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Abstract Insulin resistance (IR) lies at the origin of type 2
diabetes. It induces initial compensatory insulin secretion until
insulin exhaustion and subsequent excessive levels of glucose
(hyperglycemia). A high-calorie diet is a major risk factor
contributing to the development of this metabolic disease.
For this study, a time-course experiment was designed that
consisted of two groups of mice. The aim of this design was to
reproduce the dietary conditions that parallel the progress of IR
over time. The first group was fed with a high-fatty-acid diet
for several weeks and followed by 1 week of a low-fatty-acid
intake, while the second group was fed with a low-fatty-acid
diet during the entire experiment. The metabolomic fingerprint
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of C3HeB/Fel mice liver tissue extracts was determined by
means of two-dimensional gas chromatography time-of-flight
mass spectrometry (GCxGC—ToF-MS). This article addresses
the application of ANOVA-simultaneous component analysis
(ASCA) to the found metabolomic profile. By performing
hyphenated high-throughput analytical techniques together
with multivariate chemometric methodology on metabolomic
analysis, it enables us to investigate the sources of variability in
the data related to each experimental factor of the study design
(defined as time, diet and individual). The contribution of the
diet factor in the dissimilarities between the samples appeared
to be predominant over the time factor contribution. Neverthe-
less, there is a significant contribution of the time—diet interac-
tion factor. Thus, evaluating the influences of the factors sep-
arately, as it is done in classical statistical methods, may lead to
inaccurate interpretation of the data, preventing achievement of
consistent biological conclusions.

Keywords Metabolomics - Chemometrics - Gas
chromatography mass spectrometry - ANOVA-simultaneous
component analysis (ASCA) - Type Il diabetes - Mouse model

Introduction

In the complex hormone pathways of the body, a deficient
insulin action leads, amongst others, to hyperglycemia (in-
creased blood glucose levels), which is characteristic for the
metabolic disease diabetes mellitus (DM). The pathogenic
processes involved in the development of the most prevalent
category of DM, i.e. type 2 DM (T2DM), arise from the
combination of resistance to insulin action and an impaired
compensatory insulin response [1]. Moreover, hepatic fat
accumulation in non-alcoholic fatty liver disease (NAFLD)
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is related to insulin resistance [2]. Amongst others, the factors
contributing to the development of the insulin resistance and
pancreatic 3-cell dysfunction are high-calorie diet as well as
sedentary lifestyle [3].

The omics technologies have been integrated into diabetes
research as standard implement [4]. Metabolome—the entire
set of metabolites within a biological system—is the down-
stream end product of the omics hierarchy and, therefore, an
important source of information about protein expression
manifested by gene regulation [5]. Metabolomics, the study
of the metabolome, has demonstrated to be a powerful tool to
investigate the biomarkers for disease diagnosis and risk pre-
diction [6].

Multidimensional chromatography has proved to be a pow-
erful and versatile tool for accurate metabolite separation.
Furthermore, hyphenation with mass spectroscopy makes it
a reliable and rapid system for tissue sample analysis, due to
its capability for the analysis of complex mixtures and its
utility for precise metabolite identification [7, 8]. In the pres-
ent study, a two-dimensional gas chromatography time-of-
flight mass spectrometry (GCxGC-ToF-MS) system was
utilised for analysis. The superiority of GCxGC-ToF-MS
over GC-MS lies in (1) its capacity to reduce coelution of
chromatographic peaks—enhancing their structural elucida-
tion and improving spectral purity—and (2) its capacity to
reduce the limits of detection as well as to boost broader
dynamic range [9].

The exploration of metabolomic data generated by multi-
dimensional GCxGC-ToF-MS implicitly entails the difficul-
ty of evaluating highly complex data. With this said, the
versatility of chemometrics has proved to have an invaluable
capacity to extract relevant information from this type of data
[10].

For untargeted metabolomic studies, since each variable
corresponds to a specific metabolite, the number of simulta-
neously measured inputs is of the order of thousands [11]. Using
the statistical method of analysis of variance (ANOVA), which
aim is to identify whether a significant difference exists amongst
groups, it is possible to estimate the effect of the experimental
factors on the data. However, for multivariate data, the use of
multivariate ANOVA (MANOVA) is still not sufficient enough,
as firstly, it does not explain the interrelation between variables,
and secondly, it remains inadequate when the number of vari-
ables exceeds those of the measurements [12].

ANOVA-simultaneous component analysis (ASCA)
procedure overcomes these handicaps, and it is gaining
popularity in recent years, showing its usefulness as it
combines the best of both ideas from ANOVA and prin-
cipal component analysis (PCA) [13]. The principle of
ASCA is to combine, on the one hand, the capacity to
analyse separately different sources of experimental vari-
ation from ANOVA, and on the other hand, to explain the
correlation amongst variables from PCA. An advantage of
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ASCA over PCA is that the model is less affected by
outliers, as the matrices are divided according to the
different contributions to the variation in the data.

The aim of this study was to elucidate the influence of a
high-fat dietary, at a metabolomic level, to a common mouse
model (C3HeB/Fel) and the contribution of the different
experimental factors to the variances in the data. For this,
efforts have been focused on the application of two-
dimensional chromatographic techniques, such as GCxGC—
ToF-MS, to detect early metabolic changes introduced by the
diet time-course experiments. The findings of this study may
lead to a contribution in the understanding of metabolic dys-
regulation in NAFLD. Likewise, ASCA has been applied as a
new chemometric tool to increase the interpretability of the
sources of variation in the dataset, which are an important
issue when it comes to describe the understanding of the
outcomes in biological experiments. To the best of our knowl-
edge, no study to date encompasses the ASCA-based chemo-
metric approach of two-dimensional chromatographic data
together with the metabolomic assessment of the effect of diet
in NAFLD progress in mouse model.

Experimental section
Chemical and reagents

All solvents were of analytical grade and purchased from
Merck (Darmstadt, Germany) or Fluka Analytical Sigma-
Aldrich (Steinheim, Switzerland). Water was obtained from
a Millipore Milli-Q system (Billerica, MA, USA).
Methoxamine hydrochloride was purchased from
Supelco (Bellfonte, PA, USA) and N-methyl-N-
trimethylsilyltrifluoroacetamide (MSTFA) from Macherey-
Nagel GmbH (Diiren, Germany). Stable isotope-labelled in-
ternal standard compounds, citric acid (2,2,4,4-D4, 98 %),
octanoic acid (D15, 98 %) and fumaric acid (2,3-D2, 98 %)
were purchased from Cambridge Isotope Lab. Inc. (Andover,
MA, USA); succinic acid (D4, 98 %), pyruvic free acid (1-
C13, 95 %) and D-fructose (6,6-D2, 98 %) were purchased
from ISOTEC, Sigma-Aldrich (OH, USA). Ergosterol was
purchased from Dr. Ehrenstorfer (Augsburg, Germany) The
alkane standard mixture for the performance tests of GC
systems C:8—C:20 was purchased from Fluka Analytical.

Animals and sample collection

All animals received humane care, and study protocols com-
plied with the institution’s guidelines. The Upper Bavarian
district government (Regierung von Oberbayern, Gz.55.2-1-
54-2532-4-11) approved all experimental procedures.
C3HeB/FeJ male mice (C3H; strain does not carry mouse
mammary tumour virus or abnormal allele at Tlr4 locus but is
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homozygous for retinal degradation allele Pde6brdl; The
Jackson Laboratory, Maine, U.S.A.) were bred and housed
under standard vivarium conditions (12:12 light—dark cycle).
At an age of 14 weeks, male mice were single-housed, litter-
matched and allocated into six groups. Three groups were
switched to a high-fat diet (custom-made HFD, Ssniff,
Soest, Germany) and three continued on a low-fat diet
(LFD, Diet#1310, Altromin, Lage, Germany). Mice were
anaesthetised and livers were then dissected, quickly freeze-
clamped in liquid nitrogen and stored at —80 °C until further
processing.

As a safflower oil was the most prominent fat source for the
high-fat diet (which contains n6-fatty acids), for the remainder
of this paper, this diet will be designated as safflower diet,
whilst the low-fat diet as standard diet.

A time-course experiment was designed in an attempt to
recreate the conditions that may lead over time to the devel-
opment of NAFLD, relating to insulin resistance.

Prior to the development of the illness, insulin resis-
tance (IR) increases blood glucose levels in tissue, and,
as the insulin response is inadequate, the patient will
experience impaired glucose tolerance, which may prog-
ress to T2D. Even when hyperglycemia causes functional
changes in tissues, it may not show clinical symptoms
for a long period before DM detection. In prediabetic
patients, hyperglycemia is developed relatively late in the
pathogenesis of T2D. In fact, IR—and compensatory
hypersecretion of insulin—begins well before glucose
tolerance is impaired at all.

The intake plan consisted in 1, 2 and 3 weeks of a safflower
oil diet, and 2 weeks of safflower oil diet followed by a reverse
week of normal diet. Figure 1 abstracts the global design of
this study.

Sample pretreatment

Snap-frozen livers were pulverised under liquid nitrogen.
Samples of 25 mg were weighed into precooled 2-mL homog-
enisation tubes [14] containing 1.4-mm-diameter ceramic
beads (Precellys, PeqLab, Germany) and immediately stored
at —80 °C and atmospheric pressure until extraction and
analysis.

As internal standards, a mixture of 1 pg/mL of
[2,2,4,4->H,]-citric acid, [*H,s]-octanoic acid, [2,3-*H,]-
fumaric acid, [?H,]-succinic acid, [1-'*C]-pyruvic acid,
[6,6-°H,]-D-fructose and ergosterol was added prior to ho-
mogenisation. Homogenisation was carried out in a Precellys
24 homogeniser (PeqLab Biotech. GmbH, Germany)
equipped with an integrated cooling unit, three times operated
at 5500 rpm (*g,y) for 20 s with 30-s intervals, after addition
of 1 mL of the solvent mixture (850 pL. methanol, 100 puL
ethanol and 50 pL water). A 2-uL aliquot of alkane standard
mixture C:8—-C:20 was also added in order to monitor the

chromatographic retention times. Samples were subsequently
centrifuged in a Heraeus Multifuge 3SR (Thermo Scientific,
Germany) at 10,000 rpm (Xg,,) for 10 min at =5 °C. A total
volume of 600 pL of supernatant liquid was then transferred
to three 1-mL vials (200 uL each) and concentrated to com-
plete dryness under a constant stream of nitrogen. Vials were
then stored at —80 °C until analysis.

The dried residues were resuspended in 50 puL of
methoxamine hydrochloride (40 mg/mL pyridine) and incubat-
ed at 60 °C for 60 min. After vortexing for 1 min, 50 puL of
MSTFA was added and the samples were incubated at 60 °C for
30 min. After a second vortex step, the derivatised samples were
stored at room temperature for 180 min before injection [15].

Control samples consist of extract from 25 mg of a mixture
of different livers from mice fed with normal laboratory diet
on which the same pretreatment as mentioned for the samples
was applied.

GC-MS analysis

For GCxGC-ToF-MS analysis, an Agilent 6890N gas chro-
matograph (Agilent Technologies, Palo Alto, CA, USA)
equipped with a Leco GCxGC system (Leco Inc., St Joseph,
MI, USA) and a dual-stage four-jet cryogenic (N,) modulator
(Leco Inc.) was used. The GC system was coupled to a
Pegasus III time-of-flight mass spectrometer (Leco Inc.). A
Combi PAL autosampler (CTC Analytics, Switzerland) per-
formed 1-pL injections of derivatised extract followed by
several 10-puL hexane and 10-uL dichloromethane wash
cycles.

Controlled by the ATAS Evolution Workstation v.1.2a
software, an OPTIC III injector (ATAS GL, Netherlands)
was set up in splitless mode with an initial temperature of
70 °C during injection. Starting 0.5 min after injection, the
temperature was raised to 300 °C at a rate of 2 °C/s and
subsequently held for 20 min. Initial injector head pressure
set the head pressure to 380 kPa and maintained it during the
3.5-min transfer time. Subsequently, the column pressure was
reduced to 170 kPa and then ramped parallel to the oven
temperature program up to 320 kPa [9]. A programmed oven
temperature started 3.5 min after injection, at a rate of
5 °C/min, from 70 to 310 °C and held until the end of the
run. The GCxGC column set used for all the analysis was
made up of a 1.5 mx250 um deactivated fused silica tubing
precolumn, combined with a 30 mx250 pm-internal-diameter
(0.25 pum film thickness) 50 % phenylpolysilphenylene-
siloxane (BPX-50, SGE, Australia) intermediately polar
first-dimension column, coupled to a 1 mx180 um
(0.10 pum film thickness) trifluoro-propylmethyl polysiloxane
(Rtx-200, Restek Corp., USA) selective second-dimension
column. The transfer line was a 1 mx 100 pm-internal-diam-
eter deactivated fused silica tubing. A temperature offset of
100 °C was set on the modulator with a 2-s modulation period.
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Fig. 1 Time-course design of the study. The experimental design recreates the typical IR progression over time sketched in the upper graph. Data from
samples measured with GCxGC-ToF-MS were processed, and ASCA analysis was performed to discern the different sources of variation in them

The transfer line and ion source temperatures were kept at 270
and 250 °C, respectively, and the mass range was adjusted to
50-700m/z at an acquisition rate of 100 spectra/s.

Alkane standard mixture was added to each replicate
of the samples to monitor shifts in retention times and
injection repeatability. Chromatographic performance was
checked by means of Grob mixture injections [16]. Blank
solvent injections were analysed to eliminate carryover
effects through the sample analysis. To avoid systematic
variations, the injection sequence was randomly set for
analysis.

Data analysis

Data acquisition, analysis and processing were performed
with ChromaTOF® software™, version 4.32 (Leco Inc.).
Statistical analyses were performed in MATLAB® (R2011a,
MathWorks, Inc., USA) using a home-written data prepro-
cessing routine and the MATLAB-implemented
PLS Toolbox® (Eigenvector Research, Inc., USA). The pa-
rameters for spectrometric data processing were set with a
signal-to-noise ratio of 50 and no smoothing. Deconvoluted
and aligned peak data were exported via comma-separated
values (.csv) format. The areas of matched peaks across the
sample set were calculated and stored in a data matrix with
columns representing the samples and rows representing the
metabolites.
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Data preprocessing

Deconvoluted peaks from the raw spectroscopic data were
aligned by the Leco Software. To speed up and facilitate
deconvolution and alignment, peaks corresponding to column
bleed as well as determined derivatisation artefacts were ex-
cluded prior to the alignment.

Owing to the chosen threshold, wrong integration or qual-
itative differences in the metabolite profile, some values are
stored as missing data. Missing values may lead to an over-
estimation of the magnitude of the disparity in the data set.
The presorting procedure for the aligned peaks included the
identification of metabolites with missing values for more
than half of the samples in every group, which were discarded
from subsequent statistical analyses. For the remaining me-
tabolites, missing values were replaced by the average of the
non-missing values of every group separately. An exception
was made for metabolites for which all values in one of the
groups were zero. In those cases, the values were not replaced.
The preprocessing revealed 401 features, which were used for
further analysis. Peak areas were imported to MATLAB for
further calculations.

Normalisation and instrumental optimisation
In order to monitor the repeatability of the chromatographic

acquisition method, the relative standard deviations (RSD) for
the retention times were calculated. For all aligned peaks,
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including those that were later excluded, the first and the
second retention time within all the samples showed an aver-
aged RSD of 0.14 and 6.08 %, respectively.

Since deuterated internal standards were prior added to
each sample, normalisation to their peak areas was applied
to compensate for methodical and instrumental variations.
First, the visual check of the chromatograms showed no
endogenous interfering peaks as well as good separation of
the standards and no matrix interfering peaks at their retention
time. Evaluation of this procedure showed an averaged RSD
0f 10.25 %. Instrumental precision was determined by repeat-
ability within day from 11 control samples, analysed every
24 h. By measuring the peak areas of each of the standards
added, the averaged RSD was 8.5 %.

Multivariate analysis and statistics

Mean centering was applied to the data [17], also fulfilling the
necessary and sufficient condition for the subsequent ASCA
decomposition of the data matrix.

To perform PCA [18], data was leave-one-out cross-
validated [19] and parameterised by means of the Pareto
scaling method. Very high and low values of variation within
variables calculated with PCA have an impact on the global
variance. Thus, for the statistical comparison, normalised data
was log-transformed to reduce the heteroscedasticity [20].

Disparities in the most relevant metabolites amongst sam-
ples evidence significant changes in the physiology of the
mice. To discard those metabolites with only minor expres-
siveness, several filters have been applied to the data. First, the
non-log-transformed loadings obtained for the first three prin-
cipal components with a Euclidean distance less than 0.6 to
the origin were not taken into consideration. Next, a density-
based spatial clustering of applications with noise (DBSCAN)
[21] (minPoint s=3, epsilon=0.06) was performed on the
remaining metabolites, to exclude the scattered ones that
cannot be assigned to a specific cluster.

A second statistical analysis was performed on the same
data set. For this, normalised but not log-transformed data
were structured in a matrix (Electronic Supplementary Mate-
rial Fig S1) to enable the ASCA modelling [22].

In the linear model used in ANOVA that serves as the basis
in ASCA, every measurement is decomposed into contribu-
tions to the variation caused by one treatment from variation
caused by other sources, as described in Eq. (1).

Xnkiyg = pj + g + (B + (B)) 1y + (@B, (1)

where, for every variable j, i represents the mean value of all
elements for the variable j, o represents the contribution of
the factor time, (8+(c3))u; represents the contribution of
factor treatment and its interaction with time, (B7)nk;

represents the variation specific to each individual. The indi-
ces are described in the Electronic Supplementary Material
Fig. S1.

To allow the evaluation of the different experimental fac-
tors in complex experimental designs with multiple dependent
variables, and as it is an overparameterised model, some
constraints are imposed and listed in the Supplementary
Table Sla.

Once the different factors have been isolated, the behaviour
of the dependent variables under the different treatment levels
is examined with PCA, which scores and loadings can be used
to explain the decomposed data matrix, as described in Eq. (2).

Xy, = Ilm” + TgP] + TP + Txy, P3 + Eyy, (2)

where 1 is a (K% 1) vector of ones, m is a (Jx 1) vector of
the overall means of the peak areas, T are the scores of the
principal components, P are the loadings of the principal
components and E is the matrix of residuals. The matrix
X, 1s separated into contributions from the overall mean
(1m"), the effect of the factor weeks (TxP}), the effect of
interaction of diet with weeks (T,P2) and the effect of the
interaction of diet, weeks and animal, i.e. contribution to the
variation of each individual mouse, (Txy;, P% ).

By solving Eq. (3) under the given constraints listed in
Supplementary Table S1b, which force the parts to be orthog-
onal to each other, the factors can be estimated separately.

min H I T T T T2
m.T.P h:1§ ih:IHXi” —1m"=TgP{~Txy P, Tk, P} ||

(3)

For the remainder of this paper, time, treatment and indi-
vidual factor will be designated as week, diet and mouse
factor, respectively. Note that week represents the duration
of the treatment (4 weeks) and not the ageing of the animals.

To verify how well the model fits the data, it is essential to
check its goodness of fit. This procedure can be performed by
means of QQ plots [23].

Results and discussion
PCA

Two principal components captured about 70 % of the vari-
ance within the data. Scores corresponding to the first and
second principal components (PC) are depicted in Fig. 2a. On
the first PC, which explains for about 50 % of the total
variation, five separated clusters can be demarcated in the

@ Springer
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Fig. 2 a Distribution of the samples according to the PCA scores for the with a Hotelling of 95 % confidence. b Loadings corresponding to the
first two principal components. For each of the 4 weeks, squares represent scores of PCA. Every point represents a specific metabolite. Numbers
high-fatty-acid diet (safflower) samples, whilst circles represent low- beside data points have been omitted for simplicity’s sake

fatty-acid diet (standard) samples. The dashed ellipse encloses samples
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Table 1 Putative identification of metabolites corresponding to the load-
ings of the PCA procedure according to the cluster to which they belong

Analyte Name (CID?) Clusters
A1047 Phosphorylethanolamine (1015) 4
Al55 Phosphoric acid (1004)

Al1364 all-Z-Docosahexaenoic acid (445580)

A34 Ethylenethiourea (2723650)

A88 NA_1123.4°

Al1247 Arachidonic acid (444899) 6
A428 Proline (145742)

A502 NA 1645.37

A673 Lysine (5962)

A802 Erythrose (94176)

A95 L-Valine (6287)

A733 Glycerol (753) 2
A623 NA_1776°

A459 Pyroglutamic acid (7405)

A789 Erythrose (94176)

A977 Hexadecanoic acid (985)

A455 Beta-D-glucopyranose (95629)

A740 Alpha-p-talofuranose (6431216)

A1233 Eicosenoic acid (5282768)

A838 Ascorbic acid (54670067)

A39 Glycine (750)

A595 D-Glucose (79025) 7
Al1276 Linoleic acid (5280450)

A674 Lysine (5962)

Al614 Alpha-p-tochoperol (14985) 8
A239 Alpha-ionene (68057)

A292 NA_1691.24°

A1077 Glucose-6-phosphate (5958) 9
A610 NA 1831.58° 10
A710 Dehydroascorbic acid (440667)

A1608 Cholesterol (5997) 3
A491 NA_164537°

A572 O-Phosphoethanolamine (1015)

A601 D-Xylose (644160)

A898 Unknown

#PubChem Compound Identifier
® Golm Metabolome Database

scatter plot. An obvious separation can be observed between
samples on the left- and right-hand side from the zero dotted
line for PC1. On the left bottom quadrant, samples corre-
sponding to the standard diet are grouped together; thus, no
discrimination is outstanding according to age of the mice in
this group. This is a reasonable result, since these four groups
of mice received the same intake of fatty acids during the
entire experiment. The second PC, which explains for about
17 % of the total variation, presents a disparity for the samples
corresponding to the first and second weeks of the safflower
diet intake (right bottom quadrant) from those corresponding
to the third and reverse weeks (right upper quadrant).

To investigate the contributions of the individual metabo-
lites, we examined the particular loadings, underlying to this
PCA. The loadings reflect the contribution and importance of
a specific metabolite to the axes of the orthogonally trans-
formed space. The referring loadings plot is shown in Fig. 2b.
Each dot represents a specific metabolite, and its position
reports its contribution to the principal component scores.
Metabolites with a distance to the origin less than 0.6 (cluster
1) showed only minor contributions and are therefore assumed
to reveal no significant changes in the metabolite profiles. All
other metabolites assigned to several clusters (cluster 2 to
cluster 10) are indicated with different markers and shadings.
For those clusters, metabolites exhibiting significant contribu-
tions to the principal components are listed in Table 1.

ASCA modelling

ASCA divided the total variation into contributions corre-
sponding to the experimental factors. Table 2 summarises
the total percentage of explained variation for the model—
first row. To display the result more legibly, for the following
subsections, results from the submodels corresponding to
every factor contribution, as well as the interaction between
factors, are gathered in Table 2. The ranks for every submodel
have been determined by means of a scree test [24], except for
the time factor, where the rank was set to three as there is four
measurement time points.

The percentage of each effect contributing to the sum of
squares of the data matrix is listed in Table 1 (row 6). From

Table 2 Summary of variations obtained from the ASCA model and for each of its factor contribution

Total percentage Percentage of Percentage of Percentage of Rank Contribution
of explained explained variation explained explained percentage to the
variation for PC 1 variation for PC2 variation for PC3 total data variation
Model 81.45 - - - -
Submodel K (weeks) 97.70 52.28 30.68 17.04 3 22.7
Submodel K, (diet) 100 76.07 15.32 - 2 443
Submodel K}, ; (animal) 67.01 23.14 27.97 - 2 14.0
Interaction (weeks—diet) 67.77 19.06 - 2 18.9
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Fig. 3 ASCA model—submodel K: factor time scores. Scores on the first and second principal components and average scores for the 4 weeks

those values, it is clear that contribution from diet is the
prevailing factor, although time has a non-negligible contri-
bution to the total variation. It is noteworthy that the variation
of interest for this experiment is related to weeks and to diet,
and this is underlined by the percentage of contribution for the
interaction of both to the total variation.

The Electronic Supplementary Material Fig. S7 shows the
QQ plot of the residuals from the scores of the ASCA model
and the residuals corresponding to the original variable, for
four random chosen variables. Residuals from the ASCA
model do not deflect from the dotted line, which represents a
normal distribution, as the residuals from the original variable
do. This indicates that the model is coherent with the theoret-
ical assumptions.

ASCA modelling—factor week contribution (submodel K)

The submodel K captures all the variation that is only related
to the duration of the experiment, since diet contribution is
harvest in diet and interaction submodels.

The scores for the first and second components of the
factor weeks are depicted in Fig. 3. For all mice, the
average scores for each week (in bold) are well separated
by the PC1. For the PC2, the first and reverse weeks show

@ Springer

Table 3 Putative identification of the metabolites corresponding to the
ASCA procedure according to the factors for which they show a higher
loading value. Factors t, d, i and t-d indicate time, diet, individual and
interaction time—diet contribution, respectively

Number  Analyte  Name (CID%) Factors

21 A106 Glycerol (753) t

29 A1092 Linolic acid (5280450) i

62 A1248 Unknown t-d
70 A129 Glycine (750) t d t-d
120 A150 Unknown t-d
132 Al54 Phosphoric acid (1004)  t d i t-d
143 A1608 Cholesterol (5997) t d i

163 Al171 Urea (1176) d

212 A210 Unknown t

230 A292 Unknown t

231 A296 Unknown t

252 A355 5-Oxoproline (7405) d i t-d
294 A585 D-Glucose (5793) t d t-d
365 A88 NA_1123.4° d t-d

# PubChem Compound Identifier
® Golm Metabolome Database
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Fig. 4 ASCA model—submodel K,: factor diet scores. a Scores on the first and second principal components and average scores for the two different
diets. b Scores on the first principal component over the weeks for the two different diets

a similar score profile, as well as the second and third
weeks. The second and third weeks present a change in
the behaviour that is consistent with the expected develop-
ment of the disease. Scores average in the reverse week of
the normal diet could manifest a grade of recovery in
concentration of certain metabolites responsible for the
trend in previous weeks.

The distribution between the scores of the third component
and the first and second components for this factor is given in
the Electronic Supplementary Material Figs. S2 and S3, re-
spectively. The loadings belonging to the first component are
given in the Electronic Supplementary Material Fig. S4a.
Table 3 lists the metabolites corresponding to the loadings
for the first component.
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Fig.5 ASCA model—submodel Kj,;: factor interaction time—diet scores on the first and second principal components and average scores for the ten mice

of every week for the two different diets

As mice were already 14 weeks old at the feeding starting
point, the actual age for them is 15, 16, 17 and 17 weeks for
weeks 1, 2, 3 and 4, respectively. This implies that the time
factor includes a “subfactor” that incorporates the previous
ageing of the animal’s defendant to which group they belong.
After 14 weeks, it is assumed that mice growing stage is
completed and does not have an influence on the factor
studied. This previous ageing has therefore not been taken
into account in the model calculation; thus, the factor week is
only representing the time during the dietary experiment.

The implementation of ASCA improves on PCA by ensur-
ing that the variation captured by the submodel, namely week
factor, is not originated from any other source but the studied
factor. Despite that PCA identifies patterns highlighting their
similarities, it does not distinguish between the factors that
induce differences amongst samples.

ASCA modelling—factor diet contribution (submodel K,
The submodel K, captures all the variation that is only in-

duced by the different dietary, since week contribution is
harvest in week and interaction submodels.

@ Springer

The scores for the first and second components, depicted in
Fig. 4, represent the extent of the distinction of the safflower
and standard diet groups from the factor weeks. Whilst the
second principal component is not pertinent to distinguish one
group from the other, for the first component, there is a clear
separation between the two different diet groups. Furthermore,
safflower diet scores are more disseminated than standard diet
scores. Figure 4b shows scores on the first component for each
of the weeks. Depending on which diet has been provided to
the mice, an explicit pattern over the four time points is
revealed. It is worth mentioning that for the reverse week,
scores corresponding to both diet groups converge around a
similar value. These results indicate that a high-fat diet should
be considered as a factor by itself that affects the development
of abnormalities in the studied liver composition. Moreover, a
grade of recovery exists for the liver of mice that have been
fed with normal laboratory diet after 14 days of fatty-acid
feeding.

Again, comparing PCA with the ASCA modelling, the
latter ensures that the variation explored in the submodel,
mainly for the diet factor, is not influenced by the variation
arising from the week factor.
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The results are consistent with the conclusions presented
by Kahle et al. [25]. In their study, hepatosteatosis (i.e. fatty
liver) in C3H males is associated with hyperinsulinemia. The
Electronic Supplementary Material Fig. S5 shows the ratio
between high and low diet values for hepatic variables, during
21 days of experiments. Although the epididymal white adi-
pose tissue (WAT) mass remains stable within the 3 weeks,
liver triacylglycerides (TAG) show a gradual reduction from
week to week, suggesting early adaptive responses in the liver.
The progression of both the body mass (BM) and the body fat
mass (BFM) follows a similar trend, with a drastic increase
during the second week.

ASCA modelling—interaction week—diet contribution

The score plot for the interaction between the factor weeks and
diet is depicted in Fig. 5. A crossover interaction between a
line connecting the average scores of the safflower diet and the
standard diet for the 4 weeks can observed for the first as well
as for the second component. This disordinal interaction indi-
cates that the variable weeks has an impact on the different
levels of the variable diet and vice versa. The more the scores
differ in a week for the two different diets, the less significant
is the mentioned interaction. Thus, the impact of time on the
consequences of the diet, and conversely, becomes consecu-
tively less significant in samples for the reverse week than for
the first week, for the second week, and for the third week.

The loadings belonging to the first component for the factor
diet and the interaction time—diet are given in the Electronic
Supplementary Material Fig. S4b and S4d, respectively. Ta-
ble 3 lists the metabolites corresponding to the loadings that
induce this order.

ASCA modelling—factor mouse contribution (submodel X, ;)

The standardisation of tissue sample from animals reminds a
challenging task, as individuals may originate large variations
in data. These particular fluctuations may deal to erroneous
interpretation of the influence of other aimed factors, in our
particular case, diet and week.

The scores for the first and second components, depicted in
the Electronic Supplementary Material Fig. S6, explain the
deviation of each mouse from the week—diet interaction. For
the first component, the divergence within the profile of the
mice is more conspicuous for the reverse week, primarily
caused by samples corresponding to the standard diet (dotted
line). However, for the second component, the disparity is
only visible during the third week, primarily caused by sam-
ples corresponding to the safflower diet. Nevertheless, it has to
be emphasised that the pattern for both groups is substantially
steady, denoting no strong contribution of the factor mouse on
the total variation.

The loadings belonging to the first component are given in
the Electronic Supplementary Material Fig. S4c. Table 3 lists
the metabolites corresponding to the loadings.

Conclusions

The influence of fatty diet over time on NAFLD development
in mice liver has been investigated at a metabolomics level, by
means of GCxGC-ToF-MS analysis. The application of
ASCA chemometric methodology was proficient in elucidat-
ing the different factors contributing to the variation amongst
samples, as well as their mutual interaction. The improvement
in the interpretation of the sources of variation with ASCA
over the PCA is manifest and has been illustrated for this
series of real samples.

From the results, it can be deduced that diet has a major
effect on the variation in data than weeks, even though the last
factor plays an undeniable role in the global profile of the
study. In fact, an interaction does exist between both factors
that require consideration for a coherent interpretability of
biological outcomes. Moreover, metabolite concentration un-
derlying the biological response suggests certain reversibility
in the progress of the disease after reintroducing a non-fatty
diet for 1 week. The model also ratifies the assumption that
individual contribution from each animal is not the main cause
of differences found between profiles over the weeks.
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