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Background: Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individ-
ual air pollution exposure in population studies. Few comparisons have however been made of the performance
of these methods.

Objectives: Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences
between LUR and DM estimates for NO,, PM and PM, 5.

Methods: The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised
monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared
LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO,; 7 for PMo and 4 for
PM, 5. Additionally, we compared the DM estimates with measured concentrations at the 20-40 ESCAPE
monitoring sites in each area.

Results: The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual
average concentrations of NO,, PM;o and PM, 5 were 0.75 (0.19-0.89), 0.39 (0.23-0.66) and 0.29 (0.22-0.81)
for 112,971 (13 study areas), 69,591 (7) and 28,519 (4) addresses respectively. The median Pearson R correlation
coefficients (range) between DM estimates and ESCAPE measurements were of 0.74 (0.09-0.86) for NO,; 0.58
(0.36-0.88) for PM;q and 0.58 (0.39-0.66) for PM, s.

Conclusions: LUR and dispersion model estimates correlated on average well for NO, but only moderately for
PM; and PM, 5, with large variability across areas. DM predicted a moderate to large proportion of the measured

variation for NO, but less for PM;q and PM; s.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of epidemiological studies have shown a clear asso-
ciation between long-term ambient air pollution exposure and adverse
health effects (WHO, 2013). Several of these studies estimated individ-
ual air pollution exposures from stationary monitoring data, e.g. by
using the nearest air pollution monitor to represent the pollution in en-
tire cities (Dockery et al., 1993) to more complex approaches including
spatial interpolation and kriging (Brauer et al., 2008; Kiinzli et al., 2005).
Such methods provide estimates of large-scale spatial differences in air
pollution concentrations, but are less effective in assessing intra-urban
variation particularly when the number of monitoring sites is small. Re-
cent studies have focused on intra-urban variation of air pollution, using
indicators or proxies such as distance to the nearest road as well as
pollutant levels estimated by land use regression (LUR), dispersion
modelling (DM) including Chemical transport models (CTM) and
hybrid models (HEI, 2010).

The LUR method, first developed by Briggs et al. (1997), uses least
squares regression to combine monitored data with Geographic Infor-
mation System (GIS)-based predictor data reflecting pollutant sources,
to build a prediction model applicable to non-measured locations, e.g.
residential addresses of cohort members. LUR modelling has been in-
creasingly used in epidemiological studies because it is relatively
cheap and can be easily implemented on the basis of purpose-
designed monitoring campaigns or routinely measured concentrations
and appropriate geographic predictors of air pollution sources (Hoek
et al., 2008).

DM s are based on detailed knowledge of the physical, chemical, and
fluid dynamical processes in the atmosphere. DMs use information on
emissions, source characteristics, chemical and physical properties of
the pollutants, topography, and meteorology to model the transport
and transformation of gaseous or particulate pollutants through the at-
mosphere to predict, e.g., ground level concentrations (Holmes and
Morawska, 2006; Kukkonen et al., 2012). Gaussian based DMs were
originally developed as air quality management tools but have also
been used in environmental epidemiology to model long-term expo-
sures (Bellander et al., 2001; Wu et al,, 2011). Chemical Transport
Models have also been used to model short- and long-term exposure
periods (Hennig et al., 2014). Few studies to date have conducted com-
parisons between LUR and DM for their performance in estimating ex-
posures (Beelen et al., 2010; Cyrys et al., 2005; Dijkema et al., 2011;
Gulliver et al., 2011; Marshall et al., 2008; Sellier et al., 2014). These
studies included different models, spatial resolution, pollutants and
study areas, factors likely to have contributed to inconsistent findings

within individual studies. As both LUR and DM are applied in epidemi-
ology, there is a need for more comparison studies of these methods, ad-
dressing their respective advantages and strengths depending on the
specific air pollution and health-related questions which are sought to
be answered.

We compare LUR and DM to assess spatial variation of annual aver-
age ambient air pollution estimates at residential addresses within the
framework of the European Study of Cohorts for Air Pollution Effects
(ESCAPE), not taking into account population activity patterns or indoor
air pollution. The ESCAPE study developed LUR models to estimate ex-
posure at the residential addresses of cohort participants based on uni-
form monitoring campaigns and uniform modelling approaches in 36
study areas (Beelen et al., 2013; Cyrys et al.,, 2012; de Hoogh et al,,
2013; Eeftens et al., 2012a,b). To several of these study areas we apply
DM or use existing DM output, allowing for an in depth comparison to
better understand the differences and/or agreements between LUR
and DM estimates for use in epidemiological studies with long-term ex-
posures. We include a range of exposure environments and populations
across Europe, and focus, in particular, on the differences in estimated
exposure at the individual participant level which is most relevant for
interpretation of epidemiological studies.

2. Materials and methods

We estimated annual average outdoor air pollution concentrations for
NO, in 13, PM;oin 7 and PM, 5 in 4 of the 36 European cities/areas includ-
ed in the ESCAPE study using both LUR and DM (Umed region, Sweden;
Stockholm County, Sweden (PM;o); Helsinki—Vantaa region, Finland
(PM,s); Bradford, UK; London, UK (PM;g); Netherlands (PM;q &
PM,5); Ruhr Area (PM;o & PM, 5), Germany; Basel, Switzerland; Geneva,
Switzerland; Lugano, Switzerland (PM;q); Rome, Italy (PM, 5); Barcelona,
Spain (PMjy); Athens, Greece (PM1g)). The selection of study areas was
based on the availability of existing dispersion models. A general discus-
sion of these two modelling approaches is reported elsewhere (Hoek
et al,, 2008; Ozkaynak et al., 2013).

We conducted several comparisons, depending on the comparability
of the model outputs. The main comparison between the methods was
made at the residential address of cohorts participants (referred to as
LUR-DM). We also compared the DM estimates with measured concen-
trations at the ESCAPE monitoring sites. This was an independent vali-
dation, as monitoring data from the ESCAPE sites were not used as
input data in the DM models. Recent studies have documented that
the model R? and the leave-one out cross-validation R? overestimate
the predictive ability of LUR models at independent sites (Basagafia



384 K. de Hoogh et al. / Environment International 73 (2014) 382-392

et al,, 2012; M. Wang et al., 2013). Therefore we cannot directly com-
pare the explained variance of the LUR models with the explained var-
iance of the dispersion models. Furthermore, we did not have a
sufficiently large set of independent monitoring data available within
the study areas to serve as an independent test set for both LUR and DM.

2.1. Description of cohorts

We used address locations of cohort participants as the basis for the
LUR-DM comparison by study area. The majority of cohorts in this anal-
ysis were also used in the ESCAPE health studies: EPIC in Umea (SE),
SDPP, 60 years cohort, SALT and SNAC in Stockholm (SE), FINRISK in
Helsinki (FI), Born in Bradford (UK), EPIC-Oxford in London (UK),
PIAMA in the Netherlands, Heinz Nixdorf Recall (HNR) study in the
Ruhr area (DE), SAPALDIA in Basel, Geneva and Lugano (CH) and
SIDRIA in Rome (IT). For Barcelona (ES), we chose the larger population
of the ARIBA cohort (n = 8,402), rather than the ECRHS cohort (n =
297) used in ESCAPE. Due to confidentiality, address locations of the
EPIC cohort in Athens (GR) were not available; instead we used 1500
randomly selected addresses across the study area to act as a cohort sur-
rogate. Most of the study areas were large cities and the surrounding
suburban or rural communities; however, some of the cohorts covered
larger regions, such as PIAMA in the Netherlands. In total, we used
112,971 address locations over 13 cohorts.

2.2. Land use regression modelling

The ESCAPE study involved harmonised monitoring campaigns for
NO, in 36 study areas and PM;o/PM, 5 in 20 study areas, as described
in Cyrys et al. (2012) and Eeftens et al. (2012a). In brief, in each study
area a measurement campaign was carried out during three 2-week pe-
riods within one year. The complete monitoring period across all study
areas was between 2008 and 2011. Ogawa badges were used for moni-
toring of NO, and Harvard Impactors were used for monitoring of PM.
Care was taken to select site locations to incorporate relevant intra-
urban spatial variation in traffic and land use characteristics. Adjusted
annual mean concentrations for each site were then estimated with
the aid of measurement data from an all-year running reference site in
an urban background location in each study area.

Based on these measurements, LUR models were developed in each
study area following a standardised approach (Beelen et al., 2013;
Eeftens et al,, 2012b). Geographical Information Systems (GIS) predictor
variables were collected for all study areas centrally (EU-wide datasets
including CORINE land cover, EuroStreets road network, altitude and
population density) and locally (traffic data and, where available,
more detailed land cover data). Circular buffers with radii of 25, 50,
100, 300, 500, and 1000 m were used to calculate traffic and road vari-
ables for each monitoring location. For land use and population, buffers
of 100, 300, 500, 1000, and 5000 m were calculated. LUR models were
developed combining the adjusted annual means and the GIS predictor
data in each study area following a stringent set of rules. Linear regres-
sion was performed in a stepwise logical standardised approach, de-
tailed by Eeftens et al. (2012b). Predictors giving the highest adjusted
R? were subsequently added to the model if they conformed to the di-
rection of effect defined a priori and added more than 1% to the adjusted
R?. Final models were checked for p-value (removed when p-value
>0.10), co-linearity (variables with Variance Inflation Factor (VIF) >3
were removed and model rerun) and influential observations (models
with Cook's D >1 were further examined). The final models were eval-
uated by leave-one-out cross validation (LOOCV).

Model structure, model R? and LOOCV R? of the LUR models in the in-
cluded 13 study areas are shown in Table A.1. LUR model predictions at
the cohort address were based on predictor values restricted to the
range of observed values at the monitoring sites, in order to prevent ex-
trapolation beyond the range for which the model was developed.

2.3. Dispersion modelling

DM was applied in the 13 study areas by third parties using input
data including traffic flow, road geometry, other non-traffic pollution
sources (e.g. industrial and agricultural sources), meteorological param-
eters and concentrations measured at regional and urban background
sites. In ten of the 13 study areas a Gaussian plume DM was used:
Airviro in Stockholm and Umea Region; CAR-FMI in Helsinki; ADMS-
Urban in Bradford, London and Barcelona; CAR and Pluim Snelweg
(motorway) in the Netherlands; Pollumap DM 2010 in Basel, Geneva,
and Lugano. Two areas used Eulerian or chemical transport models:
EURAD-CTM in Ruhr area; Flexible Air quality Regional Model (FARM)
in Rome and one used a Computational Fluid Dynamic (CFD) model;
MEMO/MARS-aero in Athens. Information about the DM by study area
is shown in Table 1. Models differed in the sources included (all models
including traffic sources but some additionally including industry and
agricultural sources), the scale of assessment and the representation
of regional background (most used routine monitoring data). The effec-
tive spatial scale of the receptor-oriented methods depends on several
factors, e.g. the precision of the spatial description of sources and topog-
raphy, and could not be estimated. DM estimates were extracted to the
addresses of the cohorts involved.

2.4. Statistical analyses

Exposure estimates from LUR and DM were compared at the address
level. We calculated Pearson (R) and Spearman (Rho) correlation
coefficients and show scatterplots of the relationship. The LUR and DM
exposure estimates were also categorised into quintiles as epidemiolog-
ical studies often use categorical analyses to relax the assumption of a
linear association. Kappa coefficients were calculated to assess the
level of agreement beyond chance. Bland-Altman plots were produced
to further investigate the agreement between the two methods, specif-
ically to test whether the difference between LUR and DM depends on
the absolute concentrations. In addition, the correlation between the
DM estimates and monitored concentrations at the ESCAPE monitoring
sites was calculated (R and Rho) and visualised in scatterplots (DM-
MON).

Statistical analysis was carried out in STATA version 11.0 (StataCorp
LP, College Station, Texas, USA).

3. Results
3.1. Comparison of LUR and DM at address level

Distributions of LUR and DM predictions at the cohort addresses, the
correlation and Kappa coefficients are shown in Table 2. Fig. 1 shows
scatterplots of LUR and DM predictions.

3.1.1. NO,

LUR and DM estimates of NO, levels for cohort members were avail-
able for the 13 study areas at a total of 112,971 residential addresses.
The correlation (Pearson R) between LUR and DM estimates of NO,
levels at cohort addresses varied from 0.19 (Athens) to 0.89 (The
Netherlands; Fig. 1, Table 2). The Spearman rank correlation (R) ranged
from 0.21 to 0.90. The median Pearson and Spearman correlation coef-
ficients were 0.75 and 0.77 respectively, indicating overall good agree-
ment. The agreement by quintiles ranged from 24% to 62%. Kappa
statistics ranged from 0.005 to 0.52 (Table 2).

The overall median of estimated NO, concentrations was slightly
higher for LUR (21.4 pg/m®) than for DM predictions (17.3 pg/m>).
The difference between LUR and DM median estimates was up to
11.9 pug/m> (Rome; Table 2). In the areas with the largest differences be-
tween LUR and DM estimates, the DM/CTM modelled an average con-
centration over an area of 0.25-1 km?, in contrast to LUR which
modelled concentrations at individual address (receptor) points. The
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Table 1
Details of atmospheric dispersion models used to predict air pollution concentrations in each study area.
Study area Name of Type Pollutants Geographical Year  Regional Sources Street Reference(s)
dispersion resolution output background canyon
model output
Umead region, Airviro Gauss Gaussian plume NO, 50 x 50 m 2010  Monitoring® T,P,R®> No SMHI (1993)
SE dispersion model
Stockholm Airviro Gauss Gaussian plume NO,, PM;o 25x25m 2009  Monitoring® T Yes SMHI (1993)
County, SE dispersion model in urban,
500 x 500 m
in rural area
Helsinki-Vantaa  CAR-FMI Gaussian plume NO,, PM; 5 At unique 2010  Monitoring® T No Kukkonen et al. (2001),
region. FI (Contaminants receptor points Karppinen et al. (2000)
in the Air from a
Road - Finnish
Meteorological
Institute)
Bradford, UK ADMS-Urban Gaussian plume NO, At unique 2009  Monitoring® T, A No Carruthers et al. (2000)
receptor points
London, ADMS-Urban Gaussian plume NO,, PM;o 10 x 10 m 2011  Monitoring® T, A Yes Carruthers et al. (2000)
Oxford, UK
Netherlands GCN (Generic Gaussian plume NO,, PMyo, 25 x25m 2009  Model® T,P,A Yes, Velders et al. (2013)
Concentrations in the PM, 5 included Wesseling and
Netherlands), for the in CAR Visser (2003)
regional/urban Wesseling and
background, Pluim Sauter (2007)
Snelweg for the
motorways and
provincial roads,
CAR model for the
urban roads
Ruhr Area, DE  EURopean Air Pollution Dispersion and NO;, PM;o 1x1km 2006- Monitoring T,P,R, No Memmesheimer et al.
Dispersion (EURAD) chemical transport 2008 A (2004)
model system model
Basel, Geneva  Pollumap dispersion Gaussian plume NO, (All), PM;o 100 x 100 m 2010 T,A No SAEFL (2003)
and Lugano, model 2010 (Lugano only) Gariazzo et al. (2007)
CH
Rome, IT Flexible Air quality Eulerian chemical NO,, PM; 5 1x1km 2007 T,A No Gariazzo et al. (2007)
Regional Model transport model Finardi et al. (2009)
(FARM)
Barcelona, ES ADMS-Urban Gaussian plume NO,, PM;o 5 x 5 m for 2008  Monitoring® T,P,R, Yes Carruthers et al. (2000)
NO,, A
100 x 100 m
for PM;q
Athens, GR MEMO/MARS-aero Eulerian chemical NO,, PM;o 500 x 500 m 2008  Model No Moussiopoulos et al.

transport model

(2012)

¢ Monitoring data from regional background station.

b T = traffic; P = point sources; R = residential heating; A = area source for all non-traffic sources.

¢ Combination of monitoring and modelling at 1 x 1 km scale.

relative difference between the median NO, LUR and DM predictions
was however not large in these areas (<~30%).

The estimated ranges of NO, concentrations differed for the two
methods, with some study areas showing a distinctly narrower range
for LUR estimates compared to DM estimates (Bradford and the
Netherlands) and other study areas showing a larger range for LUR esti-
mates than for DM estimates (Ruhr Area, Athens, Lugano, Barcelona,
and London).

3.1.2. PMjo

PM;, concentrations were modelled with LUR and DM for 69,591
residential addresses in 7 study areas. The correlation between LUR
and DM was generally lower and the differences in levels larger than
for NO, (Table 2, Fig. 1). A large difference of 20 ug/m?, for instance,
was found between median PM;, concentrations for LUR and DM in
Athens, whereas the differences in the Netherlands and Lugano were
small (0.3 and 1.2 ug/m?> respectively). The median Pearson and Spear-
man correlation coefficients between LUR and DM estimates were 0.39
and 0.49 respectively. Lugano, the Netherlands and London showed the
highest correlations (Pearson) between the 2 methods (R = 0.66, 0.56
and 0.52 respectively). In several of the LUR predictions the impact of
truncation to the highest value of predictor variables at the monitoring

sites is visible, e.g. in the Netherlands (Fig. 1). In Stockholm, the disper-
sion model had a lower bound, defined by the measured regional back-
ground used as input in the model. The percentage of agreement by
quintiles ranged from 25 to 55%.

3.1.3. PM55

Estimated PM, 5 concentrations were modelled in four study areas
(Helsinki—Vantaa region, the Netherlands, the Ruhr Area, and Rome)
for a total of 28,159 residential addresses. In the Netherlands there
was a high correlation (Pearson R = 0.81), with similar median PM, 5
concentrations for both methods, but with a larger range for DM esti-
mates (14.5 pg/m>) compared to LUR estimates (6.2 ug/m?>). The other
three study areas showed low correlations between the LUR and DM
estimates.

The Bland-Altman plots (Fig. A.1) were inspected to assess the
agreement over the concentration range between the two methods.
The majority of points were located within +/— 2 times the standard
deviation; however, there were quite different patterns for the different
study areas and pollutants. Fig. A.1 shows that bias rarely is zero (only
Basel (NO,), Netherland (NO,, PM;q, and PM; 5), Lugano (PM;,) and
Helsinki, and Rome (PM,5) have an absolute mean difference of less
than 1 pg/m?). Secondly the upper- and lower-limits of the 95% range
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Table 2

Descriptive and comparison statistics of LUR and dispersion estimates (ug/m?) at cohort address for NO,, PM;q and PM, 5.

LUR predictions (ug/m>) DM predictions (ug/m?) Comparison of LUR with DM
Continuous: DM = Constant + Slope x LUR Quintiles
Study area N? Median Pgs Pgs Pos—Pos Median Pgs Pgs  Pgs—Pos Spearman's Pearson Constant Slope RMSE Agreement Kappa
Rho R (%)°

NO,
Umea region, SE¢ 4575 6.8 41 164 122 125 56 206 15.0 0.782 0.792 517 093 263 483 0.352
Stockholm County, SE¢ 39409 9.6 64 209 145 6.5 33 181 149 0.791 0.856 —1.98 093 246 489 0.361
Helsinki—Vantaa region, FI° 5871 16.0 9.0 255 165 9.0 7.0 17.0 100 0.762 0.745 2.01 052 234 437 0.297
Bradford, UK® 20919 240 189 29.0 10.1 183 140 265 125 0.820 0.667 —1.62 0.86 3.06 492 0.365
London, UK® 7089 333 21.7 455 238 32.0 21.1 426 214 0.836 0.798 8.55 070 4.05 552 0.441
Netherlands® 7295 22.7 12.7 339 212 24.0 114 382 26.8 0.901 0.891 —237 113 370 618 0.523
Ruhr Area, DE¢ 4809 29.6 234 386 152 375 308 44.1 133 0.428 0.389 28.45 030 351 310 0.138
Basel, SU® 1118 29.0 183 343 16.0 30.5 214 344 131 0.771 0.768 11.11 065 271 489 0.362
Geneva, SU* 737 26.4 16.2 38.7 22.6 31.7 244 360 11.7 0.708 0.657 21.73 036 284 414 0.267
Lugano, SU¢ 1090 26.6 11.8 392 273 309 229 348 120 0.773 0.819 20.43 037 197 502 0.377
Rome, IT¢ 10157 38.1 255 56.1 305 50.0 315 594 278 0.406 0.386 33.35 036 7.65 294 0.120
Barcelona, ES© 8402 57.1 385 85.1 46.6 54.0 39.7 784 387 0.687 0.688 2141 059 884 433 0.292
Athens, GRY 1500 36.0 234 595 36.0 47.0 365 564 19.8 0.207 0.188 42.86 010 635 239 0.005
All 112971 214 17.3
PM;o
Stockholm County, SE® 39409 15.1 6.2 204 142 10.0 7.8 16.6 8.8 0.378 0.367 6.83 029 282 312 0.140
London, UK® 7089 16.9 149 209 6.1 21.7 207 230 24 0.554 0.517 17.94 022 065 552 0.441
Netherlands® 7295 24.6 238 271 33 249 204 272 6.7 0.625 0.556 —4.88 116 191 420 0.275
Ruhr Area, DE¢ 4809 27.5 253 316 63 18.0 15.1 225 74 0.328 0.346 5.97 043 218 248 0.060
Lugano, SU* 1087 233 180 274 94 24.5 204 259 55 0.575 0.659 13.87 043 125 398 0.248
Barcelona, ES© 8402 39.0 37.0 475 106 374 35.7 442 85 0.495 0.393 24.14 035 262 331 0.163
Athens, GRY 1500 47.0 247 641 394 27.0 234 303 7.0 0.272 0.233 24.70 0.046 236 265 0.080
All 69591 16.6 15.1
PM> 5
Helsinki—Vantaa region, FI° 5871 8.0 56 91 35 8.5 82 93 1.1 0.215 0.252 7.85 0.093 037 258 0.073
Netherlands® 7295 16.5 154 173 19 16.8 13.1 186 56 0.879 0.812 —2040 223 041 504 0.380
Ruhr Area, DE¢ 4809 183 169 204 35 14.7 131 16.7 3.6 0.391 0.327 8.21 035 112 280 0.100
Rome, IT¢ 10544 189 173 233 6.0 20.1 16,5 216 5.0 0.252 0.223 16.03 019 153 265 0.081
All 28159 174 16.8

¢ Number of residential addresses in the participating cohorts.

b Percentage of residential addresses falling in the same quintile.
¢ Spatial resolution of DM estimates <100 x 100 m.

4 Spatial resolution of DM estimates >500 x 500 m.

differ widely between the study areas. Fig. A1 also shows which of the
two methods tends to provide higher or lower concentration estimates.
For example NO,, estimates in Bradford are mostly higher with LUR (95%
range = —12.7 to 0.7 pg/m>) while the opposite is true in Umea (95%
range = —0.6 to 9.8 ug/m?>). For the coarse-scale models and the
three Swiss models, the DM model predictions were lower than the
LUR predictions for the highest concentrations, mostly traffic locations.

3.2. Comparison DM with ESCAPE monitoring results

Correlations between dispersion modelled annual average concen-
trations and adjusted annual average concentrations based on measure-
ments at the ESCAPE monitoring sites are shown in Table 3 (scatterplots
in Fig. 2, Table A.2). Pearson R's correlation coefficients ranged from 0.09
(Athens) to 0.86 (Umed) for NO,, with a median of 0.74. Dispersion
models that aimed to predict at specific receptor points or predict
with a very small resolution of <100 x 100 m predicted NO, concentra-
tions better than the coarser Eulerain/CFD models. The median correla-
tion for PM; (0.58, ranging from 0.36 (Barcelona) to 0.88 (London))
was lower than for NO,, which again was mainly driven by the differ-
ence in scale. Among the four study areas with a DM for PM, s, the
two models that estimated at unique receptor points or on a small spa-
tial scale (Helsinki—Vantaa region, Netherlands) predicted measured
concentrations with correlations of 0.66 and 0.54 (Pearson), respective-
ly. Correlations for the larger scale models were 0.39 (the Ruhr Area) to
0.61 (Rome). For most of the study areas Spearman correlations were

moderate to high (ranges: NO, 0.15 to 0.88; PM 0.47 to 0.70 and
PM, 5 0.49 to 0.70). For the majority of the study areas DM thus tend
to predict a fairly large proportion (R > 0.6) of the variation across the
measurement sites. Scatter plots of the DM-MON comparison are
shown in Fig. 2. The regression lines for NO, generally follow the 1:1
line, whereas regression lines for PM;o and PM; 5 show departures
from the 1:1 line. Relatively large differences in NO, concentrations
were found only in Umed (DM > measured) and Helsinki—Vantaa re-
gion (DM < measured), though in both areas the correlation was higher
than 0.6. PM;o concentrations were higher than the model predictions
in Athens, though the correlation was reasonable. Fig. 3 illustrates that
the agreement between LUR and DM at the cohort addresses increases
with increasing correlation between the DM and measured concentra-
tions at the monitoring sites. The agreement between LUR and DM did
not depend on the LOOCV of the LUR model.

4. Discussion

To our knowledge, this is the first study to compare LUR and DM for
assigning air pollution exposures to a large number of residential ad-
dresses in different geographical areas. In general, a distinction between
two types of DM can be made: one estimates receptor-specific concen-
trations (Gaussian) and the other estimates average concentrations for
an area (Eulerian/CFD). This has potential implications on the compara-
bility of air pollution estimates at the address level and for the down-
stream epidemiology.
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Table 3
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Descriptive and comparison statistics of DM estimates and measurements (p.g/m3) at ESCAPE monitoring sites for NO,, PM; and PM 5.

Monitored concentrations
at ESCAPE sites (ug/m?)

DM predictions at ESCAPE
sites (ug/m>)

Comparison of DM predictions with measured concentrations at
ESCAPE sites

Study area N? Median Min Max Median Min Max Spearman's Rho Pearson R Constant Slope RMSE
NO,

Umed region, SE° 20 9.3 53 35.8 15.5 7.4 31.0 0.878 0.858 -5.36 1.02 3.88
Stockholm County, SE” 39 14.8 2.1 33.0 13.0 2.9 253 0.775 0.755 441 0.84 4.94
Helsinki—Vantaa region, FI® 25 19.7 12.2 285 10.6 6.6 26.7 0.753 0.658 12.64 0.63 3.78
Bradford, UK” 40 25.2 16.7 36.7 19.8 13.0 38.0 0.806 0.743 11.99 0.62 3.59
London, UK® 27 39.7 29.2 102.7 37.7 23.0 79.9 0.681 0.849 -10.83 139 9.06
Netherlands® 68 28.0 12.8 57.1 27.7 11.1 47.1 0.897 0.852 1.05 0.99 5.45
Ruhr Area, DE® 29 31.2 222 58.4 39.2 28.5 50.2 0.459 0.391 5.47 0.72 8.98
Basel, SU® 40 314 16.1 47.8 31.8 214 35.2 0.492 0.598 -14.10 1.46 5.98
Geneva, SU® 41 30.1 16.1 513 31.2 204 40.9 0.642 0.540 -5.90 1.17 7.66
Lugano, SU” 42 27.1 12.2 59.2 317 234 393 0.749 0.764 -33.72 2.00 5.37
Rome, IT 40 41.7 13.6 72.6 50.0 26.6 62.1 0.568 0.614 -8.76 1.08 10.96
Barcelona, ES® 40 54.7 13.8 109.0 51.2 28.5 78.5 0.805 0.754 -4.61 1.15 13.40
Athens, GR® 40 35.9 133 71.0 40.4 344 522 0.154 0.089 27.86 0.20 12.04
PM;o

Stockholm County, SE” 19 18.5 5.7 35.6 15.2 7.5 19.3 0.472 0.580 11.33 1.09 5.65
London, UK® 13 184 16.1 312 223 215 30.7 0.484 0.877 -13.47 1.46 2.03
Netherlands® 34 26.2 219 33.0 25.7 208 30.5 0.671 0.696 3.74 0.88 2.18
Ruhr Area, DE® 15 274 225 333 18.2 15.3 323 0.521 0.392 22.95 0.25 2.90
Lugano, SU° 18 239 18.5 325 241 20.1 253 0.552 0.668 -8.77 1.38 2.67
Barcelona, ES” 20 38.6 17.8 485 36.7 345 513 0.699 0.356 10.71 0.71 6.82
Athens, GR® 20 42.9 273 58.0 24.5 22.8 303 0.522 0.397 9.42 1.32 6.81
PMz 5

Helsinki—Vantaa region, FI” 13 8.9 7.9 10.4 8.8 8.2 10.1 0.703 0.657 1.39 0.86 0.64
Netherlands® 34 174 12.7 21.0 17.5 13.4 21.0 0.485 0.540 8.4 0.52 1.54
Ruhr Area, DE€ 15 18.5 15.5 21.1 14.9 13.0 25.1 0.492 0.387 15.8 0.17 1.48
Rome, IT 18 18.5 14.2 27.0 20.5 16.6 219 0.598 0.612 —-11.0 1.53 2.74

2 Number of ESCAPE monitoring sites.
b Spatial resolution of DM estimates <100 x 100 m.
¢ Spatial resolution of DM estimates >500 x 500 m.

Overall, agreement between DM and LUR was quite strong for NO, in
7 out of 13 study areas, (Pearson R> 0.70). Lower agreement was found
for PMyo and PM, 5. Agreement between LUR and DM at the address
level was higher for areas where the DM correlated more strongly
with the measurements.

4.1. Prediction of measured concentrations at monitoring sites

Gaussian DMs generally predicted the spatial variation of NO, at
monitoring sites well, reflecting the small-scale variation of this pollut-
ant. On the other hand Eulerian/CFD DMs that modelled average NO,
concentrations on a coarser spatial scale reflected larger scale variations
of urban background within cities. Most models also predicted the con-
centration levels well (within about 30%), partly due to the incorpora-
tion of measured regional background concentrations. Prediction of
PM was less effective, similar to LUR models (Beelen et al., 2013;
Eeftens et al., 2012b).

As we did not have independent data available for a sufficiently large
number of locations in our cities, we cannot make a solid comparison
between the two models' predictive ability for the study areas. The cor-
relations between DM and measured concentrations were however
lower than for the LUR models (median LOOCV R? was 0.80 (0.55),
0.77 (0.34) and 0.61 (0.33) for LUR (DM) NO,, PM;( and PM, 5 respec-
tively (Table A.2)). This does not necessarily imply better performance
at unmeasured locations. The model R? only represents the predictive
ability at the monitoring sites and recent studies have documented
that the LOOCV R? used in LUR studies only partly compensates for the
over-fitting. Hold-out validation R? has been shown to be potentially
20-40% lower than the model R?, with larger differences observed for
LUR models based on a smaller number of sites (Basagaiia et al., 2012;
M. Wang et al,, 2013).

The RMSE of the comparison between DM and measurements
(Table 3) was larger than the RMSE of the comparison between DM
and LUR (Table 2). Although based on different locations, this might in-
dicate that both models may have similar errors in explaining
measurements.

Several previous studies have compared LUR and DM at monitoring
sites. Beelen et al. (2010) found moderate agreement (R = 0.55) be-
tween LUR and DM estimates for annual average NO, concentrations
at a 100 x 100 m grid in the Rijnmond area of the Netherlands with
the URBIS performing better than the LUR model (R = 0.77 vs 0.47) at
18 independent sites. This is likely because the LUR model was devel-
oped for the whole of the Netherlands and lacking specific local infor-
mation for the Rijnmond area. A study in Amsterdam (NL) by Dijkema
et al. (2011) compared NO, concentrations estimated by 2 LUR models
(regional and city specific) against the Dutch CAR dispersion model. All
models explained between 50 and 60% of the variance, although CAR
overestimated at background and underestimated at traffic monitoring
sites. In Vancouver, Canada, Marshall et al. (2008) compared LUR and a
4 x 4 km chemical transport DM (CMAQ) to estimate NO, NO,, CO and
ozone. They found that LUR was better in predicting the small spatial
variations at the neighbourhood scale, whereas DM tended to be bet-
ter in predicting the urban scale variations. Cyrys et al. (2005) also
compared LUR and dispersion modelling for NO, and PM; s in
Munich, Germany, at 40 monitoring sites and at 1669 addresses.
The model estimates correlated well at the 40 monitoring sites and
addresses (R > 0.79). Gulliver et al. (2011) compared LUR and DM
at 52 routine monitoring stations in London (UK) using a grouped
jack-knife approach Results showed that LUR (R?> = 0.47)
outperformed DM (R? = 0.28). Most recently Sellier et al. (2014)
compared LUR and DM estimates for NO, at cohort addresses in
Nancy and Poitiers (France) finding a good correlation between the
two methods (R = 0.87).
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Fig. 3. Scatterplots of Pearson R's between the LUR-DM and DM-ESCAPE comparisons for both NO, and PM;,.

4.2. Predictions of address level exposure

Despite the different modelling approaches of LUR and DM, the
agreement in predicting NO, concentrations at cohort addresses
was relatively good in most study areas. This is probably due to the
importance of traffic affecting small-scale spatial variation of NO,
in the predominantly urban areas. DMs have been developed exten-
sively for modelling NO, traffic sources, and LUR models are most ef-
fective for modelling traffic because of the availability of predictor
variables such as traffic intensity and distance to major roads. In a
recent paper of PM composition, LUR models predicted traffic-
related components (Black carbon, Cu, Fe) much better than ele-
ments for which non-traffic sources were dominant e.g. Ni, V and S
(de Hoogh et al, 2013).

Compared to NO,, the lower agreement between DM and LUR pre-
dictions for PMyj is likely due to a combination of random error related
to the smaller spatial variation of PM;,, the lower predictive power of
both models to predict concentrations and the smaller number of mon-
itoring sites available to develop LUR models (20 PM versus 40 NO; in
most areas). In general, the spatial variation of the measured PM and
the predictions by both models was smaller than for NO,, consistent
with observations of a high regional background contribution to fine
particle concentrations and a smaller influence of local sources
(Eeftens et al., 2012b). In several areas, for both models, the spatial var-
iation of PM was relatively small compared to the prediction errors as
reflected by the root mean squared error.

Some of the differences in agreement between the two models at the
cohort addresses were caused by the different model types. The
Eulerian/CFD models used in the Ruhr, Rome and Athens areas correlat-
ed less strongly with LUR estimates than the Gaussian models for both
NO, and PM;. This is probably in part caused by the coarser resolution
used by the Eulerian/CFD models compared to the Gaussian models
which therefore better predicting receptor-specific concentrations as
modelled in LUR. In epidemiological studies using the Ruhr Area
model, the coarser resolution dispersion model was therefore supple-
mented with distance to major roads to account for the small-scale var-
iation (Hoffmann et al., 2009). Fig. 3 illustrates that the agreement at the
cohort addresses depended on how well the DM predicted the mea-
surements at the ESCAPE monitoring sites. In addition to scale of the
model, the complexity and size of the urban environment likely affect
how well DM and LUR can predict spatial patterns. DMs for Mediterra-
nean cities have some additional challenges such as describing local
flows in coastal areas with complex terrain, as well as accounting for

the intricacies of boundary layer development. In the case of Athens,
emissions have exhibited large variability (inter-annual as well as spa-
tial) over the last couple of years due to the effects of the economic cri-
sis. Therefore, the amount of emission uncertainty involved in the
Athens calculations has conceivably played a key role in the DM calcula-
tions. Interestingly, the LOOCV for the LUR models was also relatively
low in Athens.

DM and LUR models generally explained a lower fraction of mea-
sured spatial variation of PM;o compared to NO, (Table 3 and
Tables A.1 and A.2). The continental and regional scale chemical trans-
port models commonly underestimated both the measured PM, s and
PM;¢ concentrations at the ESCAPE monitoring sites, which were de-
signed to capture specifically the variation in traffic-related pollutants
and therefore oversampled high traffic sites. Other reasons might in-
clude missing or under-estimated source categories (such as wild-land
fires, desert dust, biogenic sources, non-exhaust emissions from traffic,
shipping, fugitive dust, and sea salt), and by missing or inadequately
treated processes in the models (such as the formation of secondary or-
ganic aerosols). Because of the urban character of the study areas, all the
Gaussian models used measured concentration values at regional back-
ground stations; the above mentioned PM modelling deficit for chemi-
cal transport models does not therefore influence the predicted results
in those cases. However, some dispersion models clearly under-
predicted PM;q concentrations at the ESCAPE monitoring sites, in case
of Stockholm, Ruhr Area and Athens, as can be seen based on the results
presented in Fig. 2. For those models predicting average concentrations
on a larger scale (i.e. Ruhr Area, Athens) this is a logical consequence of
the fact that these models are not designed to predict concentrations at
traffic sites. Consistently, the Ruhr Area Eulerian DM model predicted
NO;, PM;o and PM, 5 better (R = 0.53, 0.69, 0.68 respectively) when
the traffic sites were excluded.

As previously mentioned, LUR models are less effective for sources
other than traffic (de Hoogh et al., 2013). The simple dispersion as-
sumptions in LUR models apply better to traffic emissions than industri-
al point emissions, emitted at potentially hundreds of metres above
ground. In Bradford, our NO, LUR model under-predicted at a number
of residential addresses which were located in one residential area
with a high activity of chemical processes. While this emission source
was included in the ADMS-Urban model emission inventory, the LUR
model for Bradford did not include an industry variable, because no
ESCAPE monitoring sites were located near industrial sources.

A discussion about the Bland-Altman plots and Kappa-coefficients
can be found in the Appendix (p. 4).
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4.3. Implications for epidemiological studies

The overall high correlation between LUR and (fine scale) DM for
NO, suggests that similar effects may be obtained if both approaches
are applied in epidemiological studies to assess associations with health.
However, if predicted concentration ranges differ, the size of the effect
estimates may be different. The lower correlation for PM suggests that
health effect estimates could be more different when applied in epide-
miological studies. It remains important, however, to test directly in ep-
idemiological studies differences in effect estimates related to exposure
models. A recent study from Sellier et al. (2014) which applied four dif-
ferent exposure methods, including LUR and DM, to a cohort in Nancy
and Poitiers (France), showed some differences in estimated health ef-
fect despite moderate to high correlations between NO, exposure esti-
mates at the cohort level

The ESCAPE study was specifically designed to investigate health ef-
fects of long term air pollution exposure, using standardised LUR as the
method of choice. Both LUR and DM are equally equipped to predict
long term exposures, but an advantage of DM is that it can more easily
deal with different time periods (e.g. hours, days, weeks, years and de-
cades, also in retrospect) by using diagnostic or real-time emission
and meteorological data. LUR models estimating daily concentrations
have been developed and applied (Gryparis et al., 2014) but their eval-
uation and use are still limited. LUR model application is further restrict-
ed to the time period and geographical area of the monitoring
campaign, although some recent studies suggest that LUR models in
some circumstances can be transferred both back in time as well as geo-
graphically (Gulliver et al., 2013; R. Wang et al., 2013). An advantage of
LUR models, however is that exposure estimates can be generated for
absorbance, UFP, elemental composition (de Hoogh et al., 2013;
Eeftens et al., 2012b) for which few dispersion models are available.

DM s can also be used for evaluating the contributions originating
from various sources or source categories at selected locations. A specif-
ic strength of DM is its use for retrospective evaluations as well as for
scenarios for the future. DM, however is also inherently source specific
and as such requires several accurate input datasets like emission inven-
tories, and ideally, pre-processed representative meteorological data, a
thorough discussion of which has been presented by Kukkonen et al.
(2012). Although the initial development of a LUR model takes some
time, the subsequent application to residential addresses is fairly light
in terms of computing power and time. DM on the other hand needs a
lot more expertise to run and is relatively heavier in data demand and
running time.

5. Conclusions

Dispersion model estimates for outdoor NO, with high spatial reso-
lution showed, in most countries, high correlation with measured
values and with the corresponding land-use regression estimates for co-
hort addresses. This implies that both methods may be useful for epide-
miological studies of small-scale variations of outdoor combustion-
related air pollution, typically from road traffic. The agreement for PM
levels was considerably lower than for NO,, probably reflecting smaller
spatial variation, less precise source characterization and/or lack of re-
lated land use descriptors. The agreement between LUR and dispersion
models with lower spatial resolution was reduced. These Eulerian/CFD
DMs provide average concentrations in a small area, thus modelling a
different aspect of person-specific exposure. The influence of data re-
quirements and whether the methods tend to give different results in
epidemiological studies need to be further explored.
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