =1;
17 c i n f = [ 0 . 3 , 1 , 3 , 1 0 , 3 0 ] ;
18 lambdaA=0;
19 lambdaN=0;
20 gamma=0.03;
21 Gamma star =0.00012;
22 Gamma1= [ 0 : 0 . 0 0 0 1 : 0 . 0 0 1 , 0 . 0 0 1 : 0 . 0 0 1 : 0 . 0 3 ] ; %f i r s t drug d i f f u s i o n parameter
23 Gamma2=0; %second drug d i f f u s i o n parameter
24 nu = 0 : 0 . 0 0 0 1 : 0 . 0 5 ; %drug k i l l i n g ra t e
25

26 error=i n f ∗ ones ( 1 , 5 ) ;
27 Gamma1final=zeros ( 1 , 5 ) ;
28 n u f i n a l=zeros ( 1 , 5 ) ;
29 Rf ina l=zeros ( s ize (Rs ) ) ;
30 c=zeros (1 , length ( t2 ) ) ;
31

32 gH=gin f −100ˆ2∗Gamma star /6 ;
33 gN=gin f −200ˆ2∗Gamma star /6 ;
34

35 %s o l u t i o n i s c a l c u l a t e d with the forward e u l e r method ;
36 %parameters are var i ed to get the best f i t
37 for i =1: length ( c i n f )
38 for j =1: length (Gamma1)
39 for l =1: length (nu)
40 for t =1:( length ( t2 )−1)
41 s=t +1;
42 i f Rs( t ,1)<=100
43 Rs( s , 1 , i )=Rs( t , 1 , i )+h∗1/3∗Rs( t , 1 , i )∗ (gamma∗ g in f − . . .
44 1/(15)∗Rs( t , 1 , i )ˆ2∗Gamma star∗gamma−lambdaA− . . .
45 nu( l )∗ c i n f ( i )+1/15∗Rs( t , 1 , i )ˆ2∗Gamma1( j )∗nu( l ) ) ;
46 Rs( s , 2 , i )=0;
47 Rs( s , 3 , i )=0;
48 e l s e i f Rs( t ,1)<200
49 i f ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gH))<=0
50 Rs( t , 2 , i )=0;
51 else Rs( t , 2 , i )=sqrt ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗ . . .
52 ( g in f−gH ) ) ;
53 end
54 Rs( t , 3 , i )=0;
55 Rs( s , 1 , i )=Rs( t , 1 , i )+h∗1/3∗Rs( t , 1 , i )∗ (gamma∗ g i n f ∗ (1 − . . .
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56 (Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ3)− lambdaA−nu( l )∗ c i n f ( i ) ) + . . .
57 h∗1/3∗(Rs( t , 1 , i ))ˆ3∗(1/(15)∗(−gamma∗Gamma star + . . .
58 nu( l )∗Gamma1( j ))+1/6∗(gamma∗Gamma star+nu( l ) ∗ . . .
59 (Gamma2−Gamma1( j ) ) ) ∗ ( Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ3)+h ∗ . . .
60 1/3∗(Rs( t , 1 , i ))ˆ3∗(1/10∗(−gamma∗Gamma star+nu( l ) . . .
61 ∗(−Gamma2+Gamma1( j ) ) ) ∗ ( Rs( t , 2 , i )/Rs( t , 1 , i ) ) ˆ 5 ) ;
62 else
63 i f ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gH))<=0
64 Rs( t , 2 , i )=0;
65 else Rs( t , 2 , i )=sqrt ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗ . . .
66 ( g in f−gH ) ) ;
67 end
68 i f ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gN))<=0
69 Rs( t , 3 , i )=0;
70 else Rs( t , 3 , i )=sqrt ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗ . . .
71 ( g in f−gN ) ) ;
72 end
73 Rs( s , 1 , i )=Rs( t , 1 , i )+h∗1/3∗Rs( t , 1 , i )∗ (gamma∗gN∗ (1 − . . .
74 (Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ3)−nu( l )∗ c i n f ( i )∗ ( 1 − . . .
75 (Rs( t , 3 , i )/Rs( t , 1 , i ))ˆ3)− lambdaA−lambdaN ∗ . . .
76 (Rs( t , 3 , i )/Rs( t , 1 , i ))ˆ3)+h∗gamma∗Gamma star ∗ . . .
77 1/6∗(Rs( t , 1 , i ))ˆ3∗(1/5∗(1−(Rs( t , 2 , i )/Rs( t , 1 , i ) ) . . .
78 ˆ5)−(Rs( t , 3 , i )/Rs( t , 1 , i ))ˆ2∗(1−(Rs( t , 2 , i ) / . . .
79 Rs( t , 1 , i ))ˆ3)+(Rs( t , 3 , i )/Rs( t , 1 , i ) ) ˆ 3∗ ( 1 − . . .
80 (Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ2))+h∗nu( l )∗Gamma1( j ) ∗ 1 / 6 ∗ . . .
81 (Rs( t , 1 , i ))ˆ3∗(1/3∗(1−(Rs( t , 2 , i )/Rs( t , 1 , i ) ) ˆ 3 ) − . . .
82 1/5∗(1−(Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ5))+h∗nu( l )∗Gamma2 . . .
83 ∗1/6∗(Rs( t , 1 , i ) ) ˆ3∗ ( 1/3∗ ( ( Rs( t , 2 , i )/Rs( t , 1 , i ) ) . . .
84 ˆ3−(Rs( t , 3 , i )/Rs( t , 1 , i ))ˆ3)−1/5∗((Rs( t , 2 , i ) / . . .
85 Rs( t , 1 , i ))ˆ5−(Rs( t , 3 , i )/Rs( t , 1 , i ) ) ˆ 5 ) ) ;
86 end
87 end
88 model=[Rs (1 , 1 , i ) , Rs (73 ,1 , i ) , Rs (145 ,1 , i ) , Rs (217 ,1 , i ) , . . .
89 Rs (289 ,1 , i ) ] ;
90 e=sum( ( ( data ( i , : )−model ) . / model ) . ˆ 2 ) ;
91 i f e < error ( i )
92 error ( i )=e ;
93 Gamma1final ( i )=Gamma1( j ) ;
94 n u f i n a l ( i )=nu( l ) ;
95 Rf ina l ( : , : , i )=Rs ( : , : , i ) ;
96 end
97 end
98 end
99 end

100

101 %f i g u r e compi l ing
102 f 1=f igure ;
103 subplot ( 2 , 2 , 1 )
104 plot ( t1 , data ( 1 , : ) , ’ ∗k ’ )
105 hold on
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106 plot ( t2 , R f ina l ( : , 1 , 1 ) )
107 plot ( t2 , R f ina l ( : , 2 , 1 ) , ’ r ’ )
108 plot ( t2 , R f ina l ( : , 3 , 1 ) , ’ g ’ )
109 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
110 axis square
111 xlabel ( ’Time t ( hours ) ’ )
112 ylabel ( ’ Radius (\mum) ’ )
113 t i t l e ( ’ c {\ i n f t y }(0)=0.3\muM’ )
114

115 subplot ( 2 , 2 , 2 )
116 plot ( t1 , data ( 2 , : ) , ’ ∗k ’ )
117 hold on
118 plot ( t2 , R f ina l ( : , 1 , 2 ) )
119 plot ( t2 , R f ina l ( : , 2 , 2 ) , ’ r ’ )
120 plot ( t2 , R f ina l ( : , 3 , 2 ) , ’ g ’ )
121 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
122 axis square
123 xlabel ( ’Time t ( hours ) ’ )
124 ylabel ( ’ Radius (\mum) ’ )
125 t i t l e ( ’ c {\ i n f t y }(0)=1\muM’ )
126

127 subplot ( 2 , 2 , 3 )
128 plot ( t1 , data ( 3 , : ) , ’ ∗k ’ )
129 hold on
130 plot ( t2 , R f ina l ( : , 1 , 3 ) )
131 plot ( t2 , R f ina l ( : , 2 , 3 ) , ’ r ’ )
132 plot ( t2 , R f ina l ( : , 3 , 3 ) , ’ g ’ )
133 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
134 axis square
135 xlabel ( ’Time t ( hours ) ’ )
136 ylabel ( ’ Radius (\mum) ’ )
137 t i t l e ( ’ c {\ i n f t y }(0)=3\muM’ )
138

139 subplot ( 2 , 2 , 4 )
140 plot ( t1 , data ( 4 , : ) , ’ ∗k ’ )
141 hold on
142 plot ( t2 , R f ina l ( : , 1 , 4 ) )
143 plot ( t2 , R f ina l ( : , 2 , 4 ) , ’ r ’ )
144 plot ( t2 , R f ina l ( : , 3 , 4 ) , ’ g ’ )
145 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
146 axis square
147 xlabel ( ’Time t ( hours ) ’ )
148 ylabel ( ’ Radius (\mum) ’ )
149 t i t l e ( ’ c {\ i n f t y }(0)=10\muM’ )
150

151 f 2=f igure ;
152

153 subplot ( 2 , 2 , 1 )
154 plot ( t1 , data ( 5 , : ) , ’ ∗k ’ )
155 hold on

126



B. MatLab Codes

156 plot ( t2 , R f ina l ( : , 1 , 5 ) )
157 plot ( t2 , R f ina l ( : , 2 , 5 ) , ’ r ’ )
158 plot ( t2 , R f ina l ( : , 3 , 5 ) , ’ g ’ )
159 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
160 axis square
161 xlabel ( ’Time t ( hours ) ’ )
162 ylabel ( ’ Radius (\mum) ’ )
163 t i t l e ( ’ c {\ i n f t y }(0)=30\muM’ )

Used for figure 6.14 on page 81 and for figure 6.15 on page 82 and to calculate the
corresponding errors.

1 %data po in t s
2 t1 =0 :72 :288 ;
3 c i n f =0.3 ;
4 data =[158.890 , 182 .110 , 191 .982 , 189 .793 , 18 2 . 74 6 ;
5 158.890 , 180 .725 , 197 .622 , 201 .778 , 200 . 96 4 ;
6 158.890 , 176 .152 , 195 .129 , 196 .287 , 186 . 86 1 ;
7 158.890 , 180 .306 , 189 .976 , 185 .993 , 1 8 5 . 8 1 0 ] ;
8 %c i n f =10
9 % data =[ 158.890 , 178 .539 , 182 .275 , 177 .517 , 164 . 145 ;

10 % 158.890 , 177 .064 , 195 .070 , 185 .027 , 190 . 254 ;
11 % 158.890 , 171 .778 , 189 .521 , 189 .557 , 175 . 654 ;
12 % 158.890 , 178 .820 , 186 .495 , 182 .585 , 1 7 1 . 6 0 0 ] ;
13

14 h=2/60; %time s t ep s f o r e u l e r
15 t2 =0:h : 3 0 1 ;
16 R0=repmat ( [ 1 5 8 . 8 9 0 ; 0 ; 0 ] , 1 , 4 ) ;
17 A= [ 2 , 4 , 6 , 8 ] ;
18 Rs=zeros ( length ( t2 ) , 3 , length (A) ) ;
19 Rs ( 1 , : , : ) =R0 ;
20

21 %parameter s e t t i n g
22 g i n f =1;
23 lambdaA=0;
24 lambdaN=0;
25 gamma=0.03;
26 Gamma star =0.00012;
27 Gamma1=0.0004; %f o r c i n f =10: Gamma1=0.023;
28 Gamma2=0;
29 nu=0.0365; %f o r c i n f =10: nu=0.0036;
30 mu= [ 0 . 0 0 3 4 , 0 . 0 0 3 2 , 0 . 0 0 2 2 , 0 . 0 0 2 1 ] ;
31

32 error=ones (4 ,1 )∗ i n f ;
33

34 gH=gin f −100ˆ2∗Gamma star /6 ;
35 gN=gin f −200ˆ2∗Gamma star /6 ;
36

37 %s o l u t i o n i s c a l c u l a t e d with the forward e u l e r method ;
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38 for i =1: length (A)
39 for t =1:( length ( t2 )−1)
40 s=t +1;
41 i f Rs( t ,1)<=100
42 Rs( s , 1 , i )=Rs( t , 1 , i )+h∗1/3∗Rs( t , 1 , i )∗ (gamma∗ g in f −1 / ( 1 5 )∗ . . .
43 Rs( t , 1 , i )ˆ2∗Gamma star∗gamma−lambdaA−mu( i )∗1−nu∗ c i n f + . . .
44 1/15∗Rs( t , 1 , i )ˆ2∗Gamma1∗nu ) ;
45 Rs( s , 2 , i )=0;
46 Rs( s , 3 , i )=0;
47 e l s e i f Rs( t ,1)<200
48 i f ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gH))<=0
49 Rs( t , 2 , i )=0;
50 else Rs( t , 2 , i )=sqrt ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gH ) ) ;
51 end
52 Rs( t , 3 , i )=0;
53 Rs( s , 1 , i )=Rs( t , 1 , i )+h∗1/3∗Rs( t , 1 , i )∗ ( (gamma∗ g in f−mu( i ) ∗ 1 ) ∗ . . .
54 (1−(Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ3)− lambdaA−nu∗ c i n f )+h ∗ 1 / 3 ∗ . . .
55 (Rs( t , 1 , i ))ˆ3∗(1/(15)∗(−gamma∗Gamma star+nu∗Gamma1) + 1 / 6∗ . . .
56 (gamma∗Gamma star+nu∗(Gamma2−Gamma1) )∗ ( Rs( t , 2 , i ) / . . .
57 Rs( t , 1 , i ))ˆ3)+h∗1/3∗(Rs( t , 1 , i ))ˆ3∗(1/10∗(−gamma∗ . . .
58 Gamma star+nu∗(−Gamma2+Gamma1) )∗ ( Rs( t , 2 , i )/Rs( t , 1 , i ) ) ˆ 5 ) ;
59 else
60 i f ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gH))<=0
61 Rs( t , 2 , i )=0;
62 else Rs( t , 2 , i )=sqrt ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gH ) ) ;
63 end
64 i f ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gN))<=0
65 Rs( t , 3 , i )=0;
66 else Rs( t , 3 , i )=sqrt ( ( Rs( t , 1 , i ))ˆ2−6/Gamma star ∗( g in f−gN ) ) ;
67 end
68 Rs( s , 1 , i )=Rs( t , 1 , i )+h∗1/3∗Rs( t , 1 , i )∗ ( (gamma∗gN−mu( i )∗1 )∗ ( 1 − . . .
69 (Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ3)−nu∗ c i n f ∗(1−(Rs( t , 3 , i )/Rs( t , 1 , i ) . . .
70 )ˆ3)− lambdaA−lambdaN∗(Rs( t , 3 , i )/Rs( t , 1 , i ))ˆ3)+h∗gamma∗ . . .
71 Gamma star∗1/6∗(Rs( t , 1 , i ))ˆ3∗(1/5∗(1−(Rs( t , 2 , i ) / . . .
72 Rs( t , 1 , i ))ˆ5)−(Rs( t , 3 , i )/Rs( t , 1 , i ))ˆ2∗(1−(Rs( t , 2 , i ) / . . .
73 Rs( t , 1 , i ))ˆ3)+(Rs( t , 3 , i )/Rs( t , 1 , i ))ˆ3∗(1−(Rs( t , 2 , i ) / . . .
74 Rs( t , 1 , i ))ˆ2))+h∗nu∗Gamma1∗1/6∗(Rs( t , 1 , i ) ) ˆ3∗ ( 1/3∗ ( 1 − . . .
75 (Rs( t , 2 , i )/Rs( t , 1 , i ))ˆ3)−1/5∗(1−(Rs( t , 2 , i )/Rs( t , 1 , i ) ) . . .
76 ˆ5))+h∗nu∗Gamma2∗1/6∗(Rs( t , 1 , i ) ) ˆ3∗ ( 1/3∗ ( ( Rs( t , 2 , i ) / . . .
77 Rs( t , 1 , i ))ˆ3−(Rs( t , 3 , i )/Rs( t , 1 , i ))ˆ3)−1/5∗((Rs( t , 2 , i ) / . . .
78 Rs( t , 1 , i ))ˆ5−(Rs( t , 3 , i )/Rs( t , 1 , i ) ) ˆ 5 ) ) ;
79 end
80 end
81 model=[Rs (1 , 1 , i ) , Rs(72∗30+1 ,1 , i ) , Rs(144∗30+1 ,1 , i ) , Rs(216∗30+1 ,1 , i ) , . . .
82 Rs(288∗30+1 ,1 , i ) ] ;
83 error ( i )=sum( ( ( data ( i , : )−model ) . / model ) . ˆ 2 ) ;
84 end
85

86 %f i g u r e compi l ing
87 f=f igure ;
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88 subplot ( 2 , 2 , 1 )
89 plot ( t1 , data ( 1 , : ) , ’ ∗k ’ )
90 hold on
91 plot ( t2 , Rs ( : , 1 , 1 ) )
92 plot ( t2 , Rs ( : , 2 , 1 ) , ’ r ’ )
93 plot ( t2 , Rs ( : , 3 , 1 ) , ’ g ’ )
94 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
95 axis square
96 xlabel ( ’Time t ( hours ) ’ )
97 ylabel ( ’ Radius (\mum) ’ )
98 t i t l e ( ’A=2 ’ )
99

100 subplot ( 2 , 2 , 2 )
101 plot ( t1 , data ( 2 , : ) , ’ ∗k ’ )
102 hold on
103 hold on
104 plot ( t2 , Rs ( : , 1 , 2 ) )
105 plot ( t2 , Rs ( : , 2 , 2 ) , ’ r ’ )
106 plot ( t2 , Rs ( : , 3 , 2 ) , ’ g ’ )
107 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
108 axis square
109 xlabel ( ’Time t ( hours ) ’ )
110 ylabel ( ’ Radius (\mum) ’ )
111 t i t l e ( ’A=4 ’ )
112

113 subplot ( 2 , 2 , 3 )
114 plot ( t1 , data ( 3 , : ) , ’ ∗k ’ )
115 hold on
116 plot ( t2 , Rs ( : , 1 , 3 ) )
117 plot ( t2 , Rs ( : , 2 , 3 ) , ’ r ’ )
118 plot ( t2 , Rs ( : , 3 , 3 ) , ’ g ’ )
119 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
120 axis square
121 xlabel ( ’Time t ( hours ) ’ )
122 ylabel ( ’ Radius (\mum) ’ )
123 t i t l e ( ’A=6 ’ )
124

125 subplot ( 2 , 2 , 4 )
126 plot ( t1 , data ( 4 , : ) , ’ ∗k ’ )
127 hold on
128 plot ( t2 , Rs ( : , 1 , 4 ) )
129 plot ( t2 , Rs ( : , 2 , 4 ) , ’ r ’ )
130 plot ( t2 , Rs ( : , 3 , 4 ) , ’ g ’ )
131 axis ( [ 0 , 3 0 0 , 0 , 3 0 0 ] )
132 axis square
133 xlabel ( ’Time t ( hours ) ’ )
134 ylabel ( ’ Radius (\mum) ’ )
135 t i t l e ( ’A=8 ’ )

Used for figure 7.1 on page 84.
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1 %parameter s e t t i n g
2 N0=10;
3 K=100;
4 alpha =2;
5 r=log ( 2 ) / 1 2 ;
6 lambda =0.002;
7 c i n f =0;
8 c0 =0.1 ;
9 gamma=0;

10 nu =0.02;
11 h=1; %s t e p s i z e f o r the e u l e r method
12 P0=9; %i n i t i a l number o f p r o l i f e r a t i n g c e l l s
13 Q0=1; %i n i t i a l number o f qu i e s c en t c e l l s
14 kPQ=0.005; %ra t e at which p r o l i f e r a t i n g c e l l s become qu i e s c en t
15 kQP=0.001; %ra t e at which qu i e s c en t c e l l s become p r o l i f e r a t i n g
16 t2 =0:h : 6 0 0 ;
17 curve=zeros (3 , length ( t2 ) ) ;
18 curve (1 ,1)=P0 ;
19 curve (2 ,1)=Q0 ;
20 curve (3 ,1)= c0 ;
21 curve (4 ,1)=P0+Q0 ;
22

23 %number o f p r o l i f e r a t i n g , qu i e s c en t and a l l c e l l s t oge the r ; forward e u l e r
24 %method i s used
25 for i =1: length ( t2 )−1
26 curve (1 , i +1)=curve (1 , i )+h∗( r / alpha ∗ curve (1 , i )∗(1−(( curve (1 , i ) + . . .
27 curve (2 , i ) )/K)ˆ alpha)−nu∗ curve (3 , i )∗ curve (1 , i )−kPQ∗ curve (1 , i ) + . . .
28 kQP∗ curve (2 , i ) ) ;
29 curve (2 , i +1)=curve (2 , i )+h∗(kPQ∗ curve (1 , i )−kQP∗ curve (2 , i ) ) ;
30 curve (3 , i +1)=curve (3 , i )+h∗( c i n f−lambda∗NC(h , l ,2)−gamma∗NC(h , l , 2 )∗NC(h , l , 1 ) ) ;
31 curve (4 , i +1)=curve (1 , i +1)+curve (2 , i +1);
32 end
33

34 f=f igure ;
35 plot ( t2 , curve ( 4 , : ) , ’ k ’ )
36 hold on
37 plot ( t2 , curve ( 1 , : ) , ’ r ’ )
38 plot ( t2 , curve ( 2 , : ) , ’ b ’ )
39 xlabel ( ’ time t ( hours ) ’ )
40 ylabel ( ’ number o f tumor c e l l s ’ )
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