

TISSUE-SPECIFIC STEM CELLS

¹Cell and Developmental Biology Division, Institute of Anatomy, University of Zurich; ²Institute of Molecular Life Sciences, University of Zurich; ³Functional Genomics Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; ⁴Institute for Stem Cell Research, Helmholtz Centre Munich, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; ⁵Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany.; 6Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.

*Corresponding author: lukas.sommer@anatom.uzh.ch, tel +41 44 63 55350, fax +41 44 635 68 95

Received January 24, 2014; accepted for publication July 30, 2014

©AlphaMed Press 1066-5099/2014/\$30.00/0

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/stem.1820

Wnt/β-catenin Signaling Regulates Sequential Fate Decisions of Murine Cortical Precursor Cells

KALINA DRAGANOVA¹, MARTINA ZEMKE¹, LUIS ZURKIRCHEN¹, TOMAS VALENTA²,
CLAUDIO CANTU², MICHAL OKONIEWSKI³, MARIE-THERES SCHMID⁴, RAYMOND
HOFFMANS², MAGDALENA GÖTZ^{4,5,6}, KONRAD BASLER², LUKAS SOMMER^{1,*}

Key Words. Neural stem cell • Signal transduction • Neural differentiation • Cellular proliferation

ABSTRACT

The fate of neural progenitor cells (NPC) is determined by a complex interplay of intrinsic programs and extrinsic signals, very few of which are known. β-catenin transduces extracellular Wnt signals, but also maintains adherens junctions integrity. Here, we identify for the first time the contribution of β-catenin transcriptional activity as opposed to its adhesion role in the development of the cerebral cortex by combining a novel β -catenin mutant allele with conditional inactivation approaches. Wnt/β-catenin signaling ablation leads to premature NPC differentiation, but, in addition, to a change in progenitor cell cycle kinetics and an increase in basally dividing progenitors. Interestingly, Wnt/β-catenin signaling affects the sequential fate switch of progenitors, leading to a shortened neurogenic period with decreased number of both deep and upper-layer neurons and later, to precocious astrogenesis. Indeed, a genome-wide analysis highlighted the premature activation of a corticogenesis differentiation program in the Wnt/β-catenin signaling-ablated cortex. Thus, β-catenin signaling controls the expression of a set of genes that appear to act downstream of canonical Wnt signaling to regulate the stage-specific production of appropriate progenitor numbers, neuronal subpopulations, and astroglia in the forebrain. STEM CELLS 2014; 00:000-000

INTRODUCTION

Proper development of the forebrain requires precise interpretation of temporally- and spatially-restricted cues by the NPC, which initially expand by symmetric division in the ventricular zone (VZ) [1] [2]. As neurogenesis progresses, the apical precursors produce sequentially all the neurons of the six-layered cerebral cortex. At the end of embryogenesis VZ precursors

switch to production of glia, which integrate into the established neuronal network [3].

Several distinct progenitors differing in gene expression, proliferation kinetics and mitotic morphology reside in the murine VZ [4]. The most numerous radial glia (RG) maintain both an apical and a basal process while undergoing multiple asymmetric divisions to generate either a neuron or a more restricted intermediate progenitor cell (IPCs) for the subventricular zone (SVZ) [5, 6]. Short neural precursors (SNPs), in contrast, extend only an apical process during mitosis and mostly directly

produce neuronal progeny [7, 8]. Both of these apical progenitors (APs) can generate bipolar subapically dividing progenitors (SAPs), whose numbers are very limited in the murine dorsal VZ [9]. However, SAPs significantly contribute to the neuronal lineage amplification in gyrencephalic species alongside another unique mammalian precursor termed basal radial glia (bRG) [10, 11]. The bRG residing in the outer SVZ are predominantly expressing Pax6, undergoing more than one division and mostly displaying a basal or apical-only anchor [12, 13].

The mechanisms regulating the progressive restriction of this diversity of progenitors and their fate are just starting to emerge. Isolated cortical progenitors and embryonic stem cells in culture can recapitulate the sequential generation of neurons from different layers, followed by gliogenesis, pointing to the existence of an inherent timing program [14-17]. However, these studies do not exclude the presence of an environmental signal secreted by the clones themselves, which drives the orderly progression of fate.

Several Wnt ligands are secreted already at early stages from the hem, the caudo-medial margin of the expanding neocortex, from the choroid plexus of the hindbrain [18] and later from broader neocortical domains [19]. In the Wnt/ β -catenin pathway (or canonical Wnt pathway) binding of Wnt ligands to the LRP5/6-Frizzled receptors releases β -catenin from the GSK3 β -Axin-APC-CKI α destruction complex. It can thus translocate to the nucleus and activate transcription together with members of the lymphoid enhancer-binding factor (Lef)/T-cell factor (Tcf) transcription factor family [20]. At early neurogenesis persistent Wnt signaling stimulates the proliferation of VZ precursors and promotes deep neuron laminar fate at the expense of upper neuron identity [21-23]. Similarly, β-catenin knockdown results in enhanced cell cycle exit and premature differentiation or leads to an increase in IPCs [23, 24]. Abrogation of Wnt signaling in vitro and via LRP6 co-receptor knockout at mid-neurogenesis, however, leads to decreased neuronal output both via APs and IPCs, suggesting a later role of β -catenin in promoting differentiation [25-28]. Independently of its transcription function, βcatenin also associates with adhesion junction proteins such as α -catenin and N-cadherin to maintain the apicobasal polarity of APs [29]. Indeed, loss of adhesion coupling can either promote or inhibit proliferation of APs, depending on the downstream effectors [30-32]. Hence, the precise role of β-catenin signaling in forebrain development needs to be defined while preserving cellcell adhesion.

In order to examine solely the transcription function of β -catenin from the onset of neurogenesis, we combined a recently generated transcription-defective allele of β -catenin, whose adhesion function is intact, with conditional inactivation approaches [33]. We show that ablation of Wnt signaling results in depletion of the AP pool concomitant with an increase in basal precursor cells. Most strikingly, we reveal unexpected roles of

Wnt signaling in regulating the proper temporal progression of cortical neural progenitors from early to late neuron production, and later to gliogenesis through an elaborate transcription factor network.

MATERIALS AND METHODS

Animals and genotyping

Mouse experiments were performed in accordance with Swiss guidelines and approved by the Veterinarian Office of the Kanton of Zürich, Switzerland. Floxed *Ctnnb1* mice [34] were crossed to *Ctnnb1*^{dm} mice and *Emx1-Cre* [35] driver line to generate *E1C-Ctnnb1*^{dm/flox} and *E1C-Ctnnb1*^{flox/flox} mutants. In order to monitor Wnt signaling activity, the mice were additionally crossed to BAT-gal reporter line [36]. All the animals were bred on a C57/BL6 background.

Immunohistochemistry, X-gal staining, cell cycle analysis and luciferase assay

Detailed in Supporting Information. In situ hybridization, quantitative real-time PCR and microarray analysis

Detailed in Supporting Information.

Imaging and quantification analysis

Epifluorescence and confocal micrographs were taken with a Leica DMI6000 B or a CLSM Leica SP8 upright microscope, processed with Adobe Photoshop and quantified manually using ImageJ. For each quantification, 3 mutants and 3 controls from at least 2 different litters, ≥3 sections per animal at different rostro-caudal levels were analyzed, except for calculating the saturation point in Fig. 3K where 2 animals of each genotype were used. A radial unit was defined as a 100µm-wide stripe measured at the ventricular surface with perpendicular borders given by the direction of radial glial cell fibers. PHH3 nuclei were considered basal if they were localized more than 2 DAPI nuclei away from the ventricle. Measurements of the thickness of the VZ, SVZ, IZ and CP were done in ImageJ on micrographs stained for Tbr2-Ctip2 and mutant cortex values were normalized against the thickness of the respective zone of their littermate control. Statistical analysis was performed on Microsoft Excel using unpaired, two-tailed Student's ttest.

RESULTS

A novel mutant β -catenin allele disrupts Wnt signaling but not cell-cell adhesion in the neocortex

In order to investigate the role of canonical Wnt signaling in the development of the neocortex independently of β -catenin-mediated cell adhesion, we employed a novel β -catenin allele - $Ctnnb1^{dm}$ (Fig. 1A). In this allele, a substitution of amino acid 164 in the first Armadillo

repeat from aspartate to alanine (D164A) prevents binding of Bcl9/Bcl9L, the most important N-terminal transcriptional co-activator of β -catenin. Further, a prematurely introduced STOP codon at position 673 in exon 13 induces a protein truncation and abrogates interactions with C-terminal binding partners. To avoid the early lethality of such homozygous Wnt/ β -catenin signaling mutants at embryonic day 7.5 (E7.5) [33], we ablated Wnt signaling specifically in cortical progenitors by combining a forebrain-specific Emx1-Cre (E1C) strain with the previously described conditional β -catenin null allele $Ctnnb1^{flox}$ [34] and with the novel $Ctnnb1^{dm}$ [35] (Supporting information Fig. S1). In parallel, we used the E1C-Ctnnb1^{flox/flox} signaling- and adhesion-mutant for comparison.

First, we examined the efficiency of recombination in the dorsal telencephalon at E12.5 using antibodies against the N- and C-termini of β-catenin (Fig. 1B-C). In controls, β-catenin protein recognized by both antibodies is enriched at the apical surface of the neuroepithelium and at adherens junctions. As expected, in the $\it E1C-Ctnnb1^{\it dm/flox}$ signaling mutant immunoreactivity against the truncated C-terminus was absent, while the N-terminal part of the protein was concentrated apically and at cell-cell junctions. The preserved integrity of the neuroepithelium in controls and E1C-Ctnnb1^{dm/flox} mutants was also visualized by immunostaining for the adhesion proteins N-cadherin, ZO-1 and α -E-catenin (Fig. 1E-J). In contrast, the null mutant *E1C-Ctnnb1* was devoid of β-catenin immunoreactivity (Fig. 1D), leading to loss of adherens junctions in recombined regions (Fig. 1G, J). The disrupted tissue integrity observed in the β -catenin null mutant reinforces the importance of separating the adhesion from the Wnt-signaling function of β-catenin using the β-catenin signaling mutant.

To confirm that Wnt/β-catenin signaling is functionally inactive, we employed the BAT-gal reporter transgene, in which β-catenin activity drives the expression of β -galactosidase in Wnt signaling-active cells [36]. In controls, highest β-galactosidase activity was detected medially and caudally; however, no X-gal signal was visible in E1C-Ctnnb1^{dm/flox} cortices (Fig. 1K-L). To confirm our in vivo observations, we isolated neural precursor cells from E12.5 embryos and electroporated them with SuperTOPFlash, a specific Wnt/β-catenin reporter construct, or the scrambled SuperFOPFlash reporter as control [37]. Formation of active β-catenin-Tcf/Lef complexes after Wnt3a stimulation of control cells induced a 20-fold increase in luciferase signal (Fig. 1M). In contrast, E1C-Ctnnb1^{dm/flox} mutants were defective in stimulating luciferase activity, demonstrating the failure of the Ctnnb1^{dm} allele to mediate Wnt/β-catenin signaling while supporting normal adhesion.

Absent Wnt/β-catenin transcriptional activity abolishes hippocampal development

A canonical Wnt3a signal from the hem is required to maintain the proliferation of the caudo-medial cortex,

while β-catenin/LEF/TCF-mediated transcription is essential for hippocampal specification [19, 38]. Since Wnt/β-catenin signaling was lost in the E1C-Ctnnb1^{dm/flox} pallium already by E12.5, we evaluated forebrain coronal sections at E18.5, just before mutant embryos died. In both E1C-Ctnnb1^{dm/flox} and E1C-Ctnnb1^{flox/flox} embryos a shortened cortical wall, smaller lateral ventricles and absence of hippocampal structures were detected (Supporting information Fig. 2A-C). Unlike controls in which Wnt3a mRNA was present in the hem ventral to the hippocampal anlage, Wnt3a expression in β-catenin mutants was shifted dorsally (Supporting information Fig. 2D-F), similarly to BMP6 expression and to BMP signaling activity as assessed by immunostaining for pSmad1/5/8 (Supporting information Fig. 2J-O). In situ hybridization for Wnt8b, normally expressed both in the hem and in the presumptive hippocampal primordium, further implied the absence of the hippocampus (Supporting information Fig. 2G-I). In agreement, at E14.5 the dentate gyrus marker Prox1 could not be detected in *E1C-Ctnnb1* embryos (Supporting information Fig. 2P-Q) [39]. Thus, we could confirm the essential role of canonical Wnt signaling for hippocampal development.

Further, we assessed dorso-ventral patterning since Wnt/β-catenin signaling has been implicated in maintaining dorsal fate and preventing ventralization prior to the onset of neurogenesis (E9.0-E11.5) [40, 41]. However, in situ hybridization for Neurog2, a transcription factor (TF) specifying early neurons in the dorsal cortex [42], for ventral proneural TF Mash1 [43] and for its direct target Dlx2 [44] demonstrated normal domains of expression both in controls and in β-catenin-ablated embryos (Supporting information Fig. S3). In addition, normal enrichment of Pax6 rostrally and CoupTFI caudally was confirmed in E1C-Ctnnb1^{dm/flox} mutants (Supporting information Fig. S4) [45]. These results indicate that loss of Wnt/β-catenin signaling in dorsal forebrain progenitors after E9.5 affects neither dorso-ventral nor rostro-caudal forebrain patterning.

β-catenin signaling regulates progenitor differentiation

The cortical wall defects of β-catenin mutants at E18.5 could result from a disturbed balance between NPC proliferation and differentiation or from apoptosis. Notably, the number of NPC positive for the TF Sox2, implicated in neural precursor maintenance [46], was similar in E1C-Ctnnb1^{dm/flox} and control animals at E12.5 (Fig. 2A-B, G). In contrast, expression of the early neuronal marker Doublecortin (Dcx) was increased in the mutant forebrain already at E12.5 and even more pronounced at E14.5 (Fig. 2A-G). Similarly, premature differentiation was observed in E1C-Ctnnb1^{flox/flox} mutants at E12.5 but accompanied by a loss of neuroepithelial integrity and intermingling of Dcx⁺ neurons and Sox2⁺ progenitors (Fig. 2C, F). Since loss of adhesion coupling has been associated with secondary defects [47], we further examined E1C-Ctnnb1^{dm/flox} mutants only, the phenotype of which is attributed solely to canonical Wnt signaling ablation.

To confirm the precocious neurogenesis in β-catenin signaling mutants, the fraction of cells that have exited the cell cycle was assessed by a 20h pulse-labeling of Ki67⁺ proliferating cells using the thymidine analogue 5bromo-2'-deoxyuridine (BrdU) (Supporting information Fig. S5A-B). Indeed, the proportion of BrdU⁺Ki67⁻ cortical progenitors, which have exited the cell cycle, was significantly higher in mutant than in control cells (Fig. 2H). In addition, we measured the thickness of the VZ, SVZ, the intermediate zone (IZ) and cortical plate (CP) from E12.5 to E18.5 (Fig. 2I). We detected a consistent decline in the VZ thickness after E12.5, accompanied by a transient thickening of the SVZ, IZ and CP. At E18.5, the mutant VZ, SVZ, IZ and CP were significantly thinner than in controls. Finally, we noted no differences in the apoptotic rate of E1C-Ctnnb1^{dm/flox} mutants and controls at E14.5 (Supporting information Fig. S6A-C). In summary, the absence of Wnt/β-catenin transduction resulted in enhanced neurogenesis from E12.5, which eventually led to precocious depletion of the VZ precursor pool in the absence of apoptosis.

β-catenin signaling regulates the generation of distinct basal progenitor populations

The enhanced neurogenesis detected in E1C-Ctnnb1^{dm/flox} animals could indicate a changed mode of AP division, shorter AP cell cycle allowing generation of more progeny in a given time period, or enhanced production of basal progenitors. To distinguish between these possibilities, we first examined markers of APs, Pax6, and of IPCs, Tbr2 [48] (Fig. 3A-B, E-J). At E12.5, the number of Pax6-expressing cells per radial unit was similar in control and β -catenin signaling-deficient cortex. However, it declined by E14.5, as also evidenced by quantifying the precursor subtypes in 5 bins across the cortical wall (Supporting information Fig. S5G-L). Instead, the number of proliferating Tbr2⁺Ki67⁺ IPCs was 3-fold increased in the mutant cortex at E12.5. In addition, a significantly higher proportion of Pax6/Tbr2double positive APs transitioning to IPCs was apparent in the E1C-Ctnnb1^{dm/flox} embryos at both stages (Fig. 3C). These data point to a disturbed balance between AP self-renewing (generating more Pax6[†] cells) versus differentiative divisions (generating Tbr2⁺ cells) in βcatenin signaling mutants. To corroborate our observations, we analyzed NPC proliferation by staining for the mitotic marker phospho-histone 3 (pHH3). While the overall mitotic rate was unchanged, a significant shift from apical to basal divisions was observed in the signaling mutant (Supporting information Fig. S5C-F). Taken together with the assessment of stunt growth (Fig. 21), these data suggest that loss of β-catenin signaling gradually depletes the AP pool at the expense of a transient increase of IPCs.

Apart from IPCs, the number of another basal progenitor, the bRG, might also be affected by the absence of Wnt/ β -catenin signaling. While bRG are predomi-

nantly $Pax6^+$ and located at the outer SVZ, the presence of a basal-only process is controversial in the light of recent findings in primates, where bRG with an apical-only or with both apical and basal processes were identified [49]. Therefore, we focused on presumptive bRG as $Pax6^+$ cells basal of the $Tbr2^+$ SVZ (Fig. 3D-J). Strikingly, similarly to IPCs, we detected an increase in this basal $Pax6^+$ population in $E1C-Ctnnb1^{dm/flox}$ mutants, even when scored against the population of IPCs (0.12±0.04 in controls vs. 0.26±0.08 in mutants, p=0.046, data not shown).

The appearance of more IPCs in the course of neurogenesis and of bRG is associated with changes in cell cycle kinetics and with oblique/horizontal spindle orientation of APs divisions, respectively [12, 13, 50-52]. Estimations of the cell cycle length by cumulative EdU labeling at E12.5 [53] showed no significant difference in overall cycling time between mutant and control APs (Fig. 3K). However, commitment to a neural fate of cortical precursors is linked to both lengthening of G1 and to shortening of S-phase due to a diminished requirement for stringent DNA quality control [54]. Interestingly, we observed a significant shortening of S-phase (co: 5.4h, mt: 3.8h, p<0.01) concomitant with a prolongation of G1-phase (co: 8.9h, mt: 9.9h, p<0.01) of mutant APs, suggesting that Wnt signaling prevents fate-associated changes in the cell cycle. We next calculated the angle of division of APs after immunostaining for the centrosome marker y-tubulin (Fig. 3L-O). In agreement with the slight increase in the number of bRG, we detected a few oblique divisions in the mutant cortices. Collectively, these data suggest that the absence of Wnt/βcatenin signaling promotes indirect neurogenesis by affecting not only the AP division mode but also their cell cycle kinetics and spindle orientation.

β-catenin – mediated transcription regulates laminar fate and onset of gliogenesis

Since we observed defects in the proliferation of APs and expansion of the basal precursor pool at E12.5 (Fig. 3A-K), we assessed whether the ablation of Wnt/ β catenin transduction influences neuronal specification and cortical lamination. We examined E18.5 cortices for layer-specific markers - Reelin for the marginal zone (MZ)/layer 1, Tbr1 for layer 6 (L6), Ctip2 for layer 5, and Cux1 for layers 2-4 and SVZ IPCs progenitors [16]. The number of reelin[†] Cajal-Retzius neurons was significantly increased in signaling mutants compared to wild-type (Fig. 4A-B, G). Likewise, Tbr1 protein expression was not restricted to the mutant layer 6, but was found in upper-layer and nascent immature neurons (Fig. 4A-B). Contrary to Tbr1, the thickness of the deep Ctip2 neuronal layer was significantly reduced, bringing it in close proximity to the Cajal-Retzius cells of layer 1 (Fig. 4C-D, G). Similarly, in E1C-Ctnnb1^{dm/flox} mutants fewer deep Foxp2 cells were detected (data not shown), suggesting that early neurons were not overproduced, but that Tbr1 expression was impaired instead. In addition, the number of late Cux1⁺ neurons of layers 2-4 was de-

creased to 72% of control, and hardly any Cux1expressing IPCs were detected in the SVZ at this stage (Fig. 4E-F, G). Except for the Tbr1-expressing neurons, however, the relative position of the distinct neuronal subtypes was largely preserved in the Wnt/β-catenin signaling-depleted pallium. Indeed, immunostaining for the NPC-specific neurofilament protein nestin and the fatty acid-binding protein Blbp demonstrated that the neuroepithelial scaffold in *E1C-Ctnnb1* embryos was intact even at late corticogenesis (Supporting information Fig. S7A, C). In support of this, confocal reconstruction of mitotic E14.5 RG after pHH3 and phospho-vimentin immunodetection confirmed the presence of basally-oriented processes in mutant RG (Supporting information Fig. S7B, D). In conclusion, by restricting neurogenic divisions to the appropriate time frame, canonical Wnt signaling controls the progenitor output for different neuronal subtypes, but not their lamination

After sequential generation of neurons of all layers APs give rise to astrocytes detected at E18.5 with the astrocytic markers glial acidic fibrillary protein (GFAP) and Aldh1l1. GFAP-expressing glial progenitors are restricted to the VZ of control cortex, with few GFAP+ astrocytic fibers detected at the basal CP. Surprisingly, E1C-Ctnnb1^{dm/flox} embryos, stronger immunoreactivity was observed in the VZ and individual GFAP⁺ mature astrocytes had already migrated basally (Fig. 4H-I). Similarly, a significant increase in the number of Aldh111⁺ astrocytes in the IZ/CP was detected in the mutant cortices (Supporting information Fig. S7E-H) [55]. Finally, the astrocytic nature of these basally located cells was also confirmed by quantifying Blbp nestin cells outside the VZ/SVZ (Supporting information Fig. S7A, C) [56]. Therefore, in addition to regulating neuronal layer production, Wnt/β-catenin signaling prevents the premature initiation of astrogenesis.

Canonical Wnt signaling regulates timely sequential neurogenesis in the neocortex

Since we didn't observe augmented neuronal apoptosis (Supporting information Fig. S6A-C), the thinner CP in E1C-Ctnnb1^{dm/flox} embryos might result from a premature switch of progenitors to production of subsequentlayer neurons. Thus, we investigated whether each neuronal layer is generated in the correct temporal order by neuronal birthdating. Embryonic neuronal progenitors undergoing S-phase were labeled with BrdU by intraperitonial injections of pregnant mothers at E12.5 or E15.5 when early and late neurons, respectively, are at the peak of their production [57]. Upon immunostaining, the percentage of marker-specific subtypes labeled with BrdU per total marker-positive cells at each stage was calculated. Birthdating of E12.5 neurons (Fig. 5A-E) showed that more early Ctip2[†] neurons were generated in mutants (33±5% in controls vs 45±6% in mutants) and β-catenin-signaling-ablated progenitors had already switched to producing late Cux1⁺ neurons destined for layers 2-4 (9±2% in controls vs 20±4% in mutants). Indeed, we detected more Cux1+ upper-layer neurons present on E14.5 coronal sections from E1C-Ctnnb1 $^{dm/flox}$ embryos (Supporting information Fig. S6D, E). By E15.5 the generation of lower layer neurons had already declined in both controls and mutants. However, production of upper layer Cux1 $^+$ neurons at E15.5 was severely diminished to 13±0% in E1C-Ctnnb1 $^{dm/flox}$ cortices compared to 22±2% in controls (Fig. 5F-J). Altogether, we conclude that the defective neurogenesis in E1C-Ctnnb1 $^{dm/flox}$ pallium is due to precocious production of neurons of subsequent layers and later, to an earlier switch to astrogenesis.

Absence of β-catenin – mediated signaling triggers premature activation of a corticogenesis transcriptional program

To identify the targets of Wnt/β-catenin signaling independent of β-catenin-sustained adhesion, we performed microarray-based expression analysis on directly isolated dorso-medial pallium from control and E1C-Ctnnb1^{dm/flox} embryos at E11.5. Among the most downregulated genes were some known Wnt/β-catenin signaling targets such as Sp5, Tnfrsf19 (Troy), N-myc, Lef1 and Axin2 (Fig. 6A, red), validating the microarray data. B-catenin preferentially acts as a transcriptional activator or can serve as a repressor depending on the cofactor context [58]. Thereby, we identified novel DNA-binding proteins which have not been previously linked to Wnt/β-catenin signaling and whose expression was decreased or strongly (more than 2-fold) upregulated in mutant tissues (Fig. 6A, blue). We set out to determine if their temporal NPC-specific expression fits with a role in regulating sequential fate shifts. For this purpose, we performed bioinformatic analysis on microarray data from APs collected either from E11 cortex tissue (that largely consists of APs and very few neurons) and APs isolated from E14.5 and E18.5 cerebral cortex by flow cytometry based on the expression of the apical membrane protein Prominin1 and human GFAP promoter (Fig. 6B) [59]. At E11 APs mostly selfrenew, followed by a peak of differentiative divisions producing either neurons or IPCs at E14.5 and finally convert to gliogenesis by E18.5. Notably, previously confirmed regulators of sequential fate decisions such as Hmga2 [60], Foxg1 and its targets Rgmb, Magel2 and Nr4a2 [61] demonstrated dynamic, highly significant changes in their temporal expression (Fig. 6B, black). When we assessed the levels of the DNA-binding proteins affected upon β-catenin signaling loss (Fig. 6B, red and blue), two patterns emerged. First, the NPC-specific expression of transcripts downregulated in the absence of Wnt transduction peaked at early stages and then significantly declined (7 out of 10 TFs). Second, mRNA levels of astrogenesis-associated genes, for example Nfix and Etv5, increased after mid-neurogenesis, consistent with their suggested role in glia. Thus, the dynamic changes in the expression of these genes at key

corticogenesis stages suggest that they might be controlling the orderly fate switches.

Given that cortical Wnt/ β -catenin signaling ablation affected mostly progenitor proliferation and sequential differentiation, we used these two functional categories to classify the microarray-identified TF. Indeed, when we validated our gene chip results by quantitative realtime PCR (qPCR), the mRNA levels of Tcfap4, Sp5 and Nmyc which repress cell cycle inhibitors p21 and/or p27 were decreased (Fig. 6B) [62-65]. Similarly, the expression of TF Eya2 and Dach1, which form an activating complex positively affecting precursor proliferation and survival [66], was also reduced in the absence of Wnt/βcatenin signaling. Concomitantly, the levels of the neurogenesis-implicated proteins Rora and Prdm12 were disregulated [67, 68]. Finally, the expression of Prtg, required to maintain an early progenitor state in the retina [69], and of *Dmrt3*, which belongs to a family acting downstream of Pax6 in the cortex [70], was downregulated.

Interestingly, the upregulated TF Etv5 was recently identified as part of an early transcriptional network coordinating temporal neurogenesis downstream of the repressor FoxG1 [61]. Apart from the known FoxG1 target Wnt8b, some of the most rapidly downregulated genes upon FoxG1 re-expression were Dmrt3, Eya2 and Dach1, whose levels were also significantly decreased upon β -catenin signaling loss. Intriguingly, these TFs were suggested to regulate the temporal competence of NPC to early neurogenesis. In addition, Etv5, which is increased in both *FoxG1* gain-of function and β -catenin loss-of-function cortices, was shown to promote astrogenesis in late NPC [71]. Also, in the Wnt signalingablated brain, the glia-inhibiting TF Emx2 and the two members of the Nuclear Factor I family Nfix and Nfib also showed altered expression [72]. Thus, our data collectively suggest that Wnt/β-catenin signaling regulates stage-specific TF targets to maintain an orderly progression from NPC proliferation to neurogenesis and eventually, gliogenesis.

We then tested if the TF Dach1, Eya2, Etv5 and Nfix, which are implicated in orderly progression of corticogenesis, are direct Wnt/ β -catenin signaling targets. First, we examined the DNA upstream of the transcription start site (TSS) for regions conserved between human and mouse (Fig. 6D, conservation regions denoted as pink peaks) and designed different primer pairs against selected regions. We carried out chromatin immunoprecipitation (ChIP) using an anti-β-catenin antibody on chromatin derived from E13.5 cortical tissue and analyzed the immunoprecipitate by qPCR. Axin2 intron1 and the Sp5 TSS served as positive and the promoter regions of GATA and β-globin as negative controls [65]. Interestingly, β-catenin interacted with the promoter regions of Dach1, Eya2, Etv5 and also Nfix, suggesting that β-catenin signaling regulates a TF cascade to exert its effects on the sequential fate of NPC.

DISCUSSION

Despite the fundamental importance of the canonical Wnt pathway for the development of the neocortex, its specific role has been difficult to address due to the dual function of its downstream effector β-catenin as a transcriptional activator and adhesion protein. Therefore, we employed a newly generated β-catenin mutant strain, in which β-catenin cannot interact with its N- or C-terminal transcriptional coactivators, but can still fully sustain cell-cell adhesion. Apart from an in vitro assay, we demonstrated the functional ablation of the Wnt/βcatenin pathway using the highly sensitive BAT-gal Wnt/β-catenin signaling reporter line by E12.5. Through this model, we found that canonical Wnt signaling within progenitor cells regulates the duration of the S- and G1-phases, both of which are key factors for NPC fate decisions, and apical progenitor maintenance. Unexpectedly, we also uncovered a Wnt/β-catenin pathway role in the timely regulation of corticogenesis by controlling a set of TF with stage-specific function.

NPC undergo several rounds of symmetric divisions before they switch to asymmetric divisions, which generate IPCs, bRG, or neurons. Previous reports suggested that cell-autonomous Wnt signaling promotes APs expansion by increased cell cycle re-entry and by delaying the transition from APs to IPCs [21, 23, 73]. In contrast, other studies demonstrated a functional relevance of Bcatenin signaling in inducing IPCs differentiation through N-myc and Neurog1/2 after E13 [25, 27, 28, 74]. Yet another report revealed a crucial role of β catenin in maintaining the structural integrity of the neuroepithelium and in cell survival in the early telencephalon [75]. Thus, although some studies implied a role of Wnt/β-catenin signal transduction in neural differentiation, the orderly progression of corticogenesis was not possible to examine because of tissue disruption, compensatory mechanisms, or technical limitations of in utero electroporation. Indeed, disrupted neuroepithelial integrity often results in an increase in basally dividing cells and defective lamination [32, 47, 76-78], emphasizing the importance of studying Wnt signaling function in the context of intact progenitor adhesion. Using our signaling-defective, adhesion-active β-catenin strain, we showed that Wnt/β-catenin signaling maintains the APs pool at a size appropriate for the stage-specific generation of stem cell derivatives (Fig. 2-3). In β-catenin signaling mutant embryos, the basal mitoses and the number of proliferating Tbr2⁺ IPCs were enhanced at E12.5, followed by a decreased number of Pax6⁺ APs at E14.5 and shrinkage of the VZ. This VZ precursor depletion in mutant embryos was accompanied by a shortening of S-phase and lengthening of G1, which is characteristic for proliferating progenitors committing to neuronal fate [50, 51, 54]. Strikingly, although the main function of β -catenin signaling is not to regulate the spindle orientation of APs in general, the increased number of APs divisions with oblique spindle orientations reflected the enhanced number of bRG-like cells in β -catenin signaling mutants [52]. Hence, we propose that canonical Wnt signaling controls the timely transition of apical progenitors to a more committed state, reflected by increased generation of different types of basal progenitors upon inactivation of β -catenin signaling.

As corticogenesis proceeds, the neural progenitors become progressively restricted in their fate potential, first generating neurons of deep layers, then more superficial neurons to finally transition to gliogenesis, while resetting to an earlier fate has proven difficult [79]. Compelling evidence suggests that this sequential timing of neurogenesis is a complex interplay between an intrinsic timing property of individual progenitors and extrinsic signals. Indeed, neurons for example express Notch ligands, thus activating Notch signaling in precursors and inducing demethylation of astrocytic promoters via nuclear factor I [80]. Furthermore, embryonic neurons secrete the cytokine cardiotrophin-1, which activates the gp130-JAK-STAT pathway in APs, thus promoting timely astrogenesis [81]. The neuronspecific Sip1 restricts the production of Ntf and Fgf in postmitotic neurons to ensure sufficient number of each neuronal subtype is generated before the onset of gliogenesis [57]. However, intrinsic mechanisms themselves can drive the orderly progression of fate. Isolated cortical progenitors in vitro exhibit the orderly generation of different types of neurons and subsequently glia, as they would in vivo [14, 15]. Further supporting the existence of an internal timing property, both mouse and human embryonic stem cells can be sequentially differentiated into the distinct types of dorsal pyramidal neurons, which efficiently integrate into the mouse brain [16, 82]. Here we demonstrate that in an environment of intact precursor interactions, Wnt/β-catenin signaling is required to prevent premature progression to a later fate. When we ablated β-catenin transcriptional activity, the progenitors precociously proceeded to generating early neurons and then, late neurons, diminishing the final neuronal output (Fig. 5). While both populations were affected, Ctip2⁺ deep neurons of layer 5 exhibited a stronger decrease, supporting a role of canonical Wnt pathway in specifying this neuronal type [22]. The reduction in upper neurons in spite of abundant IPCs and bRG-like cells presumably resulted from premature depletion of the APs pool and switch to astrogenesis (Fig. 2-3). Indeed, contrary to control cortices, we observed no Cux1⁺ IPCs in the SVZ of mutant forebrains at E18.5, but extensive Blbp⁺, Aldh1l1⁺ and GFAP⁺ mature astrocytes in the cortical wall (Fig. 4 and Fig. S7). Therefore, canonical Wnt signaling disruption led to precocious termination of neurogenesis at the expense of astrogenesis.

Interestingly, we identified a temporal TF cascade downstream of β -catenin signaling which is crucial at different corticogenesis phases. At early stages, we identified changes in the cell cycle and division mode of NPC, which coincided with downregulation of the proproliferative TF *Sp5*, *N-myc*, *AP4*, *Dach1* and *Eya2*. Strik-

ingly, Dach1 and Eya2, together with Dmrt3, are suggested to regulate neurogenic competence in the brain [61]. The precocious decrease in their expression along with their promoters being bound by β -catenin suggests that in β -catenin signaling-ablated embryos a neurogenesis program is prematurely activated. In addition, β -catenin associated upstream of the *Etv5* TSS, possibly exerting a negative regulation through TCF3 [58]. Increased levels of *Etv5* accompanied by a decrease in glia-repressing *Emx2* TF levels can probably account for the premature glial generation in *E1C-Ctnnb1* mutants. Thus, Wnt/ β -catenin signaling acts upstream of a complex and dynamic temporal TF network to control progenitor fate shifts.

CONCLUSION

In summary, we describe an unrecognized role of canonical Wnt signaling as a mechanism within the precursor niche, which regulates the timely fate switch from early to late neurogenesis and subsequently to astrogenesis. Such a role could only be uncovered in the context of a transcriptionally-impaired, but adhesion-functional β -catenin, where no neuroepithelial integrity defects were apparent.

ACKNOWLEDGMENTS

We thank Rolf Kemler for providing us with the *Ctnnb1*^{flox/flox} mouse, Stefano Piccolo for the BAT-gal mice, S. Falk for scientific input, I. Miescher, A. Geminn and C. Burger for excellent technical help and past and current members of the Sommer lab for critical comments. This work was supported by the Swiss Cancer League and the Swiss National Science Foundation.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

The authors declare no potential conflicts of interests.

AUTHOR CONTRIBUTIONS

K.D.: Conception and design, Collection and/or assembly of data, Data analysis and interpretation, Manuscript writing; M.Z.: Collection and/or assembly of data, Data analysis and interpretation; L.Z.: Collection and/or assembly of data, Data analysis and interpretation; T.V.: Conception and design, Provision of study material, Final approval of manuscript; C.C.: Conception and design, Collection and/or assembly of data, Data analysis and interpretation; M.O.: Data analysis and interpretation; M.S.: Provision of study material; R.H.: Conception and design; M.G.: Provision of study material, Final approval of manuscript, Financial support; K.B.: Conception and design, Provision of study material, Final approval of manuscript, Financial support; L.S.: Conception and design, Data analysis and interpretation, Manuscript writing, Financial support.

REFERENCES

- 1 Falk S, Sommer L. Stage- and area-specific control of stem cells in the developing nervous system. **Curr Opin Genet Dev.** 2009;19:454-460.
- 2 Noctor SC, Flint AC, Weissman TA et al. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci. 2002;22:3161-3173.
- 3 Götz M, Huttner W. The Cell Biology of Neurogenesis. **Nature Reviews**. 2005;6:777-
- 4 Corbin JG, Gaiano N, Juliano SL et al. Regulation of neural progenitor cell development in the nervous system. J Neurochem. 2008;106:2272-2287.
- 5 Noctor SC, Martinez-Cerdeno V, Ivic L et al. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. **Nat Neurosci**. 2004;7:136-144.
- 6 Haubensak W, Attardo A, Denk W et al. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. **Proc Natl Acad Sci U S A.** 2004;101:3196-3201.
- 7 Gal JS, Morozov YM, Ayoub AE et al. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci. 2006;26:1045-1056.
- 8 Stancik EK, Navarro-Quiroga I, Sellke R et al. Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J Neurosci. 2010;30:7028-7036.
- 9 Pilz GA, Shitamukai A, Reillo I et al. Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. **Nat Commun.** 2013;4:2125.
- **10** Hansen DV, Lui JH, Parker PR et al. Neurogenic radial glia in the outer subventricular zone of human neocortex. **Nature**. 2010;464:554-561.
- 11 Fietz SA, Kelava I, Vogt J et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. **Nat Neurosci**. 2010;13:690-699.
- 12 Shitamukai A, Konno D, Matsuzaki F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci. 2011;31:3683-3695.
- 13 Wang X, Tsai JW, LaMonica B et al. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci. 2011;14:555-561.
- 14 Qian X, Shen Q, Goderie SK et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. **Neuron**. 2000;28:69-80.
- 15 Shen Q, Wang Y, Dimos JT et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. **Nat Neurosci**. 2006;9:743-751.

- **16** Gaspard N, Bouschet T, Hourez R et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. **Nature**. 2008;455:351-357.
- 17 Eiraku M, Watanabe K, Matsuo-Takasaki M et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. **Cell Stem Cell**. 2008:3:519-532.
- 18 Johansson PA, Irmler M, Acampora D et al. The transcription factor Otx2 regulates choroid plexus development and function. **Development**. 2013;140:1055-1066.
- 19 Lee SM, Tole S, Grove E et al. A local Wnt-3a signal is required for development of the mammalian hippocampus. **Development**. 2000;127:457-467.
- 20 Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781-810.
- 21 Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. **Science**. 2002;297:365-369.
- **22** Mutch CA, Funatsu N, Monuki ES et al. Beta-catenin signaling levels in progenitors influence the laminar cell fates of projection neurons. **J Neurosci.** 2009;29:13710-13719.
- 23 Woodhead GJ, Mutch CA, Olson EC et al. Cell-autonomous beta-catenin signaling regulates cortical precursor proliferation. J Neurosci. 2006;26:12620-12630.
- 24 Wrobel CN, Mutch CA, Swaminathan S et al. Persistent expression of stabilized betacatenin delays maturation of radial glial cells into intermediate progenitors. **Dev Biol.** 2007;309:285-297.
- 25 Kuwahara A, Hirabayashi Y, Knoepfler PS et al. Wnt signaling and its downstream target N-myc regulate basal progenitors in the developing neocortex.

 Development.137:1035-1044.
- 26 Hirabayashi Y, Itoh Y, Tabata H et al. The Wnt/{beta}-catenin pathway directs neuronal differentiation of cortical neural precursor cells. **Development**. 2004;131:2791-2801.
- 27 Israsena N, Hu M, Fu W et al. The presence of FGF2 signaling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. **Dev Biol**. 2004;268:220-231.
- 28 Zhou CJ, Borello U, Rubenstein JL et al. Neuronal production and precursor proliferation defects in the neocortex of mice with loss of function in the canonical Wnt signaling pathway. Neuroscience. 2006;142:1119-1131.
- 29 Chenn A, Zhang YA, Chang BT et al. Intrinsic polarity of mammalian neuroepithelial cells. Mol Cell Neurosci. 1998:11:183-193.
- 30 Zhang J, Woodhead GJ, Swaminathan SK et al. Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. **Dev Cell**. 2010;18:472-479.
- **31** Yokota Y, Kim WY, Chen Y et al. The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and

- construction of the cerebral cortex. **Neuron**. 2009;61:42-56.
- 32 Lien WH, Klezovitch O, Fernandez TE et al. alphaE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. **Science**. 2006;311:1609-1612.
- 33 Valenta T, Gay M, Steiner S et al. Probing transcription-specific outputs of beta-catenin in vivo. **Genes Dev.** 2011;25:2631-2643.
- 34 Brault V, Moore R, Kutsch S et al. Inactivation of the *β-catenin* gene by *Wnt1-Cre*-mediated deletion results in dramatic brain malformation and failure of craniofacial development. **Development**. 2001;128:1253-1264.
- 35 Gorski JA, Talley T, Qiu M et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci. 2002;22:6309-6314.
- 36 Maretto S, Cordenonsi M, Dupont S et al. Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. **Proc Natl Acad Sci U S A**. 2003;100:3299-3304.
- 37 Veeman MT, Slusarski DC, Kaykas A et al. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol. 2003;13:680-685.
- 38 Galceran J, Miyashita-Lin EM, Devaney E et al. Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. **Development**. 2000:127:469-482.
- 39 Karalay O, Doberauer K, Vadodaria KC et al. Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 108:5807-5812.
- 40 Backman M, Machon O, Mygland L et al. Effects of canonical Wnt signaling on dorsoventral specification of the mouse telencephalon. **Dev Biol**. 2005;279:155-168.
- **41** Gunhaga L, Marklund M, Sjodal M et al. Specification of dorsal telencephalic character by sequential Wnt and FGF signaling. **Nat Neurosci**. 2003;6:701-707.
- 42 Schuurmans C, Armant O, Nieto M et al. Sequential phases of cortical specification involve Neurogenin-dependent and independent pathways. EMBO J. 2004;23:2892-2902.
- 43 Fode C, Ma Q, Casarosa S et al. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. **Genes Dev.** 2000:14:67-80.
- 44 Paina S, Garzotto D, DeMarchis S et al. Wnt5a is a transcriptional target of Dlx homeogenes and promotes differentiation of interneuron progenitors in vitro and in vivo. J Neurosci.31:2675-2687.
- 45 Sansom SN, Livesey FJ. Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold Spring Harb Perspect Biol. 2009;1:a002519.
- **46** Graham V, Khudyakov J, Ellis P et al. SOX2 functions to maintain neural progenitor identity. **Neuron**. 2003;39:749-765.

- **47** Cappello S, Attardo A, Wu X et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. **Nat Neurosci.** 2006;9:1099-1107.
- **48** Englund C, Fink A, Lau C et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. **J Neurosci**. 2005;25:247-251.
- **49** Betizeau M, Cortay V, Patti D et al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. **Neuron**. 2013;80:442-457.
- 50 Lange C, Huttner WB, Calegari F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell. 2009;5:320-321
- 51 Pilaz LJ, Patti D, Marcy G et al. Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. **Proc Natl Acad Sci U S A.** 2009;106:21924-21929.
- 52 LaMonica BE, Lui JH, Hansen DV et al. Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nat Commun. 2013;4:1665.
- 53 Nowakowski RS, Lewin SB, Miller MW. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol. 1989;18:311-318.
- **54** Arai Y, Pulvers JN, Haffner C et al. Neural stem and progenitor cells shorten S-phase on commitment to neuron production. **Nat Commun.** 2011;2:154.
- 55 Cahoy JD, Emery B, Kaushal A et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28:264-278.
- **56** Hartfuss E, Galli R, Heins N et al. Characterization of CNS precursor subtypes and radial glia. **Dev Biol**. 2001;229:15-30.
- 57 Seuntjens E, Nityanandam A, Miquelajauregui A et al. Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat Neurosci. 2009;12:1373-1380.
- 58 Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J. 2012;31:2714-2736.

- 59 Pinto L, Mader MT, Irmler M et al. Prospective isolation of functionally distinct radial glial subtypes--lineage and transcriptome analysis. **Mol Cell Neurosci**. 2008:38:15-42.
- 60 Kishi Y, Fujii Y, Hirabayashi Y et al. HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells. Nat Neurosci. 2012:15:1127-1133.
- 61 Kumamoto T, Toma K, Gunadi et al. Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. **Cell Rep.** 2013;3:931-945.
- 62 Gartel AL, Ye X, Goufman E et al. Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci U S A. 2001;98:4510-4515.
- 63 Yang W, Shen J, Wu M et al. Repression of transcription of the p27(Kip1) cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene. 2001;20:1688-1702.
- 64 Jung P, Menssen A, Mayr D et al. AP4 encodes a c-MYC-inducible repressor of p21. Proc Natl Acad Sci U S A. 2008;105:15046-15051.
- 65 Fujimura N, Vacik T, Machon O et al. Wnt-mediated down-regulation of Sp1 target genes by a transcriptional repressor Sp5. J Biol Chem. 2007;282:1225-1237.
- 66 Li X, Oghi KA, Zhang J et al. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. **Nature**. 2003;426:247-254.
- 67 Boukhtouche F, Doulazmi M, Frederic F et al. RORalpha, a pivotal nuclear receptor for Purkinje neuron survival and differentiation: from development to ageing. **Cerebellum**. 2006;5:97-104.
- 68 Kinameri E, Inoue T, Aruga J et al. Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS One. 2008;3:e3859.
- 69 La Torre A, Georgi S, Reh TA. Conserved microRNA pathway regulates developmental timing of retinal neurogenesis. **Proc Natl Acad Sci U S A.** 2013:110:E2362-2370.
- 70 Kikkawa T, Obayashi T, Takahashi M et al. Dmrta1 regulates proneural gene expression downstream of Pax6 in the mammalian telencephalon. Genes Cells. 2013;18:636-649.
- 71 Li X, Newbern JM, Wu Y et al. MEK Is a Key Regulator of Gliogenesis in the

- Developing Brain. **Neuron**. 2012;75:1035-1050
- 72 Brancaccio M, Pivetta C, Granzotto M et al. Emx2 and Foxg1 inhibit gliogenesis and promote neuronogenesis. Stem Cells. 2010;28:1206-1218.
- **73** Mutch CA, Schulte JD, Olson E et al. Beta-catenin signaling negatively regulates intermediate progenitor population numbers in the developing cortex. **PLoS One**.5:e12376.
- 74 Munji RN, Choe Y, Li G et al. Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. J Neurosci. 2011;31:1676-1687.
- 75 Junghans D, Hack I, Frotscher M et al. Beta-catenin-mediated cell-adhesion is vital for embryonic forebrain development. **Dev Dyn**. 2005;233:528-539.
- **76** Imai F, Hirai S, Akimoto K et al. Inactivation of aPKClambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. **Development**. 2006;133:1735-1744.
- 77 Herzog D, Loetscher P, van Hengel J et al. The small GTPase RhoA is required to maintain spinal cord neuroepithelium organization and the neural stem cell pool. J Neurosci. 2011;31:5120-5130.
- 78 Katayama K, Melendez J, Baumann JM et al. Loss of RhoA in neural progenitor cells causes the disruption of adherens junctions and hyperproliferation. Proc Natl Acad Sci U S A. 2011:108:7607-7612.
- **79** Desai AR, McConnell SK. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. **Development**. 2000;127:2863-2872.
- 80 Namihira M, Kohyama J, Semi K et al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell. 2009;16:245-255.
- 81 Barnabe-Heider F, Wasylnka JA, Fernandes KJ et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. **Neuron**. 2005;48:253-265.
- 82 Espuny-Camacho I, Michelsen KA, Gall D et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. **Neuron**. 2013:77:440-456

See www.StemCells.com for supporting information available online. STEM CELLS; 00:000–000

Figure 1. A novel β-catenin allele abrogates Wnt signaling in the absence of adhesion defects. (A): Representation of the β-catenin alleles used in this study, where black boxes denote coding exons and numbers on top – Armadillo repeats. $Ctnnb1^{dm}$ allele bears a mutation D164A in Armadillo repeat 1 and a premature STOP codon, while $Ctnnb1^{flox}$ has two loxP sites (red arrowheads): before its transcription start (ATG) and after exon 6. β-catenin was inactivated in the forebrain using a dorsal cortex-specific Emx1-Cre (E1C) line. At E12.5 similarly to controls (B), β-catenin protein preserved its enrichment at the ventricular surface (C) whereas no β-catenin protein was detectable in the E1C- $Ctnnb1^{flox/flox}$ forebrain (D). Also, β-catenin still co-localized with its interaction partner N-cadherin at adherens junctions (F) while the neuroepithelial integrity was lost in the E1C- $Ctnnb1^{flox/flox}$ cortex (G). Similarly, staining for α -Ecatenin and ZO-1 detected intact junctions in E1C- $Ctnnb1^{dm/flox}$ (I) forebrains compared to E1C- $Ctnnb1^{flox/flox}$ (J). (K-L): Using the BAT-gal Wnt/β-catenin signaling reporter onto E1C- $Ctnnb1^{dm/flox}$ embryos, we demonstrated the loss of transcriptional activity in E1C-E1D-

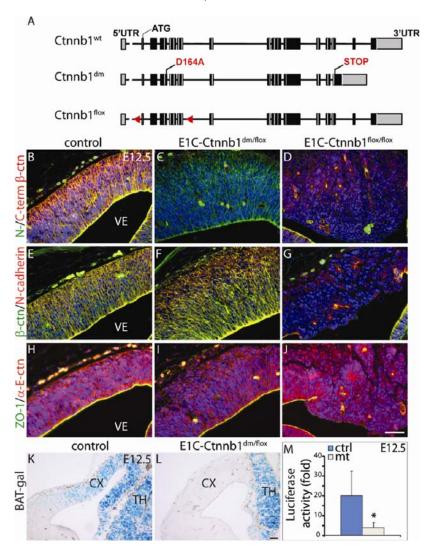


Figure 2. Specific Wnt/β-catenin signaling ablation affects neurogenesis without tissue disintegration. (A-F): Immunohistochemistry for the NPC-specific marker Sox2 and the neuron-specific protein doublecortin (Dcx) at E12.5 and E14.5 revealed precocious differentiation in both E1C- $Ctnnb1^{dm/flox}$ (B, E) and E1C- $Ctnnb1^{flox/flox}$ (C, F) cortices. However, only in the latter intermingling of these populations due to adhesion defects was observed (C, F). Quantification of the number of NPC and neurons at E12.5 confirmed an increase in neurogenesis in signaling mutants vs. controls (G), * p = 0.005. As expected, increased cell cycle exit of progenitors also contributed to the premature neurogenesis (H), * p = 0.003. (I): Measurement of the thickness of the VZ, SVZ, IZ and CP demonstrated depletion of VZ progenitors after E12.5 concomitant with a transient increase in basally dividing cells resulting in a significantly thinner CP by the end of neurogenesis, p<0.05. Abbreviations: VE, ventricle. Error bars indicate s.d. Bar: 100 μm.

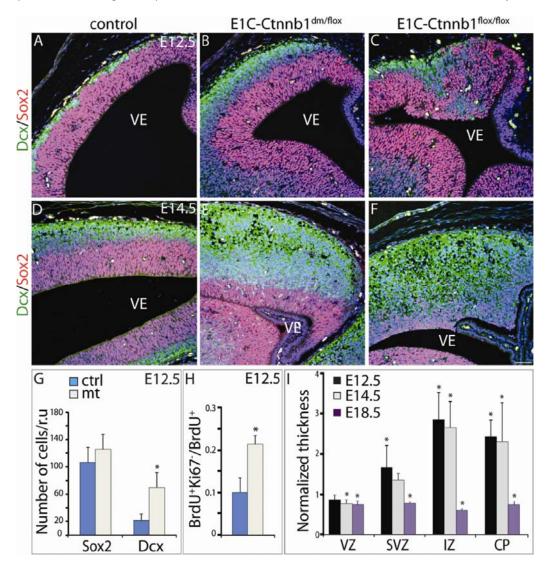


Figure 3. Wnt/β-catenin signaling ablation increases the number of basally located progenitors. (A-B): APs were distinguished from proliferating IPCs by immunostaining for Pax6 and Tbr2/Ki67, respectively. (C): Quantification of the numbers of APs, APs transitioning to IPCs (i.e. $Pax6^+/Tbr2^+$ cells, named AP → IPC) and IPCs at E12.5 and E14.5. While $Pax6^+$ APs were spared in E1C- $Ctnnb1^{dm/flox}$ forebrains at E12.5, their numbers declined by E14.5 (p = 0.006) due to enhanced AP → IPC transition (E12.5: p = 0.001, E14.5: p = 0.029) concomitant with a transient increase in IPCs at E12.5 (p = 0.023). Micrographs (E-J) and quantification (D) of $Pax6^+$ residing basal to the SVZ at E14.5 cortices demonstrate more presumptive bRG in the E1C- $Ctnnb1^{dm/flox}$ mutants. (K): Strikingly, although the total cell cycle length was similar, E1C- $Ctnnb1^{dm/flox}$ APs shortened their S-phase and prolonged their G1 compared to control APs. Saturation was reached in both genotypes at 15h. (L-M): Cleavage angle analysis on confocal micrographs using DAPI to identify mitotic cells in ana- and telophase and the centrosome marker γ-tubulin. (N-O) A few nonvertical divisions were detected in the absence of β-catenin signaling. Error bars indicate s.d. Abbreviations: AP, apical progenitor; rRG, basal radial glia; IPC, intermediate progenitor cell; AP → IPC, AP transitioning to IPC; r.u. = radial unit. Bar: A-B, E, H, 50 μm, M, 5 μm.

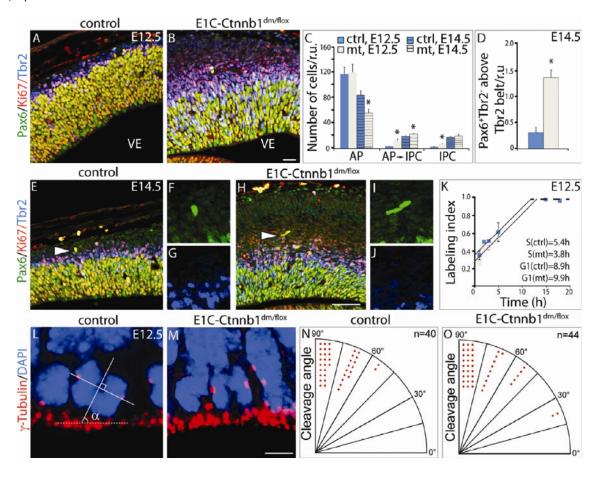


Figure 4. Wnt/β-catenin signaling regulates laminar fate and onset of gliogenesis. (A-B): At E18.5, in Wnt signaling mutants the population of early reelin[†] (Rln) Cajal-Retzius neurons was expanded, similarly to the deep-layer Tbr1[†] neurons (double-pointed arrows indicate layer thickness). (C-G): To the contrary, lower Ctip2[†] and upper-layer Cux1[†] cells are depleted, * p = 0.005, *** p = 0.029, *** p = 0.027. Furthermore, a precocious switch of mutant progenitors from neurogenesis to astrogenesis was evidenced by extensive GFAP labeling in the proliferative zone and in the cortical plate (arrows), where mature astrocytes migrate (H-I). For additional astrocyte markers, refer to Figure S7. Abbreviations: MZ, marginal zone; SVZ, subventricular zone. Bar: 50 μm.

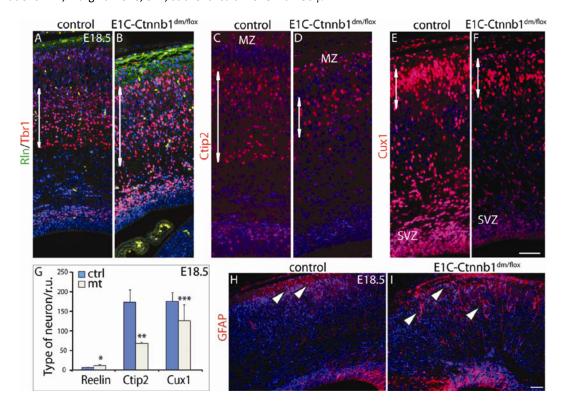


Figure 5. Canonical Wnt signaling regulates the temporal order of neurogenesis. Neuronal birthdating was performed by injection of BrdU at E12.5 and E15.5 to label early- and late-born neurons, respectively, and analysis of neuronal populations at E18.5. Birthdating at E12.5 showed enhanced production of deep-layer Ctip2⁺ (p = 0.004) and upper-layer Cux1⁺ cells (p = 0.011) in *E1C-Ctnnb1* dm/flox embryos (A-E). By E15.5, the generation of deep-layer neurons has almost ceased, but the number of BrdU-labeled upper-layer Cux1⁺ neurons was severely diminished in mutant cortices (F-J), p = 0.002. Error bars indicate s.d. Bar: 50 μ m.

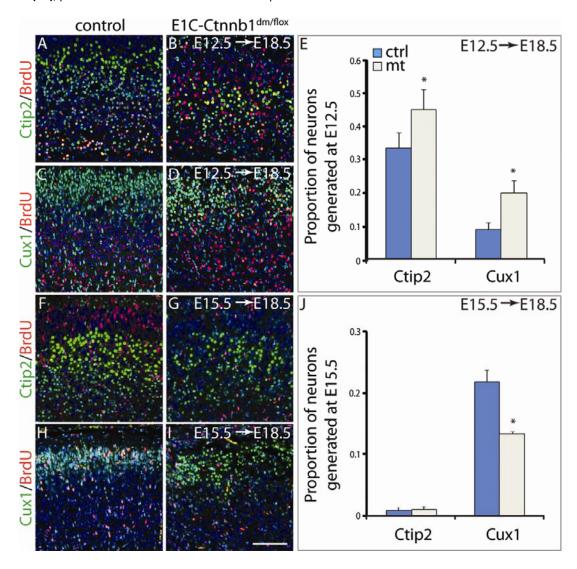
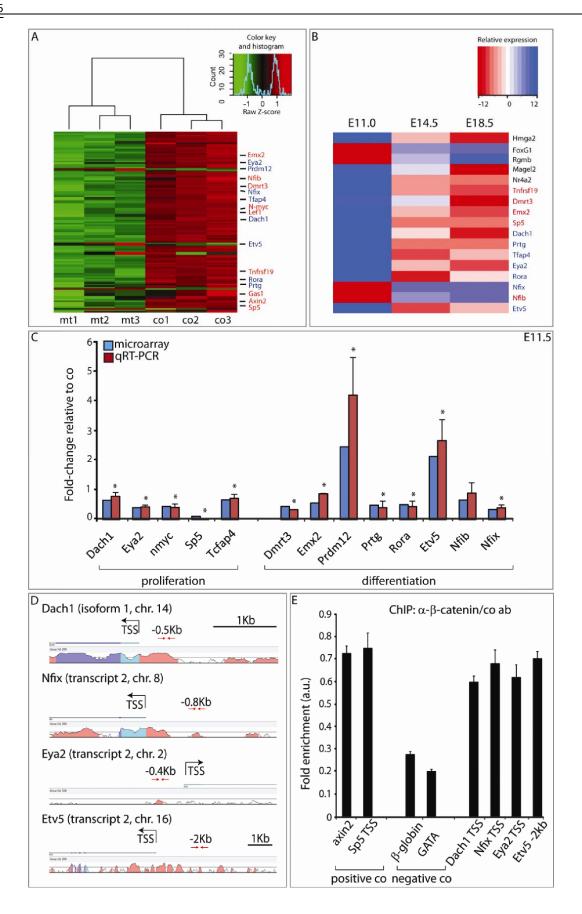



Figure 6. Wnt/β-catenin signaling controls a TF cascade in cortical progenitors. (A): Heat map of significantly affected transcripts after inactivation of β-catenin – mediated signaling, where known Wnt signaling targets are colored red and TF verified by qPCR – in blue. (B): Heat map of precursor-specific TF whose expression significantly changes from E11.0, E14.5 to E18.5 in dorsal forebrain, where reported regulators of sequential fate are colored black and TF selected for analysis in red and blue, as in (A), p < 0.05, one-way ANOVA. (C): qPCR was performed to confirm microarray expression changes in DNA-binding proteins reported to regulate proliferation or differentiation, * p < 0.05, t-test. (D): Primers for ChIP (red arrows) for selected TF were designed in DNA regions close to the TSS that were conserved between human and mouse. (E): Real-time PCR analysis of DNA fragments precipitated in a representative ChIP assay using an anti-β-catenin antibody shows enrichment of β-catenin occupancy at the promoter regions of Dach1, Nfix, Eya2 and Etv5 when compared to positive and negative controls.

