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Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL) Research Center for Nutrition and Food Sciences, Technische Universität München, Freising, Germany,

10 Department for Anesthesiology, University Medical Center and Focus Program Translational Neuroscience (FTN), Johannes Gutenberg-University Mainz, Mainz,

Germany, 11 Department of Statistics, University of Oxford, Oxford, United Kingdom

Abstract

To date, genome-wide association studies (GWAS) have identified at least 32 novel loci for obesity and body mass-related
traits. However, the causal genetic variant and molecular mechanisms of specific susceptibility genes in relation to obesity
are yet to be fully confirmed and characterised. Here, we examined whether the candidate gene NEGR1 encoding the
neuronal growth regulator 1, also termed neurotractin or Kilon, accounts for the obesity association. To characterise the
function of NEGR1 for body weight control in vivo, we generated two novel mutant mouse lines, including a constitutive
NEGR1-deficient mouse line as well as an ENU-mutagenised line carrying a loss-of-function mutation (Negr1-I87N) and
performed metabolic phenotypic analyses. Ablation of NEGR1 results in a small but steady reduction of body mass in both
mutant lines, accompanied with a small reduction in body length in the Negr1-I87N mutants. Magnetic resonance scanning
reveals that the reduction of body mass in Negr1-I87N mice is due to a reduced proportion of lean mass. Negr1-I87N
mutants display reduced food intake and physical activity while normalised energy expenditure remains unchanged.
Expression analyses confirmed the brain-specific distribution of NEGR1 including strong expression in the hypothalamus. In
vitro assays show that NEGR1 promotes cell-cell adhesion and neurite growth of hypothalamic neurons. Our results indicate
a role of NEGR1 in the control of body weight and food intake. This study provides evidence that supports the link of the
GWAS candidate gene NEGR1 with body weight control.
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Introduction

Neuronal growth regulator 1 (NEGR1), also termed neurotractin

[1] or Kilon [2], is among the genes in the expanding list of

common obesity loci recently identified in three independent

human genome-wide association studies (GWAS) studies [3,4,5].

The three associated single nucleotide polymorphisms (SNPs;

rs3101336, rs2568958 and rs2815752) lie approximately 60 kb

upstream of NEGR1, flanking two regions of deletion polymor-

phisms that segregate on distinct haplotypes. These deletions

remove conserved elements upstream of NEGR1 and are

associated with increased body mass index (BMI) [5]. Since the

GWAS discovery of this novel obesity locus, the association of the

variants within NEGR1 loci has been replicated in various

genotyping studies for body mass, BMI and other obesity-related

traits such as birth weight, subcutaneous fat mass and infancy

weight gain [6,7,8,9,10,11]. However, other studies have failed to

replicate the association in other specific populations [12,13,14].
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So far, many of the GWAS hits have pointed to a role of the

central nervous system (CNS) in obesity and have identified

proven functional obesity genes such as MC4R, SH2B1 and BDNF.

Disruption of Mc4r, Sh2b1 and Bdnf in mice all result in

hyperphagia and/or obesity [5]. However, the function of other

neural-specific candidate genes such as NEGR1, TMEM18 and

KCTD15 are yet to be proven in vivo.

NEGR1 is a cell adhesion molecule of the immunoglobulin (Ig)

superfamily that belongs to the IgLON subgroup. In mammals,

this subgroup consists of NEGR1/neurotractin/Kilon (kindred of

IgLON), Neurotrimin (NTM), OPCML/OBCAM (opioid-bind-

ing protein/cell adhesion molecule) and LSAMP/LAMP (limbic

system associated membrane protein). IgLON members share

common features consisting of three Ig-like C2-type domains and

a glycosylphosphatidylinositol (GPI)-anchor attachment signal.

Several splice variants have been identified which differ in their

signal peptides [15,16], number of Ig-like domains [1], or become

secreted due to alternative splicing of the region encoding for GPI-

mediated anchorage [17]. IgLONs localise to distinct but

overlapping populations of neurons. Dependent on the cellular

context, IgLONs have been proposed to either enhance or inhibit

neurite growth and synapse formation, respectively

[1,18,19,20,21,22]. Phenotypic analyses of mice deficient for the

IgLON member LSAMP revealed abnormalities in social behav-

iour, impaired synaptic plasticity and spatial memory [23,24,25].

The underlying mechanisms are unclear but may relate to

alterations in neuronal connectivity, mineralocorticoid receptor

expression and GABA(A) receptor subunit expression [23,24,25].

Although predominantly expressed in neurons, experimental

brain lesion in rodents induces expression of NEGR1/neuro-

tractin/Kilon [22] and the related IgLON member OBCAM [26]

in reactive astrocytes. In addition, IgLONs have been linked to

different types of cancer and may act as tumor suppressor genes

[27,28,29,30,31]

To date, the in vivo function of NEGR1 is unknown and

functional models that confirm the proposed role of NEGR1 in the

development of obesity have not been reported. We describe here

two mouse alleles of Negr1, both of which ablate NEGR1 function

and result in a reduction of body mass. Phenotypic analysis of the

ENU mutant, Negr1-I87N, has revealed the weight loss to be

attributed to a reduction in lean body mass and a small reduction

in body length. Further analysis of these novel mouse models will

enable us to study the contribution of NEGR1 to body weight

control in mammals at a molecular level.

Results

Generation of two mouse Negr1 alleles
To test the effect of inactivating Negr1 in vivo, we generated two

alleles that ablate NEGR1 expression in mice. The first allele is a

constitutive knockout (KO), in which the mouse Negr1 gene was

mutated in embryonic stem (ES) cells by replacement of exon 2,

which encodes the first Ig-like domain and the 39 exon/intron

splice site, with a neomycin resistance cassette (Fig. 1A). Three ES

cell clones, verified by southern blotting (Fig. 1B) and genomic

PCR (Fig. 1C) were used to generate chimeric mice which were

crossed to C57BL/6J mice for germline transmission of the KO

allele. All three clones were transmitted into the germline. Western

blot analysis using antibodies specific to NEGR1 demonstrate the

reduction of NEGR1 in heterozygous mutants and absence of the

protein in homozygous mutants (Fig. 1D).

The second allele was identified by screening for ENU-induced

mutations in Negr1 using the Harwell ENU DNA archive [32]. We

re-derived a mutant that carries a point mutation (T260A)

resulting in a non-synonymous substitution from isoleucine (I) to

asparagine (N) (Fig. 1E). The I87N residue lies within the first Ig-

like C2-type domain in close proximity to the signal peptide (Fig.

S1A). NEGR1 shares 95% homology between mouse and human.

The I87 residue is conserved across a wide range of mammalian

species (Fig. S1B), as well as lower vertebrates such as Gallus gallus

(chicken), Xenopus laevis (frog) and Tetraodon nigroviridis (pufferfish).

Both mouse lines are viable and fertile with intercross breeding

yielding the expected Mendelian ratio (data not shown).

The Negr1-I87N mutation affects protein expression and
leads to ER retention of NEGR1

NEGR1 protein has a molecular mass of 37 kDa but contains

several N-linked glycosylation sites which results in a molecular

mass of approximately 50 kDa [22]. The I87N mutation appears

to completely abolish in vivo expression of fully glycosylated

NEGR1 as confirmed by immunoblots (Fig. 1F). Similarly, when

overexpressed in the Neuroblastoma6spinal cord hybrid cell line

NSC-34 [33], which does not express detectable amounts of

endogenous NEGR1 protein, immunoblot analyses revealed

substantial levels of NEGR1-WT but remarkably low levels of

NEGR1-I87N protein (Fig. 1G).

Missense mutations of conserved amino acids may cause protein

misfolding and retention in the endoplasmic reticulum (ER)

thereby disrupting the function of cell adhesion molecules [34,35].

To address this issue we compared the subcellular localization of

wild-type and NEGR1-I87N in NSC-34 cells. Using this

overexpression approach, we observed that wild-type NEGR1 is

predominantly localized at the plasma membrane (Fig. 1H)

whereas NEGR1-I87N overlaps with the ER marker DsRed-ER

(Fig. 1I). These results indicate that the Negr1-I87N mutation

interferes with protein expression, cell surface trafficking and thus

function of NEGR1.

Loss of NEGR1 function causes a reduction in body mass
According to findings from GWAS, the three SNP variants in

the NEGR1 locus are associated with body mass and BMI in

human with a moderate effect size. To determine if the loss of

NEGR1 has an effect on body mass, the Negr1-KO and Negr1-

I87N mice were weighed over time for 10 and 18 weeks,

respectively. The KO allele confers an overall reduction in body

mass (Fig. 2 and Table 1, repeated measures ANOVA, males and

females P,0.0001). The differences become apparent after

weaning, around 3–4 weeks of age (Fig. 2), suggesting that there

is not a defect in suckling or feeding during the postnatal period.

Negr1-KO mutant mice fed a standard chow diet, displayed up to

8% and 13% reduction in total body mass in females and males,

respectively (Fig. 2). Genotypic effects were estimated and tested

within individual time points (time-by-time ANOVA models [36];

see Materials and Methods). In models fitted collectively to data

from males and females, the number of time points with

significantly reduced body weight (Bonferroni corrected P,0.05)

was 8 out of 10 for Negr1-KO, indicating a clear genotypic effect

on body mass (Table S1).

Reduced body mass phenotype in Negr1-I87N mice
manifests upon high-fat diet

For the Negr1-I87N allele, initially a cohort was split into

standard chow and high-fat diet groups. In this generation (after 2

consecutive backcrosses to C3H/HeH), the reduction in body

mass in Negr1-I87N mutants becomes greater when mice were fed

with high-fat diet (45% kcal fat) from 6-wk (data not shown). To

further study this, a new cohort (after 6 consecutive backcrosses to

Loss of NEGR1 Causes a Body Mass Phenotype
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C3H/HeH) was bred and fed a high-fat diet. All the phenotypic

data on Negr1-I87N mice presented hereafter are based on data

collected from mice fed with a high-fed diet. Homozygous Negr1-

I87N mice display a reduction of total body mass of approximately

4.5% (up to 5.8%) and 6.5% (up to 9.6%) compared to wild-type

in females and males, respectively (Fig. 3A). Repeated measures

ANOVA confirmed a statistically significant reduction in body

mass for the Negr1-I87N allele in males (P = 0.0005) with a trend in

females (P = 0.082) and increased significance (P = 0.0002) when

males and females were combined (Table 2).

In time-by-time ANOVA models (see above) the number of

time points with significantly reduced body weight (Bonferroni

corrected P,0.05) was 8 out of 15 for Negr1-I87N, again indicating

a clear genotypic effect on body mass (Table S1). The difference

between homozygotes and wild-type littermate males increased up

to 9 weeks and then reduced again suggesting different rates of

linear growth (Table S1 and Fig. 3A).

The Negr1-I87N mutation affects body mass composition
We next examined changes in body composition that may

underlie the body mass reduction in the high-fat diet group. Fat

mass and lean mass were measured every 2 weeks by whole-body

scanning quantitative magnetic resonance. Mice homozygous for

the Negr1-I87N allele showed a significant reduction of approxi-

mately 8% in lean mass in both females and males (Fig. 3B). In a

repeated measures ANOVA analysis this was highly significant

(P,0.0001) for a genotype effect on lean mass in grams in males

and females (Fig. 3B and Table 2). Comparing individual time

Figure 1. Ablation of NEGR1 in mouse. A. Generation of Negr1 knockout mice. Schematic diagram of the targeting vector, the wild-type and
mutant alleles. Only relevant restriction sites are shown. The positions of the external southern blot probe, as well as the PCR primers, are indicated
by asterisks and arrows, respectively. B. Genomic southern blot using the restriction enzymes EcoRI and SpeI. Bands resulting from introduction of a
new EcoRI site and deletion of a SpeI site are indicated by asterisks. C. PCR genotyping of transgenic mice wild-type (+/+), heterozygous (+/2) and
homozygous (2/2) mice. D. Western blot probed with antibodies specific to NEGR1 and b-actin showing complete loss of NEGR1 protein in
knockout (2/2) mice. E. Sequencing of genomic DNA reveals a T-A mutation that converts an isoleucine residue to asparagine at position 87 (I87N).
F. Western blots of brain lysate from Negr1-I87N mice probed with an anti-NEGR1 antibody. G. NEGR1-immunoblotting of NSC-34 cell lysates
overexpressing NEGR1-WT, NEGR1-I87N, and mock-transfected cells. H–I. The Negr1-I87N mutation causes ER retention of NEGR1. Confocal images
showing NSC-34 cells co-expressing NEGR1-WT (H) or NEGR1-I87N (I) together with DsRed-ER. NEGR1-WT is predominantly localized at the plasma
membrane whereas distribution of NEGR1-I87N clearly overlaps with the DsRed-fluorophore-labeled ER. Nuclei are visualised by DAPI. Scale: 10 mm.
doi:10.1371/journal.pone.0041537.g001

Loss of NEGR1 Causes a Body Mass Phenotype
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points and correcting for multiple testing this was significant at all

except the first time point in males (Table S1). Total gram fat mass

was not affected in Negr1-I87N mice (Fig. 3C, Table 2 and Table

S1).

To test whether the mutants are smaller in body size, the nose-

anus length was measured in anaesthetized animals at 22-wk.

Although there is a statistically significant reduction in body length

in Negr1-I87N homozygotes, the reduction is only 2% and 1.5% in

female and male, respectively (Fig. 4A). When body mass and lean

mass are normalised to nose-anus length, the reduction in

homozygous mice remains significant (Fig. 4B,C), suggesting that

the changes in body mass and lean mass cannot be entirely

explained by a reduction in body length.

In addition to the reduction in lean mass, whole liver from

Negr1-I87N mutants are lighter comparing to wild-type at 22-wk in

both sexes, although, taking account of body weight reduction

reduces this to a trend (Fig. 4D,E). As a result of chronic high-fat

diet, both wild-type and mutant animals display fatty liver with

appearance of triglyceride droplets within hepatocytes. In Negr1-

I87N homozygotes, however, the number of triglyceride droplets is

significantly reduced (Fig. 5 A and B), which may partly explain

the reduction in liver mass in comparison to wild-type.

Negr1-I87N mice display reduced physical activity and
food intake but unchanged normalised energy
expenditure

Previous studies have shown that changes in energy expenditure

are often explained by changes in underlying lean mass [37,38,39].

We used indirect calorimetry to assess metabolic rate in 12- and

16-wk-old mice. At both time points, we observed a marked

reduction in energy expenditure (heat, kcal h21) during both light

and dark periods in Negr1-I87N homozygotes (Fig. 6A,F). This

difference was abolished after normalisation to lean mass

(Fig. 6B,G). Consistently, no significance is found when energy

expenditure is correlated against body mass and lean mass by

linear regression analysis in both light and dark periods (Fig. S2A–

H). Data points of wild-type and homozygous mice follow almost a

linear relationship between lean mass and heat, indicating that the

reduction in energy expenditure is explained by the reduction in

lean mass (Fig. S2).

Interestingly, there is also an overall reduction in physical

activity as measured by the number of breaks in infrared beams

(Fig. 6C,H), average speed of movements (Fig. 6D,I) and total

distance travelled (Fig. 6E,J) within 24 hrs in a photobeam-based

activity monitoring system, consistent with the reduced energy

expenditure before normalisation (Fig. 6A,F).

We next tested several parameters related to feeding behaviour

in Negr1-I87N mice. Mice homozygous for the Negr1-I87N allele

exhibit a reduction in food consumption in comparison to wild-

type measured over 24 hrs in both females (Fig. 7A) and males

(Fig. 7B). Interestingly, the daily energy loss via faeces was

significantly reduced in homozygous male mice as measured by

bomb calorimetry, despite a lack of difference in dried faeces mass

(Fig. S3A–C).

Dependence of body mass on genotype and food intake
The mutual dependence between body mass, sex, genotype,

food intake, energy expenditure, and physical activity was

investigated by fitting a mixed graphical model [40,41]. Such a

Figure 2. Mice deficient of NEGR1 exhibit reduced body mass
and lean mass. Growth curve of Negr1-KO females (Negr1+/+, n,13;
Negr1+/2, n,7; Negr12/2, n,10), and males (Negr1+/+, n,17; Negr1+/2,
n,21; Negr12/2, n,15) on standard chow diet measured across 10
weeks. Data shown are mean +/2 SEM within each sex-genotype group
at each time point.
doi:10.1371/journal.pone.0041537.g002

Table 1. Repeated measures ANOVA—results for Negr1-KO experiment.

Heterozygote - WTi Heterozygote - WTii

Phenotype Model Estimate S.E.iii Estimate S.E. p-valueiv

Body mass Males 20.492 0.273 22.174 0.291 1.09E211

Body mass Females 0.269 0.305 21.364 0.285 6.66E207

Body mass Males and Females 20.219 0.209 21.854 0.213 8.60E217

i‘Heterozygote – WT’ denotes the mean difference between the heterozygote and WT genotypic classes (i.e. bHet:{bWT in the notation developed in Materials and
Methods).
ii‘Homozygote – WT’ denotes the mean difference between the heterozygote and WT genotypic classes (i.e. bHom:{bWT in the notation developed in Materials and
Methods).
iiiStandard error.
ivNominal p-values for the test of the null hypothesis of no genotypic effect (described in Materials and Methods).
doi:10.1371/journal.pone.0041537.t001

Loss of NEGR1 Causes a Body Mass Phenotype
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model characterizes the conditional dependence structure amongst

the variables, and has the important property that it can handle

quantitative and qualitative variables (see Materials and Methods).

Under the best fitting model, represented by the graph in Figure

S4, body mass was conditionally independent of sex, energy

expenditure, and physical activity, given food intake and genotype

(so, for example, under the model, food intake explains the

association between sex and body mass).

The relationship between body mass, genotype, and food intake

was further explored by fitting an ordinary linear model, in which

body mass was the response variable, and food intake and

genotype were the explanatory variables (details of the model fit

are in Table S2; see also Materials and Methods). Food intake and

genotype collectively explained 36% of variation in body mass (i.e.

multiple R2~0:36). By decomposing R2, it was found that 22% of

variation in body mass was explained by food intake but not

genotype, 7% was explained by genotype but not food intake, and

the remaining 7% of R2 was explained by variation shared by

genotype and food intake (Materials and Methods).

NEGR1 expression in the hypothalamus
GWAS have suggested a potential role of NEGR1 in the central

nervous control of body weight [3,5] because of its predominant

expression in the rodent CNS [22,42]. Our observation of reduced

food intake in mutant mice also suggests that food control centres

in the brain may be involved. Although NEGR1 has been also

reported to be expressed at the mRNA level in various peripheral

tissues [43], we were unable to detect substantial amounts of

NEGR1 protein in peripheral tissues by immunoblotting (Fig.

Figure 3. Negr1-I87N mutants display altered body mass and composition. A–D. Body mass (A), Lean mass (B), fat mass (C) of wild type
(female, n = 28; male, n = 22), heterozygous (female, n = 52; male, n = 51) and homozygous (female, n = 28; male, n = 24) Negr1-I87N mice fed on high-
fat diet measured across 18 weeks. Data shown are mean +/2 SEM within each sex-genotype group at each time point.
doi:10.1371/journal.pone.0041537.g003

Table 2. Repeated measures ANOVA—results for Negr1-I87N experiment.

Heterozygote - WTv Homozygote - WTvi

Phenotype Model Estimate S.E.vii Estimate S.E. p-valueviii

Body mass Males 20.531 0.57 22.445 0.66 0.000507

Body mass Females 20.638 0.58 21.507 0.67 0.0819

Body mass Males and Females 20.58 0.41 21.936 0.474 0.000165

Lean Mass Males 20.514 0.385 21.94 0.446 5.88E205

Lean Mass Females 20.649 0.298 21.687 0.344 1.46E205

Lean Mass Males and Females 20.585 0.24 21.804 0.277 1.18E209

Fat Mass Males 0.026 0.236 20.169 0.274 0.69

Fat Mass Females 20.027 0.349 0.347 0.403 0.541

Fat Mass Males and Females 0.002 0.219 0.111 0.253 0.865

% Fat Mass Males 0.57 0.468 1.302 0.541 0.0578

% Fat Mass Females 0.474 0.55 2.385 0.636 0.00043

% Fat Mass Males and Females 0.528 0.37 1.89 0.427 3.30E205

v‘Heterozygote – WT’ denotes the mean difference between the heterozygote and WT genotypic classes (i.e. bHet:{bWT in the notation developed in Materials and
Methods).
vi‘Homozygote – WT’ denotes the mean difference between the heterozygote and WT genotypic classes (i.e. bHom:{bWT in the notation developed in Materials and
Methods).
viiStandard error.
viiiNominal p-values for the test of the null hypothesis of no genotypic effect (described in Materials and Methods).
doi:10.1371/journal.pone.0041537.t002
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S5A). To characterise the expression of NEGR1 protein in the

murine CNS we performed immunoblot analyses of different CNS

regions (Fig. 8A). In agreement with previous studies [22,42], we

found NEGR1 strongly expressed in various brain regions

including the cerebral cortex, hippocampus and the olfactory

bulb. Moreover, we observed strong expression of NEGR1 in the

hypothalamus (Fig. 8A). During postnatal development, hypotha-

lamic NEGR1 expression increased from postnatal stage P1 to P5,

was maintained from P5 to P30 but declined in the adult CNS

relative to ubiquitously expressed calnexin (Fig. 8B,C). To reveal

the spatial distribution of Negr1 mRNA in the adult hypothalamus,

brain sections were processed for in situ hybridisation using an anti-

sense probe specific for Negr1 (Fig. 8D,E). Expression of Negr1

mRNA was found in all hypothalamic nuclei including the

paraventricular nucleus (PVN), dorsomedial nucleus (DMN),

ventromedial nucleus (VMN) and the arcuate nucleus (ARC)

(Fig. 8D,E).

The PVN and the ARC, which can be more clearly

distinguished in histological sections than other hypothalamic

nuclei, were dissected by laser capture microdissection (LCM) (Fig.

S5B,C) and Negr1 mRNA levels analysed by quantitative PCR

(qPCR). These analyses revealed no significant differences for

Negr1 expression between these hypothalamic nuclei (Fig. S5D).

Expression regulation for various hypothalamic genes, as those

encoding for the anorexigenic neuropeptides NPY and AgrP, is

highly dynamic upon fasting [44,45]. However, in contrast to

significantly raised Npy mRNA levels, we found no significant

regulation of Negr1 mRNA expression after a fasting period of

24 hrs (Fig. S5D–E).

Together, NEGR1 protein expression is brain-specific and

widely distributed. There is remarkably high expression of Negr1

mRNA in hypothalamic nuclei which is not altered by acute

changes in the nutritional state. The developmental expression

regulation in the hypothalamus, suggest a role in the nervous

system maturation.

NEGR1 promotes cell-cell adhesion and stimulates
neurite growth of hypothalamic neurons

Neural members of the Ig-superfamily have been shown to

participate in different aspects of nervous system development

including neuronal migration, axon growth and guidance as well

as synapse formation and plasticity [46]. Furthermore, GWAS

have suggested a potential role of NEGR1 in the nervous control of

body weight [5]. To examine the cellular function of NEGR1 we

carried out cell-cell aggregation and neurite growth experiments.

We incubated NSC34 cells co-expressing wild-type or mutant

NEGR1 in NSC-34 cells with EGFP as a fluorescent reporter

(Fig. 9A–C). Incubation of cells expressing NEGR1-WT/EGFP

clearly resulted in the formation of cell aggregates (Fig. 9B) as

determined by the area occupied by aggregated cells (Fig. 9D),

Figure 4. Negr1-I87N mutants have altered body mass compo-
sition. A–G. Body length (A), body mass (B) and lean mass (C)
normalised to body length, liver mass (D) and percentage of liver mass
to total body mass (E) of wild-type (female, n = 23; male, n = 16),
heterozygous (female, n = 37; male, n = 36) and homozygous (female,
n = 17; male, n = 19) Negr1-I87N mice measured at 22 weeks in females
and males. All data are presented as mean 6 SEM. Student’s t-test was
carried out between groups, *, P,0.05; **, P,0.01; ***, P,0.001.
doi:10.1371/journal.pone.0041537.g004

Figure 5. Ablation of NEGR1 causes reduction in fatty droplets. A,B. Number of triglyceride droplets classified into ranges of size in diameter
(mm) in hepatocytes of female Negr1-I87N mice (n = 3 mice per genotype). All data are presented as mean 6 SEM. Student’s t-test (2-tailed) was
carried out between groups, *, P,0.05; **, P,0.01; ***, P,0.001.
doi:10.1371/journal.pone.0041537.g005

Loss of NEGR1 Causes a Body Mass Phenotype
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suggesting that homophilic interaction of NEGR1 promotes cell-

cell adhesion in trans. As expected, NEGR1-I87N failed to promote

formation of aggregates (Fig. 9C and D).

Next, we offered NSC-34 cells expressing NEGR1 as a

biological substrate for primary neurons. Given the strong

expression of NEGR1 in the hypothalamus we prepared primary

hypothalamic neurons from newborn mice. Co-cultures were

immunostained after two days of cultivation with antibodies

specific to the neuronal marker bIII-tubulin (Fig. 9E–G) and the

longest neurites of individual neurons were measured. These

analyses revealed that NEGR1-WT stimulates neurite growth of

hypothalamic neurons (Fig. 9F), compared to control cells

expressing EGFP alone (Fig. 9E) or those expressing NEGR1-

I87N (Fig. 9G). However, NEGR1-I87N expressing cells also

displayed a weak stimulatory effect on neurite growth, albeit to a

clearly lesser extent than NEGR1-WT (Fig. 9G,H). Thus, NEGR1

promotes cell-cell adhesion and stimulates neurite growth of

hypothalamic neurons. Together with the data on the in vivo

expression regulation, these results suggest a role of NEGR1 in

neural circuit formation in the hypothalamus.

Discussion

In this study, we report two novel mouse mutants for studying

the GWAS candidate obesity gene NEGR1. Importantly, loss of

NEGR1 function causes an overall reduction in body mass in our

mouse models. The body mass phenotype of both Negr1-KO and

Negr1-I87N mutants develops after weaning, suggesting that there

is not a defect in suckling or feeding during the immediate

postnatal period. Body mass reduction in Negr1-I87N mutants is

due to reduced lean mass. The rate of growth, as reflected in

overall body weight, in homozygous male Negr1-I87N mutants,

appears slower compared to littermates although there is some

convergence later on in the time course. Despite these differences

the mutants continue to gain lean mass during adulthood in a

linear fashion at a rate similar to that of wild-type littermates. We

observed a marked reduction in non-normalised energy expendi-

ture in Negr1-I87N homozygotes, which would be expected to

increase body mass counter to our observations. However, this is a

secondary consequence of reduced lean mass as there is no

difference in energy expenditure between genotypes when

normalised to lean mass. Lean mass is relatively more metabol-

ically active than fat mass. Physical activity in mutant mice was

reduced consistent with reduced non-normalised overall energy

expenditure although linear model analysis did not provide any

evidence that physical activity and lean mass were directly

correlated (data not shown).

Negr1-I87N mice display a small but significant reduction in

food intake. The best fitting model for the inter-dependence of the

main determinants of body mass is represented graphically in

Figure S4, with food intake and genotype directly but separately

Figure 6. Negr1–I87N mice have unchanged energy expenditure relative to lean mass and reduced physical activity. A,B,F,G. Energy
expenditure (A, F) normalised to lean mass (B, G) over a 22-hr period during light and dark phases in 16-week old wild-type (female, n = 23; male,
n = 21) and homozygotes (female, n = 20; male, n = 22) females (A–B) and males (F–G). C–E, H–J. Physical activity as measured by the average number
of beambreak counts in various different dimensions (C, H), average speed (D, I) and total distance travelled (E, J) in 16-week old wild-type (female,
n = 23; male, n = 21) and homozygotes (female, n = 20; male, n = 22) females (C–E) and males (H–J). All data are presented as mean 6 SEM. Two-tailed
Student’s t-test was carried out between groups, *, P,0.05; **, P,0.01; ***, P,0.001. Bonferroni correction was applied to adjust for multiple
measurements (A,B,F,G).
doi:10.1371/journal.pone.0041537.g006

Figure 7. Ablation of NEGR1 causes reduction in food intake.
A,B. Food intake over 24 hrs measured at 16-weeks in Negr1-I87N
female (A) (WT, n = 23; hom, n = 20) and male (B) (WT, n = 21; hom,
n = 22). All data are presented as mean 6 SEM. Student’s t-test (2-tailed)
was carried out between groups, *, P,0.05; **, P,0.01; ***, P,0.001.
doi:10.1371/journal.pone.0041537.g007
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related to body mass under the model. We estimated by fitting a

linear model to body mass, food intake and genotype, that a total

of 36% of variation in body mass across a sub-cohort of the Negr1-

I87N cohort (comprising males and females with WT and

homozygote genotypes) was explained by variation in food intake

and Negr1-I87N genotype. A decomposition of this 36% indicated

that: 7% was explained by genotype but not food intake; 22% was

explained by food intake but not genotype (this is expected as any

group of identical mice will vary in weight, because, for a variety of

reasons, they do not each eat the same amount of food); and 7%

was explained by variation shared by food intake and genotype.

This latter, shared, 7% could reflect (a) genotype acting on food

intake and thereby affecting body mass, (b) genotype acting on

body mass and thereby affecting food intake, or (c) some other

mechanism not captured by the observed variables. As expected,

sex is an important determinant of body mass, mediated through

food intake (males eat more). The linear modelling results indicate

that the Negr1-I87N genotype has a relatively small effect on body

mass, explaining up to 14%, compared to the 22% explained by

food intake but not genotype. In our experiments, food intake is

represented as ‘per day consumption’ in a ‘homecage’ environ-

ment, where animals are exposed to minimal stress. However,

such acute measurements of energy expenditure or food intake are

limited by the small window of the assessment time and may

underestimate the true effects of genotype on food intake. These

observed differences may be small but the effect of food intake on

body mass is cumulative over time, which is reflected in the highly

significant difference in both body mass and lean mass between the

genotypes. A study in a healthy Dutch female population of the

NEGR1 SNP rs2568958 did not show statistical significant

associations with weight, BMI or waist circumference, but was

found to associate with dietary intake based on food frequency

questionnaire. While there was no significant difference in the

overall energy intake, there was a decrease in monounsaturated fat

intake (20.40 g/day, P = 0.03) and saturated fat intake (20.34 g/

day, P = 0.03) in the risk-allele carriers [10]. While this finding is

consistent with our observations of an effect on food intake, in

another study of similar design [47], no evidence in feeding

behaviour or other lifestyle measurements were found in the risk-

allele carriers.

Contrary to our expectations, we found a small but significant

reduction in the daily energy loss via faeces in the NEGR1-

deficient mice. Nevertheless, this finding is not necessarily

contradictory to the body mass phenotype. The regulation of

energy balance is highly complex and the overall metabolic state of

an animal reflects the sum of the contributing components.

Homozygous male mice eat less but for unknown reasons are more

efficient at recovering energy during digestion. This increase in

efficiency is not enough to counteract negative contributors to the

balance.

While the expression of NEGR1 has been implicated as a central

‘hub’ in an obesity-related transcription network [43], immuno-

blotting analysis could not reveal expression of NEGR1 in wild-

type subcutaneous white adipose tissue or tissues other than the

brain (Fig. S5A). This further supports the neuronal link of

NEGR1 to metabolism and energy homeostasis. Nevertheless, the

mechanism by which the neuronal function of NEGR1 is linked to

body mass change will require further study. The available in vitro

data on the role of NEGR1 and other IgLONs in cell-cell

adhesion, neurite growth [1,21,22] and synapse formation [18]

suggest a function of IgLONs for neuronal connectivity in the

CNS, which is supported by phenotypic analysis of mice deficient

for the IgLON-member LSAMP [24,25]. The broad CNS

expression of NEGR1 suggests that its function is likely to be

involved in various brain regions and neuronal circuits. Never-

theless, the overall neuroanatomy of Negr1-KO mice showed no

differences compared to wild-type littermates, as assessed by

standard histological analyses (data not shown). Despite strong

hypothalamic expression of NEGR1, our neuroanatomical studies

in NEGR1-deficient mice showed neither a difference in the

Figure 8. Expression of NEGR1. A. NEGR1 protein expression in different CNS regions from adult mice. B. Developmental expression regulation of
NEGR1 in the postnatal hypothalamus. Blots were probed with antibodies specific to NEGR1 and ubiquitously expressed calnexin (cnx). C.
Semiquantitative assessment of hypothalamic NEGR1 protein expression relative to cnx during postnatal development. D–E. Distribution of Negr1
mRNA in the adult murine hypothalamus in reference to bregma (n = 4 mice/condition). Scale bars: 500 mm (D–E); ad: adult; co: cerebral cortex; hy:
hypothalamus; hi: hippocampus; cb: cerebellum; bs: brainstem; sc: spinal cord; ob: olfactory bulb; cnx: calnexin; PVN: paraventricular nucleus; DMN:
dorsomedial nucleus; VMN: ventromedial nucleus; ARC: arcuate nucleus.
doi:10.1371/journal.pone.0041537.g008
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number of TH-positive neurons in the PVN or ARC nor virtual

abnormalities in the projections of NPY-positive axons from the

ARC to the PVN (Fig. S6A–D). Similarly, we observed no

alterations in the distribution of somatostatin and corticotropin-

releasing hormone (CRH)-positive axons which project to the

median eminence (Fig. S6E,F). These analyses indicate that Negr1-

KO mice lack obvious malformations in the hypothalamus. To

exclude a role of NEGR1 in hypothalamic circuit formation,

additional studies of neuronal subpopulations and their projections

within and outside the hypothalamus are required. It also remains

an open question whether NEGR1 is required for synapse

formation and function in vivo and further analyses, including

electrophysiological as well as ultrastructural studies are required

in the future. Along this line, the function of NEGR1 in the brain

may be best studied by mouse models with neuronal-specific or

hypothalamus-specific modification of NEGR1 expression, such as

by adenoviral or conditional Cre recombinase technology in

combination with a floxed Negr1 allele.

The at-risk allele of the associated variant (rs2568958) is

reported to confer a 12.1% (P,,0.0001) per allele copy increase

in NEGR1 expression in blood [3], suggesting that up-regulation of

NEGR1 in human may have a positive effect on body mass (BMI

and weight). In contrast, the loss of NEGR1 function in our mouse

models appears to have a negative effect on body mass and lean

mass, supporting the hypothesis that NEGR1 function may

contribute to a gain in body mass. Most studies have examined

weight or BMI, however, one small study has used dual-energy X-

ray absorptiometry in a group of adults from northern Sweden

[48]. Interestingly, this study found that the variance in weight

associated with the NEGR1 rs2815752 was determined to a larger

extent by non-adipose tissue (i.e. lean mass) in addition to a lesser

contribution by adipose mass. This is consistent with the data from

Figure 9. Negr1-I87N is a loss-of-function mutation. A–C. NSC-34 cells expressing EGFP alone (control) or together with Negr1-WT or Negr1-
I87N mutants at 0 min (t1) and following 60 min (t2) of cell aggregation. D. Histogram showing cell aggregation expressed as the ratio of 0 min (t1)
and 60 min (t2) time points. EGFP+empty vector (control): 1.0660.05; NEGR1-WT+EGFP: 2.1160.2; EGFP+NEGR1-I87N: 0.9360.2. Data represent
means 6 sd calculated from three independent experiments. E–G. Confocal images showing hypothalamic neurons immunostained for the neuronal
marker bIII-tubulin (red) cultured together with transfected NSC-34 cells (green). NSC34 cells were transfected with (E) pEGFP together with an empty
pcDNA-vector (control), (F) pEGFP+pcDNA3-NEGR1-WT and (G) EGFP+NEGR1-I87N. H. Mean neurite lengths of hypothalamic neurons relative to
control (set to 100%). Error bars represent SEM from three independent experiments (,400 neurites per condition). Two-tailed Student’s test;
*P,0.05; **P,0.01; *** P,0.001. Scale: 100 mm (A), 20 mm (E).
doi:10.1371/journal.pone.0041537.g009
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our Negr1-I87N mice where lean mass is also the major

determinant.

In summary, our novel mouse models provide evidence to

support a role for NEGR1 in the control of body weight and

composition at least partly through alterations in food intake and

add to the support for NEGR1 as the gene underlying the GWAS

signal in the human studies.

Materials and Methods

Ethics statement
Negr1-KO mice were kept according to the principles of good

laboratory animal care and in approval by local authorities

(Regierungspräsidium Freiburg). Negr1-I87N mice were kept in

accordance with UK Home Office welfare guidelines, project

license restrictions and approval by local Ethics Committee.

Antibodies and cDNA constructs
The following antibodies were used for immunoblot (IB),

immunohistochemistry (IHC) or immunocytochemistry (ICC):

mouse anti-b-actin (Sigma, IB, diluted 1:10.000), rabbit anti-

calnexin (Abcam, IB, diluted 1:1000), rabbit anti-CRH (UCB

Bioproducts, IHC, diluted 1:200), mouse anti-GFP (Millipore,

ICC, diluted 1:1000), rabbit anti-NEGR1 (Sigma, IB, diluted

1:2000; ICC, diluted 1:300), rabbit anti-NPY (Immunostar,

diluted 1:2000); rabbit anti-somatostatin (Chemicon, IHC, diluted

1:1500), rabbit anti-tyrosine hydroxylase (IHC, diluted 1:2000),

mouse anti-bIII tubulin (Covance, ICC, diluted 1:1000), Cy3- and

Alexa 488 Fluor- conjugated secondary antibodies (Molecular

Probes, IHC, ICC 1:500) and HRP-conjugated secondary

antibody (Jackson ImmunoResearch, IB 1:5000). cDNA constructs

used in this study: DsRed-ER, pEGFP-C1 (Clontech). To obtain

pcDNA3-NEGR1 the cDNA was subcloned from pBSKS-

Neurotractin/NEGR1 [22]. The pcDNA3-Negr1-I87N plasmid

was generated from the pcDNA3-NEGR1 plasmid using Quik-

Change Lightning Site-Directed Mutagenesis kit (Stratagene) with

the following primer containing the I87N mutation, and

confirmed by DNA sequencing:

Negr1-I87N-F 59-CAGTGGACCCTCGAGTTTCCATTTC-

CACATTGAATAAAAGAG-39

Negr1-I87N-R 59-GTCTCTTTTATTCAATGTGGAATTG-

GAAACTCGAGGGTCCAC-39

Immunohistochemistry and in situ hybridisation
For immunohistochemistry, mice were anaesthetised and

transcardially perfused with 4% paraformaldehyde. Dissected

brains were postfixed overnight and cryoprotected in 30% sucrose

for 20 hours at 4uC and processed for sectioning as described [49].

Images were captured using an inverted light microscope

(Olympus BX60), equipped with a monochrome digital camera

(Leica, DFC350FX). In situ hybridisation was performed essentially

as described [50]. Sense and anti-sense probes were generated

against full length murine Negr1 cDNA, sequences are available on

request.

Stereological cell counts
Stereological cell counts (Stereo Investigator software: Micro-

BrightField, Inc., Williston, VT; version 4.31) were performed for

TH-immunoreactive neurons in the hypothalamic PVN and

ARC. The optical dissector/fractionator method was applied as

described in detail previously [51].

SDS-Page, immunoblotting, cell culture and
immunocytochemistry

SDS-Page and immunoblot analyses as well as the culture of

NSC-34 cells and preparation of primary neurons were essentially

performed as described [34]. Cells were transfected with cDNA

constructs using polyethylenimine [52]. Transfection efficiency

was about 30–35% in all experiments (data not shown). To

determine subcellular localization of wild-type and mutant

NEGR1, high magnification images from transfected NSC-34

cells were acquired using a LSM510 confocal laser scanning

microscope with a 636 objective and appropriate filters (Zeiss).

For co-culture experiments, NSC-34 cells were grown on poly-D-

lysine coated glass coverslips in 24-well plates to about 70%

confluency and co-transfected with pEGFP-C1, together with

pcDNA3-Negr1-WT or pcDNA3-Negr1-I87N. Cells expressing

pEGFP alone served as control. After 16 h, primary hypothalamic

neurons were prepared from newborn mice and 50.000 neurons

were seeded onto confluent monolayers of NSC-34 cells and co-

cultured for 48 hrs. Then, cultures were fixed in 4% PFA for

30 min, blocked in 5% goat serum/0.5% BSA/0.1% TX-100 and

immunostained using antibodies specific to bIII-tubulin. To

quantify neurite lengths in co-cultures of NSC-34 cells and

primary neurons, identical numbers of images were captured for

each experiment and condition using an inverted light microscope

(Olympus BX60), equipped with a monochrome digital camera

(Leica, DFC350FX) and a 106objective (Olympus). Images were

then processed for neurite length measurements using ImageJ.

Lasercapture microdissection and quantitative PCR
Coronal brain sections of 15 mm were cut in a cryostat and

collected on polyethylene terephthalate membrane slides (Leica).

Sections were dried at 30uC for 45 min, stepwise dehydrated in

50%, 75%, 95%, and 100% ethanol (10 sec each) and stained by

0.1% cresyl violet dissolved in 100% ethanol for 2 min.

Hypothalamic nuclei were dissected from serial sections using a

Leica laser microdissection microscope. Microdissected nuclei

were collected in Trizol reagent (Invitrogen) and RNA isolated by

Phenol:Chloroform extraction. cDNA for qPCR was prepared

using a Verso RT-PCR Kit (Abgene). qPCR was performed on a

BioRad light cycler using SYBR Green Mastermix (Abgene). Gene

expression levels were normalized to the expression of the

housekeeping genePolr2Aand analyzed by the comparative DCT

method. Primer for Polr2A were purchased from Qiagen

(QuantiTect Primer Assay). Primer sequences used for the

amplification were as follows:

59-ATGTGACGCAGGAGCACTT-39(forward Negr1);

59-CCATACTGGGCTGTACTTGGA-39(reverse Negr1);

59-GGCAAGAGATCCAGCCCTG-39(forward NPY);

59-CCAGCCTAGTGGTGGCATGC-39(reverse NPY);

Cell aggregation assay
NSC-34 cells were grown and transfected with pcDNA3-Negr1-

WT or pcDNA3-Negr1-I87N together with pEGFP-C1 (Clontech).

Co-expression of pEGFP was observed in at least 80–90% of

NEGR1-positive cells in all experiments and conditions (data not

shown). Cell aggregation assay was essentially performed as

described [53] and quantified by determining the increase of

average areas of green fluorescent cells and aggregates between

0 min (t1) and 60 min (t2) in each condition using Image J

software. The calculated t2/t1 ratios were expressed relative to

control cells expressing pEGFP alone.
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Generation of Negr1 mouse alleles (ENU and KO)
To disrupt the Negr1 gene, we generated a targeting vector that

replaced exon 2 including the 39splice site with a neomycin

cassette. To generate the targeting vector, a murine genomic BAC

library derived from from a mouse 129/SvJ II ES cell line clones

was screened by PCR using degenerated primers (59-GTG ACA

AGT GGT CRG TGG ACC C-39 and GTG TGY TGG GTY

TGC ACA GAA, R = A/G; Y = T/C) for the presence of exon 2

of the murine Negr1 gene (in collaboration with Incyte Genomics).

Positively screened BAC clones were mapped by restriction

enzyme digestion and two appropriate fragments of 890 bp (short

arm) and 8.3 kb (long arm) subcloned into the pTV0 vector (kindly

provided by Carmen Birchmeier, Max-Delbrück-Center for

Molecular Medicine, Berlin, Germany). Then, the Negr1-KO

allele was generated by homologous recombination in E14.1

embryonic stem cells [54]. Electroporation, selection and blasto-

cyst injection of E14.1 ES cells were performed according to

standard protocols. Three targeted ES cell clones were identified

by genomic PCR and transmission of the targeted Negr1 locus

confirmed by southern blotting. Chimeric mice were bred to

C57BL/6 mice and progeny were identified by coat color.

Heterozygous Negr1 founders were back-crossed into the

C57BL/6J strain for 8 generations. Mice were genotyped by

genomic PCR using the following primers: forward 59CAC TGC

AGA AGG CAA CAA TC 39; reverse 59CCT TCT CTA GCC

ATG CTT TGT AC 39 resulting in 2.7 kb (wild-type allele) and

2.8 kb (mutant allele) amplification products.

The Harwell ENU-DNA archive was screened for mutations in

Negr1 by high resolution melting (HRM) DNA analysis method

using the LightScanner system (Idaho Technology, Salt Lake City,

UT, USA). Negr1-I87N is one of the ENU mutations identified in

PCR products amplified from the DNA samples of ,10,000 G1

mice with the following primers: Negr1ex2F 59TCC TTC CCT

TCC TCC ATA CC-39 and Negr1ex2R 59CTC AGT ATT TCA

TTT CAA GCT TAT CC-39. Negr1-I87N animals were

subsequently generated using frozen sperm samples from BALB/

c6C3H/HeH F1 founder and C3H/HeH eggs through in vitro

fertilisation [32]. Progeny were backcrossed for six generations to

C3H/HeH and intercrossed to produce mice heterozygous and

homozygous for the mutation. NEGR1 peptide sequences were

exported from Ensembl (www.ensembl.org). Multiple sequence

alignment was performed with ClustalW.

Animal Husbandry
Animals were kept under controlled light (12 hr light and 12 hr

dark cycle, dark 7pm–7am), temperature (21uC62uC) and

humidity (55%610%) conditions. They had free access to water

(25 ppm chlorine) and were fed ad libitum on a commercial high-fat

diet (containing 45 kcal% fat, 20 kcal% protein and 35 kcal%

carbohydrate - D12451, Research Diets, New Brunswick, NJ,

USA) or a standard diet (containing 11.5 kcal% fat, 23.93 kcal%

protein and 61.57 kcal% carbohydrate - SDS Rat and Mouse

No. 3 Breeding diet). All mice for the Negr1-I87N experiments

were supplied by MRC Harwell, Harwell Oxford, England.

Phenotypic analyses were performed in accordance with the

standardized operating protocols in EMPReSS (European Pheno-

typing Resource for Standardized Screens from EUMORPHIA,

http://empress.har.mrc.ac.uk).

Metabolic phenotyping of Negr1-I87N mice
Body mass was measured weekly on an electronic scale

calibrated to 0.01 g. Fat mass and lean mass were obtained

fortnightly in conscious mice by quantitative magnetic resonance

imaging (EchoMRI, Echo Medical Systems, Houston Texas, USA)

with calibration to canola oil for fat mass measurement. Metabolic

rate was measured at 12 weeks of age using indirect calorimetry

(Oxymax; Columbus Instruments) to determine oxygen consump-

tion (VO2), carbon dioxide production (VCO2), respiratory

exchange ratio (RER) and heat production. Food and water

intake, metabolic rate and physical activity were further measured

at 16 wk in a ‘‘home-cage-like’’ Phenomaster system (TSE

Systems, Bad Homburg, Germany), which consists of feeding

and drinking sensors for automated measurement, indirect

calorimetry measurements, and a photobeam-based activity

monitoring system that detects all movements. All parameters

were measured continuously and simultaneously for 24 hours in

singly housed mice. At 22 weeks of age, mice fasted for ,8 h were

killed by anesthetic overdose, and blood collected by cardiac

puncture. Plasma concentrations of triglycerides, glycerol, free

fatty acids, total cholesterol, HDL cholesterol, ketone bodies,

lactate dehydrogenase, creatine kinase, ALP, ALT and AST were

measured on an AU400 (Olympus UK), as described [55]. Faeces

samples of individually caged mice were collected over 2 days.

Samples of up to 5 mice of the same sex and genotype were pooled

for bomb calorimetry (IKA7000, Ika Staufen, Germany) resulting

in 5–6 pooled samples for combustion per group.

Histology
The median lobe of liver were dissected and fixed in 10%

neutral buffered formalin. Paraffin-embedded sections of 3

microns were stained with hematoxylin and eosin. Photomicro-

graphs were captured by optic microscopy (Zeiss Axiostar Plus)

with the ALTRA20 Soft Imaging System (Olympus). The

diameter of triglyceride droplets in hepatocytes were measured

for two fields per animal at 610 and 640 magnification

respectively, with the cell‘B imaging software (Soft Imaging

System, Olympus).

Time-course data analysis
Time-course data were analysed using two complementary

methods [36], (i) repeated measures ANOVA, and (ii) time-by-

time ANOVA.

Repeated measures ANOVA. The following repeated-mea-

sures ANOVA model [36] was fitted to each phenotype’s data

across all three genotypes and across all time points.

yit~azbg(i)zcs(i)zd½g(i),t�zg½s(i),t�zuizeit

in which

N i~1,:::,n indexes mouse,

N t~1,:::T indexes time point,

N yit denotes the phenotype of mouse i at time point t,

N a denotes the intercept term

N g(i)[ WT, Het:, Hom:f g denotes the genotype of mouse i,

N s(i)[ Male,Femalef g denotes the sex of mouse i,

N the bg(i) denote the main genotypic effects (with the constraint

bWT:0)

N the d½g(i),t� denote interactions between genotype and time

(with the constraints d½WT,t�:0 and
PT

t~1

d½g(i),t�:0),

N the gg(i) denote the main sex effect (with the constraint

gMale:0),

N the h½s(i),t� denote interactions between sex and time (with the

constraints h½Male,t�:0 and
PT

t~1

h½Female,t�:0),
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N ui is the random effect for mouse i (these random effects model

the correlation between repeated measures), with the ui

assumed to be mutually independent identically distributed

zero-mean Gaussian random variables, and

N the eit are mutually independent identically distributed zero-

mean Gaussian random measurement errors.

The model was fitted using the lmer() function in the lme4 R

package [56,57]. Estimates (with standard errors) for the bg, are

shown in Tables 1 and 2. The null hypothesis of no main

genotypic effect (i.e. that bg(i)~0 for all genotypes) was tested

against the alternative hypothesis under which bHet: and bHom:

were unconstrained. The test was based on the asymptotic c2
2 null

distribution of {2 log L, where L denotes the likelihood ratio.

The model above was applied to data from both genders

combined, and thereby had relatively high statistical precision and

power (compared to a sex-specific model) when the assumptions of

the model were justified, and in particular when the genotypic

effects were the same in both genders. Additionally, in order to

characterize sex-specific genotype effects, the following model was

fitted to each gender separately:

yit~azbg(i)zd½g(i),t�zuizeit;

The results of the sex-specific analysis are shown in Tables 1 and

2.

Time-by-time ANOVA. For each measurement time point of

each phenotype, the following (two-way ANOVA) linear model

was fitted:

yi~azbg(i)zgs(i)zei,

where

N i~1,:::,n indexes mouse,

N yi denotes the phenotype of mouse i,

N a denotes the intercept term

N g(i) denotes the genotype of mouse i,

N s(i)[ Male,Femalef g denotes the gender of mouse i,

N the bg(i) denote the genotypic effect (with the constraint

bWT:0)

N the gg(i) denote the gender effect (with the constraint gMale:0),

N the ei are mutually independent identically distributed zero-

mean Gaussian residual error terms.

Parameter estimates were obtained, and, using the F-test for the

ordinary linear model, the null hypothesis of no genotypic effect

(i.e. H0 : bWT~bHet:~bHom:~0) was tested against the alternative

hypothesis under which bHet: and bHom: were unconstrained.

Parameter estimates, standard errors, and p-values are shown in

Table S1.

The model above was fitted to data from both genders

collectively, thereby increasing the precision to estimate, and

power to detect, genotypic effects when that model holds, and in

particular when the genotypic effects are the same in both genders.

In order to go on to investigate genotypic effects that differed

between genders, the following sex-specific one-way ANOVA

model was fitted to each gender’s data separately:

yi~azbg(i)zei

To account for multiple testing across time points and across the

three model fits (males, females, and both genders combined), a

Bonferroni correction was applied to the p-values resulting from

each phenotype’s analysis, correcting for a total of 3T tests, where

T denotes the number of time points; nominal and corrected p-

values are shown in Table S1.

Dependence of body mass on genotype and food intake
A mixed graphical model [40,41] was fitted to data comprising

six variables measured on 85 mice 16 weeks of age in the Negr1-

I87N study, using the R package gRapHD. Four of the variables

were quantitative (body mass, food intake, energy expenditure,

and physical activity), and two were qualitative (sex and genotype,

with only homozygotic and wild-type genotypes represented in the

sample used for this part of the study. Prior to model fitting, the

physical activity (number of beambreaks in the horizontal plane,

XT+YT) was log-transformed to make its distribution more

Gaussian. The default fitting method in the gRapHD package was

used (it was based on the Bayesian information criterion, or BIC).

The fitted graph is shown in Figure S4.

A linear model was fitted, with body mass as the response

variable, and food intake and genotype as the explanatory

variables, i.e.

yi~azbfizgg(i)zei,

where yi, fi, and g(i) denote the body mass, food intake, and

genotype (respectively) of mouse i. The food intake and genotype

effects are parameterized by b and gg(i) respectively, a is an

intercept term, and the ei are independent, identically distributed,

Gaussian residual error terms. Parameter estimates, standard

errors, t-statistics, and t-test p-values are shown in Table S2;

multiple R2 : ~var(bfizgg(i))=var(yi)~0:36, i.e. 36% of varia-

tion in body mass was explained by the two explanatory variables.

The numerator was decomposed to provide a decomposition of R2

into three components attributable to: (i) food intake alone

(var(bfi)=var(yi)~0:22); (ii) genotype alone

(var(gg(i))=var(yi)~0:07); and (iii) variation shared by food intake

and genotype (2cov(bfi, gg(i))=var(yi)~0:07).

Supporting Information

Figure S1 NEGR1-I87N is highly conserved across
vertebrate species. A. Schematic structure of NEGR1 and

the location of the I87N mutation as indicated (C2, Ig-like C2-type

domain). B. Multiple sequence alignment showing that NEGR1-

I87N (blue arrow) is conserved across a wide range of species.

Residues conserved to mouse NEGR1 are shaded in yellow.

(TIF)

Figure S2 Association of body mass and lean mass with
energy expenditure in Negr1-I87N mice. A–B, E–F.

Association of body mass with energy expenditure during light

phase (A,E) and dark phase (B,F) in female (A–B) and male (E–F)

mice. C–D, G–H. Association of lean mass with energy

expenditure during light phase (C,G) and dark phase (D,H) in

female (C–D) and male (G–H) mice. The lines are the best fit of a

straight line through the data using linear regression analysis. p-

values for differences in the slope (S) and the elevation or intercept

(E/I) of the lines are against wild-type mice (GraphPad Prism).

(TIF)

Figure S3 Analysis on faecal mass and energy content in
Negr1-I87N mice. A–C. Faecal content represented in grams

(A), normalized to body mass (B), and as energy content per gram
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(C) in female (WT, n = 27; het, n = 22; hom, n = 26) and male

(WT, n = 22; het, n = 22; hom, n = 24) Negr1-I87N mice at 14

weeks of age. Data are presented as mean 6 SEM.

(TIF)

Figure S4 Mixed graphical model for data collected at
time point 16 weeks of Negr1-I87N study. Conditional

dependence between variables (shown as vertices in the graph) is

represented by the edges in the graph, so, for example, ‘‘X and Y

are conditionally independent given Z,’’ is represented by the

graphical property ‘‘all paths joining X and Y pass through Z.’’

See Methods and [58,59] for further details.

(TIFF)

Figure S5 Hypothalamic Negr1 expression is unaffected
by fasting. A. Absence of NEGR1 expression in peripheral

tissues. Blots were probed with antibodies specific to NEGR1

(,50 kDa, upper panel) and a-actin (43 kDa, lower panel). The

protein band in muscle represents a ,45 kDa non-NEGR1-

specific soluble protein that is resistant to deglycosylation by

PNGaseF (data not shown). B, C. Nissl-stained sections of mouse

hypothalamus before and after LCM of PVN (B) and ARC (C)

tissue. D, E. Quantitative PCR from LCM samples from PVN

(ctl, n = 9; fast, n = 5) and ARC (ctl, n = 8; fast, n = 8) for Negr1 (D)

and Npy (E) normalized to PolR2A. *p = 0.041, Student’s t-test. No

statistically significant differences for normalized Negr1 expression

were obtained between different hypothalamic nuclei and feeding

conditions (control = ctl; 24 hr fasting = fast). All data are present-

ed as mean 6 SEM. co, cerebral cortex; hy, hypothalamus; oes,

oesophagus; sto, stomach; duo, duodenum; ile, ileum; col, colon;

cae, caecum; rec, rectum; WAT, white adipose tissue; ins,

intestinal WAT; sub, subsutaenous WAT; epi, epigonadal WAT;

pan, pancreas; spl, spleen; liv, liver; kid, kidney; mus, muscle;

BAT, brown adipose tissue.

(TIF)

Figure S6 Normal brain anatomy in Negr1-KO mice. A,
B. Distribution of NPY-positive axons in the PVN and ARC. C.

Immunostaining for TH-positive neurons in the PVN and ARC.

D. Graph showing relative number of TH-positive neurons in

PVN and ARC of wild-type and KO mice (n = 4/genotype). Data

are presented as mean 6 SEM. Student’s t-test (2-tailed) was

carried out between groups. E. Immunostaining for somatostatin-

positive axons in the ventromedial nucleus (VMN), ARC and

median eminence. F. CRH-immunostaining in the median

eminence.

(TIF)

Table S1 Time-by-time ANOVA results describing phe-
notypic dependence on sex and genotype.
(XLS)

Table S2 Details of a fitted linear model, in which body
mass was the response variable, and food intake and
genotype were the explanatory variables.
(XLS)
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