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Abstract 

To model dynamic expression patterns in somitogenesis we developed a Java-application for 

simulating gene regulatory networks in many cells in parallel and visualising the results using 

the Java3D API, thus simulating the collective behaviour of many thousand cells. According 

to the ‘clock-and-wave-front’ model mesodermal segmentation of vertebrate embryos is 

regulated by a ‘segmentation clock’, which oscillates with a period of about 2 hours in mice, 

and a ‘wave front’ moving back with the growing caudal end of the presomitic mesoderm. 

The clock is realised through cycling expression of genes such as Hes1 and Hes7, whose 

gene products repress the transcription of their encoding genes in a negative feedback loop. 

By coupling the decay of the Hes1 mRNA to a gradient with the same features and 

mechanism of formation as the mesodermal Fgf8 gradient we can simulate typical features of 

the dynamic expression pattern of Hes1 in the presomitic mesoderm. Furthermore, our 

program is able to synchronise Hes1 oscillations in thousands of cells through simulated 

Delta-Notch signalling interactions. 

Keywords: Somitogenesis, object oriented modelling, Hes1, Fgf8 gradient, Delta-

Notch signalling 
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1. Introduction 

The segmentation of the adult vertebrate body is evident for example in the reiterated 

structures of the vertebrate axial skeleton, spinal nervous system and body muscles. 

It is established in embryogenesis after gastrulation when at the rostral end of the 

presomitic mesoderm (PSM) on both sides of the neural tube segments termed 

somites separate from the PSM. In these somites the outer cells change their tissue 

type from mesodermal to epithelial. Later the somitic cells change their adhesive and 

migratory properties, and finally contribute to the adult structures mentioned above. 

Somites are generated successively, one pair after the other, from the PSM. Waves 

of gene expression starting at the posterior tip of the PSM and running in anterior 

direction are leading to the formation of one somite at the anterior end of the PSM at 

both sides of the neural tube for each upcoming 'wave' (Dale and Pourquie, 2000; 

Saga and Takeda, 2001). 

The first of this ‘cycling genes´ was discovered in the development of the chick. It 

was shown  (Palmeirim et al., 1997)  by in situ hybridisation that the Hairy1 gene 

shows a periodically repeating expression pattern. It starts with a strong expression 

at the caudal end, extends then rostrally, while weakening at the tail, and finally 

contracts into a narrow stripe. This anterior stripe of expression marks the region 

where the next somite will form. Interestingly, experimental manipulation in chick 

showed that this ‘wave’ of gene expression could not even be stopped by cutting out 

a wedge of the middle PSM (Palmeirim et al., 1997), which gives rise to the question 

how the ‘wave’ can bridge this gap in mesodermal tissue. This experiment argues 

against a mechanism based on the diffusion of signalling molecules. A similar 

expression pattern for the orthologous gene Hes1 was found in mice (Jouve et al., 

2000). Later, it was discovered that Hes1 is not only expressed in the PSM but in 

many other tissues as well. Another member of the Hes-family of bHLH-proteins, 
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Hes7, was identified  (Bessho et al., 2001a; Bessho et al., 2001b). It is restricted to 

the PSM and the corresponding mRNA displays a similar expression pattern as 

Hes1. However, only Hes1 could be studied in cell culture. Cultured fibroblast cells 

were induced to express the gene in an oscillatory manner (Hirata et al., 2002). It 

was shown that Hes1 represses its own transcription by binding as homo-dimers to 

three so-called N-boxes in its promoter (Takebayashi et al., 1994). The half-life times 

of the Hes1 mRNA and protein were measured. These data allowed a differential 

equation model to be built for mRNA, protein and a postulated factor, termed Z, 

which exhibited oscillatory behaviour with the expected period of roughly two hours 

(Hirata et al., 2002). 

Later, Monk could describe these oscillations without the Z-factor by using delay 

differential equations (Monk, 2003). The same was accomplished in the zebrafish 

system for the her1 and her7 genes (Lewis, 2003). Lower bounds for the delays were 

estimated from the length of the genes and proteins by using the known 

polymerisation rates of RNA-polymerase II and ribosome, respectively (Lewis, 2003). 

This model was also used to describe the Hes7 oscillations in mouse and its 

abolishment observed in mouse embryos expressing mutant Hes7 protein with a 

longer half-life (Hirata et al., 2004).   

It is now generally believed that the cycling genes represent the clock part of the 

‘clock and wave-front’-model formulated by (Cooke and Zeeman, 1976). The ‘wave-

front’, which moves backward with the caudal end and determines where new 

somites are formed in the PSM, could possibly be explained by the Fgf8 gradient 

discovered recently in the PSM of mice (Dubrulle and Pourquie, 2004a; Dubrulle and 

Pourquie, 2004b). This gradient is not generated by diffusion, but by the constant 

growth of the PSM and the continuous transcription of Fgf8 in the growing tail-bud, 

while transcription ceases in the rest of the PSM. The Fgf8 mRNA decays with a 
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comparatively long half-life of the order of hours (Dubrulle and Pourquie, 2004a). It is 

translated into protein in the entire PSM – not only the growth zone - leading to a 

graded distribution of mRNA and protein along the rostro-caudal axis of the PSM. 

Here we present a computer model to explain the dynamic gene expression patterns 

in somitogenesis and the collective behaviour of many cells. The model is cell based 

with a gene regulatory network inside each cell described by differential equations. 

The cells can proliferate and display the concentration of a user-selected mRNA or 

protein by the intensity of their colouration. As a first step we try to understand the 

dynamics of Hes1 expression in the tail-bud phase when a group of stem cells 

provides for a roughly constant length of the PSM while new somites separate from 

the anterior end of the PSM (Brown et al., 2006; Dale and Pourquie, 2000; 

Deschamps and van Nes, 2005). When we incorporated the Fgf8 gradient described 

above in our computer model of the growing PSM and coupled the gradient linearly 

to various models of the Hes1 oscillator in each cell, we observed the characteristic 

‘wave’ progressing from posterior to anterior PSM, narrowing while moving forward, 

and coming to a stop finally. This process repeats itself as long as the PSM is 

growing, forming the characteristic stripe pattern for the Hes1 mRNA expression.  

The cycling genes are mostly part or effectors of the Delta-Notch signalling pathway. 

Disturbing this pathway leads to a disruption of somitogenesis (Hrabe de Angelis et 

al., 1997), probably because the direct cell to cell signalling synchronises the 

oscillations in neighbouring cells and stabilises the expression patterns against 

fluctuations (Jiang et al., 2000). Therefore, as a next step, we gave our virtual cells 

the ability to recognise nearest neighbours and synchronise their oscillations by 

Delta-Notch signalling. 
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2. Methods 

To simulate the dynamics of the mRNA expression during somitogenesis we 

developed a program written in the Java language using the Java3D API. 

As somitogenesis is a dynamic phenomenon which involves cell proliferation, waves 

of gene expression, cell polarisation, etc., a data structure was needed to model this 

collective behaviour of many cells. In addition, visualisation of cell behaviour and 

gene expression had to be integrated. Therefore object oriented modelling was 

employed: A cell is described as an instance of a Java object with methods for cell 

division, cell death, propagating in time the concentration variables of the gene 

regulatory network inside the cell, and displaying concentration of protein or mRNA 

as intensity of colouration of each cell (virtual in situ staining). To shorten rendering 

time each cell is displayed as a sphere or symmetrical polyhedron. Furthermore, the 

simulated cells are able to recognise their nearest neighbours. Internal variables 

describing Delta-Notch pairs are created accordingly and integrated into the reaction 

network. Cell division and death are modelled phenomenologically, i.e. purely 

descriptive, and provide the ‘boundary conditions’ for processes that are simulated by 

more detailed models (e.g. reaction networks). For example, cell proliferation is 

modelled by a process which creates a copy of the ‘mother cell’ furnished with the 

equivalent variables for the gene regulatory network. The ‘daughter cell ‘‘grows’ out 

of the ‘mother cell’ along a fixed direction. This growth stops when both cells are 

separated. The ‘daughter cell’ then develops as an autonomous unit. 

Of course, it is currently not possible to describe all the thousands of polymerisation 

reactions (for the generation of the mRNA and its translation into protein) and the 

numerous processing steps of the mRNAs in detail. To simulate the biochemical 

reactions we employed a kinetic equation framework with differential equations for 

the temporal development of the variables describing mRNA and protein 
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concentrations, respectively. The equations contain terms for production and decay 

of the respective molecular species. Each term is either linear (decay of mRNA and 

protein in the cytoplasm) or of Michaelis-Menten or Hill-type form (Murray, 2002), 

respectively (for the regulation of mRNA production and saturated decay of protein in 

the nucleus). However, especially for the negative feedback gene oscillators, like 

Hes1/7, a simplification to a two differential equation system – one for the mRNA 

expression and one for the associated protein production – is not sufficient to model 

the oscillatory behaviour (Lewis, 2003). Either time delays have to be introduced into 

the arguments of the above mentioned differential equation system or a Goodwin 

equation system (Goodwin, 1965) is used, in which the delays are implemented by 

explicit consideration of intermediate steps, each described by an extra variable. For 

instance, proteins in the nucleus and cytoplasm are denoted by separate variables 

and transport from cytoplasm to nucleus is modelled as a chemical reaction changing 

one protein into the other. While the delay differential equations were solved 

numerically with the simple Euler-algorithm, for the other models the more precise 

fourth order Runge-Kutta-algorithm (Koonin, 1986) was employed. 

The presomitic mesoderm was modelled as a block of spherical cells growing at the 

posterior end with a one cell layer thick growth zone. The growth direction is fixed 

along the rostral to caudal axis toward the caudal end. As our cells are 

incompressible spheres which cannot move, and can only proliferate when there is 

free space along the growth direction, only the cells at the caudal end of the block 

can grow. Each cell of the growth zone produces a daughter cell in the rostral 

direction after 9 minutes.  

Inside each cell the components of the gene regulatory network are represented as 

follows: For the description of the Hes1 oscillator we will show only a transport model 

which considers transport between cytoplasm and nucleus (and different decay 
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modes in each compartment) for the protein while describing Hes1 mRNA production 

and its decay by only one equation. A model, which considers both compartments for 

Hes1 mRNA also, does not give qualitatively different results, but introduces 

additional unknown constants. For the aforementioned model we could achieve an 

oscillation period of 120 minutes using the measured decay rates of Hes1 mRNA  

and protein and the negative feedback mechanism shown in (Hirata et al., 2002). 

The following figure shows a scheme of our model of the gene regulatory network:  

 

Figure 1 

 

 The differential equation system for our model of the Hes1-‘clock’ reads as follows: 
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The amount of the Hes1 mRNA and protein at a given time point t  are denoted by 

)(tm  and )(tP  for cytoplasmic and )(tp  for nuclear protein, respectively. The 

parameter 0.1=k  denotes the basal transcription rate in the absence of inhibitory 

proteins, and 6.0=B  is the rate constant of translation. The cytoplasmic protein and 

mRNA decay rates are given by 031.0=C  and 028.0=D , respectively, while 

16.0=A  is the coefficient for the transport of protein from cytoplasm to nucleus and 

001.0=a  allows for a small outward flux. The saturated decay of the Hes1 protein 

inside the nucleus is characterised by 2.0=F  and 96.0=G . 
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and describes the negative feedback of the Hes1 protein on the Hes1 mRNA. We 

have chosen Hill-coefficient 3=h , i.e. strong cooperativity between the Hes1 dimers 

(S. Zeiser, J. Müller, V. Liebscher, to be published), and Hill-constant 1=H .0.  

The gradient is given by two equations for Fgf8 mRNA and protein. We do not 

distinguish between nucleus and cytoplasm here because of the long decay time of 

the mRNA (Dubrulle and Pourquie, 2004a) which implies that the dynamics of Fgf8 is 

comparatively slow. 

( )

),()(
)(

)()(
)(

88
8

88
8

tpctmb
dt
tdp

tmatpfK
dt

tdm

FgfFgf
Fgf

FgfFgfhgrowth
Fgf

⋅−⋅=

⋅−⋅=

 (3) 

Fgf8 protein and mRNA decay rates are given by 03.0=c  and 006.0=a , 

respectively, which are inversely proportional to the respective protein and mRNA 

half-lives pτ  and mτ : pc τ/2ln= , ma τ/2ln= . For the Fgf8 mRNA half-life we adopt a 

value circa 2 hours, as in (Dubrulle and Pourquie, 2004a) it was only estimated to be 

several hours. For lack of data we assumed a half-life of 20 minutes for the Fgf8 

protein. The other constants were chosen so that a constant Fgf8 protein 

concentration was obtained in the growth zone, where Fgf8 mRNA expression is 

active. So for cells in the growth zone the program sets 702.54=growthK . When a cell 

is not part of the growth zone any more, growthK  is set to zero. The mRNA then simply 

decays exponentially. As we do not know by which processes Fgf8 itself is regulated, 

we held the concentrations of mRNA and protein constant in the growth zone by 

employing a simple negative feedback loop with a Hill-coefficient of 2 and a Hill-

constant of 1. For Fgf8 the translation rate is set to 3.0=b . 

The Hes1 oscillator and the Fgf8 gradient are coupled by multiplying the Hes1 mRNA 

decay term D  with the concentration of Fgf8 protein – normalised to 1 in the growth 
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zone - still remaining in the respective cell of the PSM. The normalisation ensures  

that the Fgf8 mRNA and protein concentration in the growth zone can be chosen 

arbitrarily as long as we do not know more about the nature of the coupling of the 

gradient to the Hes1 mRNA decay. 

 

3. Results  

 

3.1 Wave-like Gene Expression Patterns 

 

With our program we simulated several models for the time course of Hes1 

expression in the growing PSM in the tail-bud phase, each differing in the choice of 

kinetic equations describing the Hes1 oscillations in one cell:  

We began with the original model devised by (Hirata et al., 2002) which has the 

disadvantage that an unknown factor termed Z had to be introduced to get a delay 

causing the oscillations. When (Monk, 2003) and (Lewis, 2003) formulated the 

oscillator model with only two delay differential equations for mRNA and protein we 

incorporated this model in our program also. However, delay differential equations 

pose mathematical difficulties. So we developed a two compartment (nucleus and 

cytoplasm) transport model in two variants instead. The first (model 1) regards two 

compartments only for the Hes1 protein while the second (model 2) also describes in 

addition the transport of the Hes1 mRNA from nucleus to cytoplasm. 

Using the measured decay rates for the Hes1 protein, Hes1 mRNA (Hirata et al., 

2002) , and Fgf8 mRNA (Dubrulle and Pourquie, 2004a) we were able to reproduce 

the dynamic pattern of an expression wave moving from the caudal to the rostral end 

of the PSM. Similar to Hes1 expression in mouse embryos the progressing wave 

narrowed and finally came to a stop at the anterior end of the PSM. (However, it can 
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take several oscillation cycles, until a stripe settles in its final position, as small 

movements of the stripe of one or two cell diameters can happen occasionally after 

the stripe halted for the first time.) Fig 2 shows three stages of an oscillation cycle in 

situ and for our model 1, which we will discuss in more detail in the following. The 

other models show qualitatively similar expression patterns, except that the width, 

intensity and stability of the resulting stripe pattern were different (supplementary 

information).  

 

Figure 2 

 

One should emphasise that in our model the expression wave is only an apparent 

wave, which appears to an observer because the oscillations in an individual cell 

slow down ever more as the growth zone moves away from it. This is shown in Fig. 3 

for two cells: one which ends up with a high final mRNA concentration i.e. will form 

part of a stripe in the pattern, the other with a lower final concentration value in an 

inter-stripe region. Both cells are born at different times and therefore enter the 

gradient while being in different phases of their oscillations. However, in Fig. 3 both 

curves start at time zero because the time on the abscissa is the life time of each cell. 

The concentration data were written to file during a simulation run.   

 

Figure 3 

 

The Hes1 protein decay is effected by ubiquitination and processing in the 

proteasomes (Hirata et al., 2002), which are located in the cytoplasma as well as in 

the nucleus (Rivett, 1998) (Muratani and Tansey, 2003). Describing Hes1 decay 

assuming different kinetic equations in nucleus and cytoplasm which allow for a 
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possible saturation of the proteasome machinery in the cell nucleus while 

disregarding this possibility in the cytoplasm, one gets a stable stripe expression 

pattern rostrally to the wave zone (movie1). If, however, one assumes a linear 

concentration dependence of protein decay everywhere, the stripe pattern is unstable 

in the sense that the low expression regions fill up slowly (data not shown). The same 

happens in the case of Lewis’ oscillator model for zebrafish (Lewis, 2003) (movie5) 

and the model formulated for Hes7 (Monk, 2003) (Hirata et al., 2004). If one uses the 

old model of  (Hirata et al., 2002), coupling the Fgf8 gradient to the decay of the 

Hes1 mRNA and the decay of the Z-factor, a stable stripe pattern forms, but the 

expression stripes are narrower than in the model proposed here (movie4). 

The results for our model 1 are rather insensitive to a variation of the Fgf8 mRNA 

half-life. A doubling of the half-life to 4 hours (movie2) or a reduction to 30 minutes 

(movie3) resulted in a stripe pattern with almost the same spacing between stripes. 

However, cells oscillate 6 times or 1.5 times, respectively, before reaching a 

stationary state. The ‘wave zone’ of the PSM is lengthened or shortened accordingly, 

although not proportionally (data not shown). 

Also varying the Hill-coefficient for the cellular oscillators in the range between 3.0 

and 2.0 (3.0, 2.7, 2.4, 2.0) does not the change the behaviour described above. Here 

a Hill-coefficient of 2.4 describes the binding of three very weakly interacting Hes1 

dimers to the 3 N-boxes, while a value of 2 is appropriate in the case of one dimer 

regulating its corresponding gene (S.Zeiser, J.Müller, V.Liebscher, to be published). 

As the only effects of a reduction of the Hill-coefficient we found a reduction of the 

maximal Hes1 mRNA concentration of about 20% and a diminished difference in 

expression between stripe- and  inter-stripe cells (data not shown). 

If we assume the same saturation bound for the Hes1 protein decay, which is 

determined by the constant in the numerator of the decay term, in the cytoplasm as 
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in the nucleus, it affects the model only slightly as long as we assure by the choice of 

the constant in the denominator that saturation is achieved only in the limit of high 

concentrations. Taking over the saturation term in the nucleus for the cytoplasmic 

decay rate without adjusting the denominator results in a breakdown of the model  

(data not shown). 

 

3.2 Comparison to Biological Experiments 

 

Although our model of oscillatory gene expression in the PSM is a broad 

simplification compared to biological reality it shows some interesting dynamics. An 

important advantage to other models is the fact that it depends only on short-range 

signalling and both the ‘clock’ as well as the gradient are formulated as cell-

autonomous processes. With this assumption our model can explain experimental 

findings. For example, (Palmeirim et al., 1997) observed ongoing c-hairy1 oscillation 

in chick embryos after ablation of parts of the PSM. Later, it was reported that 

dissection of the PSM in several pieces did not destroy the expression wave (Maroto 

et al., 2005). We need no simulations for this, because this behaviour follows as a 

consequence directly from the formulation of the model. 

Furthermore, our model explains the independence of embryonic patterning from cell 

number. Due to enhanced apoptosis the Aif mutant mouse embryo consists of only 

one tenth of cell numbers of a wild-type embryo at the same developmental stage. 

Interestingly, both embryos display the same number of somites (Brown et al., 2006). 

If we halve in our model the growth rate along the PSM and reduce the thickness in 

the transverse direction accordingly without changing other parameters the distance 

between expression stripes, measured in cell numbers, halves too (Fig. 2c). The 
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resulting ‘mutant’ PSM consists of one eighth of the cell number of the original PSM, 

which corresponds to the reduction in cell number observed in the Aif mutant. 

Another test of the model consists of a simulated overexpression of Fgf8 which is 

equivalent to changing the coupling of the Fgf8 gradient to the Hes1 mRNA decay. A 

fivefold overexpression results in a pattern with very narrow and densely spaced 

stripes (movie6). 

 

3.3. Delta-Notch Coupling Synchronisation of PSM Cell Oscillations 

 

Our above described model assumes that the division of cells does not affect the 

oscillator phase, which is of course not realistic. It also disregards the possibility of 

fluctuations in gene expression, which would destroy the phase coherence between 

the cellular oscillators (Jiang et al., 2000). Recently, Masamizu et al. provided 

experimental evidence for cell-cell communication in the PSM as prerequisite for the 

synchronisation of the Hes1 oscillator (Masamizu et al., 2006). In zebrafish, 

(Horikawa et al., 2006) were able to demonstrate that Notch-dependent intercellular 

communication can facilitate synchronised oscillations. So our aim is to develop a 

more realistic model in which the newborn cells start with a random phase. Delta-

Notch-signalling would then synchronise all the oscillating cells in the PSM. Our cell 

model has methods to recognise nearest neighbours and to create automatically 

variables for Delta-Notch pairs between neighbouring cells, which are then integrated 

into the gene regulatory network of each cell. As a first test we generalised Lewis’ 

Delta-Notch synchronised 2-cell model for her1/7 oscillations in zebrafish (Lewis, 

2003) to a multi-cellular system (Fig. 4). We used the formulas and default 

parameters given by Lewis in supplement no.4 to his article. The only differences 

compared to his model are that we averaged over the Delta-input of the nearest 
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neighbours to reduce boundary effects and the way we desynchronise the cells when 

Delta-Notch signalling is not active. Lewis altered the oscillation periods of his cells 

by diminishing or enhancing the default parameters of the cells by five percent. 

In contrast, we do not change the parameters of each cell, but start them with 

different phases. This is effected by giving each cell (pre-) histories for the her1/7 

protein and mRNA. The (pre-) histories are used when at the start of the simulation 

the program has to use variables in the delay differential equations where their time-

shifted argument would be earlier than the start point of the simulation. Instead of 

setting these variables to zero like Lewis did, we cut out a time course from the 

second half of a pre-recorded oscillation run of one single cell. Its starting point is 

chosen randomly and its length corresponds to the longest delay in the delay 

differential equations. Of course, this can’t be done for the Delta-delay. There we 

follow Lewis in setting all variables with negative time argument to zero.  

 

Figure 4 

 

 If one scales up the Delta-delay accordingly one can use this model also to 

synchronise Hes7 oscillators in the PSM of mice using the parameters given in 

(Hirata et al., 2004) (data not shown).  

A further (preliminary) result is the following: When the spatial extent of the region 

and the phase difference between oscillators is too large, different patches of cells 

are synchronised to different phases of oscillation. These differently synchronised 

patches can persist side by side for a long time without one taking over the other 

(data not shown). 
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Also, it is interesting to note that a Delta-delay that cannot synchronise the 

oscillations coerces the cellular oscillators into an oscillating ‘salt-and-pepper’-pattern 

(Fig. 5). 

 

Figure 5 

 

However, the description of the gene expression by delay differential equations is 

difficult to reconcile with cell division and proliferation because the delays imply a 

history given for each cell which is certainly different for a newborn and an older cell. 

So a model comprising growth and Delta-Notch coupled oscillators requires further 

work. 

 

4. Discussion 

Of course, our model is vastly simplified compared to biological reality. In the 

following we discuss the various assumptions of the model in more detail and how 

much evidence from experiment there is: 

 

4.1. Assumptions of the Model 

 

To derive these results we had to make the following assumptions:  

First of all, we assumed that in each PSM cell a cell-autonomous clock is realised by 

the Hes1 oscillator, and that the PSM is growing at its caudal end.  

Furthermore, following (Dubrulle and Pourquie, 2004a), we assumed that only cells in 

the caudal growth zone express Fgf8 mRNA. Consequently, a cell-autonomous Fgf8 

mRNA gradient extends from the growth zone, where Fgf8 is transcribed, into the 

‘wave zone’, where Fgf8 transcription is stopped by an as yet unknown process. 
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There, the mRNA, produced while the cell was located in the growth zone, decays 

with a half-life which we assumed to be two hours. This is long compared to the half-

lives of Hes1 mRNA and protein, which have half-lives of approximately 20 min 

(Hirata et al., 2002). So outside the growth zone only the mRNA which still remains in 

each cell is being translated into protein. 

Finally, we supposed as the simplest approximation that the decay of the Hes1 

mRNA is linearly coupled to the products of Fgf8 signalling. This has the 

consequence, that the Hes1 oscillation period is lengthened ever more as the cell 

moves away from the growth zone. We disregard the fact, that the Hes1 mRNA 

decay rate is probably not only influenced by the Fgf8 signalling, but that there exists 

a basal mRNA decay (mechanism) which is responsible for the half-life time of long 

lived mRNAs like Fgf8 itself. 

The Fgf8 gradient could be described only as nearly cell-autonomous because Fgf8 

signalling affects the neighbouring cells. In zebrafish endocytosis controls the 

spreading and effective signalling range of Fgf8 protein, which in this case covers a 

distance of ten to twelve cell diameters in three hours (Scholpp and Brand, 2004). 

However, as we assumed the Fgf8 mRNA gradient to be very shallow, we took the 

Fgf8 protein in each cell as a measure for the amount of Fgf8 signalling between the 

cell and its neighbours. 

Of course, the linear coupling of the Fgf8 protein to the Hes1 mRNA decay term 

hides all intermediate steps of Fgf8 signalling in this simplest possible ‘effective 

model’. (Here we use the term ‘effective model’ in a way it is used in physics. One 

assumes that the slow degrees of freedom i.e. the one with a dynamics which is 

comparable to the oscillation period determine the dynamics, whereas the ‘fast 

degrees of freedom’ are “integrated out” and are hidden in the ‘effective constants’.) 

 



 17 

The growth zone of our model is only one cell layer thick, because our ‘cells’ cannot 

move and grow only in the antero-caudal direction if there is free space for the 

dividing cells (Fig. 2b). In our model each proliferation cycle lasts 9 minutes. This is 

certainly a too short generation time, but as the thin growth zone of the model has to 

stand in for a growth zone which is larger in vivo (Brown et al., 2006), the generation 

time in our model has to be much shorter than the real one. It follows that our model 

comprises mainly the ‘wave’ zone of the PSM. 

In its present formulation our model comprises only time dependent processes in 

each cell. As long as one disregards the spreading of the Fgf8 signal, the only 

process which determines a spatial scale is the growth rate of the PSM. This 

consideration may explain the scale invariance of the stripe pattern with respect to 

varying growth rates, which we mentioned in connection with the Aif mutant (Brown 

et al., 2006). 

 

4.2. Biological Evidence Supporting our Model 

 

It is now generally agreed that the cycling genes Hes1, Hes7 and Lfng form an 

important part of the ‘somitogenesis clock’, possibly with a Hes7 oscillator working in 

parallel with others like a lunatic fringe - Notch1 - oscillator (Bessho and Kageyama, 

2003; Bessho et al., 2003). Here we concentrate on Hes1 because in this case we 

have the most information to build our model on and Hes7 seems to work in a very 

similar way. The role of other cycling genes like Hes5  and Hey3 (Kusumi et al., 

2004) or Axin2 (Aulehla and Herrmann, 2004; Aulehla et al., 2003) or Nkd1 (Ishikawa 

et al., 2004) is less clear. 

There are also various candidates for the gradient of the ‘clock-and-gradient’ model: 

Either Fgf8 (9, 10) or Wnt3a (15, 16) or Cdx2 (Chawengsaksophak et al., 2004)  or 
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Tbx6 (White and Chapman, 2005) - all emanating from the growing tail-bud. Their 

decay is, however, not exponentially right to the end. Retinoic acid, originating in the 

last formed somite, cuts off the tail of the Fgf8 distribution in the anterior part of the 

non-segmented PSM. This is not (yet) included in our model. 

Although our model is not specific in its choice of Fgf8 for a ‘cell –autonomous’ 

gradient coupled to the mRNA decay of Hes1, as long as the half-life time of the 

mRNA forming the gradient is of the order of hours, the following facts are 

suggestive: 

It was found (Delfini et al., 2005)  that in the chick “the Fgf8 gradient is translated into 

graded activation of the extracellular signal-regulated kinase (ERK) mitogen-activated 

protein kinase (MAPK) pathway along the PSM”. The MAPK pathway, but also other 

pathways like Wnt (Briata et al., 2003), is known to influence mRNA stability by 

controlling mRNA binding proteins (Baudouin-Legros et al., 2005; Schmidlin et al., 

2004). Furthermore, in many cases mRNA stability can be influenced by binding of 

proteins to the 3’UTR of an mRNA (Wilusz and Wilusz, 2004). In somitogenesis it 

was discovered that the unusual short half-life of the lunatic fringe mRNA, which 

shows a similar expression pattern like Hes7, depends on the presence of regulatory 

elements in its 3’ UTR, while the much shorter 3’UTR of Fgf8 mRNA seems to be 

lacking this elements and has a much longer half-life (Hilgers et al., 2005). In 

Xenopus it was observed (Gautier-Courteille et al., 2004) that the EDEN-BP RNA-

binding protein controls the stability of XSu(H) mRNA by binding to its 3’UTR and 

thereby triggering its deadenylation i.e. poly(A) tail shortening. The XSu(H) protein 

plays a central role in Notch signalling. See also the discussion in the reference 

mentioned above regarding other cycling genes and human and murine equivalents 

of EDEN-BP. Finally, (Davis et al., 2001) examined the control elements driving the 

segmental expression of Xhairy2 in Xenopus PSM. Its 3’UTR was important for 
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retaining the striped expression pattern. The Xhairy2 3’UTR could be replaced by the 

corresponding Hes1 3’UTR without changing the expression. 

Moreover, the Hairy2a 3’UTR confers instability on a heterologous RNA. 

Of course, all the circumstantial evidence given above constitutes only clues that 

maybe our model captures a grain of truth, but certainly constitutes no proof. 

 

4.3. Limitations of the Model 

 

At present our model gives only a qualitative correct description of Hes1 expression: 

As mentioned above, the stripe pattern stabilises only asymptotically in time. This is 

probably a consequence of the fact that the gradient is exponential right to the end of 

the PSM, which is certainly not realistic. In vivo a retinoic acid gradient emanating 

from the formed somites antagonises the Fgf8 gradient (Dubrulle and Pourquie, 

2004b) and so probably provides a cut-off. Also, the neglect of other mRNA decay 

processes for the Hes1 mRNA is responsible for the fact, that the stripe pattern 

persists indefinitely, which is unrealistic, but irrelevant, because certainly other 

processes come into play after an expression stripe is formed. 

Looking at the Hes1 expression pattern one observes that the anterior and posterior 

stripe boundaries are not equally sharp defined. In fact, it is hard to decide where one 

should draw the posterior boundary of expression for a stripe. If one compares this 

with the old Hirata-model (Hirata et al., 2002) which generates a narrower, more 

sharply defined expression stripe, but shows similar dynamics, one could surmise 

that the description of the Hes1 oscillator on the cellular and molecular level 

influences the form of the resulting expression pattern. So probably a more realistic 

description of the cellular processes affecting mRNAs and proteins is called for. 
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To get a better correspondence between model and reality one should achieve also a 

more realistic description of the growth zone. There Fgf8 expression should extent 

over a larger region of the PSM, new cells should be born in different places, begin 

their oscillations, and get synchronised by Delta-Notch signalling, before they pass 

the border to the ‘wave-zone’ where Fgf8 expression is shut down. Also a more 

detailed modelling of Fgf8 signalling would be desirable. 

 

4.4. Concluding Remarks 

 

Summarising, we propose that the Hes1 gene expression ‘wave’ observed in the 

PSM is a consequence of the fact that the Hes1 oscillator in each cell slows down 

ever more as it is moving away from the growing tail-bud. This slow-down results 

from a corresponding decrease of the Hes1 mRNA decay rate controlled by a signal 

transduction pathway which is activated by a gradient of the sort proposed in 

(Dubrulle and Pourquie, 2004a). 

A similar cell based model was proposed by Jaeger and Goodwin (Jaeger and 

Goodwin, 2001). However, although they simulated a growing piece of PSM also with 

object oriented methods (using C++), their cells contained no gene regulatory 

network. Instead each cell featured a simple sine function whose period slowed down 

exponentially with the ‘age’ of each cell.  

At the moment quantitative data for modelling somitogenesis are very sparse, but we 

think our model is flexible enough to incorporate future knowledge about the 

processes that could be modelled only in a coarse way in this work. Also, although 

the details of the real gene regulatory network may differ from our simplified model, 

we think that the mechanism to generate an expression wave like the one for Hes1 is 

interesting enough to merit further investigation. 
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Figure Legends 

 

Figure 1: Reaction scheme showing our proposed model gene regulatory network 

including Hes1 and Fgf8, the corresponding mRNAs, and proteins. The decay of a 

molecule is symbolised by an arrow leading to the symbol Ø. The broken arrow 

indicates the acceleration of the Hes1 mRNA decay by the local Fgf8 signalling. The 

transport of the Hes1 protein is modelled as a reaction converting Hes1 protein 

cytoplasm to Hes1 protein nucleus. In the nucleus we assumed a saturated protein 

decay while we disregarded this possibility in the cytoplasm.   
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Figure 2: Picture of in situ hybridisation of Hes1 mRNA in the murine presomitic 

mesoderm (PSM) at day E10.5 (a), snapshots of the simulation of the growing PSM 

with the concentration of Hes1 mRNA indicated by colour intensity (b), and a 

simulation with the growth rate of the PSM halved (c). 

 

Figure 3: Plot of the oscillations of Hes1 mRNA concentration for a cell which ends 

up in stripe and for a cell in an inter-stripe region.   

 

Figure 4: Synchronisation of her1 oscillators in a sheet of cell by Delta-Notch-

signalling shown at three consecutive time points (B to D) after a random start (A). 

We use the default parameters given in Lewis (2003) supplement no. 4. Here a time 

delay for the delta protein of 20 minutes was chosen. 

 

Figure 5: Failure of synchronisation of her1 oscillators due to badly chosen Delta-

delay producing an oscillating salt-and-pepper pattern. Again we use the default 

parameter set given in Lewis (2003) supplement no. 4. The only change is a doubled 

time delay for the delta protein. 
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                             Simulation-Program Mini-Manual 
 
System Requirements 

Our program uses 500 MB RAM for the Java application, so at least 1 GB RAM are recommended. If one 

uses an Intel CPU with a clock rate of less than 2GHz, one should reduce the default number of cell rows to 

be displayed. Otherwise the simulation would probably run too slowly. 

We recommend jre1.5 (the java version must be at least 1.5) and java3D 1.3.1 to run the application. For 

linux and windows users a Java runtime environment including java3D is supplied with the installation 

directory. 

 
Installation and Starting the Program  
One can either use the packed sim.zip file taken from the supplementary materials section of our article or 

download it or other, “ready made” versions, which come with the Java3D version and the jre in one 

package. By typing in your browser the URL 

http://www.gsf.de/ieg/services/simulation07/sim4win.zip 

one can download the "ready made" Windows XP version. 

With 

http://www.gsf.de/ieg/services/simulation07/sim4linux.tar.gz 

one gets the Linux version (also very user friendly), while with 

http://www.gsf.de/ieg/services/simulation07/sim.zip 

or 

http://www.gsf.de/ieg/services/simulation07sim4mac.zip 

one gets the "bare bones" version which take only 8MB. 

 

We supply for Linux systems a zipped tar-file 'sim4linux.tar.gz'. After uncompressing and unpacking the file, 

a local Java runtime environment, Java3D and our program are installed in the directory sim4linux. By 

changing to this directory one must first execute 'configure' ( ./configure [return] or: exec ./configure [return] 

depending on the shell) before starting the simulation, which is done by executing the script ‘simulation’ (both 

files have to be executable, change the mode to executable if they are not).  



A similar zipped file 'sim4mac.zip' is supplied for Macintosh users. The simulation starts by executing the 

script ‘simulation’ (must be executable, change mode if it’s not). Therefore jre1.5 and Java3D version 1.3.1 

(or corresponding versions for Mac) must be installed and at the path to java must be set (unzip the file at a 

location, where you can execute java applications). 

Windows users only have to unzip the file 'sim4win.zip' and execute the .bat file in the resulting directory 

(we tested this for Windows XP). 

 

Starting the Simulation 
The buttons to start and stop the simulation program are on the bar at the top of the graphical user interface:  

Clicking on 'start' starts a simulation of the Hes1 expression wave with all the parameters set as default to 

the values given in the article. However, the user can change these default parameters to explore the 

behaviour of the model (see below for an explanation of the fields on the graphical user interface). 

Information about meaningful choices for these parameters can be found in the supplemental information 

'ParameterRangeAndRobustness'.  

Clicking on 'return' stops the simulation and returns to the input panel.  

The button 'cancel' terminates the simulation program. 

 

If one wants to run a simulation of our version of Lewis (2003) model for D/N-coupled Her1/7 oscillators, one 

has to change in the uppermost menu from 'wave' to 'D/N coupled'.  

As the default value delta/notch coupling is turned off, so after the start one sees  

one hundred non-coupled oscillators. Only after additionally clicking the 'deltanotch coupled' checkbox the 

oscillators are synchronised. 

 

Before starting a multi-cellular simulation one has to start a reference run (by activating 

'create data files') which is written to file to be a source of randomly chosen (pre-)histories for 

the Her1/7 delays (chosen from the second half of this simulation to eliminate the initial over-

shoot).  
For the default parameters this is already supplied, so one can start the simulation right away. For other 

values of the parameters one should do this, but if not, one supplies the cells with a prehistory generated 

with other parameters. To see the effect of a doubled delay time for delta protein, which results in a 'salt-and-

pepper' pattern, this is not required as the parameters for Her1/7 are not changed. We recommend a value 

of slightly greater than 40 minutes for the delta protein.       
 
 
 
Usage of the Graphical User Interface 

 
Selecting the PSM model or Lewis' model for Delta/Notch coupled 



oscillators 
The pull-down menu on top gives the user the choice between our model(s) of Hes1 

expression in the PSM (choose: wave) or our generalisation of Lewis' model for   

coupled her1/7 oscillators (choose: D/N coupled). 

  
Selecting a model 
The second pull-down menu allows the choice between four different models for 

the Hes1 oscillator running in each cell: The old model of Hirata et al. (choose 'Hirata'), a delay model similar 

to Lewis' and Monk's (choose 'Delay') or two versions of our model: the one published in the article - called 

model1 in the article- (choose 'Saturation3') or a model in which the transport of the mRNA between nucleus 

and cytoplasm is modelled with an additional transport equation - called model2 in the article - (choose 

'Saturation4').   
 
Choice of model parameters and visualisation 
Depending on the choice of the model a panel with the corresponding input fields  

for the starting values of the oscillators and the parameters of the corresponding 

differential equations opens. The default values of the model can be changed by the 

user. On the right, there are pull-down menus for choosing whether the cell colour intensity in the simulation 

should indicate protein or mRNA concentration, which colour should be set, and what scale should be used 

for the concentration, because colour intensity is from zero to one.  

 
Coupling the gradient to the clock  
Below the panel with the input parameters is a field with three click-boxes where 

one can choose whether the FGF8 gradient should be coupled to the Hes1 mRNA 

decay, the protein decay, or the Hes1 transcription.  

If one activates a choice, a panel opens with input fields for the gradient parameters, like initial values, 

parameters of the differential equations, a coupling factor which allows the user to simulate Fgf8 over-

expression, and visual parameters for displaying the gradient. If one wants to change the Fgf8 mRNA decay 

rate to get a longer half life for the mRNA, as shown in one of our movies, one should change the initial value 

for the mRNA accordingly, i.e. scale it with the inverse of the factor one used for the mRNA decay constant. 

Otherwise with the default initial values one gets an overshoot which would show in curious patterns in the 

simulation. 

 
Writing information about a cell to file 
In the field named 'plot data for cells'  the user can put in the cell identity numbers of cells in the simulation 

one is especially interested in. The cell, whose data is to be plotted, is saved to the program by pressing 

return (important!) after inserting its identity number (repeat the operation if there are more cells you are 

interested in). The cell can be removed from the list by deleting its identity number in the text field and 



pressing again return. All time course information about concentrations of the species in the gene regulatory 

network of the cell are written to file(s) in the folder 'NETMOD_DATA' or  ‘SYNCMOD_DATA’ (in case of 

Lewis’ model) and can be displayed with, for example, gnuplot. The first line of the data file specifies which 

species the respective columns contain. The files contain in their name the identity number of the cell. 

One gets the cell identity number of a cell by clicking on it with the mouse pointer during a simulation run. 

The identity numbers of the neighbouring cells are also displayed.   
 

Choosing time integration variables 
In the field 'time step', the user can determine the time increment in minutes for the Runge-Kutta-integration 

(fourth order), also the duration of the simulation run measured in time steps ('total number of time steps') 

and the number of time steps after which a new image displaying concentration of the chosen mRNA or 

protein is rendered ('number of time steps between renderings’). 

 
Choosing a Geometry  
By using the option 'orthogonal system' one can put in the coordinates of the starting point of the growing 

layer of cells and the orientation of the growth-direction by putting in some values for the angle 'phi' (between 

0 and 360) and 'theta' (between 0 and 180).  

 
Specifying Cell Number and Growth Rate 

By choosing more than one in the field 'multiple rows' one gets a corresponding number of cell layers. The 

field 'number of cells on row' is self-explanatory. The 'initial number of cells' is computed as the product of 

the numbers put in for 'multiple rows' and 'number of the cells on row'. 

The 'number of growth steps' determines the time the cells in the growth zone need to divide. One growth 

step takes 3 min (default). This is equal to the time which has to pass before a new image is rendered. 

'Maximal numbers of cells' determines the limit to growth. 

  

 
 
 

 



                                      How to play the supplementary movies 
 
The movies are in avi-format. We chose this format for our movies because it is widely used and we got the 
best results with our screen capture program.  
Unfortunately, for viewing it with quicktime one needs to download a plugin ( 'perian component' , 
http://perian.org,  however, only available for Apple Mac OS X 10.4x) or to download the 'VLC media player' 
program ( http:// www.videolan.org/vlc ), for example, which is freeware and available for almost all 
platforms.  
 



Dependency of oscillation period on small changes of a parameter 
 
 
 

  

  

  

  



  
          
 
 
 
                 Range of possible parameter selections 
 
A:  Choosing A larger than 0.48, leads to damped oscillations, while with an A smaller than 
0.005 the relative difference between maximal and minimal expression decreases ever more. 
Also the oscillation period gets smaller again, for example T=123 min for A=0.01. 
 
B: Lower bound: at 0.09 the relative difference between maxima and minima of the 
oscillations get pretty small, and at 0.08 the oscillations are strongly damped. 
Upper bound: We did not find an upper bound in the sense that the model breaks down, but 
with increasing B the initial overshoot becomes ever larger followed by an ever longer lag 
time until regular oscillations set in. Then oscillation period depends only weakly on B. 
 
C: The lower bound is exactly zero. Around 0.25 and over the oscillations are damped. 
 
D: We found no lower limit for D and stopped testing at 0.00025. The oscillation period 
simply increases ever more with decreasing D. Choosing values larger than 0.3 leads to 
decreasing relative differences between maxima and minima and fast damping of the 
oscillations.  
 
F: Lower bound: for values lower than circa 0.0185 the oscillation stops. 
Upper bound: at 0.63 the oscillation is slightly damped. The damping gets stronger with 
further increase in F. At F=0.8 the oscillation is strongly damped. 
 
G: With decreasing G damping of the oscillations sets in at around 0.36, while for large 
values of G at 4.0 the relative difference between maxima and minima drops to 20 percent. At 
5.0 the oscillations are strongly damped.  
 
H: Below 0.32 and over 4.0 damping of the oscillations sets in.  
 
h: The plot also gives the range of possible parameter selections. Bigger values of h are not 
meaningful while the oscillations get damped if one chooses h much smaller than 2.0. 
 



k: For k-values smaller than 0.15 the relative difference between maxima and minima drops 
to circa 20 percent.  
We found no upper bound in the sense that the model breaks down, but with k increasing over 
the value of 4.0 (T= 234 min) the initial overshoot becomes ever larger followed by an ever 
longer lag time until regular oscillations set in.  
 
a: Meaningful choices for a range from zero to the value of A, because otherwise one would 
have a net export from the nucleus. As the plot shows the oscillation period is only very 
weakly dependent on a, but if one increases a the contrast between stripe and inter-stripe 
expression diminishes ever more. 
 
 
 
 
 
                
                                 Scaling Formulas 
 
To change the protein or mRNA level of the oscillator without 
changing the period use the following relations: 
 
Scaling of protein levels with factor Z 
 P'= Z P , m'= m 
Corresponding scaling of the parameters:   
A'= A, a'= a, B'= Z B, C'= C, D'= D, k'= k, H'= Z H,  
F'= Z F, G'= Z G   
 
Scaling of mRNA levels with factor Z: 
m'= Y m, P'= P 
Corresponding scaling of the parameters:  
A'= A, a'= a, B'= B/Y, C'= C, D'= D, k'= Y k, H'= H,  
F'= F, G'= G 
 
 
 
 



Delay differential equation system for Lewis’ (2003) 
model of Delta coupled her1/7 oscillators:  
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where we set : 

        ∑
∈

=
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ipN

p
_

1~
,  N is the number of neighbouring cells. 
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     The numerical values chosen for the constants are: 
 

      
1

71 min5.4 −=== deltaherher aaa  

      
1

71 min23.0 −=== deltaherher bbb  

1
71 min23.0 −=== deltaherher ccc  

1
71 min33 −=== deltaherher kkk  

1000,40,40 07010 === deltaherher ppp  
 
With Delta-Notch coupling : 

1,0,0,00 ==== hdhd rrrr  

Without Delta-Notch coupling : 

0,1,0,00 ==== hdhd rrrr  
In both cases : 

0,1,0,00 ==== hdhd ssss  
 

min8.2min,12 11 == phermher TT  

min7.1min,1.7 77 == phermher TT   

min20min,16 == pdeltamdelta TT  
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