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Abstract. Dynamic Contrast Enhance-Magnetic Resonance Imaging
(DCE-MRI) has proved to be a useful tool for diagnosing mass-like breast
cancer. For non-mass-like lesions, however, no methods applied on DCE-
MRI have shown satisfying results so far. The present paper uses the
Independent Component Analysis (ICA) to extract tumor enhancement
curves which are more exact than manually or automatically chosen re-
gions of interest (ROIs). By analysing the different tissue types contained
in the voxels of the MR image, we can filter out noise and define lesion re-
lated enhancement curves. These curves allow a better classification than
ROI or segmentation methods. This is illustrated by extracting features
from MRI cases and determining the malignancy or benignity by support
vector machines (SVMs). Next to this classification by kinetic analysis,
ICA is also used to segment tumorous regions. Unlike in standard seg-
mentation methods, we do not regard voxels as a whole but instead focus
our analysis on the actual tissue types, and filter out noise. Combining
all these achievements we present a complete workflow for classification
of malignant and benign lesions providing helpful support for the fight
against breast cancer.

Keywords: Breast DCE-MRI, Independent component analysis, Breast
lesion segmentation

1 Introduction

To run a chance of surviving breast cancer it is uttermost important to discover
malignant tumors at an early stage. Deaths by breast cancer are highly reduced
by early treatment. In his fundamental publication “Signs In MR-Mammography”
Werner A. Kaiser states: “If we had a diagnostic method that enabled us to de-
tect and remove all breast cancers 5 to 10 mm in size, we could practically
eliminate breast cancer deaths” [12]. Methods able to diagnose even very small
lesions play an important role in the fight against breast cancer. Dynamic Con-
trast Enhanced-Magnetic Resonance Imaging (DCE-MRI) is a very useful tool
? Corresponding author.
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for such methods. It allows analyzing tissue by reference to blood flow. Enhance-
ment curves representing the change in blood flow are obtained from DCE-MRI
and help to differentiate between malignant and benign lesions. Research has
demonstrated the high relevance of enhancement curves for mass-like lesions
[17,11]. However, this method has not yet proven successful for the assessment
of non-mass-like lesions [10]. This may be due to the fact that it is common use
to obtain an enhancement curve from the mean enhancement of a selected area,
the region of interest (ROI). However, the chosen ROI is taken from an area
inside the lesion that shows the strongest enhancement. There might be cases
where it does not sufficiently represent the whole lesion. This is especially rele-
vant for non-mass-like lesions which show a very diffuse structure that is hard
to separate from normal body tissue. Instead, mass-like lesions show a compact,
mass-like structure, hence the name. The disadvantages of the standard ROI se-
lection represent the main motivation for applying the independent component
analysis (ICA) to enhancement curves obtained from DCE-MRI. The goal is to
extract curves that represent different tissue structures and, thus, to obtain tu-
mor curves that represent tumorous tissue better than a manually selected ROI
or automatic segmentation. MRI voxels represent 3-dimensional cubes of differ-
ent tissue types. ICA allows to differentiate various tissue types in a single MRI
voxel. Overall, the application of ICA on DCE-MRI refines the extraction of en-
hancement curves. Thus, it is able to achieve better results than using standard
ROI or segmentation methods, which leads to superior results.
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Fig. 1: Workflow of MR image processing.
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1.1 Contribution

In recent work [5,6] we approximated extracted tumor curves to an empiri-
cal mathematical model based on the phenomenological universalities (PUN)[4]
showing its profit to lesion classification. Tying on this work, we now present
a complete workflow (Figure 1) for classification of malignant and benign non-
mass-like as well as mass-like lesions using ICA. For given MR images our pro-
posed method outputs classification results despite hard to outline non-mass-like
lesions. Noise gets filtered out of the enhancement curves, tumor-related curves
are detected. Also, the proposed method allows to automatically segment tumor
regions and even is able to handle MRI images obtained by a very small number
of time points. This renders it possible to process MRI images with a very high
resolution and, thus, very little time points, but having the advantage of finding
even very small lesions. Furthermore, features will be extracted for classification
by support vector machines (SVMs). Our method will be evaluated using 80
MRI cases containing malignant and benign lesions. Our workflow includes a
segmentation method unrelated to ICA, allowing an evaluation of the benefits
of using ICA. All cases we present are provided and recorded by the Maastricht
University Medical Center following the MRI protocol stated in Table 1.

Contrast agent: gadopentetate dimeglumine
Dose (mmol/kg): .1
Injection rate (ml/s): 2, followed by saline flush
Field strength (Tesla): 1.5
Pulse sequence: T1w 3D FLASH
Scan coverage: bilateral
Plan: transverse
Flip (degrees): 10
FOV: 280 x 338 x 150
Matrix: 352 reconstructed
Reconstructed voxel size (mm): 1
Slice thickness (mm): 1
Slices: 150, no overcontiguous slices
Volume scan time (min): 1.4
Dynamic acquisition time (min): 1.4, 2.8, 4.2, 5.6

Table 1: MRI protocol parameters.

2 Related Work

Several approaches have been made to identify malignant and benign breast
lesions by analyzing the results obtained by DCE-MRI. Mainly tissue enhance-
ment curves and shape or texture properties have been extracted as distinctive
features. Work on enhancement curves provided the best results and is outlined
in this section. Newell et al. [17] extracted kinetic features (in addition to shape
and texture features) from breast DCE-MRI cases and trained a classifier to
predict lesion quality. Kinetic features were obtained from a manually chosen
ROI, a mean signal was calculated from the most enhancing part of the ROI
and two parameters were extracted: uptake (i.e. how fast the contrast agent is
been taken up by tissue) and washout rate (i.e. how fast the contrast agent disap-
pears due to following blood containing no contrast agent any more). The results
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where evaluated by a receiver operating characteristic (ROC) which showed an
area under the curve (AUC) of .88 for mass-like lesions, but for non-mass-like
lesions only a AUC of .59, hardly better than the random decision of an AUC
of .5. Another approach is done by Jansen et al. [11]. They extracted and ana-
lyzed qualitative and quantitative features from DCE-MRI enhancement curves
for mass-like, non-mass-like and focus enhancements. All features were obtained
from a manually selected ROI. As qualitative features initial rise and delayed
phase of the enhancement curve were defined by a specialist. Additionally, several
quantitative features were calculated. The diagnostic performance is examined
for each single quantitative feature, and evaluated using ROC. For mass-like
lesions the AUC reaches up to .75. However, for non-mass-like lesions the best
feature reaches only an AUC of .67. For focus enhancements (being only 7% of
all cases) there has been a best AUC of .53. The disadvantage of determining
the ROI manually is especially large, if the lesion is very heterogeneous and hard
to outline manually. This is rather the case for non-mass-like than for mass-like
lesions. To avoid this problem the manual step has to be excluded. Therefore,
two ways to proceed are possible. One could either find a method to outline
the ROI automatically. This direction was chosen by Stoutjesdijk et al. [19] by
determining the ROI using mean shift multidimensional clustering (MS-MDC).
However, they only achieved a result as good as with a specialist chosen ROI,
but did not outperform him. Also semi-automatic lesion extraction is performed
by threshold based segmentation. Hoffmann et al. [8] proposed a modification for
the segmentation algorithm by Chan and Vese [2]. As comparison algorithm this
method is included in our proposed workflow. The other way possible is to use
a method to analyze lesion kinetics without determining a ROI. Extraction of
different enhancement curves due to differently enhancing tissue types has first
been done for functional MRI. McKeown et al. [15,16] have applied blind source
separation techniques on functional brain MR images. Due to the MRI tech-
nology, with a higher resolution less time points can be measured. Therefore,
many breast MRI protocols only have a very small number of measured time
points. The number of unmixed signals in ICA can not exceed the number of
measured signals which equals the number of measured time points. This results
in the lack of a high number of signals being able to be obtained from ICA. Koh
et al. [13] avoided this problem of a lack of time points by using a protocol of
65 time points in their feasibility study. They produced clear results and could
outline the tumor component in the visualization of mostly a single extracted
signal component. However, this approach can only been seen as preliminary
work, for it is lacking the chance of realistic usability since such a high number
of measured time points results in a resolution far too low to be sufficient for
breast lesion detection. Nonetheless, we stressed the importance of identifying
already very small lesions, which needs a higher resolution. To fill this gap, we
propose a combination of ICA, segmentation and kinetic analysis that yields
proven results for high resolution MRIs of 1mm slice thickness.
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3 Segmentation and Kinetic Analysis using ICA

Our aim is to provide a complete workflow for segmentation and kinetic anal-
ysis using ICA. The workflow covers all pre-processing steps and results in a
segmentation and in classification results. Before introducing each step of the
workflow, we first introduce our application of ICA on DCE-MR images, since
this is fundamental for both segmentation and kinetic analysis.

3.1 ICA on DCE-MRI

Independent Component Analysis The method of Independent Component
Analysis (ICA) has been developed by Hyvärinen and Oja [9] for the problem
of blind source separation for the task of unmixing signals into independent
single signals. We apply ICA on DCE-MR imaging, which opens up several
opportunities for analyzing MR images. As mentioned in Section 2, the ROI
method uses only a few voxels in order to obtain a tumor enhancement curve.
The tumor might not be represented by this exactly enough for further analysis.
Furthermore, a ROI needs to be drawn by an expert for every single case and
depends on the expert’s knowledge. The basic idea of ICA on DCE-MRI is that
not every voxel shows an enhancement curve, but every tissue type has a typical
enhancement curve that sheds light on its quality, whether it is malignant lesion
tissue, benign lesion tissue or a completely other tissue type. The application of a
ROI selects only several voxels, neglecting tissue types and unselected voxels. It
is creating voxel enhancement curves that actually are mixtures of enhancement
curves of all tissue types combined in the voxels. Enhancement curves achieved
this way only show the approximate enhancement of lesion tissue. In the MRI
protocol used for the cases discussed in this work, the voxel volume is 1mm3.
So it is very likely that voxels are containing different tissue types at the same
time.

The total signal intensity of a voxel is the sum of the intensities that every
tissue type in this voxel emits. Here, ICA unmixes the different tissue types out
of this mixture. Like ICA is calculating original signals and a mixing matrix,
ICA on DCE-MRI reconstructs the original tissue types and how they are mixed
together in each voxel. As result we gain enhancement curves for each tissue type.
Principally, there are two ways to apply ICA on DCE-MRI: temporal [14] and
spatial [15,14] ICA. The temporal approach is the most intuitive: Every voxel
changes its enhancement or signal intensity over time: for every pre- and post-
contrast time point it shows a value. These signals are unmixed by ICA. However,
this means that a very high number of signals showing very few time points needs
to be unmixed. Already for an area of 25 × 25 voxels this would result in 625
single signals each showing only 5 time points, as for our MRI protocol. Thus, it
did not prove successful to extract meaningful unmixed enhancement curves by
temporal ICA. The other way we adopt to apply ICA on DCE-MRI is spatial
ICA. We derive this method from original ICA, where m mixed signals x = (xm)
are composed by a matrix of mixing coefficients A = (amn) and n independent
random variables s = (sn), such that x = As. The solution to unmixing the
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mixed variables equally is s = Wx with W = A−1. There are restrictions to
ICA: since the signals are calculated by maximizing the mutual independence,
the may not be correlated. Otherwise, ICA would maximize their independence
and create signals less similar to the correlated signals. Also, ICA can not create
more unmixed signals than the number of observed signals, i.e. n ≤ m.

Independent Component Analysis on Dynamic Contrast Enhanced-
Magnetic Resonance Imaging Different tissue types show different enhance-
ment curves. Parts of the lesion may enhance differently as well as non-lesion
related tissue types and noise. Since a MRI voxel may include more than one
tissue type, it is important to separate these overlaid areas and enhancement
curves in order to obtain the original curves and lesions without noise. Spatial
ICA calculates these variously enhancing curves and how each voxel is influ-
enced by which enhancement curve. We derive spatial ICA on DCE-MRI from
the original ICA definition and set x in equation x = As so that x1, . . . , xm
describe a slice of the m-th subtraction MR images that are obtained by sub-
tracting the pre-contrast MR image from the m-th MR image. This results in
the pre-contrast subtraction image showing zero enhancement and the follow-
ing post-contrast subtraction images showing an enhancement relative to the
pre-contrast subtraction image. They are denoted as subtraction images 1 to m.
Since the 1st subtraction image is defined as the pre-contrast image subtracted
by the pre-contrast image, it contains no additional information. The following
definitions can be applied to pre- and post-contrast images without subtraction.
However, since subtraction images are used more often by related work and pro-
vided better results here as well, we define ICA on DCE-MRI for subtraction
images, but without loss of generality. Also, we process the MR images slice
per slice. It is also possible to apply ICA on all slices at once, but too many
differently enhancing tissues produce no clear result. Every subtraction image xi
consists of v voxels, so that a voxel j of a subtraction image xi is denoted by xij .
For easier notation we change our ICA equation to X = AS. Thus, we derive

X =

 x1

...
xm

 =

 x11 · · · x1v
...

. . .
...

xm1 · · · xmv

. This is the MR image series obtained from

the scanner. The idea of spatial ICA on DCE-MRI is that the signal intensity
of every voxel is build by the sum of all the signal intensities of the tissue types
it is containing. Objective of ICA on DCE-MRI is to unmix the enhancement
of every voxel into the amount of enhancement that is caused by every single
tissue type included in the voxel. The signals s are these different tissue types.
Here s defines for every tissue type how it affects each voxel. The mixing matrix
M then defines how every voxel on every subtraction image is affected by every

tissue type. Thus, we define S =

 s1
...
sn

 =

 s11 · · · s1v
...

. . .
...

sn1 · · · snv

, where n denotes the

number of signals and v the number of voxels. A signal here is also called an
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independent component (IC). So, skj denotes the j-th voxel on the k-th inde-

pendent component. Finally, we define the mixing matrix A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

,

with m denoting the number of subtraction images and n the number of signal
or ICs. Every aik denotes the mixing coefficient for the k-th IC on the i-th sub-
traction image. An informal, more intuitive description is that the mixing matrix
A puts together every subtraction image out of each independent component by
weighting it by its coefficient.

The tissue types equal the independent components (ICs) that have been
extracted by ICA. Thus, the enhancement curves for every tissue type k are
represented by (a0k, a1k, . . . , amk) where m denotes the number of subtraction
images. For every tissue type respectively for every IC, A shows how much each
voxel is represented by this tissue type. This allows a graphical view on every
tissue type, which will be used for segmentation by ICA.

Application on Malignant Lesion An example demonstrates our method.
Its MRI subtraction image time series is shown in Figure 2. The first subtrac-
tion image shows mri2−mri1 (The actual first subtraction image mri1−mri1,
of course, contains no information). A rectangular area only containing the le-
sion and its direct neighborhood has been cut out and motion compensated
as explained in the following workflow description. Judged by eye, the overall
enhancement increases from Figure 2a to 2d, but apart from that, an inner sep-
aration of components can hardly be drawn. The Figures 3a to 3d show the

(a) (b)

(c) (d)
Fig. 2: Subtraction images 1 to 4 of malignant lesion.
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Fig. 3: Estimated independent components and visualization of mixing matrix A
of malignant lesion.

four estimated independent components, while Figure 3e visualizes the mixing
matrix A by showing the curves corresponding to the portion of each IC to each
subtraction image. For easier visibility of the voxel intensities a blue to red color
map has been applied. As already mentioned the independent components are
normalized to unit variance (whitening step). The product of voxel intensity
and signal enhancement as shown in matrix A is invariant. However, the visu-
alization of the independent components already allows an interpretation of the
results. IC 1 and 2 obviously contain noise which is widespread with no enhance-
ment concentrations. Also it is showing only few higher voxel intensities. That,
together with the low and indifferent enhancement curves of matrix A, allows
an identification as noise. On the contrary, IC 3 and 4 show a concentration
in the enhancement of their voxels. They also show higher intensities both in
the IC visualizations and their enhancement curves of matrix A. While IC 3
shows a compact round shape, IC 4 enhances with a less exact contour. Also
the enhancement curves show a clearly different behaviour. IC 3 enhances very
strongly in the beginning, slighly decreasing in the following subtraction images.
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On the other hand, IC 4 continues enhancing up to the last subtraction images,
but at a slower pace. Due to the idea of ICA on DCE-MRI we can assume that
IC 3 and 4 consist of different tissue types.

3.2 Workflow for Segmentation and Kinetic Analysis

In the last section we have shown how ICA is applied on DCE-MR images.
It presents the core technique for the our MR image processing workflow. In
this section all processing steps are depicted. A general view has already been
presented on Figure 1.

Preprocessing Before applying our methods on the MR images the data is
preprocessed. The relevant region where a radiologist locates the lesion is cut out
in a box of cubical shape, assuring that all tumorous tissue lies inside the area.
For this area a non-rigid motion compensation algorithm based on the approach
of Brox [1] is employed. The parameters of the motion compensation algorithm
are chosen in the following way: smoothness term α = 100.0, regularization
parameter γ = 10.0 and the refinement factor η = .8. Additionally presmoothing
by convolving each image with a Gaussian with standard deviation σ = .6 is
performed. Finally, the transverse slices of the cut out box are selected for the
further analyzing steps.

Segmentation Two aspects motivate the development of a method for lesion
segmentation. First, knowledge about the contours of the lesion is crucial for
surgery. Only an exact segmentation allows the surgeon to remove all tumor-
ous tissue without missing cancer cells that will continue growing with possibly
deadly consequences. Knowing the exact boundaries of the lesion also prevents
removing too much healthy breast tissue and helps avoiding a mastectomy. Sec-
ond, for extracting kinetic features it is compulsive to know which voxels belong
to the lesion itself and which belong to the surrounding area. Only then, features
like the mean intensity of all tumor voxels can be calculated correctly. For the
final evaluation of our classification results we will use two different methods for
segmentation.

The first method uses the active contour segmentation by Chan and Vese [2].
This algorithm detects objects in an image by starting a curve around objects
and narrowing it down towards the objects. By stopping the curve the bound-
ary of the objects is determined. Here, the following modifications proposed by
Hoffmann [8] are applied: The contour to be found by the algorithm is set to a
three dimensional function in order to evolve a three dimensional segmentation.
The segmentation function is modified to achieve a smoother transition of the
contour of the lesions which is defined by the newly introduced parameter α.
This parameter regulates the smoothness of the level set function used by the
segmentation by Chan and Vese. Last, the model is adapted to using all five
images of a MRI time series, the pre-contrast and the four post-contrast images.
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This allows more individual information to be given to the algorithm. Thus, if
one image provides little information about where the boundary should lie, an-
other image may provide more information which is used additionally. However,
the quality of the resulting segmentation is strongly depending on the choice of
the parameter α introduced by Hoffmann and the parameter µ of the original
algorithm by Chan and Vese defining the length of the contour.

The second method we use to derive a segmentation is by ICA. The general
idea of segmentation by ICA is that each independent component estimated by
ICA contains a different tissue type. Other than the segmentation by Chan and
Vese in its modification by Hoffmann it is possible to extract segmentations not
only for the tumor curve, but for all extracted tissue types. In the end it has to be
decided which component is seen as the main lesion component and can be used
for the further workflow as segmentation containing the lesion. Segmentation
by ICA is conducted in the following way: ICA has to be applied slice per
slice, since the whole 3-dimensional cut out box around the lesion contains too
many differently enhancing voxels. As the number of independent components is
limited by the number of captured MR images, no clear independent components
could be gained from an application of ICA on the whole box. To define the size
of the region included in the segmentation, a threshold ρ has to be introduced,
as for all segmentation algorithms. We define the threshold ρ ∈ ]0, 1[ so that
voxels vcks

of an independent component ck and a slice s are contained in the
segmentation if

si(vcks
) >= ρ ·max si(vC) (1)

where si(vcks
) is the signal intensity of a voxel and C = cis is the matrix con-

taining the independent components i for each slice s. This threshold takes into
account that some lesion containing independent components show a higher max-
imum signal intensity values than others, which can be used for segmentation.
To extract as much information as possible, we set the number of independent
components to the maximum of 4. Next, the 4 independent components from
every slice have to be matched in order to build a segmentation each including
all slices. In order to fit each slice sc of a independent component c to the corre-
sponding next slice (s+1)c the similarities of the mixing matrices As and As+1

are observed. Therefore, the difference matrix D is defined as

D = (dij) with dij =

|C|∑
k=1

|aski
− as+1kj

| (2)

where |C| is the amount of independent components estimated, and aski
and

as+1kj
are elements of the matrices As resp. As+1. Matrix D now contains the

sum of the absolute differences of every intensity of the enhancement curves
of all independent components of slice s to slice s + 1. Now the independent
components are obtained as follows:

1. Find the indices i and j that minimize dij .
2. Map the i − th independent component of slice s to the j − th independent com-

ponent of slice s+ 1.
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3. Remove the i− th row and the j − th column from D.
4. Proceed with 1. if D non-empty.

By this method independent components that show similar enhancement curves
are assumed to belong to the same tissue type. This is in accordance to the
general idea of ICA on DCE. Since especially the tumor curve usually shows
a much different enhancement curve than the other tissue curves, this method
guarantees a good mapping for the lesion components with are most important
for further calculations. On contrary mappings that use the similarity of the
independent components itself have the disadvantage that usually lesion tissue
grows or decreases from one slice to the other. Hence, a mapping based on these
similarities is less successful. Also, independent components that show only slight
and indifferent enhancement curves, which might cause bad mappings, usually
containing noise, do show low overall signal intensities that are not included by
the segmentation due to threshold ρ. Figure 4 presents the final segmentations
by this method (ρ = .35) for the independent components 3 and 4 of the example
of Figure 3.

(a) IC 3 (b) IC 4
Fig. 4: Segmentation by ICA of ICs 3 and 4 of malignant MRI case.

Slice-wise ICA An alternative way to build a lesion segmentation is to apply
ICA directly on the preprocessed data. After a whitening step for decorrelation
and unit variance, the selected box around the lesion is processed slice per slice
by ICA. We again choose to extract four independent components from each
slice. Unlike for segmentation we do not choose a threshold to decide which
voxels to include. All voxels of each slice are used to construct the enhancement
curves. The resulting four enhancement curves of each slice have to be matched
to the curves of the other slices, which is done following the matching algorithm
described above. For comparison of the results in Section 4, parallel, our workflow
also applies only whitening, but not ICA in this step.
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Defining Characteristic Curve For feature extraction we need a mutual basis
derived from the different segmentation methods and from slice-wise ICA. Thus,
we define a characteristic curve for each MRI case. This curve is a single regular
enhancement curve consisting of one pre-contrast and four post-contrast time
points. It is derived from the different methods and is used to describe the lesion
for feature extraction. For segmentation by Chan and Vese in the modification
by Hoffmann it is simply calculated as the mean enhancement of all voxels of the
subtraction images that are included in the segmentation. For segmentation by
ICA it first has to be decided which segmentation relates to the lesion. Then, the
characteristic curve is derived in the same way as described. For slice-wise ICA
also the mean kinetic curve has proved to be most useful. Here, for each set of
enhancement curves for each slice the mean of each pre- and post-contrast time
point is calculated. Resulting in one curve for each independent component, the
lesion component is chose as the strongest enhancing curve, i. e. showing the
largest integral.

Feature Extraction and Selection As intermediate result every MRI case
is represented by its characteristic kinetic curve. Now, we define features di-
rectly from curve parameters (features f1 to f3) or from parameters of curve
approximating functions (features f4 to f7). These features will be selected for
classification in the next step.
– f1, f2 and f3: Every characteristic curve consists of five points ai for each time

point (i−1) ·∆t where i ∈ {1, .., 5} and ∆t = 1.4 ·60s (as determined by the
MRI protocol). Feature f1 = (a3−a2)/a2 considers the relation of growth or
decline between the second and third time point to the initial growth to the
second time point. Feature f2 = (|a3−a2|+ |a4−a3|+ |a5−a4|)/(a2) widens
the scope to the absolute values of growth or decline of all time points, again
in the same relation. Feature f3 = (a5 − a2)/a2 differs from f2 only in using
the total growth or decline instead of absolute values.

– f4: Jansen et al. [10] has proposed a model for approximating tumor curves
composed by two exponential functions: y(t) = A ·

(
1−exp(−αt)

)
·exp(−βt)

with parameters A, α and β to be fitted. It expresses the early growth of the
lesion curve as well as its latter decline or further growth. Apart from the
fitted parameters feature vector f4 consists of Jansen’s derived parameters
except SER and the maximum value y(t) reaches in the observed interval.

– f5 and f6: The model proposed by Gliozzi [4] is also composed of two expo-
nential functions to approximate lesion enhancement. We use a normalized
form as y(t) = exp(r · t + 1

β · (a − r) · (exp(βt) − 1)) with r = α
beta and

include the fitted parameters α, β and a together with the maximum value
y(t) in the feature vector f5. Feature f6 differs only in using a modification
by Hoffmann [7] which removes the outer exponential function.

– f7: The relative signal intensity enhancement [18] approximates the second
to fifth time point of the characteristic curve to linear function y(t) = at+ b.
Only parameter a is used as feature and is derived as f7 = ((t3 + t4 + t5) ·
(a3 + a4 + a5)− 5 · (t3a3 + t4a4 + t5a5))/((t3 + t4 + t5)

2 − 5(t23 + t24 + t25)).
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Classification For classifying MRI cases into malignant or benign cases we
input the acquired features f1 to f7 into a support vector machine (SVM). We
train a soft margin SVM using for standard kernel functions [20,3] on a part
of our MRI cases. We use the linear (kernel 1), polynomial (kernel 2), radial
basis function (kernel 3) and sigmoid kernel (kernel 4). The resulting classifier
predicts for each MRI case if it contains benign or malignant lesions. The kernel
functions map then input feature space to a higher dimensional space in order
to find a class separation there.

1 
0.9 
0.8 
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0.5 
0.4 
0.3 
0.2 
0.1 
0 

kernel 3 kernel 1 kernel 2 kernel 4 

(a) Feature f1

1 
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0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
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kernel 3 kernel 1 kernel 2 kernel 4 

(b) Feature f2

(c) Feature f3 (d) Feature f4

(e) Feature f5 (f) Feature f6

(g) Feature f7
Fig. 5: AUC of features 1 to 7.
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4 Results and Discussion

To evaluate the surplus value of ICA we compare classification results from our
workflow for segmentation by ICA and slice-wise ICA to the modified segmen-
tation by Chan and Vese, and to the slice-wise only whitened data. As measure
for quality of classification compare the area under the curve (AUC) as it is a
standard measure for medical classification accuracy. The four kernels produce
receiver operating characteristic (ROC) curves by the decision values obtained
from the SVM. A high AUC values represents a good trade-off between sensi-
tivity and specificity. AUC = 1 represents perfect classification with no false
negatives or positives, AUC = 0.5 is equal to the random guess. The classifier
for each feature is trained by n-fold cross validation. As source data serve 80
MRI cases recorded according to the MRI protocol of Table 1. The processed
cases contain each one lesion, in total 57 malignant lesions and 23 benign lesions,
mass-like and non-mass-like lesions as well. The values for the AUC of each fea-
ture and kernel as described in Section 3 are displayed in Figure 5. For the first
feature that focuses on the begin of the enhancement curve the method using
segmentation by ICA achieves the best AUC of .75 followed by the modified
segmentation by Chan and Vese (Chan-Vese) with an AUC of .73. The second
to fourth feature is still best classified when segmented by Chan-Vese. For the
fifth feature again segmentation by ICA gains the best AUC of .66. For feature 6
slice-wise ICA reaches an AUC of .69, while the only whitened alternative results
in an AUC of 0.75. Last and only for feature 7 an AUC of .80 is gained by ICA,
while Chan-Vese comes only up to an AUC of .71. This feature combined with
the method of slice-wise ICA clearly shows the benefit of using ICA.

5 Conclusion

We have shown that the application of ICA on DCE-MRI delivers good results
for mass-like and non-mass-like lesions equally. As for non-mass-like lesions we
outrun the ROI method by far. This certainly is due to the fact that ICA con-
siders all existing lesion information. Automatic non-ICA-segmentation is also
outrun in several features. ICA enables a very distinctive segmentation not only
for lesion but also for other types of tissue or noise. Last, a fully parameter free
automatic processing is given when using slice-wise ICA which delivers excellent
results by an 80% AUC.
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