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Abstract

Body fat distribution, particularly centralized obesity, is associated with metabolic risk above and beyond total adiposity. We
performed genome-wide association of abdominal adipose depots quantified using computed tomography (CT) to uncover
novel loci for body fat distribution among participants of European ancestry. Subcutaneous and visceral fat were quantified
in 5,560 women and 4,997 men from 4 population-based studies. Genome-wide genotyping was performed using standard
arrays and imputed to ,2.5 million Hapmap SNPs. Each study performed a genome-wide association analysis of
subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), VAT adjusted for body mass index, and VAT/SAT ratio (a
metric of the propensity to store fat viscerally as compared to subcutaneously) in the overall sample and in women and
men separately. A weighted z-score meta-analysis was conducted. For the VAT/SAT ratio, our most significant p-value was
rs11118316 at LYPLAL1 gene (p = 3.1610E-09), previously identified in association with waist–hip ratio. For SAT, the most
significant SNP was in the FTO gene (p = 5.9610E-08). Given the known gender differences in body fat distribution, we
performed sex-specific analyses. Our most significant finding was for VAT in women, rs1659258 near THNSL2 (p = 1.6610-
08), but not men (p = 0.75). Validation of this SNP in the GIANT consortium data demonstrated a similar sex-specific pattern,
with observed significance in women (p = 0.006) but not men (p = 0.24) for BMI and waist circumference (p = 0.04 [women],
p = 0.49 [men]). Finally, we interrogated our data for the 14 recently published loci for body fat distribution (measured by
waist–hip ratio adjusted for BMI); associations were observed at 7 of these loci. In contrast, we observed associations at only
7/32 loci previously identified in association with BMI; the majority of overlap was observed with SAT. Genome-wide
association for visceral and subcutaneous fat revealed a SNP for VAT in women. More refined phenotypes for body
composition and fat distribution can detect new loci not previously uncovered in large-scale GWAS of anthropometric traits.
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Introduction

Obesity is an important risk factor for cardiometabolic

outcomes [1–5]. Heterogeneity in the regional deposition of fat,

particularly, visceral adipose tissue (VAT), may be more delete-

rious than total body obesity. Numerous epidemiologic studies

have demonstrated that central obesity, measured by simple

anthropometric measures including waist circumference or waist-

hip-ratio (WHR), is associated with cardiovascular disease (CVD)

and glucose, insulin, and lipid metabolism, independent of overall

obesity as measured by body mass index (BMI) [6–19]. However,

waist circumference is limited due to its inability to discriminate

between VAT and subcutaneous adipose tissue (SAT) [20].

Computed tomography (CT) provides a more direct and precise

assessment of adipose tissue compartments. In many studies, the

associations between CVD risk factors and directly-measured

VAT are stronger than the associations observed with other typical

anthropometric measures [21–28].

Prior studies have shown that indices of body fat distribution,

including waist circumference, VAT, and SAT are heritable

[20,29–31]. A recent large-scale genome-wide association study

(GWAS) identified 14 loci in association with waist-hip-ratio

[32], providing proof-of-principle for the concept that genetic

variants are associated with body fat distribution above and

beyond generalized adiposity. However, there are currently no

large-scale GWAS for directly-measured VAT and SAT. Thus,

the purpose of the present study was to perform GWAS for

VAT and SAT in 4 large population-based cohorts. We

analyzed SAT, VAT, VAT adjusted for BMI, and the VAT/

SAT ratio, a metric of the propensity to store fat viscerally as

compared to subcutaneously. Given the known sex differences

in body fat distribution [33], we additionally performed sex-

specific analyses.

Results

The characteristics of the study sample are presented in Table 1

and Table S1. Overall, 5560 women and 4997 men were

available for analysis. Study participants ranged in age from their

thirties to their mid seventies, and BMI ranged from 26.6 kg/m2

to 28.8 kg/m2.

Heritability Analyses
In order to document a genetic or familial component of

directly-imaged CT adipose tissue traits, we previously performed

heritability analyses of VAT (h2 36%) and SAT (h2 57%) [20]. For

the present analysis, we additionally calculated the heritability of

VAT and SAT in the Family Heart Study and the VAT/SAT

ratio in both the Family Heart Study and the Framingham Heart

Study. In the Family Heart Study, the heritability of VAT and

SAT was 36% and 44%, respectively. The heritability of the

VAT/SAT ratio was 43%; after adjustment for either BMI or

VAT, the heritability was not materially different (44% and 47%,

respectively). Similarly, we found that the heritability of the VAT/

SAT ratio was 55% (p,0.0001) in the Framingham Heart Study,

which was essentially unchanged after adjustment for BMI (h2

55%) or VAT (64%).

Stage 1 Discovery Results
After confirming a heritable component to directly imaged CT

adipose tissue traits, we proceeded with GWAS. To assess for

occult population stratification, we examined q-q plots for all traits

(SAT, VAT, VAT-adjusted-for-BMI, and VAT/SAT ratio in the

overall sample and in women and men separately), which can be

found in Figure S1. All lambda values were ,1.08, with little

evidence to suggest unaccounted for population stratification.

Manhattan plots for these traits can be found in Figure S2, with p-

values,5.0*10E08 for the VAT/SAT ratio overall and VAT in

women.

Our most significant finding was for rs11118316 at LYPLAL1 for

the VAT/SAT ratio (Table S2). This SNP is in low to moderate

LD with rs4846567 (r2 = 0.285, D9 0.935), which was previously

identified in the GIANT consortium in association with WHR-

adjusted-for-BMI [32]. It is notable that in the GIANT

consortium, rs4846567 was only associated with WHR in women

(p = 4.9*10E-33) but not men (p = 0.36), whereas rs11118316 was

associated with both women (p = 4.5*10E-6) and men

(p = 8.3*10E-5) in the present analysis. We further note that for

rs4846567, the p-value is 4.4*10E-04 in women but p = 0.05 in

men. Thus, it is possible that we have identified a slightly different

locus with varying sex differences. Our next genome-wide

significant finding was for rs1659258 at chromosome 2 for VAT

in women (p = 1.58*10E-08; Table S2 and Figure 1). Imputation

Author Summary

Body fat distribution, particularly centralized obesity, is
associated with metabolic risk above and beyond total
adiposity. We performed genome-wide association of
abdominal adipose depots quantified using computed
tomography (CT) to uncover novel loci for body fat
distribution among participants of European ancestry. We
quantified subcutaneous and visceral fat in more than
10,000 women and men who also had genome-wide
association data available. Given the known gender
differences in body fat distribution, we performed sex-
specific analyses. Our most significant finding was for VAT
in women, near the THNSL2 gene. These findings were not
observed in men. We also interrogated our data for the 14
recently published loci for body fat distribution (measured
by waist–hip ratio adjusted for BMI); associations were
observed for 7 of these loci, most notably for VAT/SAT
ratio. We conclude that genome-wide association for
visceral and subcutaneous fat revealed a SNP for VAT in
women. More refined phenotypes for body composition
and fat distribution can detect new loci not uncovered in
large-scale GWAS of anthropometric traits.

GWAS for Visceral Fat
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scores for this SNP ranged from 0.98 to 1.0. This region has not

previously been identified in association with adiposity pheno-

types. Table 2 shows the results for rs1659258 across the

abdominal adiposity traits in our meta-analysis. We observed no

association in men (p = 0.75) for VAT. In women, we observed a

nominally-significant signal for SAT in women (p = 0.002), and for

VAT-adjusted-for-BMI (p = 6.9*10E-05). Figure 2 shows the

standardized beta coefficients in women as compared to men for

all traits in each contributing study.

Given our finding of a stronger association in women as

compared to men at rs1659258 for VAT, we formally tested a sex

interaction term, and found a significant effect in the magnitude of

the association between our lead SNP and VAT in women as

compared to men (pinteraction = 0.0002).

Table 1. Study Sample Characteristics, VATGen Consortium.

Study SAT n VAT n Women % (n) Age (years) BMI (kg/m2) SAT (cm2 or cm3)* VAT (cm2 or cm3)* VATSAT Ratio

Fram Overall 3158 3158 48.01 (1516) 52.8 (11.9) 27.8(5.2) 2875(1379) 1822(1033) 0.69(0.39)

Fram Women 1516 1516 100 54.2(11.3) 27.0(5.8) 3135(1514) 1364(833) 0.45( 0.21)

Fram Men 1642 1642 0 51.5(12.2) 28.4(4.5) 2636(1193) 2244(1020) 0.91( 0.39)

FamHS Overall 2659 2659 55.28 (1470) 57.2 (13.3) 28.8(5.7) 286(132) 167(91) 0.65(0.39)

FamHS Women 1470 1470 100 57.6(13.1) 28.5(6.3) 315(142) 138(78) 0.46( 0.25)

FamHS Men 1189 1189 0 56.7(13.4) 29.3(4.7) 249(108) 203(94) 0.87( 0.40)

HABC overall 1568 1568 47.1 (739) 73.8 (2.8) 26.6 (4.1) 266.3 (101.9) 153.4(69.5) 0.63(0.33)

HABC women 739 739 100 73.7 (2.8) 26.1 (4.4) 311.3 (104.9) 134.4 (62.0) 0.45 (0.19)

HABC men 829 829 0 73.9 (2.9) 27.1 (3.7) 226.1 (80.1) 170.3 (71.6) 0.79 (0.34)

AGES overall 3172 3172 57.85 (1835) 76.41 (.49) 27.1 (4.4) 257.5 (113.2) 172.7 (80.7) 0.77 (.44)

AGES women 1835 1835 100 (1835) 76.34 (0) 27.2 (4.8) 296.1 (115.2) 149.2 (66.9) 0.54 (.27)

AGES men 1337 1337 0 (0) 76.51 (0) 26.9 (3.8) 204.6 (85.8) 205.1 (86.5) 1.08 (.44)

Data shown as mean (standard deviation) unless otherwise indicated.
*cm3 for the Framingham Heart Study; all other studies are measured in cm2.
doi:10.1371/journal.pgen.1002695.t001

Figure 1. Regional Association Plot of the Chromosome 2 region for VAT in women.
doi:10.1371/journal.pgen.1002695.g001

GWAS for Visceral Fat
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All additional independent SNPs with p-values,9.9*10E-06

can be found in Table S2.

Stage 2 Validation
We focused on rs1659258 as a new locus for independent

validation in the non-overlapping cohorts that are part of the

GIANT consortium data. Results are displayed in Table 2, with

evidence for replication at this locus in women (p = 0.006) but not

men (p = 0.24) for BMI. Similar results were observed for waist

circumference.

Metabolic Traits Association Studies with rs1659258
After confirming the association of rs1659258 with measures of

adiposity in a sex-specific manner, we next sought to perform

association studies with correlated metabolic traits. Because VAT

is associated with glycemic and lipid traits [20,34–37], we

requested sex-specific associations of rs1659258 in the Global

Lipids Genetics Consortium [38] for lipid traits and in the

MAGIC consortium for traits related to glucose metabolism.

Overall, we observed a nominal and direction-consistent associ-

ation (i.e., same allele associated with higher VAT and lower

HDL) with HDL (p = 0.019, n = 98,263), but no robust associa-

tions for LDL, triglycerides, or total cholesterol (all p.0.06), which

is surprising given the phenotypic correlations between VAT and

triglycerides [20]. In sex-specific analyses, we observed no

association for this SNP with HDL, triglycerides, or total

cholesterol for either women (all p.0.09, personal communica-

tion) or men (all p.0.73, personal communication). In MAGIC,

we observed a direction-consistent and borderline statistically

significant result for this SNP in women (p = 0.048, n = 43,754) but

not men (p = 0.39, n = 36,514) for fasting glucose (personal

communication, MAGIC consortium).

Test of Age Interaction with rs1659258
Because fat distribution can vary by age, we performed a formal

age interaction test between rs1659258 and VAT in women only.

Stratifying above and below age 60 years, we did not observe a

significant sex interaction (p = 0.79).

Interrogation of Published Loci for WHR and BMI Loci
In order to understand whether directly-imaged adipose traits

are associated with previously-identified loci in a GWAS for fat

distribution using anthropometric traits, we performed an

association analysis of the 14 previously-published loci for

WHR-adjusted-for-BMI for all 4 of our traits in the overall

sample and by sex (Table 3) in the results from the GIANT

consortium [32]. Overall, we observed associations (defined as

p,0.01) for 7/14 of the previously reported loci, most of which

were direction-consistent (with the exception of loci associated

with SAT, consistent with the fact that SAT and hip are highly

correlated traits [r = 0.92 among 2656 individuals from the Family

Heart Study]). We observed only one association with VAT at the

NISCH-STAB1 locus.

We additionally performed an association analysis of all of the

32 published BMI loci identified via the GIANT consortium

(Table 4) [39]. Overall, we observed associations (defined as

p,0.01) at 7/32 loci, the majority of which overlapped for SAT

and were all direction-consistent with the exception of VAT/SAT

ratio at NEGR1. We observed very few associations with VAT,

with the exception of FTO and NRXN3.

eQTL Results
In order to help identify the potential causal gene in the region

surrounding our lead SNP, we first reviewed publically available

databases, but did not identify any associations of rs1659258 with

eQTLs (see methods for additional details). However, most of

these databases consist of women and men in combined analyses;

given that our GWAS finding was in women alone, we performed

sex-specific eQTL analyses of rs1659258 in up to 848 patients

(mean BMI 50.5 kg/m2) who underwent Roux-en-Y gastric

bypass surgery who also underwent subcutaneous and visceral

fat biopsy [40]. We performed eQTL testing in the 1 MB region

surrounding rs1659258 (n = 31 genes). Using a corrected p-value

threshold of p,0.05, only THNSL2 expression in subcutaneous fat

in women was associated with our lead SNP (p = 0.03) but not men

(p = 0.96). We did not observe association with expression in VAT

in either women or men.

Discussion

Principal Findings
We have uncovered a new locus for VAT at THNSL2 in women

that reveals a striking sexual dimorphism, where we observed

significance only in women, but not men. We also observed

genome-wide significance for rs11118316 at LYPLAL1 for the

VAT/SAT ratio; this region was previously identified in a GWAS

for WHR in the GIANT consortium, although our lead SNP is

only in moderate LD with the SNP identified by GIANT. Finally,

we performed targeted SNP evaluations of 14 SNPs previously

identified in association with central fat distribution and identified

nominal associations at 7 loci.

In the Context of the Current Literature
Prior genome-wide association studies have focused on using

anthropometric measures to define body fat distribution. The

GIANT consortium identified 14 loci associated with WHR

adjusted for BMI [32], the majority of which demonstrated

Table 2. Results of rs1659258 in the VATGen meta-analysis;
results modeled per copy of the trait-increasing A allele and
for independent validation in the GIANT Consortium (non-
overlapping studies).*

Trait Effect Direction P-value

VAT women + 1.6E-08

VAT overall + 0.001

VAT men 2 0.75

VATaBMI women + 6.9E-05

VATaBMI overall + 0.52

VATaBMI men 2 0.03

VATSAT women + 5.1E-05

VATSAT overall + 0.03

VATSAT men 2 0.36

SAT women + 0.002

SAT overall + 0.006

SAT men + 0.46

Independent Validation, GIANT

BMI men + 0.24

BMI women + 0.006

WC men + 0.49

WC women + 0.04

*GIANT sample sizes for women and men are as follows: BMI (58208, 49092); WC
(39471, 31406).
doi:10.1371/journal.pgen.1002695.t002

GWAS for Visceral Fat
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stronger associations in women as compared to men. More

recently, a SNP at the IRS1 locus was identified in association with

body percent fat in men, but not women [41]. We showed that the

VAT/SAT ratio in men was associated with this same IRS1 SNP

[41]. Taken together, these prior data suggest that additional loci

may exist in association with fat distribution above and beyond

those associated with generalized adiposity. In the present study,

we identified a new locus in association with VAT in women,

highlighting the utility of more precise phenotyping of abdominal

fat distribution.

We also extend the observations of a marked sexual dimorphism

that have been made using primarily anthropometric measure-

ments to CT-imaged fat depots. It is well-known that in women as

compared with men, VAT levels are relatively lower, and SAT

levels are higher [42]. This gender difference underscores the need

to consider women and men separately in assessing the genetic

architecture of fat distribution. We also note that our most

significant SNP at the LYPLAL1 locus was associated with the

VAT/SAT ratio in both women and men as compared to only

WHR in GIANT [32], while the lead SNP identified in GIANT

demonstrated some evidence for heterogeneity by sex with the

VAT/SAT ratio. Taken together, these findings highlight the

potential differences in directly-imaged fat distribution traits as

compared to anthropometric data.

An important consideration is whether our finding of rs1659258

at THNSL2 in association with VAT in women represents a

variant that is specific to central adiposity. Indeed, our strongest

result is derived from VAT itself. However, we observed

associations with SAT in women, and our validation data suggests

this SNP is also associated with BMI in women. Once we adjusted

the VAT trait for BMI, our SNP did not completely lose its

statistical significance (p = 6.9*10E-05), suggesting that there is

some specificity of our finding to fat deposition in the central

abdominal compartment. This result is in contrast to our prior

results for a SNP in NRXN3 in association with waist circumfer-

ence: upon adjustment for BMI, statistical significance was

attenuated [43]. Finally, our eQTL data reveals nominal

expression in subcutaneous but not visceral adipose tissue.

Figure 2. Association of rs1659258 in all 4 discovery cohorts. Results are shown modeled per copy of the trait-increasing A allele. Within each
study, data presented represent the beta coefficient indexed to the standard error. Bars represent 95% confidence intervals. VATSAT is the VAT/SAT
ratio, and VATaBMI is VAT-adjusted-for-BMI.
doi:10.1371/journal.pgen.1002695.g002

GWAS for Visceral Fat
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Table 3. Association of SNPs from a Recently Published GWAS of Body Fat Distribution* (Heid IM et al, NG, 2010) [32].

VATSAT VAT SAT VATaBMI

Trait SNP Chr Nearby Genes
Coded
Allele Z statistic P-value Z statistic P-value Z statistic P-value Z statistic P-value

Men rs984222 1 TBX15-WARS2 G + 0.13 2 0.87 2 0.09 + 0.18

rs1011731 1 DNM3-PIGC G + 0.11 + 0.67 2 0.48 + 0.50

rs4846567 1 LYPLAL1 G + 0.05 2 0.66 2 0.03 2 0.66

rs10195252 2 GRB14 T + 0.01 2 0.20 2 0.0002 + 0.60

rs6784615 3 NISCH-STAB1 T + 0.26 + 0.06 + 0.82 + 0.01

rs6795735 3 ADAMTS9 C + 0.27 2 0.30 2 0.008 + 0.87

rs6861681 5 CPEB4 A + 0.06 + 0.55 2 0.31 + 0.19

rs1294421 6 LY86 G + 0.02 + 0.11 + 0.82 + 0.21

rs6905288 6 VEGFA A + 0.03 + 0.98 2 0.14 + 0.69

rs9491696 6 RSPO3 G 2 0.67 2 0.47 2 0.56 2 0.66

rs1055144 7 NFE2L3 T + 0.95 + 0.12 + 0.30 + 0.43

rs718314 12 ITPR2-SSPN G + 0.29 2 0.54 2 0.01 + 0.62

rs1443512 12 HOXC13 A 2 0.06 + 0.45 + 0.05 2 0.81

rs4823006 22 ZNRF3-KREMEN1 A + 0.24 2 0.76 2 0.10 + 0.94

Women rs984222 1 TBX15-WARS2 G + 0.91 + 0.63 + 0.82 + 0.10

rs1011731 1 DNM3-PIGC G + 0.32 + 0.04 + 0.40 + 0.07

rs4846567 1 LYPLAL1 G + 0.0004 + 0.10 2 0.06 + 0.0009

rs10195252 2 GRB14 T + 0.43 2 0.86 2 0.54 + 0.60

rs6784615 3 NISCH-STAB1 T 2 0.77 2 0.008 2 0.10 2 0.11

rs6795735 3 ADAMTS9 C + 0.01 + 0.20 2 0.17 + 0.02

rs6861681 5 CPEB4 A + 0.40 + 0.20 + 0.44 + 0.08

rs1294421 6 LY86 G + 0.05 + 0.14 + 0.72 + 0.18

rs6905288 6 VEGFA A + 0.54 + 0.95 2 0.36 + 0.08

rs9491696 6 RSPO3 G + 0.005 + 0.34 2 0.23 + 0.02

rs1055144 7 NFE2L3 T + 0.17 + 0.77 2 0.88 + 0.41

rs718314 12 ITPR2-SSPN G + 0.17 + 0.32 2 0.43 + 0.009

rs1443512 12 HOXC13 A + 0.32 + 0.49 + 0.99 + 0.046

rs4823006 22 ZNRF3-KREMEN1 A + 0.07 + 0.25 + 0.46 + 0.22

Overall rs984222 1 TBX15-WARS2 G + 0.25 + 0.80 2 0.47 + 0.08

rs1011731 1 DNM3-PIGC G + 0.07 + 0.09 + 0.91 + 0.12

rs4846567 1 LYPLAL1 G + 0.0002 + 0.47 2 0.01 + 0.15

rs10195252 2 GRB14 T + 0.03 2 0.28 2 0.01 + 0.58

rs6784615 3 NISCH-STAB1 T + 0.66 2 0.60 2 0.22 + 0.37

rs6795735 3 ADAMTS9 C + 0.01 + 0.95 2 0.005 + 0.09

rs6861681 5 CPEB4 A + 0.05 + 0.19 2 0.92 + 0.03

rs1294421 6 LY86 G + 0.003 + 0.05 2 0.89 + 0.06

rs6905288 6 VEGFA A + 0.05 2 0.98 2 0.06 + 0.15

rs9491696 6 RSPO3 G + 0.13 2 0.94 2 0.11 + 0.35

rs1055144 7 NFE2L3 T + 0.33 + 0.22 + 0.64 + 0.30

rs718314 12 ITPR2-SSPN G + 0.07 + 0.70 2 0.05 + 0.04

rs1443512 12 HOXC13 A 2 0.51 + 0.45 + 0.32 + 0.36

rs4823006 22 ZNRF3-KREMEN1 A + 0.06 + 0.77 2 0.67 + 0.72

All data modeled relative to the previously-published trait-increasing allele; the z-statistic indicates the effect direction relative to the coded allele.
*Measured by WHR-adjusted-for-BMI.
doi:10.1371/journal.pgen.1002695.t003
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Table 4. Association of validated SNPs for BMI (from Speliotes et al, Nature Genetics 2010) [39].

VATSAT VAT SAT VATaBMI

SNP Chr Closest Gene
Coded
allele Z statistic P-value Z statistic P-value Z statistic P-value Z statistic P-value

Men rs9816226 3 ETV5 T 2 0.06 + 0.74 + 0.08 2 0.28

rs2287019 19 GIPR C 2 0.34 + 0.27 + 0.03 2 0.50

rs1558902 16 FTO A 2 0.21 + 0.007 + 9.7E-05 + 0.82

rs11847697 14 PRKD1 T 2 0.84 2 0.87 + 0.83 2 0.76

rs7359397 16 SH2B1 T + 0.20 + 0.03 + 0.10 + 0.25

rs2241423 15 MAP2K5 G 2 0.36 2 0.16 + 0.62 2 0.11

rs7138803 12 FAIM2 A 2 0.08 2 0.37 + 0.47 2 0.28

rs10150332 14 NRXN3 C + 0.71 + 0.008 + 0.003 + 0.30

rs12444979 16 GPRC5B C 2 0.15 + 0.40 + 0.08 2 0.46

rs887912 2 FANCL T + 0.23 + 0.06 + 0.25 + 0.46

rs2112347 5 FLJ35779 T + 0.54 + 0.09 + 0.25 + 0.24

rs2815752 1 NEGR1 A 2 0.003 + 0.05 + 3.9E-06 2 0.30

rs4836133 5 ZNF608 A 2 0.29 + 0.52 + 0.10 2 0.31

rs571312 18 MC4R A 2 0.50 + 0.67 + 0.41 2 0.48

rs3810291 19 TMEM160 A 2 0.16 + 0.41 + 0.03 2 0.47

rs4929949 11 RPL27A C 2 0.03 + 0.81 + 0.07 2 0.29

rs713586 2 RBJ, ADCY3 C 2 0.43 2 0.61 2 0.85 2 0.87

rs2890652 2 LRP1B C 2 0.12 2 0.13 2 0.98 2 0.03

rs987237 6 TFAP2B G 2 0.21 + 0.47 + 0.08 2 0.28

rs10968576 9 LINGO2 G 2 0.53 + 0.56 + 0.25 2 0.80

rs13107325 4 SLC39A8 T + 0.42 + 0.78 2 0.72 2 0.72

rs3817334 11 MTCH2 T + 0.79 + 0.69 + 0.32 2 0.90

rs206936 6 NUDT3 G 2 0.95 2 0.91 + 0.87 2 0.33

rs2867125 2 TMEM18 C 2 0.10 2 0.49 + 0.12 2 0.40

rs543874 1 SEC16B G 2 0.34 + 0.49 + 0.09 2 0.60

rs1555543 1 PTBP2 C + 0.32 + 0.38 + 0.79 + 0.35

rs1514175 1 TNNI3K A 2 0.15 2 0.11 2 0.80 2 0.17

rs10938397 4 GNPDA2 G 2 0.04 2 0.55 + 0.18 2 0.15

rs29941 19 KCTD15 G 2 0.56 2 0.88 2 1.00 + 0.77

rs13078807 3 CADM2 G 2 0.19 2 0.42 + 0.92 2 0.41

rs10767664 11 BDNF A + 0.25 + 0.66 2 0.99 2 0.80

rs4771122 13 MTIF3 G + 0.61 + 0.99 2 0.92 + 1.00

Women rs9816226 3 ETV5 T 2 0.08 2 0.96 + 0.08 2 0.04

rs2287019 19 GIPR C 2 0.04 + 0.12 + 0.003 2 0.18

rs1558902 16 FTO A 2 0.55 + 0.009 + 0.001 + 0.55

rs11847697 14 PRKD1 T + 0.38 2 0.94 2 0.52 2 0.87

rs7359397 16 SH2B1 T 2 0.15 2 0.47 + 0.30 2 0.23

rs2241423 15 MAP2K5 G 2 0.31 2 0.27 2 0.50 2 0.90

rs7138803 12 FAIM2 A 2 0.76 + 0.18 + 0.39 + 0.30

rs10150332 14 NRXN3 C 2 0.90 + 0.31 + 0.10 2 0.64

rs12444979 16 GPRC5B C 2 0.40 2 0.71 + 0.76 2 0.07

rs887912 2 FANCL T 2 0.11 2 0.83 + 0.17 2 0.13

rs2112347 5 FLJ35779 T + 0.14 + 0.002 + 0.01 + 0.32

rs2815752 1 NEGR1 A 2 0.52 + 0.28 + 0.02 2 0.51

rs4836133 5 ZNF608 A 2 0.72 + 0.61 + 0.14 2 0.32

rs571312 18 MC4R A + 0.75 + 0.05 + 0.06 + 0.93

rs3810291 19 TMEM160 A + 0.63 + 0.91 2 0.52 + 0.76
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Table 4. Cont.

VATSAT VAT SAT VATaBMI

SNP Chr Closest Gene
Coded
allele Z statistic P-value Z statistic P-value Z statistic P-value Z statistic P-value

rs4929949 11 RPL27A C + 0.62 + 0.23 + 0.81 + 0.29

rs713586 2 RBJ, ADCY3 C 2 0.05 2 0.86 + 0.23 2 0.06

rs2890652 2 LRP1B C 2 0.76 + 0.11 + 0.09 2 0.72

rs987237 6 TFAP2B G 2 0.37 2 0.95 + 0.32 2 0.37

rs10968576 9 LINGO2 G 2 0.01 + 0.20 + 0.01 2 0.12

rs13107325 4 SLC39A8 T 2 0.11 2 0.03 2 0.25 2 0.08

rs3817334 11 MTCH2 T + 0.90 + 0.69 + 0.81 + 0.97

rs206936 6 NUDT3 G 2 0.54 + 0.90 + 0.47 2 0.38

rs2867125 2 TMEM18 C 2 0.51 + 0.005 + 3.807E-05 2 0.43

rs543874 1 SEC16B G 2 0.38 2 0.91 + 0.43 2 0.28

rs1555543 1 PTBP2 C + 0.79 + 0.32 + 0.28 + 0.33

rs1514175 1 TNNI3K A 2 0.24 2 0.79 + 0.29 2 0.06

rs10938397 4 GNPDA2 G + 0.34 + 0.04 + 0.46 + 0.07

rs29941 19 KCTD15 G + 0.80 + 0.07 + 0.09 + 0.81

rs13078807 3 CADM2 G 2 0.03 + 0.53 + 0.11 2 0.41

rs10767664 11 BDNF A 2 0.25 2 0.80 + 0.19 2 0.49

rs4771122 13 MTIF3 G + 0.19 + 0.32 + 0.40 + 0.82

Overall rs9816226 3 ETV5 T 2 0.01 2 0.01 + 0.03 2 0.04

rs2287019 19 GIPR C 2 0.03 2 0.03 + 0.0001 2 0.14

rs1558902 16 FTO A 2 0.17 2 0.17 + 6.24E-07 + 0.67

rs11847697 14 PRKD1 T + 0.72 + 0.72 2 0.81 2 0.68

rs7359397 16 SH2B1 T 2 0.63 2 0.63 + 0.03 + 0.94

rs2241423 15 MAP2K5 G 2 0.20 2 0.20 2 0.66 2 0.18

rs7138803 12 FAIM2 A 2 0.26 2 0.26 + 0.28 + 0.99

rs10150332 14 NRXN3 C + 0.74 + 0.74 + 0.005 + 0.50

rs12444979 16 GPRC5B C 2 0.19 2 0.19 + 0.21 2 0.11

rs887912 2 FANCL T 2 0.78 2 0.78 + 0.09 2 0.57

rs2112347 5 FLJ35779 T + 0.15 + 0.15 + 0.004 + 0.14

rs2815752 1 NEGR1 A 2 0.03 2 0.03 + 1.921E-05 2 0.34

rs4836133 5 ZNF608 A 2 0.23 2 0.23 + 0.04 2 0.11

rs571312 18 MC4R A 2 0.91 2 0.91 + 0.10 2 0.73

rs3810291 19 TMEM160 A 2 0.64 2 0.64 + 0.49 2 0.99

rs4929949 11 RPL27A C 2 0.27 2 0.27 + 0.28 + 0.98

rs713586 2 RBJ, ADCY3 C 2 0.09 2 0.09 + 0.45 2 0.24

rs2890652 2 LRP1B C 2 0.24 2 0.24 + 0.20 2 0.08

rs987237 6 TFAP2B G 2 0.09 2 0.09 + 0.09 2 0.18

rs10968576 9 LINGO2 G 2 0.05 2 0.05 + 0.004 2 0.19

rs13107325 4 SLC39A8 T 2 0.29 2 0.29 2 0.24 2 0.10

rs3817334 11 MTCH2 T + 0.82 + 0.82 + 0.42 + 0.89

rs206936 6 NUDT3 G 2 0.68 2 0.68 + 0.63 2 0.19

rs2867125 2 TMEM18 C 2 0.21 2 0.21 + 8.817E-05 2 0.26

rs543874 1 SEC16B G 2 0.25 2 0.25 + 0.10 2 0.48

rs1555543 1 PTBP2 C + 0.44 + 0.44 + 0.21 + 0.16

rs1514175 1 TNNI3K A 2 0.08 2 0.08 + 0.37 2 0.02

rs10938397 4 GNPDA2 G 2 0.44 2 0.44 + 0.13 2 0.91

rs29941 19 KCTD15 G 2 0.85 2 0.85 + 0.17 + 0.81

rs13078807 3 CADM2 G 2 0.01 2 0.01 + 0.17 2 0.16

GWAS for Visceral Fat

PLoS Genetics | www.plosgenetics.org 8 May 2012 | Volume 8 | Issue 5 | e1002695



Potential Underlying Biology
Our lead SNP for VAT in women, rs1659258, is located in an

intergenic region upstream from THNSL2 and FABP1. However,

rs1659258 is not in linkage disequilibrium (LD) with any coding

SNPs within 88,200-88,700 kb. In addition, the correlations

between rs1659258 with coding SNPs in FOXI3, C2orf51,

THNSL2, EIF2AK3, FABP1, and SMYD1 genes are low

(r2,0.15). Finally, there is no evidence that 2p11-p12, where

rs1659258 is located, has been previously implicated in association

with copy number variation in adipose-related human disease.

Nonetheless, we explored the potential biology in this region. Fatty

acid binding protein is produced in the liver and is involved with

fatty acid metabolism. Free fatty acid flux has previously been

shown to be more strongly associated with visceral as compared to

subcutaneous fat [44]. In addition, women have been shown to

have a faster rate of non-oxidative free fatty acid disposal as

compared to men, but without concomitant worsened metabolic

risk factor profiles [45]. While FABP1 represents an exciting

potential candidate gene, rs1659258 resides in a neighboring

linkage disequilibrium block that does not contain any genes.

THNSL2 is just downstream of FABP1 and our lead SNP

demonstrates nominal gene expression to THNSL2, which is part

of the threonine synthase family. A recent analysis of RNA

expression in 225 healthy Pima Indian skeletal muscle biopsies

showed a bimodal (ie two discrete clusters) expression of THNSL2,

thought to occur due to cis-acting polymorphisms [46].

It is particularly notable that we uncovered a genome-wide

significant finding with rs11118316 at LYPLAL1 for the VAT/

SAT ratio overall. The VAT/SAT ratio is a metric of propensity

to store visceral as compared to subcutaneous fat and has been

shown to be associated with cardiometabolic risk [47]. We

previously observed associations of a SNP in this gene in

association with WHR-adjusted-for-BMI in the GIANT consor-

tium [32], and LYPLAL1 has also been associated with

cardiometabolic traits [48] and fatty liver [49]. LYPLAL1 encodes

the lysophospholipase-like protein 1 and has been shown to be

upregulated in the visceral and subcutaneous fat of obese subjects

[50].

There are several potential explanations that could potentially

account for our observed genetic association, particularly the

marked sexual dimorphism. It has been previously shown that the

familial contribution to fat distribution phenotypes is stronger in

women as compared to men [33]. This concept is further

strengthened by findings in mice suggesting that gonadal

hormones are important in the sex-specific expression of genes

related to metabolic traits [51]. In addition, known gender

differences in fat distribution may also in part contribute to our

findings, as women have been shown to have more subcutaneous

fat but less visceral fat compared to men [20]. The relatively

smaller amount of visceral fat in women may have increased our

ability to detect a genetic signal. Finally, we have consistently

observed stronger associations among women as compared to men

with respect to metabolic risk factors in association with VAT [20].

While the reasons for this have not been fully elucidated, the

stronger associations in women as compared to men is similar to

what we have observed in the present analysis and in a prior

GWAS of fat distribution phenotypes [32].

Strengths and Limitations
Strengths of our study include directly measured visceral and

subcutaneous fat using CT imaging. Phenotyping using imaging is

superior to typical anthropometric measures in the ability to

partition the subcutaneous from visceral fat depots. Limitations

include sample size: because of the limited number of studies with

these imaging measurements and genome-wide association data,

our discovery sample size was modest compared with other

contemporary analyses. However, we note that performing sex-

specific analyses actually enabled us to uncover a new locus,

highlighting how heterogeneity can mask findings even when

sample sizes are larger. Finally, the mean BMI in our gastric

bypass eQTL dataset was substantially higher than the mean BMI

in our discovery GWAS, which may affect generalizability of the

eQTL data.

Conclusions
We have uncovered new loci for body fat distribution

phenotypes, highlighting that loci exist for fat distribution that

are largely independent of overall adiposity. More refined

phenotypes for body composition and fat distribution can detect

new loci not uncovered in large-scale GWAS of anthropometric

traits.

Methods

Phenotype Definition
VAT and SAT were measured on CT following protocols

established by each study as detailed in the Study-Specific

Methods. We created sex-specific residuals adjusting for age,

age-squared, smoking and principal components derived from

genotypes denoting population stratification. The following traits

were created in the overall sample and in women and men

separately for each participating study: VAT, SAT, VAT-

adjusted-for-BMI, and VAT/SAT ratio. VAT-adjusted-for-BMI

provides insight into the relative amount of VAT controlling for

the degree of generalized adiposity, whereas the VAT/SAT ratio

is a metric of the propensity to deposit fat viscerally as compared to

subcutaneously. The VAT/SAT ratio has been previously shown

to be associated with cardiometabolic risk factors [47]. The

correlation between VAT-adjusted-for-BMI and the VAT/SAT

ratio in the Family Heart Study is 0.76 (p,0.0001; N = 2658).

Table 4. Cont.

VATSAT VAT SAT VATaBMI

SNP Chr Closest Gene
Coded
allele Z statistic P-value Z statistic P-value Z statistic P-value Z statistic P-value

rs10767664 11 BDNF A + 0.97 + 0.97 + 0.19 2 0.59

rs4771122 13 MTIF3 G + 0.45 + 0.45 + 0.45 2 0.87

All CT traits presented with the same coded allele, and all are modeled relative to the previously-published BMI trait-increasing allele. Z-statistic indicates direction
relative to the coded allele.
doi:10.1371/journal.pgen.1002695.t004
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Heritability Analyses
We created sex-and-cohort specific residuals, which were then

pooled and analyzed using variance components analysis (SO-

LAR) [52].

Genotyping
Genotyping was conducted as specified in the Table S1 and the

Study Specific Methods. We applied quality-control filters in order

to exclude low-quality SNPs or samples. Based on CEU samples,

each study imputed ,2.5 million Phase 2 HapMap SNPs. We

used imputed allelic dosage in the analysis. Additional details can

be found in Table S1.

Primary Association Analyses and Meta-Analysis
The primary analysis was conducted in each cohort separately

using regression analysis, assuming additive genetic effects and

accounting for dependence among family member when appro-

priate. We accounted for principal components where necessary in

order to prevent population stratification as well as the assumption

of homogeneity within samples of European ancestry. These

results were gathered together and used to conduct a fixed effects

weighted Z meta-analysis (to allow for differences in phenotype

scaling across the participating studies) using METAL [53]. We

have previously shown that the association between single-slice

VAT and SAT measurements at the L4/L5 level is highly

correlated with volumetric measurements (r = 0.95–0.99) [54].

This approach weights the signed Z statistics from each study by its

sample size to obtain a weighted sum, from which a p value is

obtained. We applied the genomic control correction to control

type I error rates. SNPs that reached a meta-analysis P

value#561028 were considered to be genome-wide significant

[55].

Validation Analysis
Stage 2 validation was conducted for our novel lead SNP,

rs1659258, using data from studies not part of the present meta-

analysis in the GIANT consortium data in sex-specific meta-

analyses for BMI and waist circumference (personal communica-

tion, Heid I et al). P-values for SNPs discovered in the present

effort in association with adiposity phenotypes reported by the

GIANT consortium were queried. We concluded significant

results when a direction-consistent p-value was at least p,0.05.

Analyses of Related Phenotypes
For each validated SNP, we obtained sex-specific association

results for lipid and glycemic phenotypes from the MAGIC and

GLGC consortia.

Interaction Testing
We performed formal tests of interaction of rs1659258 by sex

(women as compared to men) and age (stratified above/below age

60). Briefly, each study generated the interaction regression

coefficient, its standard error and its p value through regression.

For the sex interaction, we included, age, age-squared, smoking

(yes/no), sex, and any principal components (and study center)

that were used in the original discovery analysis. We additionally

added rs1659258 and the cross-product rs1659258*sex. The age

interaction analysis was performed in women only. Because the

AGES and Health ABC studies only included participants older

than 65 years, they did not contribute to this analysis. Model

covariates included age, age-squared, smoking (yes/no), and any

principal components (and study center) with the addition of

rs1659258 and the cross-product of rs1659258 and the dichoto-

mized age term. We meta-analyzed the interaction terms across all

studies using the weighted z-score approach.

eSNP Analysis
Using publically available datasets, we tested for the association

of rs1659258 in expression SNPs (eSNP) datasets comprised of the

following tissue types: lymphocytes [56], leukocytes [57], leuko-

cytes from patients with Celiac disease [58], lymphoblastoid cell

lines (LCL) from children with asthma [59], HapMap LCL from 3

populations [60], a separate study on HapMap CEU LCL [61],

peripheral blood monocytes [62,63], adipose tissue [40,64], and

blood samples [64], 2 studies on brain cortex [62,65], three large

studies of brain regions including prefrontal cortex, visual cortex

and cerebellum (Emilsson, personal communication), liver [40,66],

osteoblasts [67], skin [68], and additional fibroblast, T cell and

LCL samples [69]. We considered significance to be the

association with gene transcript levels as originally described.

For sex-specific expression data, we queried data from patients

who underwent a Roux-en-Y gastric bypass [40]. Briefly, we

queried a 1 MB region surrounding our lead SNP for VAT in

women and men separately. Altogether, 31 genes were included in

the query. Statistical significance was considered to be a p-

value,0.05 after correction for multiple testing.

Study-Specific Information: Framingham Heart Study
In 1948, the Framingham Heart Study began when the

Original Cohort was enrolled [70]. Beginning in 1971, the

Offspring Cohort was enrolled (5,124 participants); the method-

ology and design has been described. In 2002, the Third

Generation cohort was enrolled (n = 4095) [71]. Participants for

this study were drawn from the Framingham Heart Study Multi-

detector Computed Tomography (MDCT) Study, a population-

based sub-study of the community-based Framingham Heart

Study Offspring and Third Generation cohorts. Participants for

the current study were drawn from the MDCT sub-study.

Between June 2002 to April 2005, 3529 participants (2111 Third

Generation, 1418 Offspring participants) underwent MDCT

assessment of coronary and aortic calcium. Inclusion in this study

was weighted towards participants from larger Framingham Heart

Study families and those who resided in the Greater New England

area. Men had to be at least 35 years of age, women had to be at

least 40 years of age and non-pregnant, and all participants had to

weigh less than 350 pounds. Of the total of 3529 subjects imaged,

3394 had interpretable CT measures, 3329 of whom had both

SAT and VAT measured, and 3158 participated in the present

GWAS study.

We observed association with the first principal component

estimated using Eigenstrat [72]; this component was included in

our regression models.

Volumetric adipose tissue imaging. Subjects underwent

eight-slice MDCT imaging of the chest and abdomen in a supine

position as previously described (LightSpeed Ultra, General

Electric, Milwaukee, WI) [73]. Briefly, twenty-five contiguous five

mm thick slices (120 kVp, 400 mA, gantry rotation time 500 ms,

table feed 3:1) were acquired covering 125 mm above the level of

S1.

Abdominal adipose tissue measurements. Subcutaneous

and visceral adipose tissue volumes (SAT and VAT) were assessed

(Aquarius 3D Workstation, TeraRecon Inc., San Mateo, CA). In

order to identify pixels containing fat, an image display window

width of 2195 to 245 Hounsfield Units (HU) and a window

center of 2120 HU were used. The abdominal muscular wall

separating the visceral from the subcutaneous compartment was

manually traced. Inter-reader reproducibility was assessed by two

GWAS for Visceral Fat
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independent readers measuring VAT and SAT on a subset of 100

randomly selected participants [73]. Inter-class correlations for

inter-reader comparisons were 0.992 for VAT and 0.997 for SAT.

Similar high correlations were noted for intra-reader comparisons.

Imputation. As a reference panel for imputation, we used

Phase II CEU HapMap individuals; we imputed genotypes to

nearly 2.5 million HapMap SNPs; further details are presented in

Table S1. We used MACH v1.0.15/16 (http://www.sph.umich.

edu/csg/abecasis/MACH/) in conjunction with 200 (101 Men

and 99 Women) biologically independent individuals to establish

parameter estimates and then used the parameter estimates to

infer gene dosage for all study participants. We expressed imputed

genotypes as allelic dosage (which is a decimal value ranging from

0–2).

Statistical analysis. We performed linear mixed effects

regression modeling for SAT, VAT, and the VAT/SAT ratio to

account for pedigree structure (using the R lme and kinship

package).

Study-Specific Information: Family Heart Study
The Family Heart Study (FamHS) is a multicenter, population-

based, family study designed to investigate the determinants of

cardiovascular disease [74]. Families in the FamHS were selected

at random (588 families) or ascertained for family history of CHD

(656 families) using information collected in the parent studies—

Framingham Heart Study (Framingham, MA, USA), the Utah

Health Family Tree Study (Salt Lake City, UT, USA) or the

Atherosclerosis Risk in Communities Study (Minneapolis Suburbs,

MN, USA and Forsyth County, NC,USA). Between 2002 and

2003 about two-thirds of the largest families were invited to

participate in a follow-up clinical examination that included

measurement of the liver and abdomen with cardiac CT using

standardized procedures and quality control methods developed in

NHLBI’s MESA and CARDIA studies [75]. Informed consent

was obtained from all participants, and this project was approved

by the Institutional Review Boards of all participating institutions.

CT scan–related phenotypes. Participants underwent a

cardiac MDCT exam with four detectors using a standardized

protocol as described previously [75]. For participants weighing

100 kg (220 lbs) or greater, the mAs were increased by 25%. The

effective radiation exposure for the average participant of each

coronary scan was 1.5 mSv for men and 1.9 mSv for women.

Participants received two sequential scans. CT images from all

study centers were sent electronically to the central CT reading

center located at Wake Forest University Health Sciences,

Winston Salem, NC, USA.

CT scans of the abdomen were reconstructed into 5 mm slices

with the maximum 50 cm field-of-view to include the whole

abdomen for body composition. Total and adipose tissues were

measured volumetrically from two 5 mm contiguous slices located

at the level of the lumbar disk between the 4th and 5th vertebra so

as to be comparable to a single 10 mm slice used historically.

Tissues with an attenuation between 2190 to 230 Hounsfield

units was define as adipose tissue. The MIPAV application

(http://mipav.cit.nih.gov/index.php) was used by experienced

analysts to segment the images based on anatomic boundaries

(skin, subcutaneous fat-muscle interface and peritoneum) into the

entire abdomen, abdominal wall and intra-abdominal compart-

ments [76]. In each compartment the total volume and fat

volumes were determined allowing calculation of the total

abdominal adipose tissue, subcutaneous adipose tissue and visceral

adipose tissue contained with the 10 mm slice located at L4–5.

Statistical analysis. We performed linear mixed effects

regression modeling for SAT, VAT, and the VAT/SAT ratio,

accounting for dependency among family member as a function of

their kinship correlation (R kinship package).

Study-Specific Information: HABC Study
The Health ABC study is a prospective cohort study investigating

the associations between body composition, weight-related health

conditions, and incident functional limitation in older adults. Health

ABC enrolled well-functioning, community-dwelling black

(n = 1281) and white (n = 1794) men and women aged 70–79 years

between April 1997 and June 1998. Participants were recruited

from a random sample of white and all black Medicare eligible

residents in the Pittsburgh, PA, and Memphis, TN, metropolitan

areas. Participants have undergone annual exams and semi-annual

phone interviews. The current study sample consists of 1559 white

participants who attended the second exam in 1998–1999 with

available genotyping and SAT/VAT data.

Regional fat depots were assessed from CT scans obtained in

Pittsburgh on a General Electric 9800 Advantage (General Electric,

Milwaukee, WI) and in Memphis on a Siemens Somatron Plus 4

(Siemens, Erlangen, Germany) or Picker PQ2000S (Marconi

Medical Systems, Cleveland, OH). A single axial scan (140 kVp,

300 to 360 mAs, 10-mm thickness) was taken at the disk space

between the fourth and fifth lumbar vertebrae. Images were

transferred to the Reading Center at the University of Colorado

Health Sciences Center on optical disc or magnetic tape. Analyses

were performed on a SPARC station II (Sun Microsystems,

Mountain View, CA) using IDL development software (RSI

Systems, Boulder, CO). An outline was traced surrounding the

abdominal cavity. The adipose tissue density range was determined

with a bimodal image distribution histogram for each participant.

Visceral fat was defined as the area of all adipose tissue within the

abdominal cavity with exclusion of the muscle region, calculated by

multiplying the number of pixels within this range by a single pixel

area. Abdominal subcutaneous fat was defined as the difference in

the area between the entire adipose tissue in the scan and visceral

fat. To assess the reproducibility of these measurements, 5% of the

data was re-read in a blinded fashion. The intra-class correlation

coefficients of reliability ranged from 0.93 to 1.000.

Genotyping and imputation. Genomic DNA was extracted

from buffy coat collected using PUREGENE DNA Purification

Kit during the baseline exam. Genotyping was performed by the

Center for Inherited Disease Research (CIDR) using the Illumina

Human1M-Duo BeadChip system. Samples were excluded from

the dataset for the reasons of sample failure, genotypic sex

mismatch, and first-degree relative of an included individual based

on genotype data. Genotyping was successful for 1,151,215 SNPs

in 2,802 unrelated individuals (1663 Caucasians and 1139 African

Americans). Imputation was done for the autosomes using the

MACH software version 1.0.16. SNPs with minor allele frequency

$1%, call rate $97% and HWE p$10-6 were used for

imputation. HapMap II phased haplotypes were used as reference

panels. For EAs, genotypes were available on 914,263 high quality

SNPs for imputation based on the HapMap CEPH reference

panel (release 22, build 36). A total of 2,543,887 in EAs are

available for analysis.

Statistical analysis. We performed linear regression model-

ing for SAT, VAT, and the VAT/SAT ratio. We observed

association with the first principal components estimated using

Eigenstrat [72]; this was accounted for in our analyses.

Study-Specific Information: Age, Gene/Environment
Susceptibility–Reykjavik Study

The AGES-Reykjavik study is an ongoing study of the effects of

gene-environment interactions and other risk factors on disease in
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old age. AGES-Reykjavik is a subset of a larger population based

cohort study called the Reykjavik-study. The aim of the original

study was to prospectively investigate risk factors for cardiovascu-

lar disease in the Icelandic population. The original Reykjavik-

cohort was established in 1967 with a random sample of 30,795

individuals born in the years 1907–1935, and residing in

Reykjavik, the capital of Iceland. A total of 18,045 individuals

entered the study as participants and attended examinations. The

AGES-Reykjavik sample was constructed in 2002 by randomly

drawing 8,030 individuals who were still alive from the original

Reykjavik-cohort (n = 11,459). A total of 5,764 individuals (58%

women) entered the AGES-Reykjavik study as participants. All

cohort members were European Caucasians.

The AGES-Reykjavik Study was designed to investigate aging

using a multifaceted comprehensive approach. Physical, physio-

logical and questionnaire examinations were conducted in three

visits for each subject including detailed medical history, physical

examination, laboratory and screening tests, and questionnaires on

health-related behaviors such as alcohol consumption, smoking

history, and physical activity. Pertinent to this study, these

measures included anthropometric measurements and computer-

ized tomography measures of adipose depots in the abdomen and

thigh. The AGES–Reykjavik study was approved by the institu-

tional review boards of the National Institute on Aging and the

Icelandic National Bioethics Committee (VSN: 00-063), and

written informed consent was obtained from all participants.
Analytic sample. Of the 5,764 individuals who agreed to

participate in the AGES-Reykjavik study, 5,427 individuals

attended the research center for examinations while 337 received

a home visit. A total of 204 individuals did not contribute CT-data

at the research center. However, among those individuals with

CT, only 3,664 had genotyping at the Laboratory of Neuroge-

netics, Intramural Research Program, NIA, Bethesda, Maryland,

and 3,219 participants passed QC criteria for genotyping. Of

these, 3172 had complete genotyping and complete CT data for

abdominal subcutaneous and visceral adipose depots.
Image acquisition. Images for abdominal adipose depots

were acquired in a single 10 mm thick trans-axial section of the

abdomen at the level of the L4–L5 vertebrae using a Siemens

Somatom Sensation 4 multi-detector CT scanner (Siemens

Medical Solutions, Erlangen, Germany) (standard scan setting:

slice thickness: 10 mm, tube voltage; 140 kilo-voltage, tube-

current-time-product; 50 milli-ampere-seconds and scan time

0.361 sec). Study participants weighing more than 110 kg (kilo-

grams) underwent CT with a tube current setting that was 25%

higher than the standard scan setting. The images were

reconstructed into a display field of view of 350 mm to include a

calibration phantom (Image Analysis, Columbia, KY, USA) which

was positioned under the abdomen of each subject. VAT area was

estimated from all pixels in the abdominal cavity within the range

of 250 to 2200 Hounsfield units. Inter-observer variability based

on the re-analysis of randomly selected 365 scans from the core

study population by an expert observer showed an average

correlation coefficient of 0.99. Intra-observer variability based on

re-analysis of 45 scans by each of the four observers resulted in an

average correlation coefficient of 0.99.

Imputation. As a reference panel for imputation, we used

Phase II CEU HapMap individuals; we imputed genotypes to

nearly 2.5 million HapMap SNPs; further details are presented in

Table S1.

Statistical analysis. We performed linear regression model-

ing for SAT, VAT, and the VAT/SAT ratio.
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