1	SSTR3 is a putative target for the medical treatment of gonadotroph adenomas of the pituitary				
2	Misu Lee ¹ , Amelie Lupp ² , Nigel Mendoza ³ , Niamh Martin ⁴ , Rudi Beschorner ⁵ , Jürgen Honegger ⁶ ,				
3	Jürgen Schlegel ⁷ , Talia Shively ⁴ , Elke Pulz ¹ , Stefan Schulz ² , Federico Roncaroli ⁴ , Natalia S.				
4	Pellegata ¹ .				
5					
6	¹ Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany; ² Department of				
7	Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University, Jena, Germany;				
8	³ Department of Neurosurgery, Imperial College, London, UK; ⁴ Department of Medicine, Imperial				
9	College, London, UK; ⁵ Institute for Pathology and Neuropathology, Department for Neuropathology,				
10	University of Tübingen, Tübingen, Germany; ⁶ Department of Neurosurgery, University of Tübingen,				
11	Tübingen, Germany; ⁷ Institute of Pathology, Technical University of Munich, München, Germany.				
12					
13	Abbreviated title: Somatostatin receptors in gonadotroph adenomas				
14	Key terms: Somatostatin receptors; gonadotroph adenoma; aggressive adenoma; pasireotide				
15					
16	Word Count: 3101				
17					
18					
19	Corresponding authors:				
20 21 22 23 24 25 26 27	Natalia S. Pellegata Institute of Pathology Helmholtz Zentrum München D-85764 Neuherberg, Germany Phone: +49-089-3187 2633 Fax: +49-089-3187 3360 e-mail: <u>natalia.pellegata@helmholtz-muenchen.de</u>				
28 29 30 31 32 33 34	Federico Roncaroli Department of Medicine Imperial College St Dunstans Road London W6 8RP, UK Phone: +44 (0)20 3311 7178 e-mail: f.roncaroli@imperial.ac.uk				

36 Abstract

Gonadotroph pituitary adenomas (GPAs) often present as invasive macroadenomas not amenable to complete surgical resection. Radiotherapy is the only post-operative option for patients with large invasive or recurrent lesions. No medical treatment is available for these patients. The somatostatin analogues (SSAs) octreotide and lanreotide that preferentially target somatostatin receptor type 2 (SSTR2) have little effect on GPAs.

It is widely accepted that the expression of specific SSTR subtypes determines the response to SSAs. Given that previous studies on mRNA and protein expression of SSTRs in GPAs generated conflicting results, we investigated the expression of SSTR2, SSTR3 and SSTR5 (the main targets of available SSAs) in a clinically and pathologically well characterized cohort of 108 patients with GPAs. A total of 118 samples were examined by immunohistochemistry using validated and specific monoclonal antibodies. Matched primary and recurrent tissues were available for 10 patients. The results obtained were validated in an independent cohort of 27 GPAs.

We observed that SSTR3 was significantly more abundant than SSTR2 (P<0.0001) in GPAs, while full-length SSTR5 was only expressed in few tumors. SSTR3 expression was similar in primary and recurrent adenomas, was high in potentially aggressive lesions and did not significantly change in adenomas that recurred after irradiation.

In conclusion, low expression of SSTR2 may account for the limited response of GPAs to octreotide and lanreotide. Given the potent anti-proliferative, pro-apoptotic and anti-angiogenic activities of SSTR3, targeting this receptor with a multireceptor ligand SSA such as pasireotide may be indicated for potentially aggressive GPAs.

57

59 INTRODUCTION

60 Somatostatin receptors (SSTRs) are G-protein-coupled molecules encoded by five distinct genes 61 (SSTR1-SSTR5) (Cuevas-Ramos & Fleseriu 2014, Theodoropoulou & Stalla 2013). SSTR1, SSTR2 62 and SSTR3 are constitutionally expressed in the normal human pituitary while SSTR4 and SSTR5 are 63 expressed at low level. In pituitary adenomas, SSTRs expression varies among types and within each 64 tumor type (Cuevas-Ramos & Fleseriu 2014, Theodoropoulou & Stalla 2013). When they bind to their 65 natural ligands somatostatin-14 and -28, SSTRs exert both a regulatory function on pituitary hormone 66 secretion by inhibiting their mRNA synthesis and release, and a potent anti-proliferative activity 67 (Theodoropoulou & Stalla 2013). For these reasons, SSTRs are established targets for peptide 68 receptor therapy with somatostatin analogs (SSAs).

69 The SSAs octreotide and lanreotide bind mainly to SSTR2 and to a lesser extent to SSTR3 and 70 SSTR5, and represent the mainstay of medical therapy of secretory somatotroph and thyrotroph 71 adenomas (Theodoropoulou & Stalla 2013, Grozinsky-Glasberg et al 2008, Ben-Shlomo & Melmed 72 2008). Treatment of acromegalic patients with these SSAs reduces or normalizes growth hormone 73 (GH) and insulin-like growth factor 1 (IGF1) levels and induces tumor shrinkage (Theodoropoulou & 74 Stalla 2013). Due to the restricted affinity of these two compounds for SSTRs, the multiligand SSA 75 pasireotide, was developed. Pasireotide has a 158-, >30-, and 11-fold higher functional activity than 76 octreotide on SSTR5, SSTR1 and SSTR3, respectively (Theodoropoulou & Stalla 2013, Schmid & 77 Schoeffter 2004). Though not free of side effects, pasireotide has shown promising results in the 78 treatment of acromegalic patients (Ben-Shlomo & Melmed 2008) and more recently of patients with 79 Cushing's disease (Colao et al 2012, Webb et al 2014). A clinical trial led by Gadelha and colleagues 80 is currently recruiting patients to evaluate the effect of pasireotide on re-growth of clinically non-81 functioning pituitary adenomas (NFPAs) (www.ClinicalTrial.gov; identifier NCT01620138).

82 Gonadotroph pituitary adenomas (GPAs) account for about 35% of all pituitary tumors. They are 83 usually clinically nonfunctioning, and are often diagnosed at the occurrence of signs and symptoms of 84 mass effects (Young et al 1996). Between 30-45% of GPAs extend to the cavernous sinus and fewer 85 cases invade the sellar floor causing considerable morbidity to the patients (Brochier et al 2010). 86 Large and invasive macroadenomas are not amenable to complete resection and can re-grow in up to 87 almost half the cases (Brochier et al 2010, Berkmann et al 2014). Radiotherapy is the only post-88 operative option for residual and recurrent lesions as no effective medical treatment is available. 89 Indeed, previous studies have documented little efficacy of octreotide and lanreotide in NFPAs (Colao 90 et al 2011).

Since the response of pituitary adenomas to SSAs depends on the expression of specific SSTR subtypes (Gatto et al 2013), and their level of expression may vary among tumors, SSTR assessment on tumor tissue might allow a more accurate stratification of patients who may benefit from SSA therapy. Previous studies assessing SSTR expression in GPAs have produced conflicting results (Pawlikowski et al 2003, Pisarek et al 2009, Ramirez et al 2012). Therefore, we aimed to determine the expression profile of SSTR2, SSTR3, and SSTR5 in a large and homogeneous cohort of patients with primary or recurrent GPAs. As mRNA and protein levels of SSTRs do not always correlate in

98 pituitary adenomas (Nielsen et al 2001), we used immunohistochemistry with specific and validated

antibodies. The results obtained in our cohort of 108 patients were validated in an independent series

100 of 27 GPA patients collected at different Institutions.

101 Our results show that SSTR3 is the most abundant receptor subtype in GPAs. Atypical and recurrent

102 GPAs show elevated expression of SSTR3, which is maintained after radiotherapy. SSTR3 could be

- the target of pharmacological treatment with pasireotide in patients with GPAs, particularly those with
- 104 aggressive/recurrent disease.
- 105

106 PATIENTS AND METHODS

107 Patient selection and tumor samples (test cohort)

108 From the Brain & Pituitary Tumor Registry at Imperial College, London, UK, we retrieved all patients 109 operated of trans-sphenoidal surgery (TSS) by the same neurosurgeon (NM) for GPA between 110 January 2005 and December 2013. We identified 108 patients whose medical records and pre- and 111 post-operative imaging were available for review. Patients with apoplexy were excluded. Seven 112 patients were re-operated for recurrent disease within the study period and 11 of the 108 adenomas 113 were recurrent lesions whereby the primary tumor had been removed prior to 2005. Overall, the tissue 114 from the primary and recurrent adenoma was available for examination in 10 cases. Six patients 115 showed measurable tumor re-growth at follow-up neuroimaging but were not re-operated on. The 116 clinical characteristics of these patients are summarized in Table 1.

117 A total of 118 adenoma samples (108 consecutive cases and the corresponding primary tumors of 10 118 recurrences) were assessed for SSTR expression. All tumors except 2 were clinically nonfunctioning. 119 Representative paraffin blocks were selected for SSTR immunohistochemistry using the original 120 hematoxylin and eosin (H&E)-stained sections. The original H&E-stained sections and immunostains 121 for anterior pituitary hormones, MIB-1 (Ki-67) and p53 were reviewed (Table 1). Steroidogenic factor 1 122 (SF1) was also performed in all cases to further confirm the diagnosis of GPA. Mitotic activity was 123 evaluated in 100 fields at x40 (Nikon Plan Fluor x0.75, Nikon Ltd, Japan). Sixty-five adenomas did not 124 show any mitoses. The remaining 43 adenomas showed a mitotic count ranging between 1x50 to 125 20x50 high power fields (HPFs). Immunostains for Ki67 were performed in all 118 tumor samples. The 126 Ki67 labeling index was calculated as the mean percentage of stained nuclei of tumor cells 127 irrespective of intensities for 1000 cells in three representative fields (total 3000 cells). It was equal or 128 higher than 3% in 11/108 cases (10.2%). Six (5.6%) were atypical adenomas defined according the 129 current WHO classification (Lloyd, et al. 2004). When classified following the grading criteria proposed 130 by Trouillas et al. (Trouillas, et al. 2013), 63 GPAs were grade 1a, 9 were 1b, 39 were 2a and 7 (6.5%) 131 were 2b. Pathological features of an example of grade 2b adenoma are shown in Supplementary 132 Figure 1. Oncocytic changes were seen in 15/108 tumors (13.8%). Tumor characteristics are 133 summarized in Table 1.

134 These studies were approved by the ethical committees of the Imperial College and patients signed an

135 informed consent.

136 Independent validation cohort

137 In order to validate the results obtained in our 108 patients, we also examined SSTR expression in 27 138 GPAs operated between 2010 and 2014 at the University of Tübingen and at the Technical University 139 of Munich, Germany. Five were females. The median age of the patients was 60 years (mean 59.5 140 years; range 25-81 years). All tumors were macroadenomas and clinically nonfunctioning. Medical 141 records were available for 17 of the patients. Six of them showed uni- or bilateral extension to the 142 cavernous sinus and none showed bone invasion. Ten were discovered incidentally at neuroimaging 143 performed for other causes, six came to medical attention for visual defects and one for signs and 144 symptoms secondary to hypopituitarism. One patient was operated for a recurrent adenoma (the 145 primary tumor was operated elsewhere). None of the patients received any medical treatment or 146 radiotherapy prior to initial surgery.

147 The original H&E-stained sections and immunostains for anterior pituitary hormones, MIB-1 (Ki-67) 148 and p53 were available for review. No samples were classified either as atypical adenoma or as 149 oncocytoma. Two expressed α GSU (alpha subunit), three FSH, 11 LH and 12 expressed 150 combinations of the gonadotropin subunits. Ki-67 was equal or higher than 3% in 3 cases; the 151 detection of p53 was positive in 2 cases.

These studies were approved by the ethical committees of the University of Tübingen and Technical University of Munich, and the patients signed an informed consent.

154

155 Immunohistochemistry (IHC)

156 Immunohistochemical stains for SSTRs were performed using an automated immunostainer (Ventana 157 Medical Systems, Tucson, AZ, USA) as previously reported (Lee et al 2013). The SuperSentitive IHC 158 detection system from BioGenex (Fremon, CA, USA) was used to visualize the antibody binding 159 following the manufacturer's instructions. Sections were counterstained with Mayer's Haemalum, 160 dehydrated and coverslipped. The primary antibodies directed against SSTR2 (clone UMB-1 reacting 161 with the SSTR2a isoform, dilution: 1/500), SSTR3 (clone UMB-5, dilution: 1/750), SSTR5 (clone UMB-162 4, dilution: 1/75) were purchased from Abcam (Cambridge, MA, USA). Sections of normal pancreas 163 were used as positive control and included in each run. Sections incubated without the primary 164 antibody were included in each batch as a negative control.

165 Evaluation of immunostains for SSTRs

166 Immunostains were evaluated semi-guantitatively on acquired images. An immunoreactive score (IRS) 167 was recorded for each section. The IRS was generated noting the intensity of the staining (no staining, 168 0; mild, 1; moderate, 2; strong, 3) and the percentage of cells showing membranous or cytoplasmic 169 expression (no positive cells, 0; <10% of positive cells, 1; 10%–50% of positive cells, 2; 51%–80% of 170 positive cells, 3; >80% of positive cells, 4). The overall IRS was calculated as [percentage of positive 171 cells] x [intensity of staining]. We considered the staining as being negative for IRS 0 and 1, weakly 172 positive for IRS 2 and 3, moderately positive for IRS 4-8, and strongly positive for IRS >8. The slides 173 were scored semi-quantitatively by the three experienced neuropathologists coauthors of this study 174 (RB, JS, FR). Scoring has been performed independently, with a double-blind method, according to

the criteria reported above with an inter-observer variability ranging from 1% to 3.7%. Discrepancieswere discussed among the three pathologists.

177 Statistical analysis

178 A paired two-tailed Student's t test was used to detect significance between two series of data and P

- value (P) < 0.05 was considered significant. To compare the distribution of IRS scores between
 matched primary and recurrent samples we performed the Mann-Whitney paired test, and differences
- 181 were taken to be statistically significant at P < 0.05.
- 182

183

184 RESULTS

185 Test patient cohort

186 The median age of the 108 GPA patients included in the study was 56 years (mean 56 years; range 187 24-84 years). Thirty-five patients were female. Eighty-two patients (75.9%) came to medical attention 188 with visual field defects secondary to chiasm compression. Nine adenomas were discovered 189 incidentally at neuroimaging performed for other causes; one occurred in a patient with MEN1. Two 190 female patients had a functioning GPA and both presented with amenorrhea secondary to abnormal 191 FSH secretion. Twenty-two patients had signs and symptoms of hypopituitarism and seven presented 192 with headache; two patients had reduced libido, four had amenorrhea and one gynecomastia 193 secondary to high prolactin.

All tumors were macroadenomas and all but two were clinically nonfunctioning. Twenty-seven cases
showed uni- or bilateral extension to the cavernous sinus and 14 invaded the sellar floor (altogether
37.9%); of the bone-invasive lesions, four also extended to the cavernous sinus.

197 None of the patients received any medical treatment or radiotherapy prior to initial surgery. Eight were 198 irradiated after the initial trans-sphenoidal surgery (TSS) to treat the residual adenoma and eleven had

radiotherapy after subsequent radiological evidence of recurrent disease (altogether 19/108, 17.6%).

200 The clinico-pathological characteristics of the patients are summarized in Table 1.

201 SSTR expression in GPAs

202 SSTR2 and SSTR3 were expressed in 25.4% and 94.06% of the GPAs, respectively. SSTR2 showed 203 membranous expression whereas SSTR3 showed both a membranous and cytoplasmic localization 204 (Figure 1A), as previously reported (Lupp et al 2012). SSTR5 was expressed in two cases. Normal 205 pancreas showed membranous expression of the three receptors. The mean immunoreactive score 206 (IRS) for SSTR2 in GPAs was 1.4 ± 2.5, with 74.6% (88/118) of the samples showing IRS 0-1 (scored 207 negative), and 16% (19/118) displaying moderate to strong immunoreactivity (IRS ≥4) (Figure 1B). The 208 mean IRS for SSTR3 was 7 ± 3.45, with 83% (98/118) of the adenomas having moderate to high 209 expression levels (IRS≥4) (Figure 1B). SSTR3 was significantly more expressed than SSTR2 (P=

- 210 7,29037E-45) in GPAs. We looked for possible associations between SSTR3 expression and invasion,
- 211 recurrence or residual disease and found no significant correlation. SSTR3 expression in atypical and
- grade 2b adenomas was high (mean IRS 9 \pm 2.35). The full-length SSTR5 was only weakly expressed
- 213 (IRS 2) in two adenomas (Figure 1B).

214 SSTR expression in tumor recurrence

Eighteen of the 108 patients (16.7%) underwent a second operation for recurrent disease. The primary tumor was available for 10 patients; six of them underwent radiotherapy after the first surgery. Tumors that recurred showed a SSTR profile similar to the other GPAs. IRS for SSTR2 slightly increased in the recurrent samples (P=0.031). IRS for SSTR3 in 10 paired primary-recurrent lesions was similar in four cases, increased in the recurrence in four cases, and decreased in two recurrences (P=0.376) (Figure 2A and 2B). Following radiotherapy, IRS for SSTR3 did not change or increased in four recurrent samples, and it decreased in two cases, where it remained in any case \geq 6.

222 SSTR expression in the independent validation series

To validate our results, we investigated SSTR2, SSTR3 and SSTR5 expression in series of 27 GPAs collected at two different Institutions. The mean immunoreactive score (IRS) for SSTR2 in the validation series was 1.04 \pm 1.47, with 66.7% (18/27) of the samples showing IRS 0-1 (scored negative), and 7.4% (2/27) displaying moderate to strong immunoreactivity (IRS ≥4) (Figure 1C). The mean IRS for SSTR3 was 10 \pm 2.25 and 96.3% (26/27) of the adenomas showed moderate to high expression levels (IRS≥4) (Figure 1C). SSTR3 was significantly more expressed than SSTR2 (P= 1.49947E-21). No samples in the validation cohort showed immunoreactivity for SSTR5.

Remarkably, GPA samples collected at different centers (validation cohort) show a SSTR expressionprofile virtually identical to our test cohort.

232

233 DISCUSSION

234 Using validated monoclonal antibodies (Gatto et al 2013, Lupp et al 2012, Korner et al 2012), we 235 have assessed the expression of SSTR2, SSTR3 and SSTR5 in a cohort of 118 clinically and 236 pathologically well-characterized primary and recurrent GPAs. Results were validated in an 237 independent cohort of 27 GPAs operated in different Institutions. In our test cohort, we have 238 demonstrated moderate to high expression of SSTR3 in 83% of cases while only 16% of them showed 239 moderate to strong immunoreactivity for SSTR2. Importantly, highly similar results were obtained by 240 analyzing our validation cohort of GPA samples. Indeed, in this series, moderate to high expression of 241 SSTR3 was seen in 96.4% of cases, whereas only 7.4% of them displayed moderate to strong 242 immunoreactivity for SSTR2.

Full-length SSTR5 was virtually absent in both sample series. Splice variants of the human *SSTR5* gene have been found in pituitary adenomas (Duran-Prado et al 2009), but the encoded truncated isoforms cannot be detected by the anti-SSTR5 antibody we used, which is directed against the receptor C-terminus. SSTR1 expression was investigated in 40 adenomas of the test cohort, including the recurrences, and in 10 tumors of the validation cohort. As we observed weak, diffuse expression
(IRS 2-3) in 11/50 samples while the remaining cases were virtually negative (Supplementary Figure
2), SSTR1 was not investigated further.

250 Previous studies investigating the mRNA or protein level of SSTRs in NFPAs/GPAs produced 251 conflicting results. Using polyclonal anti-SSTRs antibodies, Pawlikowski et al. (Pawlikowski et al 2003) 252 reported high expression of SSTR1, SSTR2, and SSTR5, with only little or no expression of SSTR3 in 253 13 GPAs and five null cell adenomas. The same group later found SSTR3 to be the most commonly 254 expressed subtype in GPAs, followed by SSTR2, with no SSTR5 expression (Pisarek et al 2009). 255 More recently Ramirez et al. (Ramirez et al 2012) examined SSTRs expression on tissue microarrays 256 of 74 NFPAs using the same monoclonal antibodies of our study. They observed SSTR2 to be the 257 most prevalent receptor subtype (expressed in 60% of cases) while the immunopositivity for both 258 SSTR3 and SSTR5 was observed in about 45% of adenomas. Different scoring criteria (membranous 259 versus cytoplasmic staining of SSTR2), and/or the size of tissue samples (whole sections versus 260 cores) may explain the discrepancy between ours and Ramirez's et al. (2012) results. A study on 12 261 NFPAs, five of which recurred, confirms our observation of a tendency toward higher SSTRs levels in 262 the recurrent lesions compared to the corresponding primary adenoma (Pisarek et al 2011).

263 In tumor cells, upon ligand binding, SSTR3 is known to inhibit mitogenic pathways by activating 264 protein tyrosine phosphatases and ultimately inactivating Raf-1 and MAPK activities (Theodoropoulou 265 & Stalla 2013). SSTR3 also induces apoptosis by activating p53 and caspases, and represses 266 endothelial cell proliferation (Theodoropoulou & Stalla 2013, Florio et al 2003). Thus, targeting SSTR3 267 might induce cytostatic and cytotoxic effects, as well as inhibit angiogenesis. The evidence of 268 elevated SSTR3 expression in potentially aggressive adenomas (atypical or grade 2b, 6% in our test 269 cohort), and in all but 2 recurrent lesions (including those that recurred after irradiation) supports the 270 rationale of targeting SSTR3 in patients with aggressive/recurrent GPAs. Among the currently 271 available SSAs, pasireotide represents the most promising compound given its 11-fold higher 272 functional activity on SSTR3 than octreotide and lanreotide. In vitro evidence that pasireotide inhibits 273 the viability of NFPAs in primary cultures (Zatelli et al 2007) further supports the hypothesis that 274 SSTR3 is a suitable target for treatment. Indeed, the anti-proliferative effect of pasireotide on NFPAs 275 cultures, in addition to a suppressive action on VEGF secretion (Zatelli et al 2007), may also be 276 mediated by pathways downstream of SSTR3.

277 Similar to a previous series (Young et al 1996), about 80% of the patients in our test cohort presented 278 with visual impairment secondary to chiasm compression. TSS achieved chiasm decompression in all 279 but eight patients who required post-operative radiotherapy to treat residual tissue still encroaching on 280 the chiasm. Octreotide and lanreotide can cause shrinkage of a substantial number of somatotroph 281 and thyrotroph adenomas, while clinical data on pasireotide is limited to a few studies. Petersenn et al. 282 (Petersenn et al 2010) obtained a >20% reduction in tumor volume in 39% in acromegalic patients. 283 and Colao et al. (Colao et al 2012) observed a reduction of up to 43.8% in tumor volume in Cushing's 284 patients treated with pasireotide. To date, there are no published studies on the efficacy of pasireotide 285 in GPA patients, as these patients are just now being recruited in an ongoing clinical trial. The results 286 of this trial will help to determine whether pasireotide can induce tumor shrinkage in GPAs.

Two of the patients had functioning GPAs (FSH-secreting) that showed high SSTR3 expression (IRS 6 and 12). These tumors are uncommon. They usually occur in women in the reproductive age and present with menstrual irregularities, infertility or with ovarian hyperstimulation syndrome. Functioning GPAs are difficult to treat medically when surgery fails to completely remove the adenoma (Mor et al 2005; Ntali et al 2014). Our evidence of high SSTR3 in these tumors, and the fact that SSTR3 has anti-secretory action (Eigler et al 2014) similar to other SSTRs, may help guiding the medical therapy of such patients.

In conclusion, we show that SSTR3 is the predominant SSTR in GPAs. Our results may explain the limited efficacy of octreotide and lanreotide in patients with this type of adenoma and provide the rationale for investigating the effect of alternative SSAs with higher affinity for SSTR3 (such as pasireotide) in GPAs, especially in patients with large invasive or recurrent adenomas. Our data underpins the utility of profiling for SSTRs to stratify patients with pituitary adenomas for therapy with SSAs.

300

301 **Declaration of interest**

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

304

305 Funding

Financial support for this project was provided by grant SFB824, subproject B08, from the Deutsche Forschungsgemeinschaft (DFG) and grant #110874 from the Deutsche Krebshilfe to N.S.P.

308

309 Acknowledgments

- 310 We thank E. Samson for help in cutting the tissues blocks.
- 311 Tissue samples of the main cohort were provided by the Imperial College Healthcare NHS Trust
- 312 Tissue Bank. Other investigators may have received samples from these same tissues.

313

315 References

Ben-Shlomo A & Melmed S 2008 Somatostatin agonists for treatment of acromegaly. *Mol Cell Endocrinol* **286** 192-198.

Berkmann S, Schlaffer S, Nimsky C, Fahlbusch R & Buchfelder M 2014 Follow-up and long-term outcome of nonfunctioning pituitary adenoma operated by transsphenoidal surgery with intraoperative high-field magnetic resonance imaging. *Acta Neurochir (Wien)*

Brochier S, Galland F, Kujas M, Parker F, Gaillard S, Raftopoulos C, Young J, Alexopoulou O, Maiter
 D & Chanson P 2010 Factors predicting relapse of nonfunctioning pituitary macroadenomas after
 neurosurgery: a study of 142 patients. *Eur J Endocrinol* 163 193-200.

Colao A, Grasso LF, Pivonello R & Lombardi G 2011 Therapy of aggressive pituitary tumors. *Expert Opin Pharmacother* **12** 1561-1570.

Colao A, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, Schoenherr U, Mills D,
 Salgado LR, Biller BM, et al. 2012 A 12-month phase 3 study of pasireotide in Cushing's disease. *N Engl J Med* 366 914-924.

Cuevas-Ramos D & Fleseriu M 2014 Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. *J Mol Endocrinol* **52** R223-240.

Duran-Prado M, Gahete MD, Martinez-Fuentes AJ, Luque RM, Quintero A, Webb SM, Benito-Lopez
 P, Leal A, Schulz S, Gracia-Navarro F, et al. 2009 Identification and characterization of two novel
 truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in
 pituitary tumors. *J Clin Endocrinol Metab* 94 2634-2643.

Eigler T, Ben-Shlomo A, Zhou C, Khalafi R, Ren SG & Melmed S 2014 Constitutive somatostatin receptor subtype-3 signaling suppresses growth hormone synthesis. *Mol Endocrinol* **28** 554-564.

Florio T, Morini M, Villa V, Arena S, Corsaro A, Thellung S, Culler MD, Pfeffer U, Noonan DM,
Schettini G & Albini A 2003 Somatostatin inhibits tumor angiogenesis and growth via somatostatin
receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein
kinase activities. *Endocrinology* 144 1574-84.

Gatto F, Feelders RA, van der Pas R, Kros JM, Waaijers M, Sprij-Mooij D, Neggers SJ, van der Lelij
 AJ, Minuto F, Lamberts SW, et al. 2013 Immunoreactivity score using an anti-sst2A receptor
 monoclonal antibody strongly predicts the biochemical response to adjuvant treatment with
 somatostatin analogs in acromegaly. *J Clin Endocrinol Metab* 98 E66-71.

Grozinsky-Glasberg S, Shimon I, Korbonits M & Grossman AB 2008 Somatostatin analogues in the control of neuroendocrine tumours: efficacy and mechanisms. *Endocr Relat Cancer* **15** 701-720.

Korner M, Waser B, Schonbrunn A, Perren A & Reubi JC 2012 Somatostatin receptor subtype 2A
immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo
somatostatin receptor targeting. *Am J Surg Pathol* **36** 242-252.

Lee M, Marinoni I, Irmler M, Psaras T, Honegger JB, Beschorner R, Anastasov N, Beckers J, Theodoropoulou M, Roncaroli F, et al. 2013 Transcriptome analysis of MENX-associated rat pituitary adenomas identifies novel molecular mechanisms involved in the pathogenesis of human pituitary gonadotroph adenomas. *Acta Neuropathol* **126** 137-150. Lloyd RJ, Kovacs K, Young WF Jr, Farrell WE, Asa SL, Trouillas J, Kontogeorgos G, Sano T, Scheithauer BW, Horvath E, et al. 2004 Tumours of the pituitary gland. In Pathology and Genetics. Tumours of the pituitary gland. In Pathology and Genetics. *eds. RA DeLellis, RV Lloyd & PU Heitz, Lyon: International Agency for Research and Cancer (IARC)* 9-48.

Lupp A, Nagel F, Doll C, Rocken C, Evert M, Mawrin C, Saeger W & Schulz S 2012 Reassessment of sst3 somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-5. *Neuroendocrinology* **96** 301-310.

- Mor E, Rodi IA, Bayrak A, Paulson RJ & Sokol RZ 2005 Diagnosis of pituitary gonadotroph adenomas in reproductive-aged women. *Fertil Steril* **84** 757.
- Nielsen S, Mellemkjaer S, Rasmussen LM, Ledet T, Olsen N, Bojsen-Moller M, Astrup J, Weeke J &
 Jorgensen JO 2001 Expression of somatostatin receptors on human pituitary adenomas in vivo and ex
 vivo. *J Endocrinol Invest* 24 430-437.
- 366 Ntali G, Capatina C, Grossman A & Karavitaki N 2014 Functioning Gonadotroph Adenomas. J Clin
 367 Endocrinol Metab jc20142362
- Pawlikowski M, Pisarek H, Kunert-Radek J & Radek A 2003 Immunohistochemical detection of
 somatostatin receptor subtypes in "clinically nonfunctioning" pituitary adenomas. *Endocr Pathol* 14
 231-238.
- Petersenn S, Schopohl J, Barkan A, Mohideen P, Colao A, Abs R, Buchelt A, Ho YY, Hu K, Farrall AJ,
 et al. 2010 Pasireotide (SOM230) demonstrates efficacy and safety in patients with acromegaly: a
 randomized, multicenter, phase II trial. *J Clin Endocrinol Metab* **95** 2781-2789.
- Pisarek H, Kunert-Radek J, Radek M, Swietoslawski J, Winczyk K & Pawlikowski M 2011 Expression
 of somatostatin receptor subtypes in primary and recurrent gonadotropinomas: are somatostatin
 receptors involved in pituitary adenoma recurrence? *Neuro Endocrinol Lett* **32** 96-101.
- Pisarek H, Pawlikowski M, Kunert-Radek J & Radek M 2009 Expression of somatostatin receptor
 subtypes in human pituitary adenomas -- immunohistochemical studies. *Endokrynol Pol* 60 240-251.
- Ramirez C, Cheng S, Vargas G, Asa SL, Ezzat S, Gonzalez B, Cabrera L, Guinto G & Mercado M
 2012 Expression of Ki-67, PTTG1, FGFR4, and SSTR 2, 3, and 5 in nonfunctioning pituitary
 adenomas: a high throughput TMA, immunohistochemical study. *J Clin Endocrinol Metab* 97 17451751.
- Schmid HA & Schoeffter P 2004 Functional activity of the multiligand analog SOM230 at human
 recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors.
 Neuroendocrinology 80 Suppl 1 47-50.
- Theodoropoulou M & Stalla GK 2013 Somatostatin receptors: from signaling to clinical practice. *Front Neuroendocrinol* 34 228-252.
- Trouillas J, Roy P, Sturm N, Dantony E, Cortet-Rudelli C, Viennet G, Bonneville JF, Assaker R, Auger
 C, Brue T, et al. 2013 A new prognostic clinicopathological classification of pituitary adenomas: a
 multicentric case-control study of 410 patients with 8 years post-operative follow-up. *Acta Neuropathol* **126** 123-135.

Webb SM, Ware JE, Forsythe A, Yang M, Badia X, Nelson LM, Signorovitch JE, McLeod L, Maldonado M, Zgliczynski W, et al. 2014 Treatment effectiveness of pasireotide on health-related quality of life in patients with Cushing's disease. *Eur J Endocrinol* **171** 89-98.

Young WF, Jr., Scheithauer BW, Kovacs KT, Horvath E, Davis DH & Randall RV 1996 Gonadotroph adenoma of the pituitary gland: a clinicopathologic analysis of 100 cases. *Mayo Clin Proc* **71** 649-656.

Zatelli MC, Piccin D, Vignali C, Tagliati F, Ambrosio MR, Bondanelli M, Cimino V, Bianchi A, Schmid
 HA, Scanarini M, et al. 2007 Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces
 cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor
 secretion. *Endocr Relat Cancer* 14 91-102.

Page 13 of 16

402 Figure legends

Figure 1. Expression of SSTR2, SSTR3 and SSTR5 in GPAs. (A) Immunohistochemical staining for
SSTR2, SSTR3 and SSTR5 in representative GPA cases (immunoperoxidase, x200; insets x400)
(scale bar = 20µm); (B) Immunoreactive scores (IRS) for SSTR2, SSTR3 and SSTR5 expression in
our test cohort of 118 GPA samples; (C) Immunoreactive scores (IRS) for SSTR2, SSTR2, SSTR3 and SSTR5
expression in our validation cohort of 27 independent GPA samples.

408

Figure 2. Expression of SSTRs in paired primary-recurrent tumor samples. (A) Immunohistochemical staining for SSTR3 in the matched primary-recurrent samples. Patient ID (P) is shown on the side. The boxed samples come from patients who received radiotherapy after the first surgery. (B) Table summarizing the IRS for SSTR2 and SSTR3, and Ki67 positivity of the paired primary-recurrent samples. The patients indicated in blue are those who received radiotherapy after the first surgery. These samples were negative for SSTR5.

415

416 **Table 1: Essential clinical and pathological features of the GPAs in our test cohort.**

В

TEST COHORT (n=118)

SSTR3

2-3

4-8

IRS score

В

Patient ID	nt ID IRS SSTR2		IRS SSTR3		Ki67 %	
	Primary	Recurrence	Primary	Recurrence	Primary	Recurrence
P1	0	1	6	6	<1	2
P2	0	0	4.5	6	2	7-8
P3	1	1	3	3	<1	2-3
P4	0	2	8	8	<1	<1
P5	3	4	10	10	<1	1
P6	0	0	2	10	<1	<1
P7	2	3	8	12	<1	1
P8	0	4	6	12	<1	3
P9	0	0	12	8	<1	1-2
P10	0	2	6	2	<1	<1

Number of patients (total)	Male/Female
108	73M/35F
Age	
Mean years (range)	56 (24-84)
Males	58
Female	53
Signs and symptoms at onset	Percentage of patients
Visual impairment	75.9% (82/108)
Hypopituitarism	20.4% (22/108)
Raised prolactin	11.1% (12/108)
Incidentalomas	8.3% (9/108)
Headache	6.5% (7/108)
Amenorrhea	5.6% (6/108)
Gynecomastia	0.9% (1/108)
Extension/Invasion	Percentage of tumors
Extension to cavernous sinus	25% (27/108)
Bone invasion	13.0% (14/108)
Follow-up	
Mean months (range)	45 (7-110)
Regrowth	5.5% (6/108)
Re-operation	6.5% (7/108)
Recurrence ^a	16.7% (18/108)
Post-operative radiotherapy	17.6% (19/108)
Pathological features	Percentage of tumors
Mitotic activity	
Absent	60.2% (65/108)
Present (range 1x50-20x50 HPF ^b)	39.8% (43/108)
Immune profile	
ESHB	88.9% (96/108)
ТНВ	43.5%(47/108)
aGSU	75% (81/108)
Others	/3/8 (81, 188)
Oncocytic changes	13.8% (15/108)
Ki67	10.070 (10, 100)
<3%	89.8% (97/108)
>3%	10.2% (11/108)
p53	10.270 (11, 100)
Negative	92.6% (100/108)
Positive	7.4% (8/108)
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Atypical (WHO, ref. Lloyd et al. 2004)	5.6% (6/108)
Grade 2b (ref. Trouillas et al. 2013)	6.5% (7/108)

a, Seven patients recurred within the study period; the other 11 cases were recurrent lesions whose primary tumor was removed prior to 2005

b, HPF, high power field