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Abstract 1 

Thyroid cancer is one of the major health concerns after the accident in the Fukushima Dai-2 

ichi nuclear power station (NPS). Ultrasonography surveys are being performed for persons 3 

residing in the Fukushima Prefecture at the time of the accident with an age of up to 18 years. 4 

We assess the expected thyroid cancer prevalence in the Fukushima Prefecture based on an 5 

ultrasonography survey of Ukrainians, who were exposed at age of up to 18 years to 
131

I 6 

released during the Chernobyl NPS accident, and on differences in equipment and study 7 

protocol in the two surveys. Radiation risk of thyroid cancer incidence among survivors of the 8 

atomic bombings of Hiroshima and Nagasaki in the Life Span Study and preliminary 9 

estimates of thyroid dose due to the Fukushima accident were further inputs to predict 10 

baseline and radiation-related thyroid cancer risks. We estimate a prevalence of thyroid cancer 11 

of 0.027% (95% CI: 0.010%; 0.050%) for the first screening campaign in the Fukushima 12 

Prefecture. Compared to the incidence rate in Japan in 2007, the ultrasonography survey is 13 

predicted to increase baseline thyroid cancer incidence by a factor of 7.4 (95% CI: 0.95; 17.3). 14 

Under the condition of continued screening, thyroid cancer during the first fifty years after the 15 

accident is predicted to be detected for about 2% of the screened population. The prediction of 16 

radiation-related thyroid cancer in the most exposed fraction (a few ten thousand persons) of 17 

the screened population of the Fukushima Prefecture has a large uncertainty with best 18 

estimates of the average risk of 0.1% to 0.3%, depending on average dose.  19 
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 22 

Introduction 23 

Large amounts of radionuclides were released from the Fukushima Dai-ichi nuclear 24 

power station (NPS) in the aftermath of the 2011 Great East Japan earthquake, tsunami and 25 

reactor accident. Thanks to prompt actions of Japanese authorities, radiation exposures of the 26 
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population were generally low. However, average thyroid doses of young children in some 1 

settlements were reported to be of the order or even exceeding 100 mSv (WHO 2013). These 2 

dose estimates are based on environmental and food measurements (WHO 2012). However, 3 

measurements of incorporated 
131

I indicate that thyroid doses in the population were lower 4 

than the WHO estimate (Kamada et al. 2012; Tokonami et al. 2012; Kim et al. 2013; Matsuda 5 

et al. 2013).  6 

There is concern about thyroid cancer induced by the accident at the Fukushima Dai-7 

ichi NPS. The concern is triggered by the massive increase of thyroid cancer among those, 8 

who were highly exposed during childhood due to the Chernobyl accident (Kazakov et al. 9 

1992; UNSCEAR 2011). In order to monitor thyroid cancer, periodic thyroid ultrasonography 10 

surveys have been introduced for all young inhabitants of the Fukushima Prefecture up to age 11 

of 18 years at the time of the accident (Fukushima Medical University 2013a). 12 

Thyroid cancer is a rare disease, although thyroid cancer incidence has increased 13 

worldwide during the previous decades. The increase might be related to improved 14 

diagnostics. No evidence for an influence of iodine supplementation could be demonstrated 15 

(Bloomberg et al. 2012). Ultrasonography has a large potential of detecting so-called occult 16 

carcinoma that do not become clinically relevant during lifetime (Welch and Black 2010; 17 

Moynihan et al. 2012). The existence of such carcinoma has been demonstrated by autopsies 18 

with prevalence values ranging from 1.5% in Greece (Delides et al. 1987) to 36% in Finland 19 

(Harach et al. 1985). Different definitions of prevalence are given in the literature. We use 20 

here ‘proportion of a population that has a disease at a specific point in time’ (Rothmann and 21 

Greenland 1998).  22 

Autopsies of 2372 of otherwise cancer-free survivors of the atomic bombings of 23 

Hiroshima and Nagasaki revealed 106 papillary thyroid microcarcinoma, mostly of the 24 

sclerosing variant (Hayashi et al. 2010). This corresponds to a prevalence of 4.5%. These 25 

results apply mainly to adults. No conclusive autopsy data on occult thyroid cancer in 26 
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children are available. The number of occult carcinomas detected by ultrasonography depends 1 

on the equipment and study protocol used. Several other factors like the age-gender structure 2 

of the cohort and the country-specific or even group-specific thyroid cancer frequency 3 

influence prevalence (first screening) and incidence rate (subsequent screenings) in 4 

ultrasonography surveys. 5 

As of 31 July 2013, ultrasonography has been performed for 41 296 children, 6 

adolescents and young adults living on 11 Mar 2011 in thirteen municipalities of the 7 

Fukushima Prefecture that were targeted for screening before April 2012 (Fukushima Medical 8 

University 2013a). Secondary examination was required for 214 persons with thyroid nodules 9 

larger than 5 mm or cysts larger than 20 mm. These examinations were completed for 165 10 

persons allowing a first estimation of thyroid cancer prevalence in the young population. 11 

Cytology of fine needle aspiration (FNA) biopsies revealed 14 cases of suspected malignancy. 12 

Surgery has been performed for 10 of them; 9 were identified as papillary carcinoma, one as a 13 

benign tumour. The 13 cases of confirmed (9) or still suspected (4) thyroid cancer correspond 14 

to a prevalence of 13/41 296 = 0.031%. The prevalence is expected to increase because of 15 

possible thyroid cancer cases among the 49 persons, for whom secondary examination was 16 

required but not completed at 31 July 2013. 17 

In a second group of municipalities that were targeted for screening between April 18 

2012 and March 2013, 135 586 people were screened and 30 cases of suspected thyroid 19 

cancer were detected by cytology of FNA biopsies. Only 45% of required secondary 20 

examinations had not been finished at 31 July 2013, thus the prevalence in these 21 

municipalities is expected to increase beyond the present values of 0.022%. 22 

Ultrasonography has been performed for the UkrAm cohort consisting of Ukrainians, 23 

who were up to age of 18 years on 26 Apr 1986, the date of the Chernobyl accident (Tronko 24 

et al. 2006). Concerning sex-age distribution of the cohort at the time of the accident and 25 

baseline incidence rate (National Cancer Register of Ukraine 2013), the cohort is comparable 26 
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to the study group in the Fukushima Prefecture. However, the first screening was performed 1 

from 1998 to 2000, not until twelve years after exposure. The study protocol selected nodules 2 

smaller than 10 mm for secondary examination only, if further criteria were fulfilled. Thus 3 

this protocol leads under otherwise same conditions to a smaller prevalence than the study 4 

protocol in the Fukushima Prefecture. Nevertheless, prevalence of confirmed thyroid cancer 5 

cases not related to the exposure from the Chernobyl accident was higher than what is 6 

expected for the Fukushima Prefecture, because cohort members at the time of the first 7 

screening were older, in average by about 12 years. 8 

Repeated ultrasonography has also been performed for the UkrAm cohort (Brenner et 9 

al. 2011). Comparison with the baseline thyroid cancer incidence rate in Ukraine allows an 10 

assessment of the impact of the screening on reported incidence rates. The effect of increased 11 

surveillance of the thyroid was also analysed for Belarusian and Ukrainian population groups 12 

(Jacob et al. 2006a; Likhtarov et al. 2006). Based on these three studies, we estimate in the 13 

present paper the baseline (not related to the radiation exposure due to the accident at the 14 

Fukushima Dai-ichi NPS) thyroid cancer incidence rate in the Fukushima Prefecture under the 15 

conditions of on-going surveys. 16 

Long-term thyroid cancer risk due to exposure to external radiation has been 17 

analysed in a number of studies (Ron et al. 1995; Furukawa et al. 2013; Veiga et al. 2012). 18 

However, higher thyroid doses among inhabitants of the Fukushima Prefecture were mainly 19 

caused by incorporation of radioiodine (WHO 2012). For young age at exposure and the first 20 

twenty years after the Chernobyl accident, an increased risk has been demonstrated (Tronko et 21 

al. 2006; Brenner et al. 2011; Cardis et al. 2012; Kopecky et al. 2006; Jacob et al. 2006b). 22 

However, the risk information is less complete than for external exposures. We derive in this 23 

study radiation risks from data for the atomic bomb survivors, and check the consistency with 24 

results obtained in studies of people exposed to 
131

I from the Chernobyl nuclear power plant. 25 

Excess rates in the Fukushima Prefecture are predicted by applying to the LSS risk function a 26 
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screening factor that is based on experiences in the UkrAm cohort and differences in the study 1 

protocol of the ultrasonography surveys. 2 

Materials and Methods 3 

Study groups, screening intervals and thyroid dose 4 

The Fukushima Health Management Survey includes ultrasonography of the thyroid 5 

of all residents of the Fukushima Prefecture aged up to 18 years at 11 March 2011 6 

(Fukushima Medical University 2013a). Based on post-Chernobyl studies we calculated 7 

thyroid cancer prevalence for two campaigns of the first screening, October 2011 to March 8 

2012, and April 2012 to March 2013 (see Supporting Information for sex-age distributions). 9 

Prevalence is also calculated for the sex-age distribution in the ultrasonography survey of 10 

children and adolescents in the three non-contaminated prefectures of Aomori, Yamanashi 11 

und Nagasaki (Taniguchi et al. 2013). 12 

According to WHO (2013), we assume in one scenario an average thyroid dose of 50 13 

mSv for the most exposed fraction (a few ten thousand persons) of the surveyed population in 14 

the Fukushima Prefecture. Since measurements of the iodine content indicate lower doses 15 

(Kamada et al. 2012; Kim et al. 2013; Matsuda et al. 2013; Tokonami et al. 2012), we assume 16 

in a second scenario an average thyroid dose of 20 mSv. Individual thyroid doses could have 17 

been considerably larger or smaller. For a linear dose response, however, excess incidence 18 

rate is determined by the average dose and not by other parameters of the dose distribution. 19 

Thyroid cancer prevalence detected by ultrasonography 20 

The UkrAm cohort consists of 13,127 Ukrainians, who were up to age of 18 years on 26 21 

April 1986, the date of the Chernobyl accident (Tronko et al. 2006). During the time of the 22 

first screening in the UkrAm cohort, the age-standardized thyroid cancer incidence rate in 23 

Ukraine was 1.2 and 4.9 cases per 10
5
 person-years for males and females, respectively 24 

(National Cancer Registry of Ukraine 2013). These rates are comparable to those in Japan in 25 

2007 (2.2 and 7.9 cases per 10
5
 person-years). The first round of ultrasonography in the 26 
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UkrAm cohort was performed 12 to 14 years after the accident. Forty five pathologically 1 

confirmed thyroid cancer cases were detected. Tronko et al. estimated that 11.2 (95%CI: 3.2; 2 

22.5) of these cases would have been detected in the absence of the exposure due to the 3 

Chernobyl accident. This corresponds to a prevalence, PUA, of about 0.09 (95%CI: 0.02; 4 

0.17) %. 5 

We estimated the prevalence for the population in Fukushima Prefecture, PFp, by taking 6 

into account differences in study protocols and sex-age structures of the screened populations: 7 

PFp = fsp PUA λJapan,Fp / λUkraine,U1,                                                 (1) 8 

where λJapan,Fp and λUkraine,U1 are the average incidence rates in a hypothetical group of 9 

Japanese (National Cancer Center 2012) with the sex-age structure of the surveyed 10 

Fukushima population and of a hypothetical group of Ukrainians (Fedorenko et al. 2002)  11 

with the sex-age structure of the UkrAm cohort during the first survey, respectively. The 12 

factor fsp accounts for differences in the study protocols in the UkrAm study and the 13 

Fukushima survey. The ratio of the numbers of all tumors larger than 5 mm (study protocol in 14 

the Fukushima Prefecture) and larger than 10 mm (UkrAm cohort) under otherwise the same 15 

conditions is the maximum of fsp , because also some nodules in the size range from 5 to 10 16 

mm were selected in the UkrAm for further investigation and turned out to be cancer (O’Kane 17 

et al. 2010).  18 

No direct information is available to determine fsp for tumours. As a surrogate, we use 19 

the corresponding ratio for nodules. This choice is supported by the thyroid screening study in 20 

Hong Kong (Yuen et al. 2011), in which the ratio for nodules larger than 5 mm and larger 21 

than 10 mm is 2.4 (398/169). For tumours the ratio is 2.2 (11/5), nearly equal to that for 22 

nodules. The screenings from October 2011 to March 2013 in the Fukushima Prefecture 23 

detected 1125 nodules larger than 5 mm and 354 nodules larger than 10 mm (Fukushima 24 

Medical University 2013b). Correspondingly, the upper boundary of fsp is estimated to 25 

1125/354=3.2. The lower boundary is assumed to correspond to no additional cases according 26 
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to differences in the study protocol, 1.0. The factor fsp is assumed to have a symmetrical 1 

triangular distribution between these two boundaries. 2 

Impact of ultrasonography and thyroid surveillance on thyroid cancer incidence rate 3 

The impact of the second to fourth screenings on the incidence rate in the UkrAm 4 

cohort can be calculated as the ratio of the baseline incidence rate in the cohort (Brenner et al. 5 

2011) and the incidence rate in Ukraine in the period 2001 to 2007 for a hypothetical 6 

population with the same sex-age distribution (National Cancer Registry of Ukraine 2013). 7 

The baseline incidence rate in the cohort can be estimated by the ratio of the excess absolute 8 

rate per unit dose, EARUA, and the excess relative risk per unit dose, ERRUA. Brenner et al. 9 

(2011) estimated the EARUA to 22.1 (95% CI: 0.04; 5.78) cases per 10
5
 person-years, and the 10 

ERRUA to 1.91 (95% CI: 0.43; 6.34). These numbers indicate a best estimate of the baseline 11 

incidence rate in the UkrAm cohort during the second to fourth screening of 11.6 cases per 12 

10
5
 person-years. The incidence rate in Ukraine with the same sex-age structure as in the 13 

UkrAm cohort during the second to fourth screening, λUkraine,U2-4, is 3.3 cases per 10
5
 person-14 

years (National Cancer Center of Ukraine 2013). The screening factor in the UkrAm, fUA, is 15 

calculated by 16 

fUA = EARUA / (ERRUA * λUkraine,U2-4).    (2) 17 

EARUA and ERRUA are correlated, and the coefficient of determination (square of correlation 18 

coefficient) has been assumed to be uniformly distributed from 0.7 to 1.0. 19 

Thus the distribution of the screening factor in the Fukushima Prefecture, Fscr, is a 20 

product of the screening factor in the UkrAm cohort, fUA, and the factor taking into account 21 

differences in the study protocol, fsp. 22 

Thyroid cancer risk in LSS 23 

Recently, thyroid cancer risk in the cohort of survivors of the atomic bombings of 24 

Hiroshima and Nagasaki has been analysed by Furukawa et al. (2013) in the frame of the so-25 

called Life Span Study, (LSS). Their analysis excluded microcarcinoma (tumours smaller 26 
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than 10 mm). However, tumours smaller than 10 mm are expected to contribute significantly 1 

to thyroid cancer prevalence and incidence rate in the Fukushima Prefecture under the 2 

conditions of ultrasonography surveys. An earlier analysis of thyroid cancer in the LSS by 3 

Preston et al. (2007) included microcarcinoma, but did not give separate risk results for LSS 4 

members participating or not participating in screening under the Adult Health Study (AHS). 5 

AHS participants are medically examined every second year. In order to take into account 6 

both effects of carcinoma of size smaller than 10 mm and of increased thyroid surveillance in 7 

the AHS, we re-analysed the LSS data. In an excess relative risk model, standard dependences 8 

on age-at-exposure, e, and attained age, a, were applied, and for LSS members participating 9 

in the AHS baseline thyroid cancer incidence rate was modified by a time-dependent 10 

screening factor FAHS(a,e), having different values before and after 1970: 11 

 
 
 

,1

,1 ,2

exp , if - 25 (member of AHS in 1970 and later)
( , )

exp , otherwise (member of AHS before 1970)



 

 
 



AHS

AHS

AHS AHS

a e
F a e  (3) 12 

These two time periods were chosen to differentiate the early period with many autopsies 13 

from the later period with fewer autopsies (Preston et al. 2007). More details on the risk 14 

models and their parameters are given in Electronic Supplementary Material. 15 

Excess absolute rate in the Fukushima Prefecture 16 

The standard approach of transferring risk estimates for thyroid cancer in the LSS to 17 

other populations is assuming a multiplicative interaction of radiation and other risk factors, 18 

i.e., the excess relative risk per unit dose (ERR) is assumed to be the same in the both 19 

populations (US Environmental Protection Agency 2011; National Research Council 2006). 20 

Thus, the excess absolute rate per unit dose in the population of interest, EAR, is obtained by 21 

multiplication of ERR with the country-specific incidence rate. For the present study, we 22 

apply three additional factors: Fscr (see above), FL(a-e) that takes into account that radiation-23 

induced cases are not expected before three years after the exposure (Heidenreich et al. 1999), 24 
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and FDREF for the additional uncertainty of the risk function at low dose rate (Jacob et al. 1 

2009). In summary, we calculate in the model of multiplicative interaction  2 

EAR(s,e,a) = Fscr FL(a-e) FDREF ERRLSS(s,e,a) λJapan(s,a),            (4)  3 

where ERRLSS(e,a) is the excess relative risk per unit dose for LSS cohort members not 4 

participating in the AHS. 5 

Baseline thyroid cancer incidence rate in Japan in 2007 is lower than 10
−6

 per year 6 

for males of age younger than 15 years, which is reported as zero (National Cancer Center 7 

2012). Based on these data and according to eq. (4), no cases would be expected during the 8 

first fifteen years among males exposed as infants. In order to avoid this artefact, we assume 9 

an equal probability of any risk between results obtained with models of additive and 10 

multiplicative interactions (mixed transfer): 11 

EAR(s,e,a) = Fscr FL(a−e) FDREF  ERRLSS(s,e,a) [f λJapan(s,a) + (1−f) λLSS(s,e,a)]     (5) 12 

where f is uniformly distributed between 0 and 1. Similarly, WHO (2013) used weighted-13 

average of multiplicative and additive risk transfer, assuming equal weights. 14 

Attributable risk 15 

We calculate the risk rate attributable to radiation exposure, ARR, by multiplication 16 

of EAR(s,e,a) with thyroid dose, D, and taking into account cancer-free survival, S(s,a), in 17 

Japan in 2007 (National Cancer Center 2012; Ministry of Health, Labour and Welfare of 18 

Japan 2013; see also Electronic Supplementary Material): 19 

ARR(s,e,a,D) = EAR(s,e,a) D S(s,a)/S(s,e)    (6) 20 

Attributable risks are obtained by integration over pre-defined periods after exposure: 21 

( , , , ) ( , , , )

a

e

AR s e a D ARR s e t D dt              (7) 22 

Lifetime attributable risk refers to an integration period from exposure over the whole 23 

lifetime. 24 

Similarly, baseline risk is modelled as follows 25 
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       / .

a

Japan

e

BR s,e,a = λ s,t S s,t dt S s,e      (8) 1 

Risks for the study group are calculated by averaging over the sex-age distribution at 2 

the time of exposure. 3 

Results 4 

Thyroid cancer prevalence 5 

Our estimate of prevalence of pathologically-confirmed thyroid cancer cases among 6 

the screened population of the municipalities in the Fukushima Prefecture targeted for the 7 

survey for the period Oct 2011 to Mar 2012 is 0.027 (95%CI: 0.010; 0.050)% (Table 1). The 8 

large uncertainty of our estimation is mainly caused by the uncertainties of the prevalence of 9 

baseline cases in the UkrAm cohort, PUA and of the impact of differences of the study 10 

protocol, expressed by the factor, fsp. 11 

Prevalence for the municipalities of the Fukushima Prefecture targeted for later 12 

periods is predicted to be higher, because the screening has been performed later, thus mean 13 

age in the cohort and, correspondingly, average baseline rate are higher (see Table 1). 14 

Screening factors due to ultrasonography surveys 15 

Thyroid cancer incidence in the UkrAm cohort during the second to fourth screening 16 

is estimated to be higher than the national incidence rate in Ukraine by a factor, fUA, of 3.6, 17 

with a 95% confidence range from 0.5 to 7.9 (Fig. 1). 18 

Thyroid cancer incidence in the Fukushima Prefecture under the condition of 19 

continued ultrasonography surveys is estimated to be increased compared to the incidence rate 20 

in 2007 by a factor of 7.4, with a 95% confidence range from 0.95 to 17.3. Because of 21 

differences in the study protocol, the screening factor is the Fukushima Prefecture is larger 22 

and has a wider confidence interval than the screening factor in the UkrAm cohort. 23 

Thyroid cancer incidence risk in the LSS 24 
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Compared to present day ultrasonography of the thyroid, the impact of screening and 1 

autopsies on thyroid cancer incidence among AHS participants was relatively small. For the 2 

period before 1970 with a relatively high rate of autopsies, we find a screening factor of 1.72 3 

(95%CI: 1.17; 2.55), and for the period afterwards of 1.23 (95%CI: 0.96; 1.59).  4 

ERR in the LSS decreases with age at exposure and age attained (see Fig. 2). EAR 5 

decreases with age at exposure as well. However, it increases with time since exposure. 6 

Attributable risk rate 7 

In the mixed transfer model, the risk rate attributable to radiation exposure increases for 8 

young ages at exposure after the minimal latency period of three years for a few years steeply 9 

with time since exposure (Fig. 3). It continues to increase with a smaller slope for the next 10 

fifty years. For an exposure of females at age of 1 year with a thyroid dose of 100 mSv, the 11 

attributable risk rate is predicted to increase from about 0.2 cases per 10
4
 person-years at an 12 

attained age of 10 years to 6 cases per 10
4
 person-years at age 50. 13 

For exposure at older age, the increase is less steep. The attributable risk rate reaches a 14 

maximum at attained age of about 60 years, and decreases subsequently due to the decrease of 15 

the survival function. 16 

In general, best estimates of the attributable risk rate for females are larger than for 17 

males. The ratio is maximal for attained age of about 40 years with a value of 5.5 for age at 18 

exposure of 1 year. The difference is, however, not significant due to the large uncertainty of 19 

the estimates. Main sources of uncertainty are the risk function derived from the LSS, the 20 

screening factor, and extrapolation of the risk function to low dose rates (in the order of 21 

decreasing importance). 22 

With the exception of young attained age, the multiplicative transfer, eq. (4), gives 23 

results very similar to the mixed transfer. For boys below attained age of 15 years and girls 24 

below age of 10, the multiplicative transfer results in no excess cases, whereas the mixed 25 

transfer gives non-zero results. 26 
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Attributable risk 1 

The dominant part of the attributable risk accumulates over several decades (Table 2). 2 

The contribution of the first ten years to the risk over fifty years decreases with increasing age 3 

at exposure. The long latency is especially expressed for females: for age at exposure of 1 4 

year, less than 1% of the attributable risk cumulated during fifty years after exposure (for 100 5 

mSv: 1.4%) is contributed by the first ten years (0.013%). 6 

For the same thyroid dose, the attributable risk accumulating over several decades after 7 

exposure decreases with increasing age at exposure. However, the effect is relatively modest 8 

(about a factor of two for ages at exposure of 1 and 18 years). 9 

Under the condition of continued screening, baseline thyroid cancer risk during the first 10 

fifty years after exposure in the screened population of the Fukushima Prefecture is predicted 11 

to 2.2 (95% CI: 0.27; 5.3)% (Table 3). For an average thyroid dose of 20 mSv, the risk related 12 

to the radiation exposure amounts to 0.13 (95% CI: 0.005; 0.40)%. Less than 5% of the 13 

radiation-related risk accumulates during the first ten years after the exposure. 14 

 15 

Discussion 16 

Thyroid cancer prevalence 17 

The first ultrasonography survey in the Fukushima Prefecture is intended to be 18 

finished at 31 Mar 2014, about three years after the accident at Fukushima Dai-ichi NPS. 19 

After the Chernobyl accident, an excess of thyroid cancer cases was not observed before three 20 

years after exposure (Heidenreich et al. 1999). Thus, the prevalent cases in the Fukushima 21 

Prefecture are not assumed to be related to radiation exposure. 22 

As of July 31, 2013, surgery of the thyroid has been performed for 10 persons out of 23 

41296, who lived at the time of the accident in 13 municipalities that were targeted for 24 

ultrasonography survey before April 2012 (Fukushima Medical University 2013a). Nine of 25 

the cases were papillary carcinoma, one turned out to be a benign nodule. This corresponds to 26 
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a prevalence of confirmed cases of 9/41 296 = 0.022%. This number is a lower boundary for 1 

the prevalence because 2 

 four persons having suspected malignancy according cytology of FNA biopsies had 3 

not been operated before July 31, 2013; 4 

 only 165 out of 214, for whom secondary examination was required, have concluded 5 

or even started such an examination. 6 

Thus, the results obtained so far by the survey are in agreement with our calculations (Table 7 

1). 8 

Screening factors in post-Chernobyl studies 9 

In a population-based study of Likhtarov et al. (2006), population groups with 10 

ultrasonography frequency of more than 1.8% and less than 0.7% have been compared. They 11 

estimated thyroid cancer incidence rate in the former group to be larger by a factor of 3.3 than 12 

in the latter.  13 

For Ukrainian oblasts with high thyroid exposures due to the Chernobyl accident and 14 

for most oblasts in Belarus, baseline thyroid cancer incidence in 1999 compared to 1988 was 15 

assessed to be higher by a factor of about three (Jacob et al. 2006a). This effect was attributed 16 

to an increased surveillance of the thyroid. 17 

The present result of the screening factor in the UkrAm cohort of 3.6 (95%CI: 0.5; 7.9) 18 

is consistent with the assessment of the two population based studies mentioned above. 19 

Thyroid cancer risk in LSS vs. post-Chernobyl studies 20 

The excess relative risk for thyroid cancer after exposure during childhood with a 21 

thyroid dose of 1 Sv in the LSS compares generally well to study results of populations 22 

exposed to 
131

I after the Chernobyl accident (Fig. 4). For times after exposure shorter than 13 23 

years, i.e. before the collection of incidence data in the LSS started, it cannot be excluded that 24 

excess relative risks after exposure at young age are larger than the extrapolation of the LSS 25 

function. This would have, however, negligible implications for our results on attributable 26 



15 

 

risk, because the baseline risk in Japan in 2007 for age below 20 years is very small, and 1 

because there is a good agreement of the excess absolute rate results (see below). 2 

The excess absolute rate depends on the screening conditions. It is relatively small for 3 

the LSS members not participating in the AHS (Fig. 4). Applying the full screening factor, 4 

Fscr, leads to an EAR estimate that tends to be higher than what was observed in the UkrAm 5 

cohort. This is plausible, because the study protocol in the Fukushima Prefecture is expected 6 

to lead to a higher screening effect than in the UkrAm cohort. Indeed, if the screening factor 7 

for the UkrAm cohort fUA is applied to EARLSS, then good agreement with the excess absolute 8 

rate per unit dose in the UkrAm cohort is obtained. 9 

Overall, these comparisons do not give any evidence against the application of the LSS 10 

risk function and the screening factor Fscr to populations screened in the Fukushima 11 

Prefecture. 12 

Attributable risk rate 13 

In our approach with a mixed transfer of excess risk estimates from the LSS to the 14 

population in the Fukushima Prefecture, the attributable risk rate increases steeply after a 15 

minimal latency period of three years. According to the multiplicative transfer, however, 16 

excess cases do not appear before attained age of 15 for males and age attained 10 for 17 

females. The latter approach is not in accordance with experiences after the Chernobyl 18 

accident, where many excess cases were observed before attained age of 10 years 19 

(UNSCEAR 2011). 20 

Attributable risk  21 

According to our results in Table 2 for an age of exposure of 1 year, about 15% of the 22 

attributable risk accumulated over twenty years is contributed by the first ten years. For an 23 

age of exposure of 10 years, we obtain a contribution of 30%. These predictions compare well 24 

to thyroid cancer incidence after the Chernobyl accident. In Belarus, where most of the 25 

observed thyroid cancer incidence was attributed to radiation exposure (Jacet et al. 2006a), 26 
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29% of thyroid cancer cases during the first twenty years occurred during the first ten years 1 

for the age-at-exposure group of 0-4 years, and 35% for the age-at-exposure group of 5–9 2 

years (UNSCEAR 2011).  3 

Another check of consistency with post-Chernobyl experiences relates to age-at-4 

exposure dependence. According to our prediction, the attributable risk accumulated over the 5 

first twenty years is about the same for ages at exposure of 1 and 10 years, if the thyroid dose 6 

is the same. In Belarus, the number of cases was higher for the age-at-exposure group of 0-4 7 

years than for the age-at-exposure group of 5–9 years by a factor of 1.7. Thyroid doses 8 

differed by a similar factor (Jacob et al. 2006a). 9 

Finally, we predict the excess rate during the first twenty years after exposure among 10 

females to be higher than among males by a factor of 2–3. Again, in Belarus the risk was 11 

higher by a factor of 2.6 (crude rate among females of 6.7 versus 2.6 per 10
4
 person-years for 12 

males, according to UNSCEAR (2011)). 13 

Whereas our predictions for the first twenty years after exposure have some support 14 

from studies of thyroid cancer after the Chernobyl accident, our longer-time predictions are 15 

more uncertain and may overestimate the risk. We have neglected a so-called harvesting 16 

effect that might appear after twenty years after exposure. Early detection may lead to lower 17 

numbers of detected cases at later campaigns of a survey. However, we are not aware of 18 

studies that give evidence of a harvesting effect of ultrasonography for thyroid cancer 19 

incidence. 20 

For a period of 50 years after exposure at ages of up to 18 years, we predict that an 21 

average thyroid dose of 50 mSv would has a relative contribution of about 15%to the total 22 

thyroid cancer risk. This is in accordance with the results of WHO (2013), because of the 23 

close similarity of the approaches concerning relative risks. Concerning the total thyroid 24 

cancer risk, however, our results are higher by a factor of about seven, because WHO did not 25 

consider in its calculations the impact of the ultrasonography survey. 26 
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 1 

Conclusion 2 

We expect that the ultrasonography survey of residents of Fukushima Prefecture will 3 

increase thyroid cancer incidence compared to thyroid cancer incidence in 2007 in Japan 4 

drastically. The estimated increase has a large uncertainty with a best estimate of a factor of 5 

about seven. Based on the assumption of an average thyroid dose of 20 mSv of the most 6 

exposed in the surveyed population, we estimated that in the early period about 10%, and in 7 

longer times about 5% of the reported incidence will be attributable to radiation exposure. 8 

Thus, the fraction of thyroid cancer cases attributable to radiation exposure will be small, 9 

although there are regional differences due to varying dose. Our assessment has large 10 

uncertainties caused by uncertainties in the thyroid cancer risk function for the LSS, the 11 

impact of the ultrasonography survey, and the transfer of the risk function to low-dose 12 

exposures to 
131

I. Independent of these uncertainties, the order of magnitude of the predicted 13 

thyroid cancer prevalence and incidence rate may help to be prepared for a relatively large 14 

number of thyroid cancer cases that are to be expected. It should be taken into account that 15 

most of the cases would not have become clinically relevant without the ultrasonography 16 

survey. 17 
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Table 1   Expected prevalence of confirmed thyroid cancer among screened population 1 

groups targeted for Fukushima Health Management Survey before April 2012, for the period 2 

from April 2012 to March 2013, and in the non-contaminated prefectures of Aomori, Yamanashi 3 

and Nagasaki (Taniguchi et al. 2013). 4 

Study group in 

Prefecture(s) 

Period of 

screening 

Weighted 

baseline rate in 

the group (PY
−1

) 

Estimated 

prevalence 

(%)
 a
 

Fukushima 

(2011/2012) 

Oct 2011 – 

Mar 2012 
0.267×10

−5 
0.027 (0.010; 0.050) 

Fukushima 

(2012/2013) 

Apr 2012 – 

Mar 2013 
0.332×10

−5 
0.034 (0.013; 0.061) 

Aomori, Yamanashi 

and Nagasaki 

Nov 2012 – 

Jan 2013 
0.317×10

−5 
0.032 (0.012; 0.057) 

a
 arithmetic mean and 95% confidence interval 5 

b 
no reported results of completed FNA  6 

 7 



 

 

Table 2   Baseline and radiation-attributable thyroid cancer risk (mean value and 95% confidence interval) after an exposure 

with a hypothetical thyroid dose of 100 mSv for different time periods after exposure 

Age at 

exposure 

(years) 

Sex 
Thyroid 

cancer 

Thyroid cancer risk (%) for different periods after exposure with a thyroid dose of 

100 mSv 

10 years 20 years 50 years 

1 
male 

baseline 0.0 (0.0; 0.0) 0.026 (0.003; 0.065) 0.52 (0.06; 1.2) 

attributable 0.014 (<10
−4

; 0.090) 0.054 (0.002; 0.26) 0.30 (0.015; 1.2) 

female 
baseline 0.0029 (2∙10

−4
; 0.0088) 0.089 (0.012; 0.22) 2.3 (0.31; 5.5) 

attributable 0.013 (3∙10
−4

; 0.069) 0.12 (0.007; 0.51) 1.4 (0.11; 4.6) 

10 
male 

baseline 0.021 (0.003; 0.053) 0.11 (0.015; 0.27) 0.91 (0.12; 2.2) 

attributable 0.019 (6∙10
−4

; 0.088) 0.059 (0.003; 0.24) 0.24 (0.013; 0.87) 

female 
baseline 0.071 (0.008; 0.18) 0.33 (0.04; 0.80) 3.6 (0.44; 8.7) 

attributable 0.042 (0.002; 0.19) 0.16 (0.008; 0.59) 0.94 (0.058; 3.1) 

18 
male 

baseline 0.080 (0.010; 0.20) 0.20 (0.026; 0.50) 1.2 (0.16; 3.0) 

attributable 0.018 (7∙10
−4

; 0.077) 0.047 (0.002; 0.19) 0.18 (0.009; 0.64) 

female 
baseline 0.22 (0.026; 0.52) 0.79 (0.091; 1.8) 4.7 (0.54; 11) 

attributable 0.044 (0.002; 0.17) 0.15 (0.007; 0.55) 0.63 (0.03; 2.0) 

 



 

 

Table 3   Predicted thyroid cancer risk (mean and 95% confidence interval) in the Fukushima Prefecture: baseline and 

attributable to radiation exposure for thyroid doses of 50 mSv and 20 mSv assumed for the most exposed population groups. 

Average 

thyroid dose 

(mSv) 

Thyroid 

cancer 

Thyroid cancer risk (%) 

for different periods after exposure: 

10 years 20 years 50 years 

– baseline 0.055 (0.006; 0.14) 0.23 (0.027; 0.58) 2.2 (0.27; 5.3) 

20 attributable 0.0057 (0.0002; 0.025) 0.021 (0.0007; 0.081) 0.13 (0.005; 0.40) 

50 attributable 0.014 (0.0004; 0.063) 0.053 (0.002; 0.20) 0.32 (0.011; 1.0) 
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Fig. 1   Increase of thyroid cancer incidence rate due to ultrasonography screening. 

The upper two studies relate to populations without systematic screening, thus the 

estimates of the effect of ‘grey’ screening (left border of the boxes) are lower boundaries 

for the effect of a systematic screening. The screening factor for the Fukushima 

Prefecture, Fscr, is the product of the screening factor in the UkrAm cohort, fUA, and a 

factor taking into account differences in the study protocol, fsp. 
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Fig. 2   Excess relative risk (upper panels) and excess absolute rate (lower panels) of male (left 

panels, blue curves) and female (right panels, red curves) LSS members not participating in the 

AHS of different ages at exposure (shown as numbers near the curves). 
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Fig. 3   Mixed transfer model for the attributable risk rate of thyroid cancer after 

exposure at age of 1, 10, and 18 years with a thyroid dose of 100 mGy. Mean values 

and 95% confidence intervals are shown. 
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Fig. 4   Sex-averaged relative risk (upper panel) and excess absolute rate (lower 

panel) of thyroid cancer after an exposure at an age of 7 years (average age at exposure 

in post-Chernobyl cohort and case-control studies). Error bars and shaded areas 

indicate 95% confidence regions. Results for the LSS members not participating in the 

AHS are presented in blue, results from post-Chernobyl studies are presented in red and 

by symbols. 

 


