ARTICLE IN PRESS

Developmental Biology ■ (■■■) ■■■-■■■

Contents lists available at ScienceDirect

Developmental Biology

journal homepage: www.elsevier.com/locate/developmentalbiology

Genomes and Developmental Control

Ascl1 and Helt act combinatorially to specify thalamic neuronal identity by repressing Dlxs activation

Hobeom Song ^a, Bumwhee Lee ^a, Dohoon Pyun ^a, Jordi Guimera ^b, Youngsook Son ^a, Jaeseung Yoon ^a, Kwanghee Baek ^a, Wolfgang Wurst ^b, Yongsu Jeong ^{a,*}

ARTICLE INFO

Article history: Received 23 October 2014 Received in revised form 2 December 2014 Accepted 4 December 2014

Keywords: Ascl1 Dlx Helt Thalamus

ABSTRACT

The mammalian thalamus is an essential diencephalic derivative that plays unique roles in processing and relaying sensory and motor information to and from the cerebral cortex. The profile of transcription factors and lineage tracing experiments revealed a spatiotemporal relationship between diencephalic progenitor domains and discrete differentiated neurons contributing to thalamic nuclei. However, the precise molecular mechanisms by which heterogeneous thalamic neurons become specified and assemble into distinct thalamic nuclei are still poorly understood. Here, we show that a combinatorial interaction between the bHLH transcription factors *Ascl1* and *Helt* is required for acquiring thalamic progenitor identity. Surprisingly, in the combined absence of *Ascl1* and *Helt*, rostral thalamic progenitors (TH-R) adopt a molecular profile of a more rostral diencephalic derivative, the prethalamus. Furthermore, we show that the prethalamic factors *Dlxs* upregulated by *Ascl1/Helt* deficiency play unique roles in regulating thalamic progenitor specification, and that derepression of *Dlx2* and *Dlx5* suppress generation of TH-R neurons. Taken together, our results suggest a model whereby the combined activity of two distinct bHLH factors plays a key role in the development of discrete classes of thalamic interneurons.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Spatial coordination of thalamic nuclei assembly is essential for performing its principal roles in processing and relaying afferent sensory inputs to the cerebral cortex, as well as regulating consciousness, sleep and awareness (Jones, 2007). The profile of transcription factors expressed by the developing thalamus (previously called dorsal thalamus) has enabled precise defining of thalamic progenitor cell populations and has led to a better understanding of lineage relationships between each progenitor domain and distinct postmitotic interneurons populating thalamic nuclei (Bulfone et al., 1993; Kitamura et al., 1997; Nakagawa and O'Leary, 2001; Vue et al., 2007; Chen et al., 2009; Suzuki-Hirano et al., 2011; Jeong et al., 2011; Nakagawa and Shimogori, 2012). The neurons that populate thalamic nuclei are derived from at least two distinct progenitor domains of diencephalic alar plate. The progenitors of a large caudal region of the thalamus (TH-C) give rise to glutamatergic neurons, and contribute to all thalamic nuclei that project to the neocortex via thalamocortical axons. The rostral

While significant advances have been made in deciphering the roles for distinct extracellular signals such as Shh, Wnt, and Fgf8 in the rostro-caudal (TH-R vs TH-C) regionalization (Kiecker and Lumsden, 2004; Vieira et al., 2005; Kataoka and Shimogori, 2008; Vue et al., 2009; Szabó et al., 2009; Jeong et al., 2011; Bluske et al., 2012), relatively little is known about the requirement of transcription factors regulated by these signals for specifying heterogeneous clusters of thalamic neurons (reviewed in Hagemann and Scholpp (2012)). Loss- and/or gain-of-function analyses have elucidated the roles for Otx2, Pax6, and Neurog1/2 in regulating TH-C/glutamatergic lineage fate (Fode et al., 2000; Puelles et al., 2006; Wang et al., 2011; Bluske et al., 2012; Robertshaw et al., 2013). By contrast, Her6 and Gata2 have been shown to promote TH-R/GABAergic fate (Scholpp et al., 2009; Virolainen et al., 2012). The requirement of Ascl1 for GABAergic lineage neurogenesis in various CNS regions has also been the subject of much investigation (Fode et al., 2000; Bertrand et al., 2002; Peltopuro et al., 2010; Virolainen et al., 2012). However, the identity of TH-R progenitors does not appear to depend on Ascl1, as loss of Ascl1 had no consequences on rostral thalamic

http://dx.doi.org/10.1016/j.ydbio.2014.12.003 0012-1606/© 2014 Elsevier Inc. All rights reserved.

^a Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si 446-701, Republic of Korea

^b Helmholtz Zentrum München, Institute of Developmental Genetics, D-85764 Neuherberg, Germany

population of thalamic progenitors (TH-R), positioned between TH-C and the zli, generate GABAergic neurons that contribute to two nuclei, the ventrolateral geniculate nucleus (vLG) and the intergeniculate leaflet (IGL).

^{*} Corresponding author. Fax: +82 31 203 8127. E-mail address: yongsu@khu.ac.kr (Y. Jeong).

specification (Virolainen et al., 2012). A bHLH-Orange factor *Helt* expressed in a pattern similar to *Ascl1* has also been shown to play crucial roles in GABAergic neurogenesis in the midbrain and pretectum (Miyoshi et al., 2004; Guimera et al., 2006; Nakatani et al., 2007; Delogu et al., 2012). While a recent gain-of-function study showed that ectopic *Helt* is capable of inducing TH-R cell types in TH-C (Sellers et al., 2014), loss of *Helt* did not affect TH-R neuronal identity (Guimera et al., 2006; Delogu et al., 2012).

While inactivation of single transcription factors can lead to dysregulated lineage decisions, it is also possible that specific combinations of transcription factors regulate correct lineage decisions. Given the similar expression pattern and shared activities between Ascl1 and Helt, we considered the possibility that a developmental program that functionally couples their activities might be required for thalamic differentiation. Surprisingly, our study shows that the identity of rostral thalamic progenitors (TH-R) is established by a cooperative interaction between Ascl1 and Helt. Combined loss of Ascl1 and Helt abrogated TH-R specification and instead led to a fate switch to a more rostral diencephalic derivative, the prethalamus (previously called ventral thalamus). Moreover, the prethalamic factors Dlx2, Dlx5, and Arx that are induced by Ascl1/ Helt deficiency play distinct roles in thalamic specification: Dlx2 and Dlx5 suppress TH-R fate while Arx represses TH-C fate. Our results propose a new model whereby heterogeneous thalamic progenitors become specified and assemble into distinct thalamic nuclei.

Materials and methods

Mouse lines

All animal procedures were carried out in accordance with the guidelines and protocols approved by the Kyung Hee University Institutional Animal Care and Use Committee. Generation of *Ascl1* and *Helt* mice was described previously (Leung et al., 2007; Guimera et al., 2006). *Ascl1*^{+/-} mice (The Jackson Laboratory, Bar Harbor, ME) have green fluorescent protein (GFP) knocked into the *Ascl1* locus, disrupting *Ascl1* coding sequences. *Helt*^{+/-} (Mgn^{tz/+}) mice were generated to replace exons 2 and 3 (the bHLH-Orange domain) with tau-lacZ. *Ascl1*^{+/-} mice were bred to Helt^{+/-} mice to generate double heterozygous F₁ progeny. These were maintained on an outbred ICR background and intercrossed to generate Ascl1^{-/-}; Helt-/- embryos. Embryos were staged from the time point of vaginal plug detection, which was designated as embryonic day (E) 0.5.

Plasmids

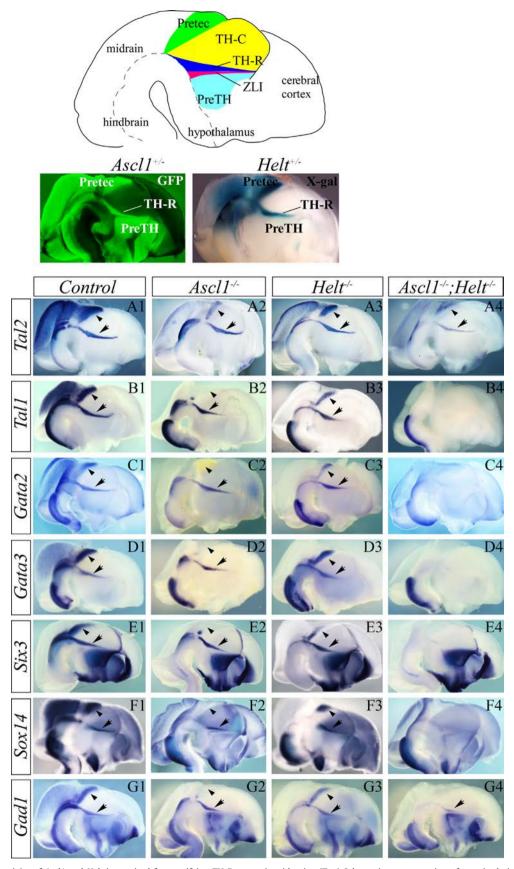
All regulatory sequences assayed were cloned into the *Notl* restriction site of a reporter vector comprising the β -globin minimal promoter, *lacZ* cDNA, SV40 large T antigen poly(A) site. The specific DNA sequences (ECR1–ECR5) and vertebrate homologs of Gbe1 were generated by PCR amplification. To test the requirement of each E box binding site in the Gbe1, mutations designed to disrupt DNA binding at the recognition sequences were constructed by a three-component assembly ligation of two PCR product and reporter vector. Each primer sequence is shown in Supplementary material text S1.

For misexpression constructs, mouse full length Dlx1, Dlx2, Dlx5 (J. L. Rubenstein, UCSF), Dlx6 (E. N. Olson, University of Texas Southwestern Medical Center), and Arx (Origene, Rockville, MD, USA) cDNAs were cloned into the SnaBl site of an expression vector consisting of the Nestin enhancer, β -globin minimal promoter, SV40 large T antigen poly(A) site. Fused cassettes VP16-Dlx2 and EnR-Dlx2 (D. Eisenstat, U. of Alberta, Canada; Le et al., 2007), as well as VP16-Dlx5 and EnR-Dlx5 (A. J. Bendall, U. of Guelph,

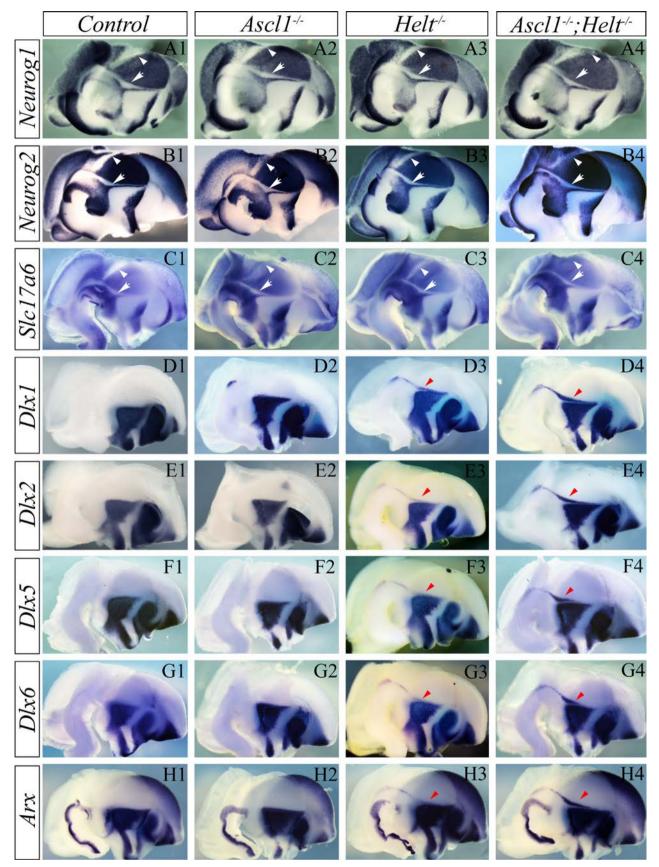
Canada; Hsu et al., 2006), were also cloned into the *SnaBI* site of the same expression vector.

Transgenic mouse embryos

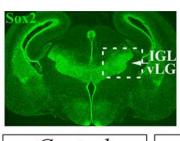
Plasmid transgenes were prepared and linearized with *Sacl or SaclI* for microinjection as previously described (Jeong and Epstein, 2003). Transient transgenic embryos or mouse lines were generated by pronuclear injection into fertilized eggs derived from FVBN strain mice.


 β -galactosidase staining and in situ hybridization

The activity of β -galactosidase was assessed by histochemical staining with X-gal (Roche) as substrate (Jeong and Epstein, 2003). Whole-mount in situ hybridization was performed using digoxygenin-UTP-labeled riboprobes essentially as described (Jeong and Epstein, 2003). For genes expression studies at E12.5 and E13.5, heads were bisected sagitally along the midline prior to initiating the whole-mount in situ hybridization protocol. After staining, left and right medial surfaces of bisected brains were photographed. For section in situ hybridization (Lee et al., 2012), embryos were fixed in 4% formaldehyde overnight, sunk in 30% sucrose, embedded in OCT, and cryosectioned at 25 μ m.


Results

Acquisition of rostral thalamic progenitor identity is dependent on the combined functions of Ascl1 and Helt


While Ascl1 and Helt are each known to affect the development of several GABAergic lineages, neither Ascl1 nor Helt mutants display obvious defects in the thalamic specification (Miyoshi et al., 2004; Guimera et al., 2006; Nakatani et al., 2007; Peltopuro et al., 2010; Virolainen et al., 2012). Furthermore, single mutants of either Ascl1 or Helt continue to express Helt and Ascl1, respectively, in the thalamus. Therefore, we investigated whether these two factors cooperate to regulate thalamic progenitor specification. To address this question, we systematically studied the expression profiles of a panel of regional markers in the developing thalamus of wild-type, $Ascl1^{-/-}$, $Helt^{-/-}$, and $Ascl1^{-/-}$; $Helt^{-/-}$ compound mutants at E12.5. The TH-R domain comprises a narrow band, sandwiched between TH-C and the zli, and expresses several transcription factors including Tal2, Tal1, Gata2, Gata3, Six3 and Sox14 (Fig. 1A1-F1; Supplementary material Fig. S1A1-F1). Loss of Ascl1 function led to severe downregulation or complete loss of expression of these transcription factors in the pretectum; however, their expression was maintained in TH-R (Fig. 1A2-F2; Supplementary material Fig. S1A2–F2). Similarly, in $Helt^{-/-}$ embryos, reduced expression of these markers was observed in the pretectum, but not in TH-R (Fig. 1A3-F3; Supplementary material Fig. S1A3-F3). In contrast to single knockout mutants, combined inactivation of Ascl1 and Helt led to a dramatic loss of TH-R marker expression (Fig. 1A4-F4; Supplementary material Fig. S1A4-F4). This failure of rostral thalamic specification in $Ascl1^{-/-}$; $Helt^{-/-}$ compound mutants was not likely due to a defect in early regional patterning, as Shh, Nkx2.2 and Gsx1 expression was normally detected (Supplementary material Fig. S2). Concurrent with the loss of TH-R progenitor identity, the neurotransmitter profile of TH-R neurons was also compromised in $Ascl1^{-/-}$; $Helt^{-/-}$ compound mutants. In Ascl1 or Heltsingle mutants, Gad1 expression was largely unaffected in TH-R despite an almost complete lack or downregulation in pretectal neurons (Fig. 1G2 and G3; Supplementary material Fig. S1G2 and G3). By contrast, in $Ascl1^{-/-}$; $Helt^{-/-}$ compound mutants, there was a significant loss of Gad1 expression in the TH-R domain (Fig. 1G4;

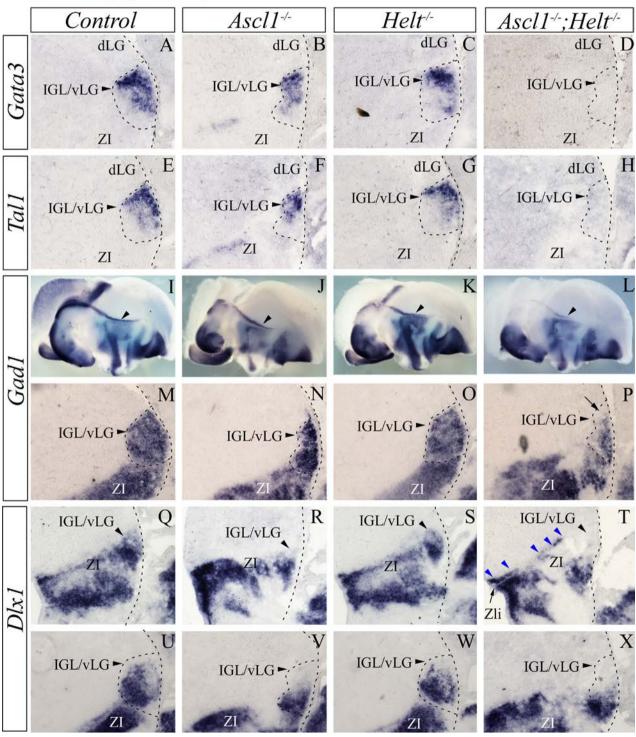


Fig. 1. Combinatorial activity of *Ascl1* and *Helt* is required for specifying TH-R progenitor identity. (Top) Schematic representation of a sagittal view through the mouse diencephalon, color coded as follows: green, pretectum; yellow, TH-C; blue, TH-R; red, zli; aqua, prethalamus. Below are shown GFP fluorescence of $Ascl^{+/-}$ embryo and X-gal staining of $Helt^{+/-}$ embryo at E12.5. (A1-G4) Whole-mount *in situ* hybridization of genes expressed in the pretectum (arrowhead) and TH-R (arrow) of wild-type, $Ascl1^{-/-}$, $Helt^{-/-}$, and $Ascl1^{-/-}$, $Helt^{-/-}$ compound mutant embryos at E12.5. The expression of Tal2, Tal1, Gata2, Gata3, Six3, Sox14 and Gad1 is greatly downregulated or absent in the midbrain and pretectum of $Ascl1^{-/-}$ (A2-G2) or $Helt^{-/-}$ embryos (A3-G3), while the TH-R expression was largely unaffected in $Ascl1^{-/-}$ the $Helt^{-/-}$ compound mutant embryos, the TH-R expression was severely reduced ($Helt^{-/-}$) or completely missing ($Helt^{-/-}$) compound mutant embryos, the TH-R expression was severely reduced ($Helt^{-/-}$) or completely missing ($Helt^{-/-}$) compound mutant embryos, $Helt^{-/-}$) refered, $Helt^{-/-}$ compound mutant embryos, $Helt^{-/-}$ compound mutant embryos, $Helt^{-/-}$ compound mutant embryos, $Helt^{-/-}$ compound $Helt^{-/-}$ compound $Helt^{-/-}$ compound $Helt^{-/-}$ compound $Helt^{-/-}$ embryos $Helt^{-/-$

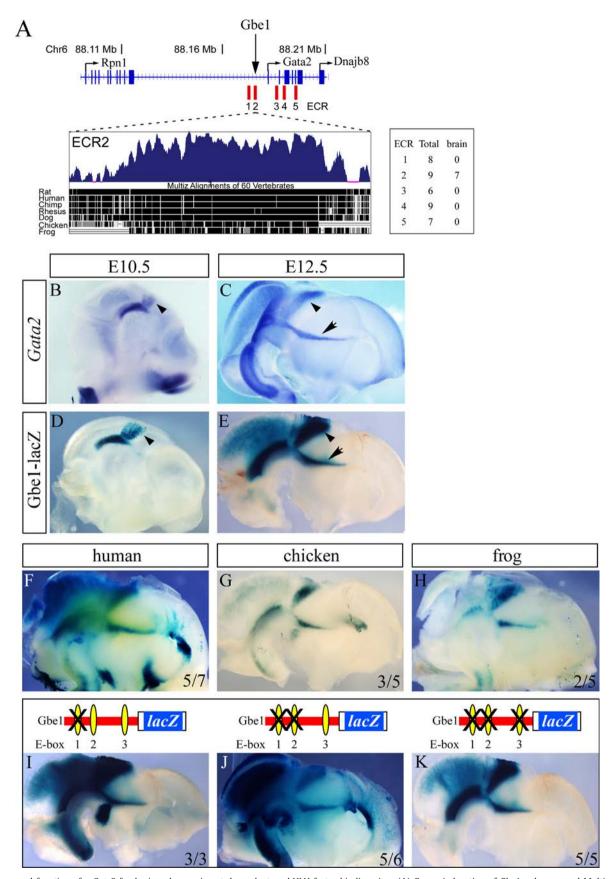


Fig. 2. TH-R progenitors adopt prethalamic fate in the combined absence of *Ascl1* and *Helt.* (A1–H4) Whole-mount *in situ* hybridization of TH-C (*Neurog1*, *Neurog2*, and *Slc17a6*) and prethalamic markers (*Dlx1*, *Dlx2*, *Dlx5*, *Dlx6*, and *Arx*) in wild-type, *Ascl1*^{-/-}, *Helt*^{-/-}, and *Ascl1*^{-/-}; *Helt*^{-/-} compound mutant embryos at E12.5. (A1–C4) The expression of TH-C markers was ectopically upregulated in the pretectum (white arrowhead) of *Ascl1*^{-/-}, *Helt*^{-/-}, and *Ascl1*^{-/-}; *Helt*^{-/-} compound mutant embryos, while the white gap of these genes expression between TH-C and zli, corresponding to TH-R (white arrow) was still maintained. (D1–H4) Weak upregulation of prethalamic genes was detected in TH-R (red arrowhead, D3, E3, F3, G3, and H3) of *Helt*^{-/-} embryos, while in the combined absence of *Ascl1* and *Helt*, robust expression of these prethalamic genes was induced in TH-R of *Ascl1*^{-/-}; *Helt*^{-/-} compound mutant embryos (D4, E4, F4, G4, and H4).

Fig. 3. IGL/vLG neurons are compromised in the combined absence of *Ascl1* and *Helt*. (Top) Sox2 immunostaining shows a sharp boundary between the dorsal lateral geniculate nucleus and IGL/vLG (white arrow) in a wild-type embryo at E16.5. (A–H) Section *in situ* hybridization of *Gata3* (A–D) and *Tal1* (E–H) in IGL/vLG of wild-type, $Ascl1^{-/-}$, $Helt^{-/-}$, and $Ascl1^{-/-}$; $Helt^{-/-}$ compound mutant embryos at E16.5. These TH-R progenitor markers are still detected in the IGL/vLG in wild-type, $Ascl1^{-/-}$, and $Helt^{-/-}$ mutant embryos, but are missing in $Ascl1^{-/-}$; $Helt^{-/-}$ compound mutant embryos. (I–P) Whole-mount (I–L) and section *in situ* hybridization (M–P) of *Gad1* at E13.5 and E16.5, respectively. Gad1 expression is normally present throughout IGL/vLG (M), but is lacking in the IGL and part of the vLG of $Ascl1^{-/-}$; $Helt^{-/-}$ compound mutant embryos (P, arrow). (Q–X) Section *in situ* hybridization of Dlx1 at E14.5 (Q–T) and E16.5 (U–X). Dlx1 expression is principally detected in the medial region of the vLG. In contrast with wild-type, $Ascl1^{-/-}$, and $Helt^{-/-}$ embryos, a stream of Dlx1 expression in the TH-R ventricular zone was detected in $Ascl1^{-/-}$; $Helt^{-/-}$ compound mutant embryos (T, blue arrowheads). This staining is separated from Dlx1 expression in the prethalamus by a thin gap, corresponding to the zli. Staining with Sox2 and Gad1 on adjacent sections was used to position the area of IGL/vLG.

Fig. 4. Conserved function of a *Gata2* forebrain enhancer is not dependent on bHLH factor binding sites. (A) Genomic location of Gbe1 enhancer and Multiz alignment comparing Gbe1 sequences of vertebrate species (UCSC genome browser, http://genome.ucsc.edu). The table to the right indicates the total number of transgenic embryos generated for each constructs (ECR1-5, red bars) and the number of embryos showing *Gata2*-like reporter expression. (B–E) Time course of *Gata2* expression (B and C) and Gbe1 enhancer activity (D and E) in the pretectum (arrowhead) and TH-R (arrow). (F–H) Gbe1 reporter activity derived from human, chicken, and frog. The ratio of embryos exhibiting *Gata2*-like reporter activity over the total number of transgenic embryos is indicated below. (I–K) X-gal staining of transgenic embryos at E12.5 carrying reporter constructs with mutant E box sites. Mutation of one core sequence (I) or generating two (J) or three combined mutations (K) did not result in alteration of transgene expression in TH-R.

Supplementary material Fig. S1G4). These data suggest that the combined function of *Ascl1* and *Helt* is required for correct specification of the TH-R thalamic domain.

Loss of Ascl1 and Helt mis-specify TH-R into prethalamic progenitors

We then asked whether down-regulation of TH-R markers by deficiency of *Ascl1* and *Helt* might reflect their respecification to a more caudal thalamic progenitor TH-C identity, as *Ascl1* and *Helt* repress *Neurog1* and *Neurog2* expression in the pretectum and ventral midbrain, respectively (Nakatani et al., 2007; Virolainen et al., 2012; Fig. 2A2, A3, B2, and B3). Normally, expression of *Neurog1/2* in the zli and TH-C is separated by a gap, corresponding to TH-R (Fig. 2A1 and B1). This gap in *Neurog1/2* expression was still present in the compound mutants despite strong upregulation of *Neurog1* and *Neurog2* expression in the pretectum (Fig. 2A4 and B4). Consistently, an expression gap of *Slc17a6*, a glutamatergic marker, was also maintained (Fig. 2C1–C4), indicating no apparent identity switch into TH-C.

Recently, in *Gata2*-deficient embryos, the prethalamic progenitor markers Dlx1 and Arx were shown to be ectopically induced in the TH-R intermediate zone (Virolainen et al., 2012). Our results pointing towards a failure of TH-R specification upon Ascl1 and Helt deficiency, therefore, prompted us to investigate whether rostral thalamic progenitors adopt a molecular profile of prethalamic progenitors. At E12.5, four Dlx homeodomain factors Dlx1, Dlx2, Dlx5, Dlx6 and Arx are normally expressed in the forebrain anterior to the zli (Fig. 2D1, E1, F1, G1, and H1). Remarkably, in Ascl1^{-/-}; $Helt^{-/-}$ compound mutants, we observed strong induction of these transcription factors in TH-R (Fig. 2D4, E4, F4, G4, and H4). Upon sectioning, in addition to ectopic staining in the intermediate zone, robust expression of prethalamic genes was also observed in the ventricular zone (Supplementary material Fig. S3D, H, L, P, and T). These results demonstrate that in the absence of Ascl1 and Helt, the TH-R domain acquire a more rostral diencephalic identity. Surprisingly, we also observed weak activation of the four *Dlxs* and *Arx* in *Helt*-deficient TH-R (Fig. 2D3, E3, F3, G3, and H3; Supplementary material Fig. S3C, G, K, O, and S), suggesting that a combinatorial interaction between *Ascl1* and *Helt* is critical for proper suppression of a prethalamic cell phenotype in the thalamus.

Previous studies have shown that the vLG nucleus is composed of a heterogeneous group of neurons originating from both TH-R and prethalamus (Vue et al., 2007; Jeong et al., 2011; Bluske et al., 2012). TH-R progenitors contribute to the IGL nucleus and lateral part of the vLG nucleus, while prethalamic progenitors give rise principally to neurons that are medially positioned within the vLG. To determine the consequence of aberrant specification in $Ascl1^{-/-}$: $Helt^{-/-}$ compound mutants, we examined vLG/IGL nuclei at later stages of embryogenesis. At E16.5, Gata3 and Tal1 were normally expressed in the IGL and laterally in the vLG (Fig. 3A and E). Consistently, their expression was still detectable in $Ascl1^{-/-}$ or $Helt^{-/-}$ single mutants, (Fig. 3B, C, F, and G), but was absent in $Ascl1^{-/-}$; $Helt^{-/-}$ compound mutants (Fig. 3D and H). In the absence of Ascl1/Helt, reduced Gad1 expression was also persistent at E13.5–E16.5 (Fig. 3L and P). Instead, a stream of Dlx1⁺ neurons appeared to migrate radially from the TH-R ventricular zone at E14.5 in $Ascl1^{-/-}$; $Helt^{-/-}$ compound mutants (Fig. 3T). However, these neurons eventually seemed to silence Dlx1 expression (Fig. 3T and X), indicating that ectopic upregualtion of prethalamic factors in Ascl1/Helt-deficient TH-R is transient.

Combined activity of Ascl1 and Helt indirectly regulates Gata2 expression

We next asked whether the combined inactivation of *Ascl1* and *Helt* is directly responsible for loss of TH-R progenitor identity. As *Gata2* is a downstream target regulated by the combined activity of *Ascl1* and *Helt*, and *Gata2*-deficient thalamus displays overlapping phenotypes with that of *Ascl1*^{-/-}; *Helt*^{-/-} compound mutants (Virolainen et al., 2012), the functional role for *Helt* and

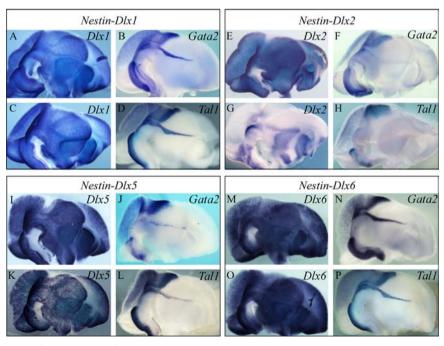


Fig. 5. Dlx2 and Dlx5 repress TH-R specification. Analysis of Gata2 and Tal1 expression in transgenic embryos carrying misexpression constructs for Dlx1 (A–D), Dlx2 (E–H), Dlx5 (I–L), and Dlx6 (M–P). For each transgenic embryo, one brain half from bisected head was used to estimate the pattern of transgene expression (Dlx1, Dlx2, Dlx5, and Dlx6) and the other half stained for Gata2 and Tal1. Images from one half of each brain pair are flipped horizontally. Misexpression of Dlx1 (A and C) did not alter Gata2 (B; n=0/4) and Tal1 expression (D; n=0/5). By contrast, the expression of Gata2 (F; n=4/4) and Tal1 (H; n=4/5) was completely lacking or severely reduced in TH-R in transgenic embryos misexpressiong Dlx2 (E and G). Forced expression of Dlx6 (M and O) did not affect Gata2 (N; n=0/3) and Tal1 expression (P; n=0/5), while Dlx5 misexpression (I and K) resulted in marked reduction of Gata2 (J; n=3/4) and Tal1 expression (L; n=3/3) in TH-R.

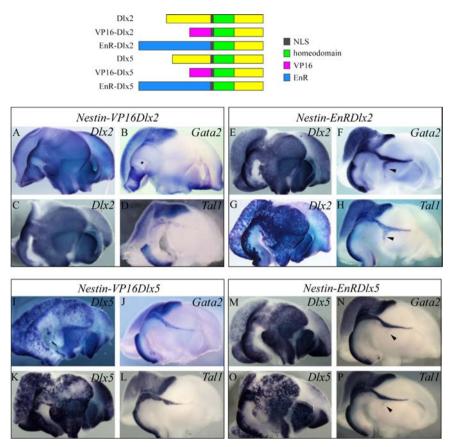
Ascl1 in regulating TH-R identity is likely to be mediated, at least in part, by Gata2. Therefore, we set out to identify regulatory sequences that control Gata2 expression in the developing thalamus. A previous study showed that a *Gata2* brain enhancer activity resides within a 17- kb genomic fragment of the Gata2 locus (Zhou et al., 2000). To more precisely locate the enhancer element, five highly evolutionary conserved regions (ECR) within this interval were assayed for their regulatory potential in transgenic mouse embryos (Fig. 4A). At E12.5, of the five ECRs (ECR1-5) tested, embryos carrying ECR2 showed X-gal staining in the midbrain, pretectum and thalamus in a manner consistent with Gata2 (Fig. 4C and E). At earlier stages, the transgene also recapitulated the pattern of Gata2 expression (Fig. 4B and D). To further characterize this regulatory sequence, the activity of orthologous sequences from divergent organisms was also assessed in transgenic mouse embryos. Strong lacZ expression in embryos carrying human, chicken, or frog sequences was detected in a manner similar to mouse ECR2 (Fig. 4F-H). Therefore, these data indicate that this conserved sequence functions as a regulatory enhancer (hereafter designated Gata2 brain enhancer 1, Gbe1) to control Gata2 expression in the developing brain, including TH-R.

We then searched for bHLH binding sites, E box (CANNTG) by scanning Gbe1 sequences using the rVISTA tool, as well as by comparing the consensus sites manually. This analysis recognized three E boxes that were conserved in humans and mice, but not in chickens or frogs (Fig. 4I–K). Although *Helt* has been shown to function as a transcriptional repressor, we also searched for C sites (CACG(C/A)G), or N boxes (CACNAG) (Kageyama et al., 2007). There was no C site or N box found in the Gbe1 enhancer. The *in vivo* significance of these putative E boxes was assessed by introducing point mutations in each of the recognition sequences. However, abrogating one core sequence or generating two or three combined mutations did not downregulate transgene expression in TH-R or other brain regions (Fig. 4I–K), suggesting that the Gbe1 enhancer activity is not directly dependent on bHLH factor(s).

Repression of Dlx2 and Dlx5 is a key role for Ascl1 and Helt in rostral thalamic specification

Recent gain- and loss-of-function experiments revealed important functions for Dlx2 in specifying GABAergic cell fate. In Dlx1/2 double knockout embryos, TH-R markers were ectopically induced in the prethalamus, while by chick in ovo electroporation, forced expression of Dlx2 was shown to suppress TH-R markers (Delogu et al., 2012; Sellers et al., 2014). We therefore asked whether the subsequent upregulation of prethalamic genes, resulting from Ascl1/ *Helt* deficiency, could lead to such a phenotypic alteration. This was tested by misexpression of such prethalamic factors under the control of a *Nestin* intronic enhancer. As members of the *Dlx* family have both unique and redundant functions (Anderson et al., 1997; Stühmer et al., 2002; Robledo et al., 2002; Panganiban and Rubenstein, 2002; Cobos et al., 2005a), we injected each of the four Dlx expression constructs into fertilized mouse eggs, and at E12.5, heads from transgenic embryos carrying the transgenes were bisected sagitally along the midline. One brain half was then stained for the transgene and the other half for thalamic markers. In eight out of nine transgenic embryos, misexpression of Dlx2 led to downregulation of Gata2 and Tal1 expression (Fig. 5E-H); however, none of the embryos misexpressing Dlx1 showed alteration in TH-R marker expression (n=0/9; Fig. 5A-D). Interestingly, while TH-R marker expression was also reduced after forced expression of *Dlx5* (n=6/7; Fig. 5I-L), it was unchanged after misexpression of Dlx6 (n=0/8; Fig. 5M-P), revealing a unique role for Dlx2 and Dlx5 in thalamic differentiation.

To determine whether Gata2 and Tal1 downregulation by ectopic Dlx2 or Dlx5 might result from loss of Helt and Ascl1, we


also examined *Helt* and *Ascl1* expression in transgenic embryos misexpressing *Dlx2* or *Dlx5*. While *Helt* expression was slightly reduced after strong ectopic expression of *Dlx2* or *Dlx5* (Fig. 6B and F), *Ascl1* expression was not altered (Fig. 6D and H). As neither *Ascl1* nor *Helt* single mutants exhibited discernible alterations, suppression of TH-R identity by forced expression of *Dlx2* and *Dlx5* did not result from the combined loss of *Ascl1* and *Helt*. Therefore, these data demonstrate that *Dlx2* and *Dlx5* repression by *Ascl1* and *Helt* is critical for specifying correct TH-R progenitor identity.

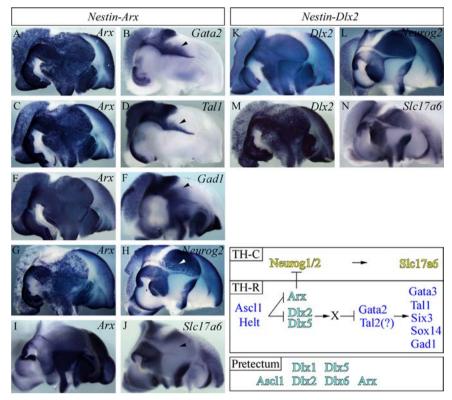
Activator function of Dlx2 and Dlx5 mediates TH-R repression

Since *Dlx* factors both positively and negatively regulate the expression of downstream target genes (Zhang et al., 1997; Zerucha and Ekker, 2000; Le et al., 2007), we asked if *Dlx2* or *Dlx5* function as a transcriptional repressor of TH-R genes or if instead, they act as a transcriptional activator to indirectly suppress TH-R genes. For this purpose, we fused the viral coactivator VP16 or transcriptional repression domain from Drosophila Engrailed (EnR) to N-terminal truncated *Dlx2* or *Dlx5* consisting of a nuclear localization signal, homeodomain and C-terminus (Fig. 7), and tested the ability of these chimeric proteins to affect thalamic differentiation. Eight out of nine embryos expressing the *VP16-Dlx2* transgene exhibited disruption of TH-R gene expression (Fig. 7A–D). By contrast, misexpression of *EnR-Dlx2* did not alter *Gata2*

Fig. 6. TH-R fate suppression by Dlx2 and Dlx5 does not result from combined loss of Ascl1 and Helt. (A–H) Analysis of transgenic embryos carrying Dlx2 (A–D) or Dlx5 (E–H) misexpression constructs. Transgenic embryos misexpressing Dlx2 (A and C) showed a slight reduction of Helt in TH-R (B; n=3/5), and no alteration of Ascl1 expression (D; n=5/5), compared to those in wild-type embryos (I and J). Similarly, misexpression of Dlx5 led to downregulation of Helt (F; n=3/4), but did not affect Ascl1 expression (H; n=3/3).

Fig. 7. Dlx2 and Dlx5 act as transcriptional activators to indirectly suppress TH-R identity. (Top) Schematic diagram of Dlx2 and Dlx5 fusion protein constructs. The N-terminal domains of wild-type Dlx2 or Dlx5, leaving the nuclear localization signal (NLS, black) and homeodomain (green) intact, were replaced with the transactivation domain of herpes simplex virus VP16 or the transcriptional repression domain of Dlx2 and Dlx3 fusion for the transcriptional repression domain of Dlx3 fusion for Dlx3 fusion f

and Tal1 expression in the pretectum or TH-R (n=0/7; Fig. 7E-H). Instead, EnR-Dlx2 appeared to interfere with endogenous EnR-E


Arx suppresses a rostral to caudal fate switch in Ascl1/Helt-deficient TH-R

Arx has been shown to be positively regulated by *Dlx* genes and thus mediate some aspects of *Dlx* functions (Colasante et al., 2008; Cobos et al., 2005b). Therefore, we asked whether *Arx* could mediate repression of TH-R fate by *Dlx2* and *Dlx5*. To answer this question, transgenic embryos forcing *Arx* expression throughout the brain were generated and analyzed for expression of thalamic marker genes. Contrary to our expectation, misexpression of *Arx* did not result in repression of *Gata2*, *Tal1*, or *Gad1* in the TH-R domain (Fig. 8A–F). Surprisingly, we found that the TH-R gene expression expanded caudally into the TH-C domain after forced expression of *Arx* (Fig. 8A–F). Previous experiments using *Neurog1/2* double knockout mice revealed the requirement of *Neurog1/2* to suppress GABAergic lineage markers (Fode et al., 2000; Bluske et al., 2012). We, therefore, investigated whether ectopic induction of TH-R by *Arx* in the TH-C

results from alteration of *Neurog1/2*. In contrast to misexpression of *Dlx2* (Fig. 8K–N), misexpression of *Arx* indeed led to downregulation of *Neurog2* in the TH-C domain (Fig. 8G and H). Consistently, *Slc17a6* expression was also reduced (Fig. 8I and J), demonstrating that *Arx* functions independently of *Dlx* genes and instead antagonizes *Neurog1/2* functions. Notably, as described above, strong induction of *Arx* by *Ascl1/Helt*-deficiency was detected only in the TH-R domain (Fig. 2H4), thus explaining why the combined absence of *Ascl1* and *Helt* led to different fate switches in the pretectum and TH-R.

Discussion

Our results have highlighted the requirement of *Ascl1* and *Helt* function for regulating thalamic progenitor identity, and demonstrated that the single or combined activities of *Ascl1* and *Helt* play distinct and overlapping roles in discrete progenitor domains. Loss of *Ascl1* or *Helt* disrupted neuronal specification in the pretectum, causing a GABAergic to glutamatergic neuronal fate switch, and this alteration appeared to result from derepression of *Neurog2* (Virolainen et al., 2012; Delogu et al., 2012; Fig. 2B1–C4). Loss of *Ascl1|Helt* led to an almost complete abrogation of TH-R identity, but did not result in derepression of *Neurog2* in the TH-R domain. Instead, *Ascl1|Helt*-deficient TH-R acquired a fate of prethalamic progenitors. This is in contrast to Shh mutants where the TH-R markers including *Ascl1* and *Helt* were absent in the thalamus, and *Neurog1/2* expanded into the TH-R domain (Vue et al., 2009; Jeong et al., 2011; Bluske et al., 2012). Previous studies showed that

Fig. 8. Arx suppresses TH-C identity. (A–N) Analysis of thalamic specification in transgenic embryos carrying Arx (A–J), and Dlx2 misexpression constructs (K–N). Misexpression of Arx resulted in ectopic induction of Gata2 (B; n=5/5), Tal1 (D; n=3/3) and Gad1 (F; n=3/3) in TH-C, but did not affect their expression in TH-R. Concurrent with the elevation of TH-R markers, the expression of Neurog2 (H; n=4/5) and Slc17a6 (J; n=3/4) was repressed in TH-C (arrowhead; H and J). Misexpression of Dlx2 did not alter Neurog2 (L; n=0/3) or Slc17a6 expression (N; n=0/3). A schematic model for the regulation of thalamic specification is shown to the right bottom corner. Color coded as follows; yellow, TH-C; blue, TH-R; aqua, prethalamus. The identity of X to repress TH-R genes remains to be determined.

prethalamic patterning is also dependent on Shh signaling (Kiecker and Lumsden, 2004; Vieira et al., 2005; Scholpp et al., 2005). Enhancing or attenuating Shh signaling in chicken or zebrafish embryos resulted in the enlargement or reduction of prethalamic gene expression. Interestingly, our results suggested that combined function of *Ascl1* and *Helt* regulates TH-R specification by repressing *Dlx2*, *Dlx5* and *Arx*. Ectopic activation of *Dlx2* and *Dlx5* resulting from *Ascl1/Helt* deficiency repress TH-R genes, while derepressed *Arx* has a differential ability to suppress *Neurog2*, thereby blocking a rostral to caudal fate switch in *Ascl1/Helt*-deficient TH-R. Therefore, this may, in part, reflect differences in the dependency of TH-R on extrinsic Shh signal and its downstream intrinsic factors. Taken together, our data revealed previously unrecognized epistatic relationships between these transcription factors in thalamic development (Fig. 8).

Previous analyses of conditional Gata2 mutants showed that Gata2 functions as a selector gene for GABAergic neurons in the midbrain and diencephalon (Kala et al., 2009; Virolainen et al., 2012). In the absence of Gata2, TH-R domain adopted a fate of prethalamic progenitors (Virolainen et al., 2012). These alterations implicate a role for Gata2 as a downstream effector of combined Ascl1/Helt activity. Interestingly, the lack of Gad1 expression in Gata2-deficient TH-R is transient, which is different from that of combined Ascl1/Helt mutants that show persistent loss of Gad1 expression throughout the later embryonic stages. In a recent study, loss of Tal2 resulted in downregulation of Gata3, Tal1, Six3 and Gad1 expression and in upregulation of Slc17a6 expression in the midbrain without affecting Gata2 expression (Achim et al., 2013). As Tal2 expression was also shown to be independent of Gata2, these two factors must act in parallel to regulate GABAergic neurogenesis. Notably, as Tal2 expression was severely downregulated in the combined absence of Ascl1 and Helt, both Gata2 and *Tal2* appear to be required as downstream mediators of *Ascl1* and *Helt* function for normal GABAergic neurogenesis in TH-R, although *Tal2* function in the thalamus remains to be determined.

Recent results from lineage tracing experiments suggest that neurons derived from TH-R and prethalamic progenitors are intermingled within the vLG nucleus (Vue et al., 2007; Jeong et al., 2011; Bluske et al., 2012). Loss of Gata3, Tal1, and Gad1 expression in IGL/vLG neurons of $Ascl1^{-/-}$; $Helt^{-/-}$ compound mutants raises several questions about the fate of mis-specified TH-R neurons. Analysis of Ascl1/Helt-deficient embryos harvested at E14.5 showed a pattern of Dlx1 expression in a stream of cells extending from the TH-R ventricular zone (Fig. 3T), implicating that the mis-specified TH-R neurons are likely to migrate radially to a lateral position close to the IGL/vLG. Nevertheless, we did not observe Dlx^+ neurons in the IGL and lateral part of the vLG of Ascl1/Helt compound mutants at E14.6-16.5. Therefore, it remains unclear whether the mis-specified TH-R neurons still reach their final destinations in the IGL/vLG, or fail to survive.

Our data suggest that proper acquisition of thalamic progenitor identity is established by sequential repression/derepression of transcription factors. Full suppression of prethalamic genetic programs by *Ascl1* and *Helt* is a prerequisite to turn on TH-R gene expressions. Previous studies have suggested that *Ascl1* acts as an upstream regulator of *Dlx* members in the developing forebrain (Casarosa et al., 1999; Fode et al., 2000). Forced activation of *Ascl1* in the dorsal telencephalon resulted in ectopic induction of *Dlx1* (Fode et al., 2000). Moreover, a detailed analysis of a *Dlx1/2* forebrain enhancer, I12b, implicated a direct role for *Ascl1* in regulating *Dlx1/2* expression (Ghanem et al., 2003; Poitras et al., 2007). Therefore, *Ascl1* appears to play opposite regulatory roles in the thalamus and more rostral forebrain regions. *Helt*, which is closely related to *Hes* members, functions as a transcriptional

repressor of target gene expression (Miyoshi et al., 2004; Nakatani et al., 2007), and loss of *Helt* led to weak activation of prethalamic genes in the TH-R domain. As I12b enhancer does not contain any class C sites or N boxes (Kageyama et al., 2007), it remains to be elucidated how the distinct factors *Ascl1* and *Helt* cooperate to repress the prethalamic gene expression. Adding an additional layer of complexity to the genetic hierarchy that regulates TH-R specification is the existence of a third factor that may act as a transcriptional repressor downstream of *Dlx2* and *Dlx5* transcriptional activators. As our data ruled out Arx as a candidate repressor, the downstream target of *Dlx2* and *Dlx5* is presently unknown and awaits further investigation.

Acknowledgments

The authors would like to thank Drs John L. Rubenstein, Eric N. Olson, David Eisenstat and Andrew J. Bendall for providing the full length cDNAs *Dlx2*, *Dlx5*, *Dlx6*, *VP16-Dlx2*, *EnR-Dlx2*, *VP16-Dlx5* and *EnR-Dlx5*, respectively. The authors are grateful to Gahee Jeong and Myoungshin Lee for their help in generating transgenic mouse embryos. This work was supported by the Future-Based Technology Development Program (NRF-2010-0020410) and the Basic Science Research Programs (NRF-2009-0087420 and NRF-2012R1A1A2003749) through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning and the Ministry of Education (to Y. J.), and Collaborative Research Center (SFB) 870 grant (to J. G.).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.ydbio.2014.12.003.

References

- Achim, K., Peltopuro, P., Lahti, L., Tsai, H.H., Zachariah, A., Astrand, M., Salminen, M., Rowitch, D., Partanen, J., 2013. The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors. Biol. Open 2, 990–997.
- Anderson, S.A., Qiu, M., Bulfone, A., Eisenstat, D.D., Meneses, J., Pedersen, R., Rubenstein, J.L., 1997. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37.
- Bertrand, N., Castro, D.S., Guillemot, F., 2002. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530.
- Bluske, K.K., Vue, T.Y., Kawakami, Y., Taketo, M.M., Yoshikawa, K., Johnson, J.E., Nakagawa, Y., 2012. β-catenin signaling specifies progenitor cell identity in parallel with Shh signaling in the developing mammalian thalamus. Development 139, 2692–2702.
- Bulfone, A., Puelles, L., Porteus, M.H., Frohman, M.A., Martin, G.R., Rubenstein, J.L., 1993. Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J. Neurosci. 13, 3155–3172.
- Casarosa, S., Fode, C., Guillemot, F., 1999. Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525–534.
- Chen, L., Guo, Q., Li, J.Y., 2009. Transcription factor Gbx2 acts cell-nonautonomously to regulate the formation of lineage-restriction boundaries of the thalamus. Development 136, 1317–1326.
- Cobos, I., Calcagnotto, M.E., Vilaythong, A.J., Thwin, M.T., Noebels, J.L., Baraban, S.C., Rubenstein, J.L., 2005a. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat. Neurosci. 8, 1059–1068.
- Cobos, I., Broccoli, V., Rubenstein, J.L., 2005b. The vertebrate ortholog of Aristaless is regulated by Dlx genes in the developing forebrain. J. Comp. Neurol. 483, 292–303.
- Colasante, G., Collombat, P., Raimondi, V., Bonanomi, D., Ferrai, C., Maira, M., Yoshikawa, K., Mansouri, A., Valtorta, F., Rubenstein, J.L., 2008. Arx is a direct target of Dlx2 and thereby contributes to the tangential migration of GABAergic interneurons. J. Neurosci. 28, 10674–10686.
- Delogu, A., Sellers, K., Zagoraiou, L., Bocianowska-Zbrog, A., Mandal, S., Guimera, J., Rubenstein, J.L., Sugden, D., Jessell, T., Lumsden, A., 2012. Subcortical visual shell nuclei targeted by ipRGCs develop from a Sox14+-GABAergic progenitor and require Sox14 to regulate daily activity rhythms. Neuron 75, 648–662.

- Fode, C., Ma, Q., Casarosa, S., Ang, S.L., Anderson, D.J., Guillemot, F., 2000. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80.
- Ghanem, N., Jarinova, O., Amores, A., Long, Q., Hatch, G., Park, B.K., Rubenstein, J.L., Ekker, M., 2003. Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. Genome Res. 13, 533–543.
- Guimera, J., Weisenhorn, D.V., Wurst, W., 2006. Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus. Development 133, 3847–3857.
- Hagemann, A.I.H., Scholpp, S., 2012. The tale of the three brothers-Shh, Wnt, and Fgf during development of the thalamus. Front. Neurosci. 6, 76.
- Hsu, S.H., Noamani, B., Abernethy, D.E., Zhu, H., Levi, G., Bendall, A.J., 2006. Dlx5and Dlx6-mediated chondrogenesis: differential domain requirements for a conserved function. Mech. Dev. 123, 819–830.
- Jeong, Y., Dolson, D.K., Waclaw, R.R., Matise, M.P., Sussel, L., Campbell, K., Kaestner, K.H., Epstein, D.J., 2011. Spatial and temporal requirements for sonic hedgehog in the regulation of thalamic interneuron identity. Development 138, 531–541.
- Jeong, Y., Epstein, D.J., 2003. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node. Development 130, 3891–3902.
- Jones, E.G., 2007. The Thalamus. Cambridge University Press, Cambridge, UK.
- Kala, K., Haugas, M., Lilleväli, K., Guimera, J., Wurst, W., Salminen, M., Partanen, J., 2009. Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development 136, 253–262.
- Kageyama, R., Ohtsuka, T., Kobayashi, T., 2007. The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 134, 1243–1251.
- Kataoka, A., Shimogori, T., 2008. Fgf8 controls regional identity in the developing thalamus. Development 135, 2873–2881.
- Kiecker, C., Lumsden, A., 2004. Hedgeog signaling from the ZLI regulates diencephalic regional identity. Nat. Neurosci. 7, 1242–1249.
- Kitamura, K., Miura, H., Yanazawa, M., Miyashita, T., Kato, K., 1997. Expression patterns of Brx1 (Rieg gene), Sonic hedgehog, Nkx2.2, Dlx1 and Arx during zona limitans intrathalamica and embryonic ventral lateral geniculate nuclear formation. Mech. Dev. 67, 83–96.
- Le, T.N., Du, G., Fonseca, M., Zhou, Q.P., Wigle, J.T., Eisenstat, D.D., 2007. Dlx homeobox genes promote cortical interneuron migration from the basal forebrain by direct repression of the semaphorin receptor neuropilin-2. J. Biol. Chem. 282. 19071–19081.
- Lee, B., Rizzoti, K., Kwon, D.S., Kim, S., Oh, S., Epstein, D.J., Son, Y., Yoon, J., Baek, K., Jeong, Y., 2012. Direct transcriptional regulation of Six6 is controlled by SoxB1 binding to a remote forebrain enhancer. Dev. Biol. 366, 393–403.
- Leung, C.T., Coulombe, P.A., Reed, R.R., 2007. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat. Neurosci. 10, 720–726.
- Miyoshi, G., Bessho, Y., Yamada, S., Kageyama, R., 2004. Identification of a novel basic helix-loop-helix gene, Heslike, and its role in GABAergic neurogenesis. J. Neurosci. 24, 3672–3682.
- Nakagawa, Y., O'Leary, D.D., 2001. Combinatorial expression patterns of LIM-homeodomain and other regulatory genes parcellate developing thalamus. J. Neurosci. 21, 2711–2725.
- Nakagawa, Y., Shimogori, T., 2012. Diversity of thalamic progenitor cells and postmitotic neurons. Eur. J. Neurosci. 35, 1554–1562.
- Nakatani, T., Minaki, Y., Kumai, M., Ono, Y., 2007. Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon. Development 134, 2783–2793.
- Panganiban, G., Rubenstein, J.L., 2002. Developmental functions of the Distal-less/ Dlx homeobox genes. Development 129, 4371–4386.
- Peltopuro, P., Kala, K., Partanen, J., 2010. Distinct requirement for Ascl1 in subpopulations of midbrain GABAergic neurons. Dev. Biol. 343, 63–70.
- Poitras, L., Ghanem, N., Hatch, G., Ekker, M., 2007. The proneural determinant MASH1 regulates forebrain Dlx1/2 expression through the I12b intergenic enhancer. Development 134, 1755–1765.
- Puelles, E., Acampora, D., Gogoi, R., Tuorta, F., Papalia, A., Guillemot, F., Ang, S., Simeone, A., 2006. Otx2 controls identity and fate of glutamatergic progenitors of the thalamus by repressing GABAergic differentiation. J. Neurosci. 26, 5955–5964.
- Robertshaw, E., Matsumoto, K., Lumsden, A., Kiecker, C., 2013. Irx3 and Pax6 establish differential competence for Shh-mediated induction of GABAergic and glutamatergic neurons of the thalamus. Proc. Natl. Acad. Sci. USA 110, E3919–E3926.
- Robledo, R.F., Rajan, L., Li, X., Lufkin, T., 2002. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev. 16, 1089–1101.
- Scholpp, S., Wolf, O., Brand, M., Lumsden, A., 2005. Hedgehog signaling from the zona limitans intrathalamica orchestrates patterning of the zebrafish dience-phalon. Development 133, 855–864.
- Scholpp, S., Delogu, A., Gilthorpe, J., Peukert, D., Schindler, S., Lumsden, A., 2009. Her6 regulates the neurogenetic gradient and neuronal identity in the thalamus. Proc. Natl. Acad. Sci. USA 106, 19895–19900.
- Sellers, K., Zyka, V., Lumsden, A.G., Delogu, A., 2014. Transcriptional control of GABAergic neuronal subtype identity in the thalamus. Neural Dev. 9, 14.
- Stühmer, T., Anderson, S.A., Ekker, M., Rubenstein, J.L., 2002. Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development 129, 245–252.
- Suzuki-Hirano, A., Ogawa, M., Kataoka, A., Yoshida, A.C., Itoh, D., Ueno, M., Blackshaw, S., Shimogori, T., 2011. Dynamic spatiotemporal gene expression in embryonic mouse thalamus. J. Comp. Neurol. 519, 528–543.

- Szabó, N.E., Zhao, T., Zhou, X., Alvarez-Bolado, G., 2009. The role of Sonic hedgehog of neural origin in thalamic differentiation in the mouse. J. Neurosci. 29,
- Vieira, C., Garda, A., Shimamura, K., Martinez, S., 2005. Thalamic development induced by Shh in the chick embryo. Dev. Biol. 284, 351-363.
- Virolainen, S.M., Achim, K., Peltopuro, P., Salminen, M., Partanen, J., 2012. Transcriptional regulatory mechanisms underlying the GABAergic neuron fate in different diencephalic prosomeres. Development 139, 3795-3805.
- Vue, T.Y., Aaker, J., Taniguchi, A., Kazemzadeh, C., Skidmore, J.M., Martin, D.M., Martin, J.F., Treier, M., Nakagawa, Y., 2007. Characterization of progenitor domains in the developing mouse thalamus. J. Comp. Neurol. 505, 73-91.
- Vue, T.Y., Bluske, K., Alishahi, A., Yang, L.L., Koyano-Nakagawa, N., Novitch, B., Nakagawa, Y., 2009. Sonic hedgehog signaling controls thalamic progenitor identity and nuclei specification in mice. J. Neurosci. 29, 4484-4497.
- Wang, L., Bluske, K.K., Dickel, L.K., Nakagawa, Y., 2011. Basal progenitor cells in the embryonic mouse thalamus-their molecular characterization and the role of neurogenins and Pax6. Neural Dev. 6, 35.
- Zerucha, T., Ekker, M., 2000. Distal-less-related homeobox genes of vertebrates:
- evolution, function, and regulation. Biochem. Cell Biol. 78, 593–601. Zhang, H., Hu, G., Wang, H., Sciavolino, P., Iler, N., Shen, M.M., Abate-Shen, C., 1997. Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. Mol. Cell Biol. 17, 2920-2932.
- Zhou, Y., Yamamoto, M., Engel, J.D., 2000. GATA2 is required for the generation of V2 interneurons. Development 127, 3829-3838.