
in circulation, whereas more substantial staining can be detected
in the polymorphonuclear fraction. These technical issues are
critically important when interpreting presumably contradictory
study results from different groups.

Thus, the question of exactly what cell types constitute
fibrocytes in vivo, and whether a fibrocyte is a distinct cell, a cell
type in transition, or a group of cells, as well as the importance
of their collagen synthetic function in humans, is still unclear.
However, it is becoming increasingly clear from the current study
on HPS and earlier reports about IPF (2, 3) that the measurement
of fibrocytes in the circulation of patients with fibrotic lung disease
may have clinical use in the future, either for clinical trial design
or clinical management. Even though the study by Trimble and
colleagues found no correlations between fibrocyte counts and
pirfenidone treatment (2), this does not rule out that fibrocytes
could be useful as markers of response to other therapies. However,
the episodic nature of the alterations in fibrocyte numbers
longitudinally and the inability of fibrocyte numbers to predict
changes in pulmonary function tests indicates they may not be very
useful as predictors of drug action. Perhaps the next realm of
fibrocyte research should be two-directional: to identify the
paracrine factors that promote disease progression and attract
fibrocytes along chemokine gradients to the site of putative injury,
making them particularly well suited to deliver a pathologic
payload, and to generate consensus on a standardized set
of fibrocyte markers and a readily accessible protocol for
identification of fibrocytes by flow cytometry that could be used
in multicenter studies. Ideally, protocols could be developed that
may allow analysis of peripheral blood buffy coats collected
during future clinical trials and submitted to well-annotated
biorepositories such as the type that have been called for in IPF
research (13). These goals are not mutually exclusive, and the
major insights that will be gained will inevitably help to improve
the management of patients with fibrotic lung disease. n
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Live and Let Die: Targeting Alveolar Epithelial Cell
Proliferation in Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is the most common interstitial
lung disease, with a medium survival of 3–5 years. Although this
year two drugs are becoming available for patients with mild
to moderate IPF, there is still an unmet clinical need for the
development of targeted and specific therapies for this devastating
disease (1). Repetitive injury and alterations of the alveolar

epithelium, including alveolar epithelial cell proliferation and
hyperplasia, have been described and linked with the development
of IPF (2–4). It is thought that abnormal alveolar epithelial cell
activation leads to impaired epithelial–mesenchymal crosstalk and,
ultimately, to fibroblast accumulation, as well as enhanced
extracellular matrix (ECM) deposition. Development of novel
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therapeutic targets has been majorly focusing on the effectiveness
of potential drugs on fibroblast accumulation and distorted ECM
turnover (1).

In this issue of the Journal, Weng and colleagues (pp. 1402–
1412) highlight the importance and suitability of targeting abnormal
alveolar epithelial cell proliferation as a relevant therapeutic option
(5). The authors report that deoxycytidine kinase (DCK), which is
a key enzyme providing deoxynucleotides for DNA replication, is
increasingly expressed in proliferating and hyperplastic alveolar
epithelial cells in experimental and human IPF. DCK is regulated
by hypoxia-inducible factor (HIF)-1a under hypoxic conditions,
which are apparent in the IPF lung. Using dyC, an enzymatic
inhibitor of DCK, Weng and colleagues demonstrate significant
attenuation of established experimental lung fibrosis, which was
accompanied by reduced proliferation of alveolar epithelial cells
and fibrotic mediator release (5).

The finding that alveolar epithelial cell proliferation and
hyperplasia contribute to the profibrotic milieu in IPF is supported
by several studies in the field (3, 6, 7). Key regulators of alveolar
epithelial cell proliferation, such as the Wnt inducible signaling
protein 1 or dimethylarginine dimethylaminohydrolase, have been
identified, and inhibition of these mediators led to attenuated
experimental lung fibrosis (6, 7). Moreover, epithelial cell–derived
matrix metalloproteinase-1 (MMP-1) is up-regulated in fibrosis
and has been shown to induce a proliferative alveolar epithelial cell
phenotype (8). Notably, Herrera and colleagues demonstrated
that MMP-1 is a potent inducer of HIF-1a, which raises the
possibility that MMP-1 might be involved in the mechanisms
proposed by Weng and colleagues (8).

Nevertheless, the majority of recent studies focused on alveolar
epithelial cell apoptosis as a main driver of the disease (9). For
example, it has been shown that induction of alveolar epithelial
cells apoptosis is a potent initiator of pulmonary fibrosis
development (10). On the basis of the collective evidence, it appears
that both ongoing alveolar epithelial apoptosis and (subsequent)
proliferation with the attempt to repair are characteristic of IPF
progression. It remains unclear, however, why the proliferative
response does not lead to proper wound repair, but ongoing
distortion of the alveolar epithelium and the lung architecture.
Heat shock proteins (HSPs) might represent a possible link
between cellular apoptosis and proliferation. For instance, several
studies have shown that HSPs are induced during the process
of apoptosis and inhibit apoptosis by interacting with proteins
involved in programmed cell death. Importantly, HSPs take part
in cancer cell proliferation, and recent studies have reported that
HSPs are involved in uncontrolled epithelial cell proliferation
in fibrotic lungs (11, 12).

Notably, the relevance of the HIF–DCK–2’-deoxyadenosine
5’-triphosphate (dATP) axis for chronic lung disease has been
recently demonstrated by the same group (13). Similar to IPF,
Weng and colleagues found that hypoxia-mediated DCK activity,
along with increased deoxyadenosine and dATP level in chronic
obstructive pulmonary disease (COPD), however surprisingly, was
associated with the opposite cellular outcome, alveolar epithelial
cell apoptosis. In the current publication, the authors observed
DCK mainly in proliferating cells, and DCK inhibition by dyC led
to decreased alveolar epithelial cell proliferation. In experimental
models of both COPD and IPF, DCK inhibition also led to
a reduction dATP level, suggesting that the inhibitory effect may

be directly mediated by dATP. These findings suggest that the
fine-tuned level of deoxyadenosine/dATP is the main determent of
functional outcome. It remains open how dynamic and different
these levels are in human disease in vivo and how these are further
regulated by other factors that lead to disease-specific outcomes.

Accumulating evidence strongly suggests a genetic
predisposition in familial as well as sporadic IPF, including
a genetic variant in the genes of surfactant proteins, telomerase,
or mucins (MUC5B) (14). Although, some mutations, for
example, in surfactant proteins, have been linked to alveolar
epithelial dysfunction and increased endoplasmic reticulum stress
in the alveolar epithelium (15), a causal link to alveolar epithelial
cell proliferation and/or hyperplasia needs to be addressed in future
studies. One plausible way to reconcile the different outcomes of
DCK expression and activity observed in IPF compared with those
in COPD is to consider the differences in genetic susceptibility as
well as disease-specific epigenetic alterations underlying IPF and
COPD (16).

Weng and colleagues further report increased hypoxia-driven
HIF-1a in IPF, thereby confirming previous studies (17). Hypoxic
conditions can be found in many chronic lung diseases, as well
as other conditions, such as ischemic heart disease or cancer (18).
As such, there is growing interest in DCK inhibitors as novel
therapeutics. Adverse effects of DCK inhibitors still need to be
accurately evaluated. For example, the inactivation of DCK induces
replication stress and DNA damage in erythroid, B lymphoid, and
T lymphoid lineages, thereby leading to a dramatic decrease in
the number of B lymphocytes in circulation (19). This role on
replication stress, particularly on lymphocytes, may also be
involved in the protection of the fibrotic process beyond the
mechanism found by Weng and colleagues. Moreover, one could
speculate that DCK inhibition also affects fibroblast proliferation,
which alongside reduced alveolar epithelial cell proliferation
results in reversal of experimental lung fibrosis.

Altogether, Weng and colleagues provide substantial
evidence that alveolar epithelial cell proliferation and hyperplasia
might actively contribute to progression and worsening of
pulmonary fibrosis. Notably, the authors present promising
data that this proliferating cell population might be a suitable target
for the development of potent antifibrotic agents. This is of
particular interest, as direct antiapoptotic strategies exert only
limited clinical feasibility because of their possible potential for
cancer-enabling mechanisms. Future in-depth analysis of the
genotypes/phenotypes, as well as functionality of alveolar epithelial
cell subpopulations in IPF, are clearly needed to further identify
suitable therapeutics that target these cells. Together with existing
promising compounds in (pre)clinical trials, which primarily affect
fibroblast function and/or ECM deposition, we thus might be able
to successfully reverse the intriguing and complex face of IPF. n
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