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Abstract In metabolomics there is an ever-growing need for
faster and more comprehensive analysis methods to cope with
the increasing size of biological studies. Direct-infusion ion-
cyclotron-resonance Fourier-transform spectrometry (DI-
ICR-FT-MS) is used in non-targeted metabolomics to obtain
high-resolution snapshots of the metabolic state of a system.
We applied this technology to a Caenorhabditis elegans—
Pseudomonas aeruginosa infection model and optimized
times needed for cultivation and mass-spectrometric analysis.
Our results reveal that DI-ICR-FT-MS is a promising tool for
high-throughput in-depth non-targeted metabolomics. We per-
formed whole-worm metabolomics and recovered markers of
the induced metabolic changes in C. elegans brought about by
interaction with pathogens. In this investigation, we reveal
complex metabolic phenotypes enabling clustering based up-
on challenge. Specifically, we observed a marked decrease in
amino-acid metabolism with infection by P. aeruginosa and a
marked increase in sugar metabolism with infection by
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Salmonella enterica. We were also able to discriminate be-
tween infection with a virulent wild-type Pseudomonas and
with an attenuated mutant, making it possible to use this
method in larger genetic screens to identify host and pathogen
effectors affecting the metabolic phenotype of infection.

Keywords DI-ICR-FT-MS - High-throughput deep
metabotyping - Infection models - Metabolomics -
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Introduction

Metabolomics is a widely used approach in systems biology,
alongside other “omics” approaches including transcriptomics
or proteomics. As the endpoint of the flow of biological
information from genes to transcripts, proteins, and finally
metabolites, it is the closest reflection of the observed
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phenotype. A variety of analytical technology, including mass
spectrometry (MS)—either direct infusion (DI) or hyphenated
to chromatography or electrophoresis—and nuclear magnetic
resonance (NMR), is used in metabolomics research. Each of
these approaches has advantages and disadvantages. The most
pressing challenge for future development in metabolomics is
adapting to the ever-expanding number of samples to be
processed in a single study, e.g. patient cohorts or large mutant
screens. Often-used techniques for high-throughput metabo-
lomics are based on direct-infusion triple-quadrupole mass
spectrometry (DI-QQQ-MS), for the quantification mostly of
lipids, amino acids, or carnitines. The sample is extracted
together with '*C-labeled compounds, and targeted mass frag-
mentation enables the semi-quantitative evaluation of the
metabolites in a few minutes. The value of this approach has
been proved in several studies [1-3]. To perform deeper
analysis of an organism or system’s metabolism, greater cov-
erage of metabolites, and thus non-targeted approaches, is
needed. Fuhrer et al. presented a non-targeted flow-injection-
analysis time-of-flight mass spectrometer (FIA-ToF-MS) sys-
tem, able to detect 3241 and 1531 ions in positive and
negative-ion mode, respectively, in 1 min. This technique
has been revealed to be highly reproducible, with many me-
tabolites confirmed with authentic standards, and has been
used in different studies [4, 5]. Although very competitive,
annotation of ions with putative metabolites or formulas at a
native resolution of 8000—12000 over the whole m/z range of
100-1000 is ambiguous. Higher resolving power of >400,000
is needed, as well as high mass accuracy to achieve unambig-
uous annotation or formula calculation in this mass range.

Ion-cyclotron-resonance Fourier-transform mass spectrom-
etry (ICR-FT-MS) is an interesting alternative for overcoming
the problem of resolution. ICR-FT-MS was first applied to
metabolomics in 2002 by Asaph Aharoni [6]. Since then
several studies have been published, with examples in differ-
ent fields including plant sciences [7], wine analysis [8], and
nutritional studies [9]; however, compared with LC and GC—
MS or NMR, usage is still rather low. ICR-FT-MS offers
ultrahigh resolution and mass accuracy together with a high-
order-of-magnitude intensity range for metabolite detection.
In particular, separation of different isotope species, e.g. 34S
from 13C2 isotope peaks, enables more accurate annotation
and/or formula calculation and can be used in labeling studies,
for example [10].

The nematode Caenorhabditis elegans is a soil-
dwelling invertebrate, and is regularly exposed to many
pathogens in its natural environment. As a model organ-
ism, this genetically malleable worm has many advan-
tages. Because the organism is hermaphroditic, large
populations of genetically identical animals are easily
obtained, which also results in limited variation on a
metabolome level. The worm is recognized as a viable
and robust model for studies in diverse fields of biology,
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from innate immunity to genetic regulation of aging, and
for the study of host—pathogen interactions. In the labo-
ratory C. elegans is routinely fed on the non-pathogenic
bacteria Escherichia coli strain OP50, a uracil auxotroph
[11], but can also be fed on a wide range of bacterial
pathogens. Genome-wide transcriptomic and proteomic
studies have been performed evaluating the response to
a variety of bacterial pathogens [12, 13]. Metabolomic
investigations of host—pathogen interactions are an
emerging topic, with an increasing number of publica-
tions. For example, Miiller et al. applied ICR-FT-MS and
UPLC-ToF-MS to a Chlamydia pneumoniae infection
model of HEp-2 cells [14], and Antunes et al. used
ICR-FT-MS to reveal the effect of Salmonella enterica
on the metabolome of mice [15]. However, for genetic
screens of pathogen mutants affecting the host metabo-
lome, mice are too expensive and generation time is too
slow. C. elegans, with its short developmental cycle of
2-3 weeks, is an interesting alternative for high-
throughput screening. We therefore decided to use a
high-throughput, non-targeted metabolomics technique
for C. elegans infection research based on the ultrahigh
resolution of ICR-FT-MS. The two bacterial pathogens
used in this study have been previously found to nega-
tively affect the C. elegans life span. Nematode killing
assays have been developed to identify potential bacterial
virulence factors of these pathogens.

Pseudomonas aeruginosa is a ubiquitous opportunistic
Gram-negative bacterium and human pathogen, able to cause
infection in a wide range of hosts including animals and
plants. In humans it causes localized and systemic infections
of both acute and chronic nature. Previous studies with the
C. elegans model have revealed bacterial virulence factors
through both fast and slow killing assays [16, 17]. Salmonella
enterica is a causative agent of human food-borne illness, able
to enter intestinal epithelial cells and macrophages. It has been
revealed that S. enterica is able to enter intestinal epithelial
cells in C. elegans, and that autophagy in C. elegans has a
protective effect [18].

Here we use this host—pathogen model coupled with
direct-infusion ICR-FT-MS (DI-ICR-FT-MS) to investi-
gate the metabolic phenotypes of C. elegans facing spe-
cific metabolic stresses. Short acquisition times enabled
fast data collection, yielding data matrices for statistical
analysis in less than a day. In this study, we reveal
complex metabolic phenotypes enabling clustering based
upon challenge. We identify general end-product indica-
tors of bacterial infection within this system and specific
markers for each condition, and are able to separate the
fully virulent and attenuated mutant of P. aeruginosa. As
a new, high-throughput phenotyping technology, ICR-FT-
MS has great potential for use in genetic screening of
bacterial pathogens in a C. elegans infection model.
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Materials and methods
Chemicals

Methanol and water were obtained from Biosolve
(Valkenswaard, The Netherlands) and were of UPLC-MS
grade. All other chemicals were, at a minimum, of analytical
grade. M9 buffer was prepared by dissolving 3 g KH,POy, 6 g
Na,HPO,, 5 gNaCl, and 1 mL 1 mol L™ MgSO, in 1 L water
and sterilized by autoclaving. Nematode growth medium
(NGM) was prepared by adding 3 g NaCl, 17 g agar, and
2.5 g peptone to 975 mL water. After autoclaving for 50 min,
the flask was cooled to 55 °C in a water bath for 15 min, and
25 mL 1 mol L™ KH,PO, buffer pH 6.0, 1 mL 5 mg mL
cholesterol in ethanol, 1 mL 1 mol L™ CaCl,, and 1 mL
1 mol L™ MgSO, were added. Luria—Bertani broth was
prepared by dissolving 10 g NaCl, 10 g tryptone, and 5 g
yeast extract in 1 L water, and the pH was adjusted to 7.0 with
5 mol L™ NaOH.

Bacterial strains and media

The Pseudomonas aeruginosa strain PA14, Salmonella
enterica serovar Typhimurium strain 12023, and Escherichia
coli OP50 have been described. The P. aeruginosa PA14
AgacA mutant was generated using the vector pKNG101, as
described in [19]. The medium for routine bacterial culture
and maintenance was Luria—Bertani broth (LB). Bacteria were
cultured on nematode growth medium (NGM) for nematode
feeding and killing assays, as described below.

C. elegans cultivation

The nematode strains used in this work were provided by the
Caenorhabditis Genetics Center, which is funded by the NIH
National Center for Research Resources (NCRR). Strain fer-
15 (b26) C. elegans was used in this study. Worms were
cultured as described in [20]. Eggs were isolated by hypochlo-
rite treatment (“bleaching”) of gravid adults [21].

Recovered fer-15 eggs were deposited on to non-seeded
NGM plates and allowed to hatch overnight at 25 °C to obtain
a synchronized population of L1-stage worms. After over-
night incubation, the L1-stage population was spotted on to
NGM plates seeded with OP50 and allowed to develop to late
L4 at 25 °C (approximately 36 h). These worms were used in
either the killing or feeding assay described below.

Feeding assay

Overnight LB broth cultures of the test bacterial strains were
spread onto 9 cm diameter NGM plates and incubated at 37 °C
for 24 h. Briefly, young adult hermaphrodite worms raised on
E. coli OP50 were washed thoroughly in M9 buffer to remove

residual bacteria, and 1000 worms were transferred either on
to feed plates seeded with one of the bacterial cultures, or on to
non-seeded plates to obtain starved worms. Plates were incu-
bated at 25 °C for 24 h, and worms were then washed
thoroughly with multiple M9 buffer changes to remove resid-
ual bacteria. After the final wash, the buffer was replaced with
I mL 50:50 (v/v) MeOH-water and flash-frozen in liquid
nitrogen.

Metabolite extraction from C. elegans

Extraction was similar to Geier et al., using ultrasonic extrac-
tion instead of bead beating [22]. Nematodes in MeOH—water
were thawed on ice. To disrupt the worms, the mixture was
sonicated for 15 min in a sonic bath with ice-cold water and
vortexed every 3 to 5 min for metabolite extraction. After
centrifugation at 21,000g for 10 min at 4 °C, the supernatant
was transferred to a pre-chilled eppendorf cup, snap-frozen in
liquid nitrogen, and stored in aliquots at —80 °C before
analysis.

DI-ICR-FT-MS non-targeted metabolomic analysis

The metabolite extract was diluted 1:50 with 70 % MeOH
before analysis. The analysis was performed on a Bruker
solariX equipped with a 12 T magnet and an Apollo II ion
source (Bremen, Germany). The samples were introduced
with a syringe pump, at a flow of 120 uL h™'. Settings for
the ion source were: drying-gas temperature = 200 °C, drying-
gas flow = 2.4 L min', nebulizer-gas flow = 1.1 L h™",
capillary voltage = 4500 V, spray shield = =500 V. The mass
spectrometer was externally calibrated on cluster of arginine
(10 mg L™ in MeOH). Spectra were obtained in positive and
negative-ionization mode with an m/z range from 100 to
1000 at 2 megawords and 300 scans were accumulated for
one spectrum. All tubing, the syringe, and the sprayer needle
were thoroughly washed between samples to prevent cross
contamination of the spectra.

Data analysis of ICR-FT-MS spectra

Spectra were internally recalibrated and exported as a mass-
list file (.asc) at a signal-to-noise ratio of 3, using Bruker Data
Analysis 4.0 (Bremen, Germany). A matrix, containing an
aligned mass list with the corresponding intensities for each
sample, was generated using an in-house software tool with a
window width of 1.0 ppm for peak alignment [23]. All further
calculations and filtering were done in Microsoft Excel 2010.
Only masses detected in four or more replicates of one bio-
logical group were kept for further statistical analysis. Hierar-
chical cluster analysis and generation of barplots and
heatmaps were performed in R Statistical Language (version
2.13) [24]. All masses were uploaded to MassTRIX [25, 26]
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with a search range of 3.0 ppm for possible metabolite anno-
tation. For mass-difference networks an in-house program was
used [27]. Mass differences representing several biochemical
transformations and the data matrix were used as input (Elec-
tronic Supplementary Material (ESM) Table S1). Main net-
work graphs were visualized using yED (version 3.8, http://
www.yworks.com/en/products_yed about.html) and network
characteristics were calculated using Cytoscape (version
2.8.2, http://www.cytoscape.org/).

To assess the class separation, different orthogonal partial-
least-square models (OPLS/O2PLS-DA) were built in
SIMCA-P 11.5 (Umetrics, Umea, Sweden). The contribution
of the masses to the separation of the different groups was
evaluated through examination of the different S-PLOT.
Masses with the highest-magnitude covariation and correla-
tion were chosen as potential candidates for the class
separation.

Metabolite-enrichment and pathway analysis of signifi-
cantly different metabolites were performed using
Metaboanalyst (www.metaboanalyst.ca), Fisher’s exact test
was used for over-representation analysis, and pathway-
topology analysis was performed using relative-betweeness
centrality.

Results

Optimization of measurement, data pre-processing, and data
analysis

C. elegans is a well-described model organism for many
different types of study, including bacterial infections. We
used an infection model consisting of several conditions,
which enabled us to compare metabolic effects on the basis
of feeding and/or infection. In total five different conditions
were tested with biological triplicates. These samples were
used to optimize the whole metabolomics procedure, from
worm cultivation and pre-analytics to generation of the data
matrix for statistical analysis.

The most time-limiting variable of high-throughput meta-
bolomics is the speed of data acquisition and degree of auto-
mation. The system used enables infusion of samples using an
automated liquid handler. Acquisition time and sensitivity are
dependent on the number of scans acquired for one spectrum
in ICR-FT-MS. In our case 300 spectra were obtained,
resulting in a total acquisition time of 5-7 min, depending
on the ionization mode. An additional 2—3 min are needed for
washing of the transfer lines and ion source. However, de-
pending on the extraction and matrix used, several of the
washing steps can be omitted.

For our biological setup a total data-acquisition time of 5 h
per ionization mode was needed for 15 samples and technical
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duplicates (30 injections total), with a mean time per injection
of 10 min including washing time. The complete dataset used
in this study was collected in less than half a day, and using
complete automation overnight runs are possible.

Another important consideration for collecting high-
quality data is rigorous calibration of the mass spectrometer
and the obtained data. The MS was calibrated before each
sample batch with 10 mg L™ arginine in MeOH, and all five
masses had to be detected with errors below 1 ppm. Internal
recalibration of all individual spectra was performed manually
with errors below 1 ppm, requiring 5 min per spectrum.
Automated recalibration can be achieved by spiking known
substances into the sample [15]. Exporting of spectra was
automated using custom VBA scripts within Bruker Data
Analysis, and alignment was performed within a 1 ppm search
range using in-house software [23].

Masses found in four or more spectra per biological con-
dition were uploaded to the metabolite-annotation server
MassTRIX [25, 26]. A search against KEGG [18], HMDB
[19], and LipidMaps [20] was performed, with a maximum
error range of 3 ppm. Negative-mode data was corrected for
the loss of a proton; positive-mode data for the attachment of a
proton or sodium ion. The mean error for the annotation was
0.03 ppm for the negative mode and 0.13 ppm for the positive
mode. Metabolites from different classes, including amino
acids, organic and fatty acids, nucleotides, and nucleosides,
could be annotated. Using this automated data evaluation,
approximately 30 % of the total masses could be directly
annotated with putative metabolites from different databases.
The remaining non-annotated masses may correspond to neu-
tral losses, homo or heterodimers, other adducts, or possibly
novel and still unknown metabolites. Despite this, good me-
tabolome coverage was achieved and metabolites from all
major metabolic pathways could be annotated (ESM
Fig. S1). To obtain additional sum formulas, mass-difference
networking as described in [27] was performed, which will be
discussed in a later section. Table 1 summarizes the timeframe
of the different steps.

The total time from cultivation to a data matrix suitable for
data analysis was 3 days and 17.4 h. Potential break points are
after quenching of metabolism with cold MeOH or after
extraction and sample preparation. Optimization revealed that
cultivation, even with a fast-growing model organism like
C. elegans, is the step limiting throughput, which is well
known from other studies and model organisms.

The total experimental setup was optimized to obtain max-
imum information in as short a time as possible. This included
several controls, e.g. the attenuated AgacA mutant or
S. enterica as a different type of infection. The time needed
for statistical analysis depends on the method and objectives.
Our objective was to find either metabolic profiles and/or
metabolites changed specifically in one condition, or a general
marker for infection.
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Table 1 Optimization of DI-
ICR-FT-MS-based non-targeted Task

metabolomics as a high-
throughput tool for host—patho-
gen interaction research. Different
tasks yielding a data matrix suit-
able for data analysis are listed
with their respective time

requirement
(1000 worms per sample)

Dilution to appropriate concentration

Total time extraction

Extraction and sample-preparation time

Time
Sample cultivation time 3 days
(Excluding preparation of plates, etc.)
(1000 worms per sample)
Total time cultivation 3 days

45 min per 15 samples

15 min
1h

Mass-spectrometry measurement time

ESI(+)
ESI(-)

Data preprocessing |

- Calibration and visual inspection

- Exporting
- Alignment
Data preprocessing 11
- Data filtering
- Annotation

- Mass-difference networking

Total time MS

15 samplesx 2 technical replicates x 10 min
15 samples*2 technical replicates x 10 min

10 h per 120 injections

5 min per spectrax 120 spectra =5 h
3 min

5 min

30 min
30 min
30 min
174 h

Comparison of C. elegans fed with pathogenic
and with non-pathogenic food sources

We wished to investigate further the interaction between the
nematode and the bacterial pathogens on a metabolic level. To
do so we established a feeding procedure allowing for the
onset of bacterial infection. It was revealed that after 24 h both
pathogens had established an infection; but, importantly, at
this time point infected worms were still feeding normally and
few worms in the population had been killed. This early-onset
scheme enabled us to investigate the initial metabolic changes
in the organism in response to the stressor, while minimizing
the number of dead animals and the level of bacterial carry
over within the gut during downstream analysis. Young adult
C. elegans fer-15 (b26) were fed for a 24 h period on NGM
plates seeded with one of the bacteria listed above. After this
period of infection, the worms were washed to remove resid-
ual bacteria, quenched for metabolome analysis in cold 50:50
(v/v) MeOH—water, and snap-frozen in liquid nitrogen for
storage until processing, to maintain a high level of end-
product metabolites. For each experiment three independent
biological replicates were produced for ICR-FT-MS analysis,
and each replicate was injected twice. A data matrix was
generated as described above and in the “Materials and
methods section”. In positive and in negative mode 11674
and 6512 masses, respectively, were detected according to our

filtering rules (detection in a minimum of four of six spectra
per group). To obtain a general overview of the affected
metabolic pathways, masses were uploaded in a group-
specific manner to MassTRIX. Masses occurring four times
or more in the six spectra of a group were uploaded, and the
counts of metabolites identified on a pathway were compared.
Several pathways of amino-acid metabolism had lower anno-
tation counts for stressed worms (infected or starved) than
OP50-fed worms, suggesting a general reduction in this me-
tabolism. Tattoli et al. reported that invasive bacteria induce a
state of intracellular amino-acid starvation in eukaryotic cells
in culture. They also found that membrane damage had a
function in inducing this amino-acid-starvation state, autoph-
agy, and changes in the TOR pathway [28]. Figure 1 shows
the number of annotated metabolites in four selected pathways
from amino-acid metabolism.

Non-supervised multivariate analysis reveals clear separation
between feeding strategies

We used multiple non-supervised methods to summarize and
find patterns in this high-dimension data. Hierarchical cluster
analysis (HCA) revealed a clear separation between the five
different groups. Tight clustering of biological and technical
replicates revealed the high reproducibility of the approach
used. Of the pathogens used, the PA14wt causes the most
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Fig. 1 (a) HCA of positive-ionization data shows tight clustering of
biological conditions. Starvation, as a different kind of stress, is clustered
away from the other conditions, and infection with the fully virulent
PA14wt is different from all other feedings. (b) HCA of negative-
ionization data, revealing similar results to positive-ionization mode. (c)

rapid death of C. elegans, leading us to hypothesize that it
might induce the most divergent metabolic phenotype in the
model setup used. This was reflected in the results of HCA,
which revealed clustering of PA14 AgacA, S. enterica, and
OP50, with PA 14wt found on a distinct branch away from this
cluster. The worms undergoing starvation conditions, a very
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PCA of positive-ionization data. Five significant components were iden-
tified. The first two principal components are plotted, with good separa-
tion between all groups. PC2 separates PA14wt, PA14 AgacA-infected,
and starved worms from S. enterica and OP50-fed worms

different stress from exposure to a bacterial pathogen, were
also found on a separate, distinct branch. This was character-
ized in both ionization modes. Starvation is different from the
other phenotypes tested, and the characteristic metabolome
induced by non-feeding might well reflect a “minimal” me-
tabolome the worm maintains to survive. Principal-
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component analysis also revealed good separation of all five
groups: the first two principal components were able to sep-
arate all groups. Interestingly, our method is able to separate
worms fed with PA14 AgacA from PA14wt-fed worms. This
suggests that virulence factors regulated by GacA have a
significant effect on the host metabolome. Nonetheless, the
mutant is able to kill C. elegans more quickly than OP50.
Therefore it is important both to look for metabolic markers
that separate the different groups from each other, and to
compare the attenuated mutant with the fully virulent wild
type, to reveal metabolic changes related to bacterial pathoge-
nicity. Figure 1 shows results obtained from unsupervised
analysis.

OPLS/O2PLS-DA reveals specific metabolic patterns
for each group

To enhance the identification of masses specific for each
group, several OPLS/O2PLS-DA models were constructed
comparing one group with the remaining groups; for example,
OP50-fed C. elegans versus all others (ESM Fig. S2 and
Fig. S3, Tables S2 and S3). Several known and unknown
metabolites were found to be significantly different between
the groups. As an illustration of this, degradation products of
phenylalanine including phenylpyruvate, phenyllactate, and
2-hydroxy-3-phenylpropanoate were found to be significantly
higher in OP50-fed worms than in worms in the other feeding
schemes. This is in agreement with the counts of annotated
metabolites on the phenylalanine-metabolism pathway as in-
dicated above. Surprisingly, several metabolites of this path-
way that are not produced by C. elegans were found, includ-
ing trans-cinnamate or trans-3-hydroxycinnamate. Investigat-
ing the same pathway for E. coli, it was revealed that this
bacteria is capable of producing this metabolite. The pathway
map in Fig. 2c shows a representative diagram of phenylala-
nine metabolism, with markers for OP50-fed nematodes
mapped in green and metabolites not found to be important
for any group in gray. Metabolites and enzymes in the green
frame are possibly of bacterial origin. According to the KEGG
database, P. aeruginosa and S. enterica are also unable to
synthesize these metabolites. Consistent with this, these me-
tabolites were not detected in these samples. In conclusion,
these metabolites probably originate from ingested OP50 or
from attached bacteria remaining after washing. The other
pathways depicted in Fig. 1c were also checked for this
situation. In these metabolic pathways most of the enzymes
present in C. elegans can also be found in the other three
organisms, so within this study setup it is not possible to
specifically determine the origins of common metabolites.
To examine the effect of infection on amino-acid metabo-
lism, levels of all detected amino acids were compared. Eval-
uating the levels of different detected amino acids revealed
that OP50-fed worms usually have higher levels than worms

fed with the highly attenuated PA14 AgacA mutant. In gen-
eral, amino-acid levels are lower in worms fed with PA 14wt
than in PA14 AgacA or OP50-fed worms, with the exception
of glutamate and tryptophan. Tryptophan is a precursor of
serotonin, one of the four biogenic amine neurotransmitters
in C. elegans. However, there was no difference in 5-hydroxy-
I-tryptophan and serotonin between PA14 AgacA and
PA14wt. The same is true for the kynurenine-degradation
pathway. In a NMR-based study of bacterial infection in mice
it was revealed that levels of tryptophan, and of lysine, thre-
onine, valine, and phenylalanine, correlated with the number
of bacteria in the mouse serum. These amino acids were also
increased in bacterial metabolomic footprints of P. aeruginosa
obtained in the same study. The authors suggest that the
elevated levels in serum are directly derived from excreted
amino acids [29]. Tryptophan metabolites have been also
described in regulation of the type III secretion system, and
excretion of tryptophan [30] and other metabolites is possibly
part of a complex signaling system.

As well as amino acids, important energy metabolites were
investigated. Again, comparing levels of these metabolites in
OP50 and PA14 AgacA-fed worms revealed significant dif-
ferences, revealing the value of the mutant control. C. elegans
infected with PA14wt have lower levels of acetyl-coenzyme
A, citrate and/or isocitrate, cis-aconitate, 2-oxoglutarate, suc-
cinate, and malate than the PA14 AgacA control, suggesting
lower activity of the TCA cycle in infected worms. Starved
worms also have lower levels of these metabolites. In contrast,
the S. enterica group has levels similar to the PA14 AgacA
group. OP50-fed worms have varying levels. Figure 3 shows
barplots for these metabolites. A recent study of Drosophila
infected with Listeria monocytogenes also found significant
effects on general energy metabolism [31].

To reveal additional pathways affected during infection,
metabolite-enrichment analysis was performed. For this pur-
pose, metabolites found to be significant for one group were
uploaded to Metaboanalyst (www.metaboanalyst.ca), and
enrichment and pathway analysis was performed [32]. P-
values were calculated by Fisher’s exact test. However, only
for S. enterica-fed worms were significant enrichments found.
Masses revealed to be significant for this group by OPLS/
O2PLS-DA were mapped to different sugar-metabolism path-
ways, as shown in Fig. 3.

Taken together, it could be seen that S. enterica-fed worms
have a different energy metabolism from PAl4wt-infected
worms, supporting the theory of a specific metabolic reaction
upon infection with different bacterial species. A recent study
by Antunes et al. revealed a great effect on energy metabolism
of mice upon infection with S. enferica, and major changes in
host hormone metabolism [15].

Overall several masses have been found to be characteristic
for each group, possibly reflecting a metabolic signal of
infected worms. Heatmaps of all characteristic masses
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obtained by the different OPLS/O2PLS-DA models fromboth  Fig. S5), revealing unique markers for each group. However,
ionization modes can be found in the ESM (Fig. S4 and  the amount of significant different masses is overwhelmingly
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< Fig. 2 (a) Pathway profile of four of the major pathways affected by
stress, showing number of annotated metabolites on the respective
pathway for each group. Masses occurring four or more times per group
were uploaded to the MassTRIX webserver and the different samples
were compared at the pathway level. (b) Several amino acids were
detected in positive-ionization mode. All except tryptophan and
glutamate have lower levels in worms fed with P. aeruginosa. Different
levels may derive from nutritional differences between the different
bacteria. (¢) Pathway map of phenylalanine metabolism (cel00360).
Metabolites found to be significant for OP50-fed worms by
OPLS/O2PLS-DA are marked in green. Gray metabolites are not
specific for any group. Results by group-specific annotation using
MassTRIX were validated by OPLS/O2PLS-DA showing
phenylalanine metabolites to be significant for E. coli OP50-fed worms.
Metabolites in the green frame may be of bacterial origin, because
C. elegans lacks enzymes for their synthesis

high and most have no putative annotation. To further evaluate
these unknowns, novel techniques to transform them to a
(bio)chemical entity are needed.

Network-based formula calculation adds novel putative
formulas to unknown masses

As noted, several masses found to be significantly different
between the groups have no putative annotation. To further
evaluate these unknown masses, network-based formula cal-
culation was performed as described in [27]. The method is
based on mass differences between exact masses. Mass dif-
ferences between all possible combinations of experimental
masses are calculated, and compared within a specific error
range against theoretical mass differences of biochemical
reactions; for example, a mass difference of 18.01056 Da
corresponds to loss or gain of H,O. Several mass differences
were tested, and an optimum set was computed (data not
shown) and is shown in ESM Table S1. In total 1184 and
778 additional formulas for positive and negative-ionization
mode, respectively, could be annotated in addition to the
MassTRIX formulas in the main network. Several sub-
networks disconnected from the main graph exist, suggesting
that the input mass differences may be incomplete or insuffi-
cient to cover all metabolic transformations or for novel
unknown mass transformations. Only basic transformations,
for example oxidation, can be represented in mass differences;
special cases including condensation or cleavage reaction are
not amenable to this approach. Figure 4 shows the obtained
networks for positive and negative-ionization mode, and net-
work characteristics for the main network are shown in ESM
Fig. S6. These characteristics reveal that the calculated for-
mulas are not random, as described before by Tziotis et al. for
natural organic matter. The network approach can be used to
link unknown masses to known metabolites via exact mass
differences, as revealed by, for example, Walker et al. [33, 34].
Using this approach a putative formula ([C,3H37,NO,P])
could be annotated to mass 470.23136 ([M—H] ), detected

in negative-ionization mode, and found to be significantly
higher in PA14wt and S. enterica-fed worms. When compar-
ing the mass spectra with a simulated isotopic pattern, a good
match between the putative formula and the true spectra was
obtained (Fig. 4d). This mass was closely connected by a mass
difference corresponding to the difference formulas of C2H4
and C4H8, suggesting a potential homologous series of sim-
ilar molecules may exist. No matching metabolites could be
found in the databases used for annotation, but the occurrence
in all measured samples strongly suggests a biological rele-
vance for C. elegans. Deriving a full structure from a formula
is still not possible, but these formulas enable searches in
chemical databases, for example PubChem or Chemspider.

Discussion
Timeframe of experiments using ICR-FT-MS

We optimized our non-targeted metabolomics approach using
DI-ICR-FT-MS with a representative set of samples from a
C. elegans infection model. Times for each step from cultiva-
tion to creation of the final data matrix were evaluated. Typical
measurement times for optimized ICR-FT-MS analysis range
from 5 to 10 min. In our case 300 scans for one spectrum was
found to be the optimum compromise between sensitivity and
throughput, yielding measurement times of 5 to 7 min de-
pending on the ionization mode. An additional 3 min are
needed for extensive washing steps to avoid cross contamina-
tion. In this work we used very extensive washing of the
transfer capillary and ESI needle, but different tests have
revealed that reducing the washing steps to 50 % iPrOH alone
still significantly reduces carry over between samples (data
not shown). We could identify two steps limiting throughput
in our approach. First, cultivation of samples is the most time-
consuming step in the setup and cannot be reduced. Although
smaller amounts of worms can be probably used (see follow-
ing sections), generation and development times are the lim-
iting factors. However, compared with other animal models,
for example the mouse model, the time required is reasonably
fast for high-throughput screening. The second limiting step is
the data recalibration, which is the most time-consuming data-
processing step. We did not spike standard substances for
automated calibration, but other groups have revealed that this
works well [15, 35]. Bruker Data Analysis enables the writing
of custom scripts for automated data processing. Additionally,
new software developments, e.g. Genedata Expressionist for
MS, offer workflow-based processing of raw data, including
recalibration. Recalibration is crucial to successful use of DI-
ICR-FT-MS to utilize the high resolving power and mass
accuracy.
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4 Fig.3 (a) Metabolites obtained by the OPLS/O2PLS-DA were subjected

to Metaboanalyst for enrichment and pathway analysis. The enrichment
analysis revealed that galactose, starch, and sucrose and the amino-sugar
metabolism are significantly enriched. The pathway analysis takes the
centrality of a metabolite into account; in this analysis galactose, starch,
and sucrose metabolism also have significant values. (b) Of the different
detected storage and energy metabolites, most were significantly lower in
PAl4wt-fed C. elegans than PA14 AgacA. Compared with all other
groups, S. enterica-fed worms have higher levels of glycogen, glucose,
and glucose-6-phosphate, suggesting higher use of energy from sugar
stores. Levels of TCA-cycle metabolites were comparable to PA14 AgacA
or E. coli OP50. The starvation group has generally low levels of these
metabolites and the PA14wt-group levels are similar to the starvation
ones, suggesting a similar metabolic phenotype

Compared with other high-throughput approaches, we
were able to generate an in-depth picture of the C. elegans
metabolome during infection. Targeted approaches, for exam-
ple the Biocrates technique, enable detection of 180

metabolites, mostly from lipid metabolism, in 5 min, which
is a similar timeframe to that needed for our analysis. The big
advantage of that technique is that it provides quantitative
data. However, DI-ICR-FT-MS can be also used for quantifi-
cation by the use of correct internal standards [35]; for exam-
ple, the standard-addition approach [36]. If the matrix is kept
constant, ion-suppression effects can be assumed to be com-
parable between samples and semi quantification is possible.

High-level throughput was achieved by the FIA-ToF-MS
system presented by Fuhrer et al. [4]. They focused on hydro-
philic substances of the central metabolism. In contrast, we used
50 % MeOH for extraction, which gives a broader overview of
metabolites and even small lipids. In both studies not all ions
could be annotated with putative annotations, indicating that both
approaches may enable discovery of novel metabolites. Because
of higher resolving power and mass accuracy, the ICR-FT-MS
approach enables very precise direct calculation of molecular

d xioe

C 128 = 1.0
1.08 | 08 1
06 1
8.0e7 0.4 ]
6.0e7 | 02 4
00 }

4.0e7 |

0.8

2.0e7 - - 06

0 0.4

o < 5 o i
g § § = g 0.2
; 8
g X n % 0.0
<
o

Fig. 4 Mass-difference networks of metabolite datasets. (a) Main
network created on the basis of the mass differences in ESM Table S1
for positive-ionization mode. (b) Main network for negative-ionization
mode. Nodes in both plots are colored on the basis of the results of
OPLS/O2PLS-DA. Green nodes are specific for E. coli OP50-fed
C. elegans, red for P. aeruginosa PAl4wt, violet for P. aeruginosa
PA14 AgacA, yellow for S. enterica, and blue for starved. Gray nodes
are non-specific masses. The red circle and red arrow indicate the
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higher in C. elegans fed with fully virulent pathogens. (d) Mass spectra
from one PAl4wt-fed C. elegans sample zoomed to mass range of the
unknown compound in (¢), shown with the simulated isotopic pattern of
the corresponding molecular formula
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formulas for unknowns, e.g. using mass-difference-based formu-
la calculation. The main advantage of this high resolving power
is the differentiation of different isotopic peaks, e.g. **S from
BC,,

Compared with other methods used in metabolomics, for
example UHPLC-MS or GC-MS, DI-ICR-FT-MS is superior
regarding time needed for analysis and comprehensiveness of
analysis. As we report, several thousands of features can be
detected in a short time. Ballistic gradients <5 min for high
throughput can be used in UHPLC-MS-based metabolomics,
but this technique can only partially resolve metabolites or
overlapping isotopic patterns. A further advantage of DI-ICR-
FT-MS is a good stability over time; this is because there is no
use of chromatography, where, e.g., deterioration of the col-
umn material can lead to changes in separation. Maintenance
in DI-ICR-FT-MS is limited to regular cleaning of the ESI
spray chamber and all fluidic connections, whereby contam-
ination is kept very low because of the use of highly diluted
samples. Although DI-ICR-FT-MS has high initial costs, the
time saving and comprehensiveness of results mean this meth-
od is comparable with standard (commercial) techniques in-
cluding UHPLC-MS regarding per-sample costs.

Non-targeted metabolomics using DI-ICR-FT MS reveals
specific metabolic phenotypes in C. elegans infection

Our metabolomics-based experimental setup is able to sepa-
rate Pseudomonas aeruginosa PAl4-infected worms from
non-infected worms, can distinguish infection from other
stresses, and can even discriminate between different strains
or pathogens on a molecular level. This is as far as we are
aware the first time [CR-FT-MS-based metabolic profiling has
been applied to a C. elegans infection. The inclusion of the
PA14 AgacA was an important control because it revealed
changes related to the full virulence of P. aeruginosa and
differences in the metabolome based on contact with specific
bacterial pathogens. Previous work in this field has focused on
identifying virulence genes or regulated genes in the host
response. With our approach it is possible to obtain the overall
effect of both, with the metabolism as the endpoint of all these
actions in the host. We found reduced metabolites of energy
metabolism in PAl4wt-infected worms compared with the
other infections (PA14 AgacA and S. enterica). Additionally,
several unknown metabolites correlated with pathophysiolog-
ical states of infection or starvation; e.g., mass 470.23136 ((M
—H]") was found to be significantly elevated in infection with
fully virulent bacteria. Using mass-difference-network-based
formula calculation we were able to putatively annotate this
mass with the formula [Cy3H37,NO,P], which suggests a
lipid-like structure. Future investigations will have the objec-
tive of purifying and identifying this and other unknown
metabolites from crude C. elegans extracts. Although our
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direct-infusion approach cannot separate different isomers, it
provides a working hypothesis for further targeted analysis.

DI-ICR-FT-MS as a high-throughput metabolomics tool
for C. elegans infection research

With our setup we were able to generate a comprehensive
metabolite profile for different conditions in a reasonably short
time. Cultivation of C. elegans is the major step limiting through-
put in this setup. We were able to separate the fully virulent wild
type from the highly attenuated gac4 mutant of P. aeruginosa.
GacA is a master regulator upstream of several virulence factors,
and it is therefore not clear which virulence factor is responsible
for the observed metabolic phenotype. However, we have re-
vealed that our technique is able to handle samples in a high-
throughput manner, with the possibility of measuring >120
samples per day. We would especially like to emphasize the final
concentration and amount of sample needed for analysis with
ICR-FT-MS. One sample containing 1000 worms was extracted
with 1 mL 50 % MeOH and further diluted to 1:50, yielding an
effective concentration of 20 worms per milliliter. The effective
volume for 5 min of measurement is 10 pL, but actual consump-
tion is much higher as a result of syringe size. Use of direct-
infusion nanoelectrospray sources can further reduce the volume
needed for analysis [37, 38]. Using microtiter plate-based culti-
vation currently amounts to roughly 100 worms, which can be
grown in one well [39]. Therefore larger screening regimes of
different P. aeruginosa mutants or other pathogens are possible to
reveal molecules causing changes in the host’s metabolome,
which can afterwards be examined in a targeted manner.

Conclusion

We have revealed that DI-ICR-FT-MS is a valuable tool that
enables non-targeted metabolomics in high-throughput meta-
bolic profiling of C. elegans infection models, with broad
metabolome coverage. We could identify metabolic phenotypes
specific to the different nutrition and infection conditions. The
differences obtained between worms fed with a highly attenu-
ated PA14 AgacA mutant and its parental strain PA14wt indi-
cates our approach could be used to screen for changes directly
linked to deletion of specific bacterial virulence genes when
compared with the wild type. As a high-throughput tool in
C. elegans infection research, it enables the forward selection
of interesting mutants of host and/or pathogen for further
targeted analysis, e.g. using UPLC-MS and/or NMR.
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