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Abstract—Differential phase contrast imaging (DPCI) enables
the visualization of soft tissue contrast using X-rays. In this
work weintroducea reconstruction framework based on curvelet
expansion and sparse regularization for DPCI. We will show
that curvelets provide a suitable data representation for DPCI
reconstruction that allows preservation of edges as well as an
exact analytic representation of the system matrix. As a first
evaluation, we show results using simulated phantom data.

I. INTRODUCTION

One of themain shortcomings of conventional x-ray com-
puted tomography (CT) is the low contrast within the soft
tissue regions. Differential phase-contrast imaging (DPCI)
is an emerging imaging modality which was developed to
address this issue. It was shown in [1], that this technique
improves the visualization of soft tissues upon conventional
X-ray computed tomography (CT).
The basic idea of DPCI consists in performing phase-

sensitive x-ray measurements (rather than imaging the ab-
sorption coefficient) and the reconstruction of the refraction
coefficient f : R2 → R. The mathematical model describes
the relationship between the phase change and the refraction
coefficient f in the following way, cf. [1], [2], [3],

Pf (θ, s) =
∂
∂s

�

L (θ,s)
f (x) dx, (1)

where L(θ, s) = { x ∈ R2 : x1 cosθ + x2 sinθ = s} denotes
a linewith thenormal direction (cosθ, sinθ)T and thesigned
distance from the origin s ∈ R. Given the measurements
y = Pf , the reconstruction problem amounts to finding the
refraction coefficient f fromthe phase shift data Pf . In this
work,weconsider the followingnoisy reconstructionproblem

yδ = Pf + η, (2)

whereη is thenoise component withanoise level δ > 0, i.e.,
�η�2 ≤ δ. To thisend,wefirst notethat theDPCImodel (1) is
essentially given by the first derivative of the classical Radon
transform

Rf (θ, s) =
�

L (θ,s)
f (x) dx, (3)

such that Pf (θ, s) = ∂
∂ s Rf (θ, s). Therefore, techniques

which were originally developed for conventional CT can
be transferred to DPCI. For example, in [4], the well-known
filtered backprojection (FBP) algorithmshas been adapted for
reconstruction fromDPCI data. However, in order to achieve
anadequate reconstructionquality, FBP needs a largenumber
of projections. In addition to that, it is well-known that FBP
performs poorly in the presence of noise.
Toaddresstheseissues,weproposeareconstructionmethod

that is based on a series expansion framework (often called
algebraic or iterative reconstruction). In this framework, the
unknown function f is expanded with respect to a given
dictionary (ψn )N

n = 1 via f =
� N

n= 1 cnψn . Then, theexpansion
coefficients (cn )N

n = 1 are determined fromthemeasurements

ym = Pf (θm , sm ) =
N�

n = 1

cn Pψn (θm , sm ). (4)

by solving the linear systemof equations

y = Pc, (5)

where y = (y1, . . . , yM )� and P = (Pm ,n ) is the M × N
system matrix with entries Pm ,n = Pψn (θm , sm ).
Several choices of dictionaries have been proposed for

reconstruction inDPCI. For example, in [5],Köhler et al. con-
sidered a series expansions based on Kaiser-Bessel functions
(also known as isotropic blob functions). Another example
is the B-Spline series expansion which was investigated by
Nilchian et al. in [6].
In this work, we propose an approach that is based on the

expansion of f with respect to the curvelet frame, [7]. An
advantage of using curvelets over other dictionaries lies in
the fact that curvelet expansions allow for an edge-preserving
reconstruction. In addition to that, curvelets admit an analytic
representation of the systemmatrix.
Thepaper isorganizedasfollows:inSectionIIwerecall the

definitionof curveletsandrecall someof theirbasic properties.
In Section III we describe our curvelet-based discretization
used for the explicit computation of the systemmatrix P as
well as theresultingreconstructionmethod.Finally, inSection
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IV, we illustrate our method by reconstructions of simulated
phantomdata.

II. CURVELETS

The curvelet dictionary is a family of functions ψj ,l ,k :
R2 → C which has a multi-scale structure and whose main
advantage is thehigh directionality of its finescaleatoms [7].
The construction of curvelets is done in the Fourier domain.
We will make use of the following definition of the Fourier
transform

f̂ (ξ) =
1

2π

�

R2
f (x)e− i xξ dx.

Wefirst define the generating curveletsψj ,0,0 at scale 2− j ,
j ∈ N0, by using polar coordinates ξ = rei θ in the Fourier
domain:

�ψj ,0,0(rei θ) = 2− 3j / 4 · W(2− j · r ) · V
�

2�j / 2�+ 1

π
· θ
�

, (6)

where W is a radial window and V is an angular win-
dow, respectively. We require the windows W , V to be real
and smooth (W, V ∈ C∞ ) such that supp W ⊂ (1/ 2, 2),
supp V ⊂ (− 1, 1). Moreover, V and W have to satisfy
properadmissibilityconditions,cf. [7].Thefamilyof curvelets
{ψj ,l ,k } j ,l ,k is constructed by translation and rotation of the

generating curvelets ψj ,0,0. That is, at scale 2− j , the curvelet
ψj ,l ,k is defined via

ψj ,l ,k (x) = ψj ,0,0(Rθj , l (x − bj ,l
k )), for x ∈ R2. (7)

HereRθj , l denotes the rotationmatrix

Rθj , l =
�

cosθj ,l − sinθj ,l

sinθj ,l cosθj ,l

�

with respect to thescale-dependent rotationanglesθj ,l andthe
scale-dependent locations bj ,l

k which are defined by

θj ,l = l ·π · 2− �j / 2�− 1, − 2�j / 2�+ 1 ≤ l < 2�j / 2�+ 1, (8)

bj ,l
k = R− 1

θj , l

�
k1

2j ,
k2

2j / 2

�
, k = (k1, k2) ∈ Z2. (9)

Clearly, each curvelet is supported on a polar wedge in the
Fourier domain which has a positive distance to the origin.
Wecompletethecurvelet systemwith thegenerating low-pass
functionψ− 1,0,0, defined in the Fourier domain by

�ψ− 1,0,0(rei θ) = W0(r ), W 2
0 (r ) := 1 −

∞�

j = 0

W 2(2− j r ),

with all of its translates {ψ− 1,0,k } k∈Z2 . The index set of the
completed curvelet dictionary is now given by

I =
 

(− 1, 0, k) : k ∈ Z2!
∪

 
(j , l , k) : j ∈ N0, k ∈ Z2, − 2�j / 2�+ 1 ≤ l < 2�j / 2�+ 1!

One of the fundamental properties of the curvelet dictionary
is that it constitutes a normalized tight frame for L 2(R2), cf.

[7]. In particular, each f ∈ L 2(R2) can be expanded in terms
of curvelets via

f =
�

( j ,l ,k )∈I

�ψj ,l ,k , f �ψj ,l ,k . (10)

Note that the representation (10) is directional. Indeed, in
addition to the scale-parameter j and the location parameter
k = (k1, k2), the orientation parameter l corresponds to
directional features of f .

III. CURVELET SERIES EXPANSION FOR DPCI

We now use curvelets in order to discretize the DPCI
operator P which is defined in (1). To this end, we model
f as a finite linear combination of curvelets via

f =
N�

n= 1

cnψn , (11)

wheren = n(j , l , k) isanenumerationof thecurveletindexset
I andN = |I |. In the following, wealso assume that afinite
number of measurements is available, ym = Pf (θm , sm ),
1 ≤ m ≤ M ∈ N. Using (11), each measurement ym can
be expressed as

ym = Pf (θm , sm ) =
N�

n = 1

cn Pψn (θm , sm ). (12)

The discrete (noise free) reconstruction problemthen reads

y = Pc, (13)

where P is the systemmatrix which is defined by

P m ,n = Pψn (θm , sm ), 1 ≤ m ≤ M , n ∈ I . (14)

Anadvantageof usingcurvelets for thediscretization liesin
the fact that theRadon transformof curvelet elements can be
computedanalytically.Inanalogy to[8],wehavethefollowing
result.

Theorem III.1. Let ψj ,l ,k be a curvelet (cf. (7)) and denote
e(θ) = (cosθ, sinθ)�. Then,

Pψj ,l ,k (θ, s) = 25j / 4V ∗

�
2�j / 2�+ 1

π
(θ− θj ,l )

�√
2π

"iW ∗

�
2j
�#

bj ,l
k , e(θ− θj ,l )

$
− s
��

where bj ,l
k and θj ,l are defined in (8) and (9). Further,

W ∗(r ) = r W(r ) with the radial window function W as given
above and V ∗(α) = V(α) + V (α− sgn(α)π) with V denoting
the angular window function.

Wenow consider thediscretenoisy reconstruction problem

yδ = Pc + η, (15)

where η ∈ RN denotes the noise component. In order to
minimize the influence of noise to the reconstruction, we use
variational regularization which amounts to theminimization
of an energy functional of the form

�Pc − y�2
2 + αΛ(c), (16)
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where the first term controls the data error and the second
term Λ : RN → [0,∞ ) is a penalty function which encodes
the a-priori information about the unknown object f .
Our goal is to design an edge-preserving reconstruction

method based on curvelet coefficients. For this purpose, we
takeadvantageof theability of curvelets to provideoptimally
sparse representation of functions with sharp edges, cf. [9].
In order to obtain a sparse vector of curvelet coefficients
throughminimization of (16), weuse the paradigmof sparse
regularization, cf.[10]. In this context, it is well-known that
the�1-norm favors sparse solutions. Therefore, we solve the
problem(15) by minimizing the�1-penalized functional

ĉ = arg min
c∈CN

%
1
2

&
&Pc − yδ

&
&2

2 + �c�1,w

'
, (17)

where �c�1,w =
�

k wk |ck | denotes the weighted 1-norm
with a weight sequence w satisfying wk ≥ w0 > 0. Having
computed ĉ, a solution for the original problem (2) is then
given by applying the synthesis operator to the regularized
curvelet coefficients ĉ, i.e.,

f ∗ =
N�

n = 1

ĉnψn . (18)

The computation of a reconstruction by (17), (18) is stable
and edge-preserving.

IV. RESULTS

A. Implementation

Our implementation of the curvelet transform is written in
C++and is based on polar coordinates in theFourier domain.
Note that the CurveLab toolbox [11] uses a slightly differ-
ent approach with coronization based on concentric squares
instead of concentric circles.
For sparseregularization,oneof themost effectivemethods

istheiterativesoft-thresholdingalgorithm(ISTA)assuggested
in [10]. We implemented the fast iterative soft-thresholding
algorithm(FISTA) variant as proposed in [12]. In both algo-
rithms every minimizer c∗ of the�1-penalized reconstruction
problemis a fixed point of the following iteration:

c∗k+ 1 = Sλw
�
c∗k − λP∗(Pc∗k − yδ)

�
.

Here, Sτ denotes the soft-thresholding operator of x with
threshold τ :

Sτ (x) =

�
x − sgn(x)τ |x| ≥ τ
0 else.

The step-size λ > 0 is chosen according to the Barzilai-
Borwein method (cf. [13]). For our first reconstructions, we
use a constant parameter w = 0.01. We will refer to our �1-
regularized reconstruction as Curvelet Sparse Regularization
(CSR), cf. (17) and (18). Additionally, we implemented the
Conjugate Gradient (CG) method. We have used the CG to
solve the un-regularized tomographic problem (15). In the
following, wewill compare the results of reconstructions ob-
tainedviaFBP to thoseof theCG basedreconstructionaswell

as our CSR based reconstructions. In both implementations,
CSR as well as CG, we have used the closed form formula
given in Theorem III.1 in order to compute the elements of
the systemmatrix.

B. Setup and datasets

Toevaluateourmethod,weappliedtheforwardmodel tothe
Shepp-Logan phantom. We compare FBP (with the adjusted
filter for DPCI [4]) to both of our curvelet based iterative
methods - CG and CSR. Both reconstructions, CG and CSR,
wereproducedusing200iterations.Westartour evaluationby
taking 360 projections within the angular range of 0◦ -180◦ .
The results are shown in Fig. 1.

(a) (b) (c)

0 50 100 150 200

0

0.01

0.02

0.03

0.04

0.05
FBP
CG
CSR
Ground Truth

(d)

Fig. 1. (a) FBP (SNR: 12.7 dB), (b) CG (SNR: 15.7 dB), (c) CSR (SNR:
15.9 dB), (d) Line profile (y = 100)

The curvelet based methods provide visually promising
results. Additionally, wepresent a lineprofile(see. Fig. 1 (d))
which clearly shows our curvelet based methods to bemuch
closer to theground truth than theFBP method. Thesignal to
noise ratio (SNR) showsan increase from12.7dB for FBP up
to 15.9dB for CSR.
However, having a closer look we observe two additional

phenomena:First, our current implementation of the curvelet
basedmethodsexhibitsGibbs-likeeffects.Second,wefindthe
CG results to show high frequent noise in contrast to theFBP
results. Thus,wesupposethisnoise is linked to theoscillating
behaviour of the curvelet elements. This noise gets clearly
reduced by theCSR method, while sharpness of the edges is
preserved.Thegiven lineprofileadditionally shows, thisnoise
reduction when using CSR in contrast to the CG method.
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We continue our evaluation by reducing the number of
projectionstakento60by increasingtheangular spacingfrom
0.5◦ to 3◦ . The corresponding results are shown in Fig. 2.
The line profile in Fig. 2 (d) as well as the SNR increase
from11.1dB (FBP) to14.3dB (CSR)emphasizesour previous
results. However, in this case, wealso observeGibbsartefacts
and a noise reduction when using the CSR method.

(a) (b) (c)

0 50 100 150 200

0

0.02

0.04

0.06 FBP
CG
CSR
Ground Truth

(d)

Fig. 2. (a) FBP (SNR:11.1dB), (b)CG (SNR:13dB), (c)CSR (SNR:14.3
dB), (d) Line profile (y = 100)

V. CONCLUSION

Inthisworkwehaveintroducedacurveletbasedframework
for differential phase-contrast imaging. In particular, wehave
presentedananalyticallyexactdiscretizationof theDPCIoper-
ator.Moreover,weappliedthecurveletsparseregularizationto
the reconstruction problemof DPCI. Our first reconstruction
results show that the method is promising, but still requires
further work to achieve better results.
Webelieve that the curvelet representation provides asolid

basis for extending reconstruction methods towards reducing
the radiation exposure by exploiting the sparsity and edge-
preserving properties of curvelets.
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