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1Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, 80336 Munich, Germany
2INSERM U836, University Grenoble Alpes, Grenoble Institute of Neurosciences, 38000 Grenoble, France
3Institute for Stem Cell Research, National Research Center for Environment and Health, 85764 Neuherberg, Germany
4Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
5Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
6Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
7Co-first author
8Co-senior author
9Present address: Cologne Excellence Cluster onCellular Stress Responses in Aging-AssociatedDiseases (CECAD), UniversityHospital, 50931Köln, Germany
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SUMMARY
The adult cerebral cortex lacks the capacity to replace degenerated neurons following traumatic injury. Conversion of nonneuronal cells

into induced neurons has been proposed as an innovative strategy toward brain repair. Here, we show that retrovirus-mediated expres-

sion of the transcription factors Sox2 andAscl1, but strikingly also Sox2 alone, can induce the conversion of genetically fate-mappedNG2

glia into induced doublecortin (DCX)+ neurons in the adult mouse cerebral cortex following stab wound injury in vivo. In contrast,

lentiviral expression of Sox2 in the unlesioned cortex failed to convert oligodendroglial and astroglial cells into DCX+ cells. Neurons

induced following injurymaturemorphologically and some acquire NeuNwhile losing DCX. Patch-clamp recording of slices containing

Sox2- and/or Ascl1-transduced cells revealed that a substantial fraction of these cells receive synaptic inputs from neurons neighboring

the injury site. Thus, NG2 glia represent a potential target for reprogramming strategies toward cortical repair.
INTRODUCTION

In the adult forebrain, neurogenesis is restricted to few

neurogenic regions such as the subependymal zone of the

lateral ventricle and the subgranular zone of the dentate gy-

rus (Gage and Temple, 2013). In contrast, the adult cerebral

cortex is devoid of on-going neurogenesis and traumatic

injury does not elicit a neurogenic regenerative response

but rather creates a gliogenic environment (Buffo et al.,

2005; Robel et al., 2011). Previous work in vitro showed

that different types of somatic cells, including astroglia

and pericytes of brain origin, can be directly converted

into functional neuronal cells by forced expression of key

neurogenic transcription factors (Arlotta and Berninger,

2014). For instance, we and others demonstrated that astro-

glia and oligodendrocyte progenitor cells (OPCs) isolated

from the postnatal mouse cerebral cortex can be directed

toward a neuronal identity by forced expression of the tran-

scription factors Pax6, Neurog2, Ascl1, NeuroD1, or Pou3f4

and Sox11 (Berninger et al., 2007; Guo et al., 2014; Heinrich

et al., 2010; Heins et al., 2002; Ninkovic et al., 2013) and

that astroglia-to-neuron conversion is facilitated by high

levels of Sox2 expression (Heinrich et al., 2010). We also

showed that cells of pericytic origin isolated from the adult

human cerebral cortex can be reprogrammed into func-

tional neurons by combined expression of Sox2 and Ascl1
Ste
(Karow et al., 2012). Moreover, combined expression of

Ascl1, Brn2, andMyt1lmediated conversion of adult mouse

parenchymal striatal astrocytes into induced neurons

in vivo (Torper et al., 2013), whereas Sox2 was sufficient

to reprogram mouse striatal or spinal cord astrocytes into

neuroblasts (Niu et al., 2013; Su et al., 2014). However, it

has been difficult to induce neurons after invasive brain

injury, such as stab wound or stroke, especially in the

injured cerebral cortex (Buffo et al., 2005; Grande et al.,

2013). This need for improved reprogramming after inva-

sive injury conditions prompted us to test in vivo whether

the combination of Sox2 and Ascl1 would allow for gener-

ating induced neurons after traumatic injury in the adult

mouse cerebral cortex.
RESULTS

Nonneuronal Cells Proliferating after Cortical Injury

Are Converted into Doublecortin+ Cells upon Forced

Coexpression of Sox2 and Ascl1

In this study, we aimed at converting reactive glial cells into

induced neurons in the adult cerebral cortex in the context

of acute invasive injury. We used a mouse model of trau-

matic injury induced by a local stab wound inflicted to

the upper layers of the cerebral cortex (Bardehle et al.,
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2013; Buffo et al., 2005). This resulted in severe reactiveglio-

sis characterized at 7 days postlesion by astrogliosis as

revealed by GFAP upregulation and reactive astrocyte hy-

pertrophy (Figures S1A and S1A0 available online), activa-

tion of microglia (Figures S1B and S1B0), and proliferation

of NG2 glia as previously described (Dimou and Götz,

2014). To investigate whether proliferative nonneuronal

cells reacting to injury can be reprogrammed into induced

neurons during on-going reactive gliosis, we used a retro-

virus strategy to deliver neurogenic transcription factors

into the injured tissue at 3 days postlesion (Figure 1A).

The rationale for using retroviral vectors was to exclusively

target nonneuronal cells that actively proliferate in

response to injury, thereby excludingneurons but alsonon-

proliferative glia from transduction as previously reported

(Buffo et al., 2005). Injection of a Moloney-murine-leuke-

mia-virus-based control retrovirus (pCAG-IRES-Dsred) re-

sulted in labeling of high numbers of proliferative glial

populations throughout all cortical layers 10–12 days post-

injection (dpi; Figure 1B). Whereas most labeled cells were

NG2 glia immunoreactive for NG2 and OLIG2 (59.3% ±

4.4% of DSRED+ cells at 10.3 ± 0.3 dpi; n = 3 mice; Figures

S1C–S1D0 0), the remainder of the DSRED+ cells were either

GFAP+ reactive astrocytes (Figures S1E–S1E0 0) or IBA1/

CD45+ microglia (Figures S1F–S1F0 0). Importantly, in con-

trol retrovirus-injected mice, none of the transduced but

alsononeof theuntransduced cells expressed the immature

neuronal marker doublecortin (DCX) (Figures 1C and 1I;
Figure 1. Induction of Neuronal Cells in the Injured Adult Cerebr
(A) Schematic diagram of experimental procedures. The red bar shows
The red dashed line shows the area where cells transduced by retro
immunohistochemistry; mo, months.
(B and C) Absence of spontaneous neurogenesis in the injured adult co
following injection of a control retrovirus encoding Dsred only (pCA
morphology. (C) Micrograph of the same field of view as shown in (B), r
(white). The white dashed line marks the cortical surface.
(D–F) Virtual absence of induced neurogenesis in the injured adult cor
DSRED+ cells transduced by the retrovirus encoding Ascl1 at 11 dpi (As
cells. (E) Micrograph of the same field of view as shown in (D), revealin
magnification view of the area boxed in (D) and (E), showing double
(G–L) Forced expression of Sox2 and Ascl1 induces neurogenesis in the
DCX reveals appearance of numerous induced neuronal cells expressin
(Sox2-IRES-Gfp) and Ascl1 (Ascl1-IRES-Dsred), as shown at 10 dpi. (H)
neuronal morphology of DCX+ cells (white). (I) Numbers of induced re
total number of transduced reporter+ cells following injection of a retr
Sox2 (n = 4 mice), or Sox2/Ascl1 (n = 3 mice). Statistical analysis was
magnification views of the area boxed in (G) and (H), respectively, sho
arrowhead points to a DCX+ cell extending a long and ramified process.
of Sox2 and Ascl1.
(M–O) Example of a DCX+ neuron (white, arrowhead; O) boxed in (G) an
(green, arrowhead; N) in absence of Ascl1 expression (red, arrowhead
position of the depicted GFP+ cell in (N). Yellow arrowheads indicate
The scale bars represent 60 mm (B–E), 25 mm (F), 55 mm (G and H), 1
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1,711 DSRED+ cells counted at 10.3 ± 0.3 dpi; n = 3 mice),

confirming the lack of endogenous cortical neurogenesis af-

ter stab wound injury including in layer I, in contrast to the

spontaneous neurogenesis reported after ischemia (Ohira

et al., 2010). Furthermore, we did not observe migration

of DCX+ cells from the white matter or adult neurogenic

zones (Figure 1C), due to the highly localized injury

restricted to the upper layers of the gray matter.

To reprogram these reactive glial cells into neurons, we

injected a retrovirus encoding the transcription factor

Ascl1 (pCAG-Ascl1-IRES-Dsred) 3 days after stab-wound

injury. Surprisingly, despite high numbers of DSRED+ cells,

very few expressed DCX (1.0% ± 0.5%; 1,330 DSRED+ cells

counted; 11 dpi; n = 3 mice; Figures 1D–1F and 1I). Based

on our previous data showing synergy between Sox2 and

Ascl1 for inducing neuronal reprogramming (Karow et al.,

2012), we coinjected two retroviruses encoding Sox2

(pCAG-Sox2-IRES-Gfp) and Ascl1 (pCAG-Ascl1-IRES-Dsred).

Many proliferating cells in the lesion area were cotrans-

duced by both retroviruses (29.7% ± 15.0% of the trans-

duced cells; Figures 1G and 1J). In contrast to the lack of

Ascl1-induced neurogenesis, forced expression of Sox2

and Ascl1 elicited appearance of DCX+ cells located close

to the injection site within the injured cortical area (Figures

1G and 1H) and representing approximately one-third of

the double-transduced cells at �12 dpi (30.2% ± 2.6% at

12.7 ± 2.7 dpi; 686 double-transduced cells counted; n =

3 mice; Figure 1I). Many of these exhibited an immature
al Cortex upon Forced Expression of Sox2 and Ascl1
the stab wound lesion restricted to the upper layers of the cortex.
viral vectors (RVs) are distributed. dpi, days postinjection; IHC,

rtex in control conditions. (B) The micrograph depicts DSRED+ cells
G-IRES-Dsred) at 10 dpi. Most transduced cells exhibit a glial-like
evealing that neither transduced nor untransduced cells express DCX

tex following forced expression of Ascl1. (D) The micrograph depicts
cl1-IRES-Dsred). Note the glial-like morphology of most transduced
g that DSRED+ transduced cells do not express DCX (white). (F) High-
immunostaining for DSRED and DCX (white).
injured adult cortex. (G) Triple immunostaining for DSRED, GFP, and
g DCX (white) in the injured cortex following coexpression of Sox2
Micrograph of the same field of view as depicted in (G), showing the
porter+/DCX+ neurons expressed as mean percentages ± SEM of the
ovirus encoding Dsred only (control; n = 3 mice), Ascl1 (n = 3 mice),
performed with Mann-Whitney U-test (*p% 0.05). (J and K) High-
wing the density and neuronal morphology of DCX+ cells (white). The
(L) Example of a DCX+ neuronal cell (white) induced upon expression

d (H), which appears to be induced by forced expression of Sox2 only
; M), as revealed by the white dashed line in (M) that mirrors the
the neuronal process of the cell in (N) and (O).
7 mm (J and K), and 10 mm (L–O). See also Figures S1 and S2.
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neuronal morphology, extending relatively long and

branched processes (Figures 1J–1L and S2A–S2F). Closer

to the lesion center, more neurons were induced than in

more peripheral areas (Figures 1G, 1H, and S2C). Consis-

tent with restriction of retroviral transduction to cells

undergoing cell division, the newly emerging DCX+ cells

incorporated the thymidine-analog bromodeoxyuridine

(BrdU) given for 10 consecutive days after viral injection

(Figures S2G–S2G0 0). Taken together, our data demonstrate

that Sox2 andAscl1 induce conversion of nonneuronal cells

into DCX+ neurons in the injured adult murine cortex.

Nonneuronal Cells Proliferating after Cortical Injury

Are Converted into Induced Neurons upon Forced

Expression of Sox2 Alone

Notably, we also encountered DCX+ cells that appeared to

be only transduced by the virus encoding Sox2 (Figures

1M–1O). About 20% of these GFP+ (i.e., Sox2) only cells

were DCX+ (21.8% ± 10.2%; 490 GFP+ cells counted; n =

3 mice; Figure S2H), indicating that Sox2 alone may be suf-

ficient to induce neuronal conversion of injury-responsive

cells. In contrast, very few DSRED+ cells expressing Ascl1

only were converted into DCX+ cells, confirming our previ-

ous observations on the very limited neuronal conversion

induced by Ascl1 (1.2% ± 0.6%; 510 DSRED+ cells counted;

n = 3 mice; Figure S2H).
Figure 2. Induction of Neuronal Cells in the Injured Adult Cerebr
(A–D) Forced expression of Sox2 alone induces DCX+ neurons in the in
DCX reveals appearance of induced neurons expressing DCX (white) in t
high magnification of the boxed area showing GFP reporter expression
(A), showing the neuronal morphology of the DCX+ cells (white, arrow
micrographs depict a large cluster of densely packed DCX+ cells (white)
injury on top of the area depicted in (A) and (B). Inset in (D): high m
(E–G) The micrographs depict DCX+ neurons (red, arrowheads; E and
(green, F; inset in G) at 10 dpi. Note the high level of complexity an
(H–N) The micrographs depict two GFP+/NeuN+ neurons (arrowheads 1
immunostaining illustrating the high level of complexity and ramifica
boxed in (H), showing that these induced neurons express the matur
magnification views showing GFP (J and L) and NeuN (K and M) immun
planes are shown. (N) The micrograph shows the same field of view a
neurons.
(O and P) Morphological maturation of neuronal cells induced by Sox
gressive morphological maturation of DCX+ induced neuronal cells th
according to their morphology. Class A: the cells are already DCX+ alth
class B: the cells round up loosing their processes and exhibit a cyt
process, which is up to twice the size of their soma in length; class D: t
three times the size of their soma in length; and class E: the cells displ
several ramifications. Reconstructions of reporter+/DCX+ cells based
Ascl1-induced DCX+ cells in each class (O), expressed as mean percen
(Q) Location of Sox2- and Sox2/Ascl1-induced DCX+ cells throughout t
location (i.e., superficial, upper, and deeper layers) expressed as mean
258 DCX+ cells analyzed; n = 4 mice. Sox2/Ascl1: 184 DCX+ cells analy
The scale bars represent 26 mm (A and B), 30 mm (C and D), 10 mm (E; I
20 mm (H and N). See also Figure S3 and Movie S1.

Ste
To exclude low levels of Ascl1 coexpression in Sox2-

induced neurons below detection provided by the DSRED

reporter, we injected the Sox2-encoding retrovirus alone

into the stab-wound-lesioned cortex (pCAG-Sox2-IRES-

Gfp). In all mice, we found that a substantial number of

Sox2-transduced cells had differentiated intoDCX+ cells ex-

hibiting a neuronal morphology at �12 dpi (13.9% ± 3.5%

at 12.3 ± 1.6 dpi; 2,057 GFP+ cells counted; n = 4 mice; Fig-

ures 2A, 2B, and 1I), confirming that Sox2 alone can induce

neuronal conversion of nonneuronal cells, although to a

lower extent compared to combined expression of Sox2

and Ascl1. Strikingly, however, in Sox2-virus-injected

mice, occasionally large clusters of densely packed trans-

duced DCX+ cells could be observed along the lesion track

(Figures 2C and 2D; Movie S1). As these densely packed

clusters of DCX+ cells could not be quantified, our quanti-

fications of induced neurons are likely an underestimation.

To assess whether retrovirus-driven Sox2 expression was

maintained for several days after virus delivery, we per-

formed immunohistochemistry for GFP, SOX2, and DCX

at 12 dpi. All GFP-transduced cells were immunoreactive

for SOX2, although with some variability in expression

levels (Figures S3A–S3C). High SOX2 expression was often

detected in transduced cells that were also DCX+ (Fig-

ure S3D), suggesting that high SOX2 levels may not inter-

fere but may be required for initial neuronal conversion.
al Cortex upon Forced Expression of Sox2 Alone
jured adult cerebral cortex. (A) Double immunostaining for GFP and
he injured cortex following Sox2 expression (Sox2-IRES-Gfp). Inset:
in DCX+ cells. (B) Micrograph of the same field of view as depicted in
heads). Inset: high magnification of the boxed area. (C and D) The
induced by forced expression of Sox2 (green), located at the site of
agnification of the boxed area (a single confocal plane is shown).
F show the same cell) induced by forced expression of Sox2 alone
d ramification of their neuronal processes.
and 2) at 21 dpi induced by forced expression of Sox2 alone. (H) GFP
tion of neuronal processes. (I) High-magnification view of the area
e neuronal marker NeuN (white, arrowheads 1 and 2). (J–M) High-
oreactivity of the induced neurons (1 and 2). Single confocal optical
s shown in (H) and reveals loss of DCX expression in NeuN+ mature

2 alone or Sox2/Ascl1. (O) Schematic diagram illustrating the pro-
at were categorized at �12 dpi into five subsequent classes (A–E)
ough still exhibiting a glial-like morphology with several processes;
oplasmic ring of DCX; class C: the cells extend a single major DCX+

he cells extend a long unbranched DCX+ process, which is more than
ay a complex morphology and extend long DCX+ processes that show
on the reporter signal are shown. (P) Numbers of Sox2- and Sox2/
tages ± SEM of the total number of induced DCX+ cells at �12 dpi.
he injured cortical layers at �12 dpi. Numbers of DCX+ cells in each
percentages ± SEM of the total number of induced DCX+ cells. Sox2:
zed; n = 3 mice.
; and insets in A, B, and D), 6 mm (F), 15 mm (G and inset in G), and
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Figure 3. Genetic Fate Mapping Demonstrates Reprogramming of NG2 Glia into Induced Neurons
Following tamoxifen-induced recombination, Sox10-iCreERT2/GFP mice received a stab wound injury followed 3 days later by injection of
Sox2-encoding retrovirus (Sox2-IRES-Dsred; A–C) or two retroviruses encoding Sox2 and Ascl1 (Ascl1-IRES-Dsred; D–F).
(A–C) Neuronal conversion of fate-mapped NG2 glia upon Sox2 expression. The micrographs depict a DSRED+ transduced cell (A; 12 dpi)
that is converted into a DCX+ neuron (B, white) upon Sox2 expression and is immunoreactive for GFP (C), demonstrating its oligoden-
droglial origin.
(D–F) Neuronal conversion of fate-mapped NG2 glia following coinjection of Sox2- and Ascl1-encoding retroviruses. The micrographs show
two DSRED+ transduced cells (D; 10 dpi; arrowheads) converted into DCX+ neurons (E, white, arrowheads) that also express GFP
(F, arrowheads). Insets in (E): high magnification of the boxed areas in (D–F) highlighting the GFP+ soma of induced neurons (1 and 2).
The scale bars represent 12 mm (A–F) and 4 mm (insets in E).
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A detailed analysis of the morphologies of Sox2-alone- or

Sox2/Ascl1-induced neuronal cells revealed different de-

grees of complexity, highlighting a progressive maturation

of induced neurons, not unlike previously described for

adult-generated neurons in neurogenic zones (Bergami

and Berninger, 2012). We found no statistically significant

difference in the morphology of Sox2-alone- or Sox2/

Ascl1-induced DCX+ cells when grouping reporter+/DCX+

cells according to the complexity of their respective

morphology (classes A–E; Figures 2O–2Q), albeit a ten-

dency toward a more complex morphology was observed

for Sox2 and Ascl1 coexpressing DCX+ cells (Sox2: 258

DCX+ cells analyzed, n = 4mice; Sox2/Ascl1: 184DCX+ cells

analyzed, n = 3 mice). Yet Sox2-alone-expressing cells were

capable of acquiring complex neuronal morphologies (Fig-

ures 2E–2G and 2P), and some Sox2-induced neurons ex-

pressed the mature neuronal marker NeuN at 21 dpi (Fig-

ures 2H–2M). Albeit low in numbers, these NeuN+ cells

exhibited a highly complex neuronal morphology (Fig-

ure 2H) and had become DCX-negative (Figure 2N). Taken

together, these data show that Sox2 alone induces the con-

version of nonneuronal cells into neurons in the injured

adult mouse cortex.

Genetic Fate Mapping Demonstrates Reprogramming

of NG2 Glia into Induced Neurons

Next, we aimed at identifying the cellular origin of the

DCX+ induced neurons. The above-mentioned quantifica-
6 Stem Cell Reports j Vol. 3 j 1–15 j December 9, 2014 j ª2014 The Authors
tion of the transduced cells following control retroviral

injection revealed that the majority of the transduced

cells were NG2 glia. To assess whether cells of the oligo-

dendroglial lineage are those which convert into DCX+

cells following forced expression of Sox2 alone or Sox2/

Ascl1, we used a bacterial artificial chromosome (BAC)-

transgenic mouse line (Sox10-iCreERT2/GFP) in which

GFP reporter expression can be specifically induced upon

tamoxifen-mediated recombination in cells with an active

Sox10 promoter and traced in their progeny, which are

exclusively cells of the oligodendrocyte lineage, including

NG2 glia and oligodendrocytes in the cerebral cortex

(Simon et al., 2012).

Several weeks after genetic labeling of cells of the oligo-

dendroglial lineage was induced by tamoxifen, adult trans-

genic mice received a stab wound lesion followed 3 days

later by injection of retroviruses encoding Sox2 and/or

Ascl1, both containing a DSRED reporter. To determine

the identity of fate-mapped cells following retroviral trans-

duction, we performed immunostaining for GFP (identi-

fying cells of oligodendroglial origin), DSRED (identifying

transduced cells), and DCX (identifying induced neurons).

Remarkably, the majority of DCX+ cells following Sox2 or

Sox2/Ascl1 expression were also GFP immunoreactive,

providing compelling evidence for an oligodendroglial

origin of the induced neurons (59.8% ± 11.0% of

DSRED+/DCX+ cells were also GFP+ at 11.0 ± 0.6 dpi; 457

DCX+ cells counted; n = 3 mice; Figures 3A–3F). Again,
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these GFP+ and DCX+ cells exhibited a characteristic

morphology of immature neurons, indicating that forced

Sox2 or Sox2/Ascl1 expression can convert proliferative cells

of the oligodendroglial lineage into induced neurons. The

fact that the responsive cells were targeted by a retrovirus

and hence were proliferating at the time of injection ex-

cludes an oligodendrocyte origin of the DCX+ cells, leaving

NG2 glia as the main cellular source for induced neurons.

Induced Neuronal Cells Exhibit Voltage- and Time-

DependentConductances andReceive Synaptic Inputs

To assess whether induced neuronal cells also exhibit

neuronal membrane properties, we performed whole-cell

patch-clamp recordings in acute slices obtained from

cortices after stab wound lesion followed by coinjection

with Sox2- and Ascl1-encoding retroviruses (n = 10 mice;

10–29 dpi; Figure 4A). Due to the damaged status of the

tissue following stab wounding and viral injection and

the presence of densely packed clusters of DSRED+ cells

(Figure S2A), DSRED+ cells were selected randomly for

recording. The majority of recorded cells lacked the ability

of generating action potentials in response to step-current

injections and were likely glial cells that failed to be con-

verted into neurons (data not shown). More interestingly,

several of the recorded cells exhibited early transient in-

ward currents indicative of voltage- and time-dependent

membrane conductances (Figures S4A–S4F). In some cases

(2/17 cells), the recorded cells responded to depolarizing

current injections with the generation of tetrodotoxin

(TTX)-sensitive spike-like potential changes associated

with TTX-sensitive inward sodium currents as revealed dur-

ing voltage-clamp recordings (Figures 4B–4F). When cells

were categorized according to absence or presence of

voltage-gated conductances, the former group was charac-

terized by low input resistance (�0.3 GU), whereas the

latter exhibited relatively high input resistance values char-

acteristic of immature neurons (R1.2 GU; Table S1).

Next, we investigated whether transduced cells received

functional synaptic inputs from surrounding neurons.

A significant proportion of recorded cells (10/17 cells)

exhibited spontaneous inward currents (Figures 4G and

4H), with an average amplitude of 15.0 ± 0.22 pA, a rise

time of 1.2 ± 0.14 ms, and a decay time of 2.9 ± 0.33 ms,

thus resembling spontaneous synaptic events (Figures 4G

and 4H). Overall, the frequency of these synaptic currents

was low (0.95 ± 0.22 events/min). These data indicate

that a subset of Sox2- or Sox2/Ascl1-expressing cells possess

functional neurotransmitter receptors and are capable of

assembling a functional postsynaptic compartment. In

line with these electrophysiological data, we observed

spine-like protrusions on the processes of some DCX+ cells

(Figure 5A). Moreover, we also observed close appositions

of GAD65/GAD67+ puncta on the soma and processes of
Ste
DCX+ cells, suggesting the presence of presynaptic fibers

from local interneurons impinging on induced neuronal

cells (Figures 5B–5B0 0). Indeed, we found GFP+ axonal

varicosities wrapping around the soma and processes of

induced DCX+ cells in transgenic mice expressing GFP in

a subpopulation of somatostatin+ interneurons (Oliva

et al., 2000) (n = 3 mice; Figures 5C–5H0). Together, these
data are consistent with an immature neuronal identity

of a substantial fraction of Sox2- or Sox2/Ascl1-expressing

cells.

Sox2 Does Not Induce Neuronal Conversion of Glial

Cells from the Cerebral Cortex in Absence of Stab

Wound Injury

Because the majority of DCX+ cells were located in close vi-

cinity to the lesion area, we next asked whether changes in

the cellular milieu induced by the stab wound lesion may

be required for glia-to-neuron conversion. We performed

injections of Sox2-encoding retrovirus in absence of prior

stab wound injury. However, consistent with the fact that

only NG2 glia proliferate in the healthy cerebral cortex

with a very slow cell cycle (Dimou and Götz, 2014; Dimou

et al., 2008), we did not detect a single GFP+ transduced cell

(n = 2 mice; data not shown).

We next injected Sox2-encoding lentivirus pseudotyped

with the envelope proteins of Mokola or lymphocytic cho-

riomeningitis virus (LCMV) viruses known to specifically

target glial cells (Beyer et al., 2002; Buffo et al., 2005; Colin

et al., 2009). We observed many GFP+ cells distributed

throughout all cortical layers and expressing high SOX2

levels (Figures 6A–6C). Virtually no GFP+ cells showed the

morphology of mature neurons, ruling out direct trans-

duction of neurons by these lentiviruses (0.1% ± 0.1%;

2,261 GFP+ cells counted; n = 3 mice; Colin et al., 2009).

The vast majority of GFP+ transduced cells exhibited the

morphology of quiescent astrocytes as confirmed by immu-

noreactivity for S100b (Figures 6E and 6F; Mokola: 91.9% ±

0.7%, n = 2 mice; LCMV: 98.8%, n = 1 mouse). A small but

substantial amount ofGFP+ cells displayed themorphology

of NG2 glia and expressed OLIG2 (Figures 6G and 6H;

Mokola: 7.9% ± 0.7%; LCMV: 1.2%). Figure 6I shows

the pooled data from three mice following Mokola- or

LCMV-pseudotyped lentivirus injection (94.2% ± 2.3%

and 5.7% ± 2.3% of GFP+ cells belonging to the astroglial

and oligodendroglial lineage, respectively; 2,261 GFP+ cells

counted; n = 3mice). However, despite the high rate of glia-

specific transduction, virtually no DCX+ cells could be

observed (2,261GFP+ cells counted at 10dpi; n=3mice; Fig-

ures6Dand6I). AsNG2glia are theprimary source forDCX+

cells following forced Sox2 expression in the stab-wound-

lesioned cortex, we closely examined >100 GFP and

OLIG2-double-positive cells, none of whichwere DCXpos-

itive (0/132 cells; n = 3 mice). Of note, lentivirus-driven
m Cell Reports j Vol. 3 j 1–15 j December 9, 2014 j ª2014 The Authors 7



Figure 4. Induced Neuronal Cells Exhibit Voltage- and Time-Dependent Conductances and Receive Synaptic Inputs
(A) Schematic diagram of experimental design.
(B) The micrograph depicts an example of DSRED+ cell 24 days after coinjection of Sox2- (Sox2-IRES-Dsred) and Ascl1 (Ascl1-IRES-Dsred)-
encoding retroviruses, exhibiting a neuronal morphology selected for patch-clamp recording. Arrowheads point to processes emerging
from the cell body. Insets: DSRED fluorescence and bright field picture of the cell body with the patch pipette.

(legend continued on next page)
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expression of Sox2 induced appearance of DCX+ cells in the

context of cortical injury as observed before with the retro-

viral vector (Figure S5). These data suggest that prior lesion

facilitates Sox2-induced conversion of NG2 glia.
DISCUSSION

Here, we provide evidence that the transcription factor

Sox2 alone or in combination with Ascl1 is capable of

inducing neurogenesis in the adult mouse cerebral cortex

following traumatic injury. Genetic fate mapping revealed

that themain cellular source of newly generatedDCX+ cells

in this experimental paradigm belongs to the oligoden-

droglial lineage, although aminor contribution of astroglia

cannot be excluded. In contrast, in the undamaged cerebral

cortex, we failed to observe such response, suggesting that

prior lesioning appears to be supportive for neuronal fate

conversion.

Whereas most studies aiming at reprogramming brain-

resident glia into neurons focused on astroglia, NG2 glia

represent an interesting alternative cellular source given

their abundance and life-long capacity for proliferation

(Dimou and Götz, 2014). Here, we found that �60% of

the induced DCX+ neurons derived from fate-mapped

NG2 glia using Sox10-iCreERT2/GFP transgenic mice. GFP-

negative-induced neurons could either derive from non-

fate-mapped NG2 glia (due to incomplete recombination)

or originate from neuronal conversion of other glial cell

types. However, we did not obtain evidence for astrocyte

conversion into neurons using GLASTCreERT2/GFP mice

(Buffo et al., 2008; data not shown), suggesting that reactive

astroglia play only a minor role as potential target cells in

this experimental paradigm, consistent with the evidence

that only a very small population of reactive astrocytes

divide (Bardehle et al., 2013) or acquire stem cell potential

after invasive stab wound injury (Buffo et al., 2008; Sirko

et al., 2013). Intriguingly, however, Guo et al. (2014) re-

ported conversion of reactive cortical astroglia by forced

expression of NeuroD1 using a mouse model with amyloid-

osis. This suggests that, in the injured brain, several cell
(C) Ability of a DSRED+ cell to generate action-potential-like voltage
membrane potential in response to de- and hyperpolarizing currents
(D) The action-potential-like signals induced by suprathreshold curre
(E and F) Voltage-clamp recording of the same DSRED+ cell as shown in
Two current traces recorded in absence of TTX and at the indicated com
potential duration: 300 ms. Traces are depicted superimposed. (F) Simi
were corrected for leakage currents.
(G and H) Examples of spontaneously occurring synaptic inputs recor
4 min is shown. Nine synaptic-event-like responses are identified. (H
onset and averaged (red trace). Blue line: monoexponential fit to the
The scale bars represent 10 mm (B, insets). See also Figure S4 and Ta

Ste
populations may be amenable to reprogramming and that

precise timing and factors employed may be critical in

determining the outcome. Interestingly, NG2 glia exhibit

enhanced proliferation in response to injury but remain

committed to the oligodendroglial lineage (Dimou et al.,

2008). Furthermore, Hughes et al. (2013) showed that these

cells are recruited to sites of focal CNS injury. Thus, due to

their enhanced proliferation and recruitment following

injury, NG2 glia can be readily targeted by retroviruses at

the injury site in vivo. Targeting this cell type for reprog-

ramming may have the added benefit that replacement of

converted NG2 glia may occur through homeostatic con-

trol of NG2 glia density (Hughes et al., 2013) and hence

may not result in the exhaustion of the local NG2 glia

pool. Retrovirus-mediated expression of NeuroD1 under

control of a humanNG2 promoter construct was also found

to elicit neurogenesis in the cerebral cortex in vivo (Guo

et al., 2014), providing independent evidence that NG2

glia can be reprogrammed into induced neurons.

Several groups recently reported on transcription-factor-

driven fate conversion of local glial cells into induced

neuronal cells (Arlotta and Berninger, 2014). Notably, there

are major differences to our study with regard to the CNS

areas studied, thehealth status of the tissue inwhich reprog-

ramming was induced, the cell types targeted, and reprog-

ramming factors used. Most studies employed well-charac-

terized neurogenic transcription factors known to drive

neuronal differentiation from neural stem/precursors cells

(Buffo et al., 2005), including the proneural genes Ascl1,

Neurog2 (Grande et al., 2013; Torper et al., 2013), orNeuroD1

(Guo et al., 2014). Albeitwe initially followed the same logic

of employing Ascl1, a well-known neuronal reprogram-

ming factor (Berninger et al., 2007; Vierbuchen et al.,

2010), forced Ascl1 expression alone failed to induce any

appreciableneurogenesis inour lesionparadigm.Ourprevi-

ous work suggested a synergistic enhancement of Ascl1

reprogramming capacity by coexpression of Sox2 (Karow

et al., 2012).Whereas we could indeed observe a synergistic

effect of these two factors on NG2 glia reprogramming, we

were surprised that Sox2 alone was sufficient to trigger de

novo emergence of DCX+ cells contrary to the notion that
changes in response to depolarizing current injection. Changes in
are shown.
nt pulses are blocked by TTX (red trace).
(D), demonstrating the presence of a Na+ current blocked by TTX. (E)
mand potentials are shown. Holding potential (HP):�70 mV; step
lar recordings in the same cell following application of TTX. Currents

ded in a DSRED+ transduced cell. (G) A voltage-clamp recording for
) Events detected in (G) were superimposed with respect to their
average decay of these events.

ble S1.
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Figure 5. Induced Neurons Receive Synaptic Connections from Endogenous GABAergic Neurons
(A) The micrograph shows DSRED+-induced neurons following coinjection of Sox2- and Ascl1-encoding retroviruses (the same cells are also
shown in Figure 3D). Lower inset: high magnification of the boxed area showing some spine-like protrusions on the process of the DCX+

neuron (arrowheads). Upper inset: zoomed view of the area boxed in the lower inset showing the neck of one spine-like protrusion
(arrowhead; a single confocal plane is shown).

(legend continued on next page)
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Sox2 prevents neuronal differentiation from neural stem

cells. Notably, a similar capacity of Sox2 to convert astro-

cytes in the adult striatum and spinal cord into DCX+ cells

was recently reported (Niu et al., 2013; Su et al., 2014),

providing independent evidence for this unexpected capac-

ity of Sox2 to induce a glia-to-neuron fate switch. Interest-

ingly,whereaswedonothave direct evidence for continued

proliferation, we observed clusters of Sox2-induced DCX+

cells in agreement with Niu et al. (2013). If continued

proliferation turns out to be a characteristic feature of

Sox2-induced glia reprogramming, thismay allow for a local

amplification of the pool of induced neurons.

Expression of Sox2 alone was sufficient to induce neuro-

genesis without requirement for coexpression of a proneu-

ral transcription factor. This is surprising, as Sox2 function

in neural stem cells is to promote self-renewal rather than

neuronal differentiation (Graham et al., 2003; Pevny and

Nicolis, 2010) and Sox2 may even convert fibroblasts into

multipotent neural stem cells (Ring et al., 2012). Whereas

these reports highlight the role of Sox2 in neural stem/

progenitor cells, Sox2-induced conversion of CD133+ cord

blood cells into neuronal cells was also described in vitro

(Giorgetti et al., 2012). Of note, Kondo and Raff (2000,

2004) observed that growth-factor-induced conversion of

cultured OPCs into multipotent neural-stem-cell-like cells

was accompanied by the reactivation of the Sox2 gene.

However, Niu et al. (2013) provided evidence against a neu-

ral stem cell intermediate that would precede Sox2-induced

neurogenesis in the adult striatum.

Intriguingly, lentivirus-mediated expression of Sox2

failed to elicit appreciable induction of DCX+ cells in the
(B–B00) Close apposition of GAD65/GAD67+ puncta on the soma and pr
neuron induced by forced expression of Sox2 at 11 dpi. Inset: High-m
GAG65/GAG67+ puncta (red) in close apposition with the GFP+ proce
revealing DCX immunoreactivity of the GFP+ transduced cell. (B0 0) High
GAG65/GAG67+ puncta (red) in close apposition with the GFP+ soma of
the cell revealing several puncta distributed on the cell surface. Lower
revealing the presence of puncta located around the cell body.
(C–H0) GFP+ axonal fibers and varicosities originating from GABAerg
neurons at 23 dpi. (C) GFP-expressing inhibitory neurons (GIN) tra
retrovirus 3 days after stab-wound injury. The micrograph shows an
transduced cells being located within the injured area, whereas sever
Note the presence of several GFP+-intermingled dendritic and axonal p
a DSRED+-induced neuron surrounded by GFP+ endogenous GABAergic
boxed in (D), illustrating the DCX immunoreactivity (white) of this i
neuron shown in (D) (boxed area), depicting GFP+ axonal varicosities im
interneurons (arrowheads). 3D front (E) and back (E0) views are shown
(E) and (E0). (F–H0) Example of another close apposition of GFP+ axo
induced neuron (F; arrowheads in H and H0). (G) High magnification
reactivity (white). Inset: magnified view of a GFP+ axonal fiber and i
(H and H0) 3D reconstruction of the same neuron shown in (F) (boxe
The scale bars represent 10 mm (A), 6 mm (B and B0), 70 mm (C), 14 m
3.5 mm (H and H0).

Stem
noninjured cerebral cortex. In the striatum, however, suc-

cessful glia-to-neuroblast conversion could be achieved

without injury (Niu et al., 2013), suggesting differences in

the reprogramming permissiveness of cortical versus stria-

tal glia (see also Buffo et al., 2005; Kronenberg et al.,

2010). Possible reasons for the injury-induced facilitation

of Sox2-mediated reprogramming may lie in the mild upre-

gulation of some neurogenic factors or the accelerated cell

cycle of NG2 glia following cortical injury (Dimou and

Götz, 2014), which may render NG2 glia more permissive

to chromatin remodelling required for fate conversion.

Additionally, cytokines, growth factors, and morphogens

released upon injury may directly impinge on reprogram-

ming mechanisms, as activation or interference with these

signaling pathways can dramatically enhance fate con-

version into neurons (Grande et al., 2013; Ladewig et al.,

2012).

Whereas a small fraction of the Sox2-induced DCX+ cells

appeared to develop into more mature neurons as charac-

terized by NeuN immunoreactivity and a highly complex

morphology, most cells failed to acquire neuronal-sub-

type-specific traits as detected by immunohistochemistry

for class-specific transcription factors or the machinery

for neurotransmitter release (e.g., TBR1, NKX 2.1, GABA,

and GAD65/GAD67; data not shown). This indicates that

the majority of DCX+ cells may remain trapped in an

immature state. This is in line with the study by Niu et al.

(2013), although we did not note the necessity for termi-

nating Sox2 expression for successful emergence of DCX+

cells. Intriguingly, Niu and colleagues showed that

treatment with the neurotrophin Bdnf and the bone
ocesses of DCX+ induced neurons. (B) The micrograph depicts a GFP+

agnification view of the area no. 1 boxed in (B), showing several
ss of the induced neuron. (B0) Same field of view as shown in (B),
-magnification views of the area no. 2 boxed in (B), showing several
the induced neuron. Upper panel: single confocal plane of the top of
panel: single optical confocal plane sectioning the cell in its middle,

ic neurons wrap around the soma and processes of DCX+ induced
nsgenic mice received a coinjection of Sox2- and Ascl1-encoding
overview of the stab-wounded area with the majority of DSRED+

al GFP+ GABAergic neurons are located on both sides of the lesion.
rocesses. (D) High magnification of the area boxed in (C), depicting
interneurons and their processes. Inset: zoomed view of the area
nduced neuron. (E and E0) 3D reconstruction of the same induced
pinging on its soma and processes, arguing for innervation by local
. Insets in (E and E0): high-magnification views of the area boxed in
ns and axonal varicosities on the soma and processes of a DSRED+-
of the same neuron depicted in (F), illustrating its DCX immuno-
ts varicosities wrapping around the induced neuron (arrowheads).
d area) and (G). 3D front (H) and back (H0) views are shown.
m (D), 7 mm (inset in D), 5 mm (E and E0), 9 mm (F), 7 mm (G), and
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Figure 6. Forced Expression of Sox2 Does Not Induce Neuronal Conversion of Cortical Glial Cells in Absence of Stab Wound Injury
(A) Schematic diagram of experimental procedures. The red dashed line shows the area where cells transduced by the lentiviral vector are
distributed.
(B–D) Absence of neurogenesis induced by forced expression of Sox2 in the noninjured adult cortex. (B) The micrograph depicts GFP+ cells
following injection of a Mokola-pseudotyped lentivirus encoding Sox2 expression (Sox2-IRES-Gfp) at 10 dpi. Most transduced cells exhibit
a glial morphology. (C) Micrograph of the same field of view as shown in (B), revealing high levels of SOX2 expression (red) in all GFP+

transduced cells. (D) Micrograph of the same field of view as shown in (B) and (C), depicting that none of the transduced cells is DCX+

(white).
(E–H) GFP+ transduced cells are astrocytes and NG2 glia. (E and F) Double immunostaining for GFP and S100b (red), showing astrocytes
transduced by the lentivirus (arrowheads). (G and H) Double immunostaining for GFP and OLIG2 (red), showing one transduced cell of
the oligodendroglial lineage (arrowhead).
(I) Numbers of GFP+ cells in each category (i.e., astro, oligo, neuron, and DCX) are expressed as mean percentages ± SEM of the
total number of transduced GFP+ cells following injection of the Mokola- or LCMV-pseudotyped lentiviruses encoding Sox2 (pooled data;
n = 3 mice).
The scale bars represent 70 mm (B–D), 12 mm (E and F), and 6 mm (G and H). See also Figure S5.
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morphogenetic protein inhibitor Noggin or with the

histone deacetylase inhibitor valproic acid can release

these cells from the apparent break that prevents further

neuronal maturation. Indeed, following such treatments,

Sox2-induced neurons acquired the ability of generating

trains of action potentials (Niu et al., 2013).

In our study, the electrophysiological analysis revealed

that some cells following transduction with Sox2- and/or

Ascl1-encoding viruses exhibited voltage- and time-depen-
12 Stem Cell Reports j Vol. 3 j 1–15 j December 9, 2014 j ª2014 The Autho
dent conductances and, in some cases, elicited voltage

changes resembling action potentials. This is consistent

with the fact that the majority of reprogrammed cells

remain immature. However, in the electrophysiological

analysis, we were unable to select only successfully reprog-

rammed cells, and most cells exhibiting properties of non-

excitable cells were likely glia that failed to undergo reprog-

ramming. More interestingly, �60% of the recorded cells

received synaptic inputs, albeit at low frequency. As shown
rs
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in GFP-expressing inhibitory neurons (GIN) mice, some of

these inputs may arise from GABAergic interneurons.

Whereas this indicates some degree of functional integra-

tion of these transduced cells, at the current state, it is un-

clear whether this reflects de novo acquisition of synaptic

contacts following neuronal conversion or maintenance

of synapses established onto these cells while still being

NG2 glia. In fact, NG2 glia were shown to receive synaptic

inputs from glutamatergic andGABAergic neurons (Bergles

et al., 2000; Lin and Bergles, 2004) and retain these even

during cell division (Ge et al., 2009). Whereas the electro-

physiological features of our recorded cells cannot be taken

as evidence for de novo acquisition of synaptic contacts,

synaptic innervation may be an important factor contrib-

uting to the reprogramming process and may be relevant

when considering strategies to improve maturation and

functional integration of induced DCX+ neurons.

In summary, this study revealed the unexpected capacity

of Sox2 for converting reactive glial cells into induced

DCX+ neurons in the injured cerebral cortex. Our work

highlights the potential of NG2 glia as cellular candidates

for de novo generation of new neurons in the cerebral cor-

tex, a brain area otherwise totally devoid of neurogenesis.

Future studies aiming at improving maturation of the

newly generated neuronal cells are required to fully reveal

the potential of such fate conversion for brain repair.
EXPERIMENTAL PROCEDURES

Animals
Experiments were conducted on adult C57BL/6J mice (8–10 weeks

old). Sox10-iCreERT2/GFP or GLASTCreERT2/GFPmice were used for

fate-mapping studies (Buffo et al., 2008; Simon et al., 2012) and

GIN mice (Oliva et al., 2000) for cortical interneuron monitoring.

Animal procedures were carried out in accordance with policies of

use of Animals andHumans in Neuroscience Research, revised and

approved by the Society of Neuroscience and the Bavarian state.

All efforts were made to minimize animal suffering and to reduce

animal numbers.

Stab Wound Lesion
Adult mice received a stab wound lesion in the cerebral cortex as

previously described (Buffo et al., 2005) by inserting a thin knife

into the cortical parenchyma at the following coordinates: antero-

posterior: �2; mediolateral: �1.6 with bregma as reference; and

dorsoventral: �0.5 mm from dura. To produce stab lesions, the

knife was moved over�1mm back and forth along the anteropos-

terior axis from �1.6 to �2.5 mm. Further details are given in the

Supplemental Experimental Procedures.

Stereotactic Virus Injection
Three days after stab-wound injury, the same animalswere injected

with a viral suspension in the injured cortexwithin the stabwound

area (depth: �0.5 mm from dura). C57BL/6J mice received (1) a
Stem
mixture (1:1 ratio) of two retroviral vectors encoding Ascl1

(pCAG-Ascl1-IRES-Dsred) and Sox2 (pCAG-Sox2-IRES-Gfp), (2) a

single retroviral vector encoding Ascl1, (3) a single retroviral

(or lentiviral) vector encoding Sox2, or (4) a retroviral vector encod-

ing Dsred only (pCAG-IRES-Dsred) for controls. For patch-

clamp recording, C57BL/6J mice were injected with a mixture

of two retroviruses encoding Ascl1 (pCAG-Ascl1-IRES-Dsred) and

Sox2 (pCAG-Sox2-IRES-Dsred). GIN, Sox10-iCreERT2/GFP, and

GLASTCreERT2/GFP mice received an injection of either Ascl1-

and Sox2-encoding retroviruses or Sox2-encoding virus alone,

both viruses containing a DSRED reporter.

In absence of stab wound injury, C57BL/6J mice were injected

with a viral suspension in the cerebral cortex as described (Motori

et al., 2013). A portion of the skull over the somatosensory cortex

was thinned with a dental drill. A syringe needle was used to care-

fully create a small perforation of the skull. A thin glass capillary

containing the virus was inserted through the microperforation

(�0.5 mm from dura). Animals received a retroviral vector or a

Mokola- or LCMV-pseudotyped lentiviral vector encoding Sox2

(pCAG-Sox2-IRES-Gfp). Further details are given in the Supple-

mental Experimental Procedures.

A detailed description of tamoxifen treatment, bromodeox-

yuridine labeling, electrophysiology, histological procedures, cell

quantifications, and statistical analysis is provided in the Supple-

mental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, five figures, one table, and onemovie and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.2014.

10.007.
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