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Abstract

Advanced sequencing techniques allow rapid deduction of
individual amino acid sequences of highly related
proteins. Due to their quasi-species nature, viral genomes
(e.g. HIV-1) represent one of the most common sources of
related proteins. Another example of related proteins are
immunoglobulins. Local differences in amino acid conserva-
tion are useful indicators of potential domain structures and
immunological or functional epitopes prior to structural
analysis of proteins. Although variability indices can be
calculated by several methods, delineation of boundaries
between sequence stretches with similar variability indices is
left to the user. We use algorithmic scale-space filtering for
delineation of conserved and variable sequence stretches
within a protein which is performed on an algorithmic basis
avoiding arbitrary assignments. QOur method correctly
identified variable regions for the human immunoglobulin
A-chain V-regions (subgroup ). Prediction of the variable
regions of the HIV-1 gpl20 env protein was in agreement
with empirical derived definitions. These examples indicate
that our method is useful for the regional assignment of
protein variability solely on the basis of amino acid sequences.

Introduction

Large scale DNA sequencing reveals open reading frames
of proteins much faster than analysis of the corresponding
protein sequences can proceed. Especially viral protein
sequences deduced from PCR-sequencing of viral gen-
omes represent rapidly growing families of highly related
protein sequences. The information represented by local
differences in amino acid conservation can be used to
deduce potential domain structures as well as to identify
candidates for immunological or functional epitopes.
Examples for such approaches are the definition of the
immunoglobulin hypervariable regions (Kabat and Wu,
1970; Kabat et al., 1991) or the domain definition of the
HIV-1 gpl20 protein by Modrow et al. (1987). In the
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meantime some programs are available to aid scientists in
these predictions (e.g. ‘PlotSimilarity’, in Genetics Com-
puter Group, 1994; or ‘VIR’, Almagro et al., 1994).
However, though positional consensus scores are
calculated by those methods, prediction of region bound-
aries is left to the user. This can be a major obstacle for
regions with only modest variability since prediction of
domains is restricted to those regions which are clearly
identifiable by visual inspection of vanability indices.
Here we present an algorithmic method that is capable
of delineating region boundaries systematically by scale-
space filtering. We show our method to correctly identify
hypervariable regions for the example of human immuno-
globulin A-chain V-regions (subgroup I) and to predict the
variable regions of the HIV-1 gpl20 in agreement with
empirical definitions. The method is not restricted to multiple
alignment analysis. Similar signals for individual sequences
like hydrophobicity or probability profiles from secondary
structure prediction methods can also be analysed.

Algorithm

Our method CONRAD (CONserved RAnge Detection) is
designed to allow complete dissection of the input signal
(e.g. a consensus score) into ‘conserved’ and ‘variable’
regions by systematic filtering solely based on the input
signal. Our algorithm employs a consensus score obtained
from the multiple alignment as ‘consensus signal’ for the
filtering process. Currently, we use the similarity values
assigned by the GCG program PlotSimilarity. However,
any method yielding consensus scores can provide the
consensus signal. A calculated threshold score (usually the
average of a consensus score) will be used to separate
constant and variable regions. Insignificant fluctuations of
the original signal around the threshold obscuring the
region boundaries are removed by filtering which repre-
sents smoothing of the signal.

Basic principles

Our algorithm is based on the method of scale-space
filtering originally published by Witkin (1983). The basic
idea is that prominent features in a signal or image
are visible already at low resolutions and keep their
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appearance over a broad range of resolutions. Scale-space
filtering models an intuitive approach: First the signal is
smoothed repeatedly with low-pass filters (weighted
average filters) of increasing strength, until all details
disappear. Then the whole range of resolutions (scales) is
analysed for features (minima or maxima) that remain
stable over a large range of scales. Boundaries of these
features are back traced to the original signal. Thus, scale-
space filtering is an algorithmic solution for phenomena
which can be considered as diffusion problems. For
excellent overviews of this methodology see Witkin
(1983), Lindeberg (1990, 1993), Yuilie and Poggio
(1986), and references cited therein.

Scale-space filtering
‘Scale space’ is the embedding of the original signal f(x)

into a family of derived signals L(x;r) all of which were
generated using a family of low-pass filters {T(x;1)}:

Lix;t)=f(x—m)T(-m; ) +f(x—n+ 1)T(—=n+ 1;1)
+...+f(x+nm)T(m1)

The scale parameter t is the filter standard width (or any
monotonic function). The filter family 7(x; 1) must fulfill
strict restrictions: (i) no additional extrema (not present in
the unfiltered signal) may appear during the filter process,
and (i) for any ¢, L(x; ) depends only on f{x) and 1,
independent of any intermediate filter stages.

This has a clear consequence for the form of the filter
family. The L(x; r) must be solutions of a diffusion equation
(Babaud et al.,1986; Yuille and Poggio, 1986; Liu and
Rangayyan, 1991). Despite of the continuous nature of
scale, it is sufficient for our purpose to consider only discrete
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Fig. 1. Multiple alignment of V-regions (subgroup I) of human immunoglobin A-chain gene. Multiple alignment of 9 human immunoglobulin A-chain V-
regions (subgroup I; all entries from PIR-database, release 46.0, Barker er al. 1994) was carried out by GCG PileUp. Sequences are labeled with their
PIR-database identifiers. CDR regions are boxed; num a: numbering corresponds to PileUp (GCG 1994); num b: numbering corresponds to Kabat er a/.

(1991).
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Fig. 2. Space-scale filtering of V-regions (subgroup I) of human immunoglobin A-chain gene (see Fig. 1). The numbers at the left vertical axis represent
the filter standard width (in positions) for the respective filter level. The numbers at the right axis represent the corresponding effective scale (in
normalized units). The distances of the plotted axes at each filter level from the zero level axis are linear proportional to the effective scale. The unfiltered
variability plot is shown at the zero-level, below this the amino acid positions of the consensus are shown. Two region classifications from the literature
are indicated as horizontal bars for comparison (not present in program output). CDR regions are taken from Kabat er al. (1991) and marked as ‘Kabat
91”. Secondary structure interpretations of Bence Jones Protein LOC (Schiffer et al., 1991) with program DSSP (Kabsch and Sander, 1983) are marked
‘LOC sec.str.’ (E: beta-strand, T: H-bonded turn, G: three-helix). The LOC sequence is not part of the input sequences.
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levels of t with preselected steps of sufficiently fine width 0.5 as basic filter. The filter family converges

resolution, in accordance with Liu and Rangayyan (1991). quickly to Gaussian filter kernels which are used as
In this case, we can use a family of generalized binominal  approximations for large r. The signal is mirrored at
filters. both ends for filtering, as suggested by the ideas behind

In our program, we start with a 3-tap filter of standard  the discrete cosine transformation (see Blinn, 1993).
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Fig. 3. Region plot of the space-scale filtering from Fig 2. Scales left, right, and below are the same as in Fig. 2. Classification into regions was based on
the fingerprint from Fig. 2. The horizontal extensions of the rectangles refer to region start and end positions on the level of unfiltered signal. The height
represents the ‘life-time’ 1n scale space. C-regions determined by the algorithm as most stable are hatched, V-regions are cross-hatched. Blank boxes
represent less stable regions with shorter ‘life-times’ than the most stable regions.
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Definition of regions

For the scope of this paper, a region shall be defined as a
sequence stretch between consecutive threshold crossings
of opposite sign, at any filter level. Each region exists
during a certain ‘lifetime’ in scale space, and splits at its
lower level of scale into three sub-regions, thus forming a
ternary tree. Figure 1 shows initial the multiple sequence
alignment on which our analysis was based. At each filter
level, the threshold crossings must be determined and
aligned to the threshold crossings of the next lower filter
level. The resulting contours of connected threshold
crossings in the signal-scale plane form the so-called
‘fingerprint’. An example for this is shown in Figure 2.
Merging of three neighboring regions can be observed in
the fingerprint each time two adjacent contours join to an
arc closed at the top (see Fig. 2). Begin and end of a region
in signal space are referenced to positions on the unfiltered
signal by tracing the fingerprint contours down to filter
level 0. All possible regions are plotted as rectangles in
Figure 3.

Since we restrict to discrete filter levels, the aligning of
the threshold crossings at adjacent filter levels has to be
carried out with some precautions, using linear prediction
from lower filter levels and suitable level-dependent
tolerances for fit. We obtain a consistent tree of regions
in practically all cases if the distances between filter levels
are not too large.

Effective scale

Lindeberg (1993) introduced the term ‘effective scale’ as a
monotonic function s(¢) of the ordinary scale parameter t
in order to provide a measure that is suitable for direct
comparison of stabilities (life-times). His approach is
based on the assumption that for a random noise signal
the relative decrease of local extrema should be indepen-
dent of effective scale. He also gives a formula for s(f) by
estimating the filter dependent density of extrema on
random noise. Lindeberg’s formula is valid for any scale
down to the unfiltered signal. For large scales, s(¢)
converges to the logarithm, with evidence that zooming
of a waveform in signal space results in a shift in effective
scale space with differences in scale preserved. For details,
see Lindeberg (1993).

In Figures 2 and 3, the vertical axis is drawn linear
in effective scale (upper limit set to 100%). Numbers at
the left side give the standard filter width ¢ of each
filter level. The first 13 filter levels are realized with
members of the family of generalized binominal filters
described above with filter orders chosen to obtain fairly
equal steps in effective scale. Higher filter levels are
approximated with Gaussian filters and the logarithm as
effective scale.

Definition of a ‘most stable region’

A region of ‘maximum local stability’ is defined as a region
that contains no subregions with a longer life-time, and
itself is no subregion of another region with a longer life-
time (Witkin, 1983). Our method constructs a complete
dissection of the whole signal into regions of maximum
local stability using a two-step strategy based on the
above-mentioned ternary tree: In a first step, recursively
from bottom up, all sub-branches containing only less
stable nodes are deleted. In a second step, from top down,
all nodes marked from step one as containing sub-
branches with more stable nodes are deleted.

Environment

CONRAD was written in C and has been tested ona DEC
Alpha Station under OSF/1 V3.2 as well as on a PC-486
under FreeBSD 2.0 with gcc. Graphical output is
produced either as a PostScript or a HPGL file. A
summary of the results is written to an ASCII output file.

Results and Discussion

The purpose of our method is a complete dissection of the
input signal (e.g. a consensus sequence) into ‘conserved’
and ‘variable’ regions by systematic filtering. Our method
is free of user-defined parameters and does not require any
information except an input signal which can be derived
from a set of related amino acid sequences (multiple
alignment) or by analysis of a single sequence (e.g.
hydrophobicity or other physico-chemical property
plots, secondary structure probability values, etc.). The
algorithm is independent of the amino acid sequences and
is not influenced by compositional biases of the protein(s).
Thus it can be used to compare variability profiles between
different protein families.

The input for our program is an array of any kind of
variability values for each position of the consensus-
sequence. Here, we used a multiple alignment of sequences
(GCG PileUp) from which an array of variability indices is
deduced (GCG PlotSimilarity, window = 1). However the
program can accept any kind of vanability indices
provided values are assigned to each consensus position.

We applied our method to the well known human
immunogiobulin Achain V-regions (subgroup I) in order
to define the complement determining regions (CDR).
Figure 1 shows the multiple alignment of nine human
immunoglobulin A-chain V-regions (subgroup I) created
by the GCG program PileUp. As shown in Figures 2 and 3
and inTable I our program correctly identified all three
CDR regions which correspond to ‘turn-regions’ (T) in the
secondary structure. There is an additional ‘turn-region’ in
position 79 (numbering according to alignment), followed
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Table . Application of CONRAD region determination to human
immunoglobulin A-chain V-regions (subgroup I)

Regions Regions Loops  Secondary structure
CONRAD* Kabat® Chotia® of LOC protein®

Ci1-24 FRI1. 1-22 T: 14,15, E: 17-23
V:25-36 CDRI'23-36 25-34 T:26-31

C: 37-51 FR2: 37-51 E: 36-38, E: 48-5I

V: 52-61 CDR2-52-58  52-54 T:52-54, E: 55-56
C:62-80 FR3 59-9%0 E: 64-68, E: 72-78, T: 79
V: 81-83 G: 82-84

C: 84-90 E: 86-87, E: 89-91
V:91-100 CDR3:91-101 93-100 E: 93-94, T: 95-96, E. 99-100
C: 101-112 FR4. 102-112 E: 107-108

“Numbering corresponds to PileUp multiple sequence analysis program
in GCG (1994).

®Kabat er al. 1991, FR = framework (conserved regions), CDR = com-
plement determining region (hypervanable regions)

‘Chothia er al., 1986.

dSchiffer e al., 1991, For explanation of other abbreviations see legends
to Figures | and 2

by a three-helix structure (G) in position 82—84 which
corresponds to the fourth variable region detected by our
program. Though signal mirroring introduces artificial
ends this did not seem to interfere with the predictive
capabilities of our method in both examples and thus
seems acceptable.

As shown in Table II, our method also predicted
correctly the variable and constant regions of HIV-I1
gpl20 (seven sequences) as compared to the empirical
results of Modrow et al. (1987) and the regions defined by

Table L. Application of CONRAD region determination to HIV-1 gp120
sequences

Regions Regions Regions

CONRAD* Modrow 1987° Myers 1994°

C: 42-138 Cl: 42-138 HD: 45-55 (gp120/start 42)

V:139-227 V1. 139-175 Vl-loop: 138-172
HD: 132-138

V2: 176-227 V2-loop: 174-224

C. 228-328 C2: 228-328 HD: 230-242
HD: 270-286

V:329-358 V3-1: 329-356 V3-loop' 326-360

C: 359-375 V3-2: 357-422

V: 376, 377

C:378-383

V: 384, 385

C: 386-391

V: 392, 393

C: 394-415

V: 416445 V4: 423-445 V4-loop: 416-447

C: 446-489 C3: 446-489 HD: 479-484

V: 490-496 V5 491-501 V5: 490-495

C: 497-542 C4. 502-542 HD: 503-519

HD: 526-537 (gp 120/end 542)

*Numbering corresponds to PileUp multiple sequence analysis program
in GCG (1994).

®Empirical evaluation of regions by Modrow e al. (1987).
°HD = regions of high density of information defined by Myers er al.
(1994).

Myers et al. (1994) (V1 and V2-loop are not separated).
The functional significance of the data was confirmed by
studies of the disulfide binding pattern (Leonard et al.,
1990) and with monoclonal antibodies (Moore et al.,
1994).

The signal may be a consensus of proteins as in our
examples, but also properties of single sequences like
hydrophobicity of proteins or GC-distribution of DNA
sequences are valid input data. In general any property of
a single sequence or a set of sequences that can be assigned
as discrete values to individual positions is suitable as
input for CONRAD. However, not all possible applica-
tions were tested. Therefore, it remains to be determined
how useful the results will be for other properties.

Due to back tracing of region boundaries from filtered
to unfiltered signal, the scale-space method always yields
level crossings of the unfiltered signal as boundaries which
are not biased by any filtering. Region boundaries depend
only on the signal itself, not on the smoothing. This is
important for the general applicability of the method. In
contrast, changing the window in the GCG PlotSimilarity
will affect the threshold crossing.

Scale-space filtering is a model of human perception and
will usually yield results very similar to intuitive perceived
regions as well as their proposed boundaries. However,
this is achieved on a precise algorithmic basis, avoiding
any arbitrary choices. Therefore, it should be applicable to
a wide range of protein sequences. The signal may be a
consensus of proteins as in our examples, but also
properties of single sequences like hydrophobicity or
secondary structure prediction values of proteins or GC-
distribution of DNA sequences are valid input data.
Agreement of our results with experimental data indicates
that our method should be a useful tool for generating
hypotheses for subsequent experimental analysis.
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