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ABSTRACT

Motivation: In sequencing studies of common diseases and quantita-

tive traits, power to test rare and low frequency variants individually is

weak. To improve power, a common approach is to combine statistical

evidence from several genetic variants in a region. Major challenges are

how to do the combining and which statistical framework to use.

General approaches for testing association between rare variants and

quantitative traits include aggregating genotypes and trait values,

referred to as ‘collapsing’, or using a score-based variance component

test.However, littleattentionhasbeenpaid toalternativemodels tailored

for protein truncating variants. Recent studies have highlighted the im-

portant role that protein truncating variants, commonly referred to as

‘loss of function’ variants, may have on disease susceptibility and quan-

titative levels of biomarkers. We propose a Bayesian modelling frame-

work for the analysisofprotein truncating variantsandquantitative traits.

Results: Our simulation results show that our models have an advan-

tage over the commonly used methods. We apply our models to se-

quence and exome-array data and discover strong evidence of

association between low plasma triglyceride levels and protein trun-

cating variants at APOC3 (Apolipoprotein C3).
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1 INTRODUCTION

Advances in DNA sequencing and customized exome arrays

are quickly transforming the landscape of genomic studies of

diseases and related quantitative traits (Bonnefond et al., 2012;

Jonsson et al., 2012; Momozawa et al., 2011; Nejentsev et al.,

2009; Rivas et al., 2011). In sequencing studies of common dis-

eases and quantitative traits, power to individually test any rare

or low frequency variant is typically weak in attainable sample

sizes. Hence, to boost the ability to detect signal, evidence is

combined across variants. When

designing such an ‘aggregation’ test, there are three main

questions to consider:

� Across which biological units should variants be combined?

� Which variants mapping within those units should be

included?

� Which statistical models should be used?

As for the first question, an obvious choice of biological unit

across which to combine variants is the gene, and we focus on

this throughout the article, considering all the coding sequence of

the gene as the relevant unit. An alternative would be to combine

variants across all genes within a pathway, but this adds several

complications, not least because of the currently rather imprecise

knowledge of biological pathways.
Within a gene one could include all observed variants, but this

would be likely to include many neutral variants and/or variants

with opposite direction of effects, both of which can lead to loss of

power under many statistical methods. The ideal approach would

be to combine only those variants that affect the trait of interest.

This is, however, difficult in practice because these will not be

known in advance. One approximation would be to include

only the variants with functional effects. Even this is challenging

with current limited knowledge of the function of coding variants

in the human genome: commonly used predictors of the function

of non-synonymous variants (Adzhubei et al., 2010; Kumar et al.,

2009) can often be unreliable (Flanagan et al., 2010).
One class of variants where functional prediction is much

more straightforward is that which truncates the resulting pro-

tein product (stop-gain, frameshift coding, splice disrupting). The

functional prediction is made based on the translational conse-

quence of a mutation against a reference transcript set, for ex-

ample, Gencode. Protein truncating variants (PTVs) are typically

subject to nonsense-mediated decay (NMD), a cellular mechan-

ism that detects nonsense mutations and prevents the expression

of truncated proteins, resulting in loss of function of that copy of

the protein. To a first approximation, PTVs are thus likely to

have the same functional consequence, namely, loss of function
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(though see below for a more nuanced treatment), so that vari-
ants in this class within a gene may naturally be combined in

assessing their effect on a trait or phenotype of interest. A second

reason for focussing on PTVs is that there is ample evidence from
studies of Mendelian phenotypes, common diseases and quanti-

tative traits (Chen et al., 2011; Herman et al., 2012; Jones et al.,

2009; Pollin et al., 2008) that PTVs play an important role in the
genetic architecture of human traits. Recent studies have high-

lighted and characterized PTVs (Cohen et al., 2005; Hofker,

2010; Isidor et al., 2011; MacArthur et al., 2012; Musunuru
et al., 2010; Nejentsev et al., 2009; Rivas et al., 2011;

Schonfeld, 2003), commonly referred to as ‘loss of function’

(LoF) variants (MacArthur et al., 2012). These studies describe
the effect and frequency of PTVs: they can have strong effects on

phenotype, and they are, in general, rare, as selection has played

a role in preventing them from reaching a high frequency in the
population (MacArthur et al., 2012).
Here, we introduce a new statistical method for assessing asso-

ciation between PTVs and quantitative traits. We first consider

the straightforward case in which all PTVs are assumed to have
the same effect, which would be appropriate, for example, if all

caused loss of function.We then extend this approach to allow for

the possibility that some PTVs have one effect and some have
another, for example, if most PTVs are subject to NMD, and

hence are LoF, whereas some (e.g. in the final exon) escape

NMDand can act as loss of function, gain of function (by deleting
an inhibitory domain) or neutral variants. The approach could be

extended to allow more than two groups of PTVs, with PTVs in

each group having the same effect, but for definiteness we focus in
this article on the case of either one or two groups.

We study the properties of the newmethod and compare it with
other approaches. A simple alternative to our similar effects

model is to use the mean trait value of the PTV carriers as the

test statistic [see e.g. the collapsingmethods of Li and Leal (2008)].
Other methods in our comparisons include the sequence kernel

association test (SKAT) (Wu et al., 2011), SKAT-O (Lee et al.,

2012) and multiple linear regression. SKAT is a variance compo-
nent test that allows variants with different direction of effects and

maintains power when variants in a unit are non-causal, but is less

powerful than the collapsing methods for variants with similar
effects; SKAT-O uses the data to optimally combine the collap-

sing test and the non-collapsing SKAT, but pays a penalty for

combining multiple methods in a single test (Lee et al., 2012).
These methods have been described and compared in Bacanu

et al. (2012) and Basu and Pan (2011). The main difference be-

tween our methods and the previously existing ones is that our
Bayesian model comparison framework automatically incorpor-

ates information about the factors affecting power of the study

(such as the number of PTV carriers). We discuss how this affects
the ranking of genes within a study.

We apply our methods to unpublished sequence and exome-
single nucleotide polymorphism (SNP)-array data and find a

strong signal at APOC3 where PTVs lead to decreased plasma

triglyceride levels.

2 METHODS

Assume that among N individuals studied, n individuals carry one of the

k PTVs observed in a gene considered, typically n� N. Because PTVs

are typically rare, we will assume here that individuals carry at most one

such variant. (Two PTVs on the same chromosome are likely to have the

same effect as one PTV, and individuals with PTVs on both chromo-

somes could be treated either as a separate class or in the same class if a

dominant model were thought appropriate.) The same PTV might be

carried by several individuals.

We denote by Y1, . . . ,YN the standardized quantitative trait values of

the individuals and assume that the trait values Y1, . . . ,Yn correspond to

the carriers of PTVs and the values Ynþ1, . . . ,YN correspond to the non-

carriers of PTVs. We further assume that standardized trait values across

the whole sample follow a standard normal distribution. If necessary this

can be achieved by applying quantile normalization. If the PTV has a big

effect on the trait, individuals carrying PTVs might have extreme trait

values, which would be moved closer to the other values under quantile

normalization. In this setting, there is a potential loss of power through

quantile normalization, but we see this as being outweighed by the add-

itional robustness it provides. Outlying observations can occur for many

reasons aside from genetics (typically measurement errors), and the indi-

viduals who have these outlying observations will have PTVs at some

genes, so that in the context of a genome-wide analysis, failure to quantile

normalize can lead to a strong (false-positive) signal at the genes where

the individuals with the outlying observations have a PTV. Analogous

issues arise in Genome-wide association studies (GWAS) for quantitative

traits where individuals with extreme trait values can contribute to a

strong signal at SNPs where they are called homozygous for a rare

variant.

Under the null model, the gene does not affect the trait, and hence the

trait values among both the PTV carriers and the PTV non-carriers

follow the standard normal distribution:

NULL :Y i � Nð0, 1
2Þ, for i ¼1, 2, . . . ,n

Y j � N 0, 12
� �

, for j ¼ nþ 1, nþ 2, . . . ,N:

The statistical challenge is then in principle straightforward: one looks for

(strong) evidence against the null hypothesis. In effect, this reduces to

asking whether Y1, . . . ,Yn follow a standard normal distribution. (If

PTVs at the gene under consideration do affect trait values, this will

also cause a deviation from normality for Ynþ1, . . . ,YN, when the

entire sample is quantile normalized together, but because n� N, this

effect will be small, and we only look for evidence of departure from the

null at Y1, . . . ,Yn.)

One could adopt either a frequentist or a Bayesian statistical approach

to the problem. We consider both, but we see substantial advantages here

in adopting a Bayesian framework, for reasons we return to below.

The Bayesian approach requires specification of the alternative hy-

pothesis. We first consider the setting, which we call the similar effects

model (SEM), where all PTVs have the same effect on gene function, and

hence on the distribution of trait values.

2.1 Similar effects model

Under the SEM, we assume that the effect of a PTV is to shift the mean

of the distribution of trait values, so that the trait values of the PTV

carriers follow a normal distribution with mean � and standard deviation

s, whereas the trait values for the remaining individuals follow a standard

normal distribution:

SEM :Yi � Nð�, s
2Þ, for i ¼ 1, 2, . . . , n

Yj � Nð0, 1
2Þ, for j ¼ nþ 1, nþ 2, . . . ,N:

In this work, we fix the value of s¼ 1, but more general approaches could

also allow a change under the alternative hypothesis in the variance of

trait values, or potentially in their distribution. A change in variance

could be handled easily if a conjugate prior were used; because the

number of individuals with PTVs will typically be small, power to

detect a change in the distribution of trait values will be limited.
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To complete the specification of the alternative model, we must specify

the distribution of the trait mean � under the alternative hypothesis.

Because it will not usually be known in advance whether PTVs will in-

crease or decrease trait values, we use a 50:50 mixture of two normal

distributions as a prior for �:

� �
1

2
Nð�a, t2Þ þ

1

2
Nða, t2Þ,

We fix the hyperparameters to a ¼ 1:5 and t2 ¼ 0:5. With these values,

95% of the prior mass for � lies in the set ð�2:89, � 0:12Þ [ ð0:12, 2:89Þ.

In a Bayesian framework, the appropriate way to compare the null and

alternative models is via the Bayes factor (BF) defined as the ratio of the

probability densities of the observed data under the two models. In our

setting, the BF reduces to a ratio of densities involving only trait values of

the carriers of PTVs (YPTV ¼ fY1, . . . ,Yng) because under both models

the data on the non-carriers of PTVs have the same distribution.

BFSEM ¼
PrðYjSEMÞ

PrðYjNULLÞ
¼

PrðYPTVjSEMÞ

PrðYPTVjNULLÞ

¼

R Q
i fðYij�, s

2Þð0:5f ð�j � a, t2Þ þ 0:5f ð�ja, t2ÞÞd�Q
i fðYij0, 12Þ

¼ 0:5BFða, t, s, f1, . . . , ngÞ þ 0:5BFð�a, t, s, f1, . . . , ngÞ,

where f ð�jd, vÞ is the density function of the normal distribution with

mean d and variance v and

BFða, t, s, IÞ ¼ s�jIjt�1
jIj

s2
þ

1

t2

� ��0:5

� exp �0:5a2t�2 � 0:5 s�2 � 1
� �X

i

Y2
i

 !

� exp

P
i
Yi

s2
þ a

t2

� �2

2 jIj
s2
þ 1

t2

� �
0
BBB@

1
CCCA,

where the index i runs through the index set I whose size is jIj.

2.2 Grouped effects model

In some biological contexts, different PTVs may have different effects on

the trait. For example, different PTVs can affect different transcript iso-

forms, either trigger or escape NMD, or act as dominant gain of function

variants, all of which have been observed in genes predisposing to cancer

(Futreal et al., 2004; Isidor et al., 2011; Ruark et al., 2013). To cater for

this setting, we extend our alternative model by allowing different groups

of PTVs to have different impacts on the trait.

Analysis of RNA sequencing data confirms that transcripts with pre-

mature termination codons 50bp upstream of the final exon–exon junc-

tion escape NMD (Geuvadis RNA-Sequencing Project, unpublished

data). The mutant mRNA products may well lead to resulting truncated

proteins that act in a loss of function, or gain of function manner as

observed in NOTCH2 (Isidor et al., 2011) or have no impact on a trait.

A prudent thing to do is to have an alternative model where PTVs450bp

upstream of the final exon–exon boundary could be placed in one of the

groups with all other PTVs in the other group. However, the limitation in

this setting is that it may well be the case that variants that escape NMD

have a similar effect on trait values as variants that trigger NMD, or have

no effect. We extend our alternative model and use biologically informed

weights to reflect this:

Let G be the set of all 2k possible assignments of the k PTVs into two

groups labelledþ and �. For any grouping g 2 G, let IþðgÞ and I�ðgÞ be

the sets of indexes of the individuals who carry PTVs that g assigns to

groupsþ and �, respectively. We define the model

GEMðgÞ :Yi � Nð�þ, s
2Þ, for i 2 IþðgÞ

Yi � Nð��, s
2Þ, for i 2 I�ðgÞ

Yj � Nð0, 1
2Þ, for j4n:

Our priors are �þ � N ða, t
2Þ and �� � N ð�a, t

2Þ, with a ¼ 1:5 and

t2 ¼ 0:5, and again we keep s¼ 1 fixed. In other words, we assume

that the phenotype of an individual with a truncating variant in a relevant

gene will be towards the tails of the distribution.

The BF between GEMðgÞ and the null model is

BFGEMðgÞ ¼
PrðYjGEMðgÞÞ

PrðYjNULLÞ
¼

PrðYPTVjGEMðgÞÞ

PrðYPTVjNULLÞ

¼

R Q
i2IþðgÞ

f ðYij�þ, s
2Þf ð�þja, t

2Þd�þQ
i2IþðgÞ

fðYij0, 12Þ

�

R Q
i2I�ðgÞ

f ðYij��, s
2Þf ð��j � a, t2Þd��Q

i2I�ðgÞ
fðYij0, 12Þ

¼ BFða, t, s, IþðgÞÞ � BFð�a, t, s, I�ðgÞÞ

We define the final GEM as a linear combination of submodels

GEMðgÞ by choosing a weight wg � 0 for each grouping g 2 G with

the constraint
P

g wg ¼ 1: The corresponding BF is

BFGEM ¼
X
g2G

wgBFGEMðgÞ:

Note that by giving a weight of 0.5 to each of the two groupings in

which all variants belong to the same group, and a weight of 0 to all other

groupings, we are back to the SEM.

We refer to the approach that uses biologically informed weights based

on NMD predictions as grouped effects model (GEM)-NMD. Let I1ðI0Þ

be the indexes of individuals carrying variants that are predicted to trigger

(escape) NMD. We define model GEM-NMD by using wg / 1 for such

groupings g 2 G in which individuals in I1 and individuals in I0 belong to

different groups and by using wg / 2�minfjIþðgÞj, jI�ðgÞg for other groupings.

In sequencing datasets even for current large experiments, the numbers

of PTVs in any gene will tend to be small, meaning that there are only few

data for distinguishing the null and alternative models. Use of the GEM

requires averaging over submodels corresponding to different assign-

ments of PTVs to groups. In the absence of good biological information

(such as escape or not from NMD as just described) to assign PTVs to

groups, or equivalently to heavily constrain the prior on submodels, the

averaging across submodels is likely to come at a considerable cost in

power in these settings. In our simulation study and application below,

we thus focus only on GEM-NMD, rather than the more general versions

of the GEM model.

Finally, we note that under GEM-NMD the averaging over submodels

described above maintains the symmetry in SEM: under the prior, the

probability that a particular group of PTVs increases trait values while

the other group decreases them is the same as the probability that the first

group decreases trait values and the second increases them. This is

appropriate biologically because it will typically not be possible to predict

in advance, for example, whether loss of function mutations will cause an

increase or decrease in trait values. Figure 1 provides an illustration of the

prior and sampling distribution for SEM and GEM.

2.3 Other approaches

When expecting similar effects across the variants, a simple alternative to

our SEM is to use 1
n ð
Pn

i¼1 YiÞ
2 as a test statistic (with �21 distribution

under the null). We call this approach Collapse because it is similar in

spirit to the collapsing methods of Li and Leal (2008). Other methods that

we use in comparisons are the SKAT (Wu et al., 2011), with the default

weight parameters of Beta(1,25) for the linear weighted kernel and

Davies’ method to compute the P-value, SKAT-O (Lee et al., 2012)

using method¼ ‘optimal’ and multiple linear regression (lm) as
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implemented in R. Our method and Collapse use the normalized trait

values only from the PTV carriers; other methods use trait values on all

individuals.

3 RESULTS

3.1 Simulation study

3.1.1 Comparison of SEM and Collapse For a fixed value of n,
both P-value from Collapse and BFSEM (with s2 ¼ 1) depend on

the data only through
Pn

i¼1 Yi

�� ��, and both show monotonically

increasing deviation from the null model with increasingPn
i¼1 Yi

�� ��. It follows that SEM (with s2 ¼ 1) shares the frequen-

tist properties of Collapse, i.e. has the same power and produces

the same P-values under the null if used as a test statistic.

However, a main difference between the methods is that this

similarity does not hold across genes with different numbers of

PTVs. Rankings across all genes in a study by BF and by P-value

will in general be different, and for the reasons given in the

Discussion, ranking by BF is preferable.
Figure 2 provides an illustration of this effect. In it, the P-

value is fixed at 0.001, and the figure plots, for different values of

n, both the mean value of the trait among PTV carriers and the

BF. Because the P-value is fixed, any gene with this combination

of n and mean trait value would have the same P-value and

hence the same rank in the P-value-based ranking. The ranking

by BF is lower for small n and for larger n, compared with

intermediate values of n. When n is small (say 1 or 2), there

are few observations of traits for PTV carriers, so limited

power to assess the null and alternative hypotheses. To achieve

a small P-value, these observations need to be relatively large in

absolute value, but the Bayesian approach will downweight them

because of the limited amount of data, and the prior assumption

that changes of that magnitude in trait values for PTV carriers

are unlikely. The relative downweighting in the Bayesian ap-

proach of datasets with large n is for a different reason and is

related to Lindley’s paradox in statistics (Lindley, 1957). For

example, with n¼ 50, the data correspond to a rather small

change in mean trait values. The Bayesian approach compares

the probability of this under the null (closely related to the

P-value) with the probability under the alternative, and it turns

out that this small change is also relatively unlikely under the

alternative (because the alternative assigns most of its mass to

larger changes in trait value), reducing the BF.

3.1.2 Critical values when the BF is used as a test statistic For
ease of use, we provide a table of critical values of the BF when it

is used as a frequentist test statistic. As mentioned previously, we

are able to evaluate the null distribution of BFSEM (with s2 ¼ 1)

analytically, and hence to calculate critical values analytically.

For GEM-NMD, the same can be done by simulations.

Table 1 gives the critical value for the BF corresponding to the

type I error rates (�) of (i) 0.01, (ii) 0.001 and (iii) 0.0001, eval-

uated at different numbers of observed PTVs (n ¼ 3, 4, 5).

3.1.3 Power comparisons We performed power comparisons
among the various frequentist approaches, including the use of

the BFs described above as frequentist test statistics.
First consider the scenario when all PTVs at a gene have the

same effect on the trait, as would be expected for typical ‘loss of

function’ variants. To assess this, we simulated 3–5 PTVs each

seen in a single individual. Trait values for PTV carriers were

drawn from an N 2, 1ð Þ distribution, and the remaining trait

values for a total of 2000 trait observations were drawn from

an N 0, 1ð Þ. For this scenario (Table 2), the most powerful meth-

ods are our SEM and Collapse, which, as explained above, have

exactly the same power. SKAT-O (Lee et al., 2012) comes next,

and the power is the lowest for SKAT (Wu et al., 2011) and

linear regression.
In the second scenario, we assumed that PTVs in a gene con-

tribute to trait variance and can have an effect in opposite dir-

ections, with the direction of effect specified by the impact of
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NMD (Table 2). In our simulation of this scenario, trait values

were drawn from an N �2, 1ð Þ distribution for individuals with a

copy of a variant predicted to trigger NMD, and N 2, 1ð Þ for

individuals with a copy of a variant predicted to escape NMD

and N 0, 1ð Þ otherwise (one variant was selected to escape

NMD). Not surprisingly, GEM-NMD, which uses information

on NMD, is clearly the most powerful model. Next comes SKAT

and linear regression, then SKAT-O and last SEM and Collapse,

which have almost no power in this scenario. In addition, we

included a weighted version of SKAT (SKATw) in the power

comparisons. For the variants predicted to trigger NMD, we

assigned a weight of
ffiffiffi
2
p

, and for the variants predicted to

escape NMD, we assigned a weight of 1. This approach ranks

below SKAT-O but above Collapse and SEM.
There may be scenarios in which a putative variant is errone-

ously labelled as a PTV, for example, because of a sequencing

artifact or an incorrect annotation. In these settings, our

approach will lose power. To illustrate this, we focus on the

SEM and simulations applied in Table 2. We assume that one

of the n ¼ 3, 4, 5 PTVs is actually a sequencing artifact and that

the trait value of the corresponding individual is drawn from

a standard normal distribution. In this case, power to detect

the association decreases to 13,35 and 55% for n ¼ 3, 4, 5,

respectively.

3.2 Application of the method to plasma triglyceride levels

and truncating variant data from the Genetics of Type

2 Diabetes study and Oxford Biobank study

We applied the proposed approach to exome-sequencing data

from the Genetics of Type 2 Diabetes (GoT2D) study and

plasma triglyceride levels. The dataset consisted of 2760 T2D

cases and control individuals of Northern European descent.

Exome target capture was performed with the Agilent

SureSelect Human All Exon hybrid selection kit and sequence

obtained on HiSeq. Subsequent alignment and allele calling used

Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2010) and

Genome Analysis Toolkit (GATK) (DePristo et al., 2011) gen-

erating 688 731 variants that passed quality control and were

included in the analysis.
To illustrate the performance of our models, we focus here on

data for APOC3 for which a null mutation p.R19X has previ-

ously been implicated to be associated to plasma lipid profile and

apparent cardioprotection (Hofker, 2010; Pollin et al., 2008).

Variant annotation in using the pyplinkseq library (part of

PLINK/SEQ toolset [http://atgu.mgh.harvard.edu/plinkseq/]

and MAMBA dependency), identifies two candidate PTVs pre-

dicted to trigger NMD: the previously mentioned stop-gain mu-

tation, p.R19X (MAF¼ 0.00025, allele count¼ 1), and a donor

essential splice variant c.IVS2þ 1G 4A (MAF¼ 0.002, allele

count¼ 8). After application of the SEM to the data, the poster-

ior distribution indicates that plasma triglyceride levels of indi-

viduals with PTVs at APOC3 are 1.2 standard deviations (SD)

lower than the population mean, indicating a strong effect

(Fig. 3). The effects of the splice and the stop-gain variants

are at 1.19 and 1.44 SD below the population mean, respectively

(BF for SEM¼ 63.44). The splice variant explains 0.29% of the

trait variance in our data, whereas the null mutation explains

0.04% of the trait variance. To compare with other methods,

we applied (i) Collapse, (ii) SKAT, (iii) SKAT-O and (iv) mul-

tiple linear regression to the data (Table 3). We find that our

models, Collapse and SKAT-O give similar results (as measured

by P-value), whereas SKAT and lm give clearly larger P-values,

probably because they are not assuming similar effect sizes across

the two variants. When we compare the ranks of genes in an

exome-wide analysis, the SEM and SKAT rank APOC3 as #3

and #5, respectively.

We were able to confirm these effects using Illumina exome

array genotyping in the Oxford Biobank cohort (n¼ 4443 sam-

ples, [http://www.oxfordbiobank.org.uk]). Quantification of

plasma triglyceride concentrations in the Oxford Biobank was

made after an overnight fast. Combined analysis of plasma tri-

glyceride levels and variant genotype data for c.IVS2þ 1G4A

(allele count¼ 3) and p.R19X (allele count¼ 31) from the

Oxford Biobank cohort and the GoT2D samples demonstrates

strong supporting evidence for protein truncating variant associ-

ation to low plasma triglyceride levels (BF for SEM¼ 8� 108).

The combined posterior effect size for c.IVS2þ 1G 4A and

p.R19X is 1.23 and 1.66 SD below the mean, respectively.

Table 1. Critical values for BFs from SEM and GEM-NMD correspond-

ing to different Type I error rates (�) with 3, 4 and 5 PTVs

� NPTV SEM GEM-NMDa

0.01 3 8.765 9.34 (9.30,9.39)

4 7.77 8.93 (8.88,8.98)

5 6.81 8.36 (8.32,8.41)

0.001 3 64.56 59.94 (59.01,60.84)

4 63.98 63.99 (62.76,65.01)

5 60.07 63.81 (62.63,64.94)

0.0001 3 438.45 362.10 (349.11,380.70)

4 489.86 438.52 (412.02,460.90)

5 496.85 459.96.72 (434.96,484.73)

0.00001 3 2814.95 2035.51 (1790.69,2277.75)

4 3564.12 2703.12 (2336.41,3197.85)

5 3924.31 3199.53 (2778.93,3765.76)

Note: aA total of 10000 000 replicates were generated to evaluate critical values at

the corresponding Type I error rate together with its 95% confidence intervals (L95,

U95). The critical values for SEM were calculated analytically.

Table 2. Power, expressed as a percentage, at � ¼ 0:001, to detect asso-

ciation for two scenarios: (i) variants impact trait values in same direction

with similar effects, and (ii) variants impact trait values in different dir-

ections with direction of effect determined by NMD

� ¼ 0:001 Similar Grouped

NPTV 3 4 5 3 4 5

SKAT 42 49 69 44 55 66

SKAT-O 53 65 86 37 45 60

Collapse 55 81 86 2 0 1

SEM 55 81 86 2 0 1

GEM-NMD — — — 51 65 79

SKATw — — — 28 46 56

Multiple linear regression 42 49 69 44 55 66

Note: For GEM-NMD, thresholds for the given type I error rate are given in

Table 1.
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4 DISCUSSION

4.1 Application of the method

Larger BFs correspond to stronger evidence in favour of the

alternative hypothesis over the null. The BF calculated in our
approach has a direct interpretation as the way in which the data

changes the weight, which should be given to the null and alter-

native hypotheses. Formally, the posterior odds (i.e. in the light
of the data) on the alternative hypothesis can be calculated by

multiplying the prior odds (i.e. before the data) by the BF.
We envisage that a primary application of this and similar

methods will be in the analysis of quantitative traits measured

in individuals for whom whole-genome or whole-exome sequence
data are available, or perhaps for whom genetic data are ob-

tained from an exome-SNP-array.
For a single dataset one could use the size of the BF to indicate

the strength of the evidence in favour of the alternative hypoth-

esis. It can also be helpful to plot the posterior distribution on the
mean trait value for individuals carrying PTVs.

Many studies will consist of two phases, discovery and repli-
cation. In this setting, analyses of the discovery data would aim

to rank genes for follow-up according to the evidence for depart-

ures from the null hypothesis at that gene. In such a ranking
exercise, the use of BFs has considerable advantages over the

use of P-values. The interpretation of a P-value obtained in a

particular experiment depends on both the alternative hypothesis
and the power of the statistical method used. In the current con-

text, power will change with n, the number of PTVs observed at

the gene: there will be more power to reject the null hypothesis

(for a specific alternative hypothesis) at genes that happen to
have more PTVs in the sample, and as a consequence, infor-

mally, a low P-value will be more informative for a gene with

more PTVs than the same P-value would be for a gene with
fewer PTVs. For this reason, simple ranking of genes by

P-value is unlikely to be optimal. In contrast, BFs quantify the

evidence for the alternative hypothesis as compared with the null
(P-values only measure tail probabilities under the null), so can

be compared naturally even for genes with different numbers of

PTVs.
Although we see advantages in adopting a Bayesian perspec-

tive, our approach could be used in a frequentist context by
calculating the BF and using this as a frequentist test statistic.

Conditional on the number of PTV carriers at the gene, n, a P-

value can then be obtained by asking for the probability, under
the null hypothesis, of obtaining the same or a larger BF than the

one actually calculated from the data. Under the SEM, the null

distribution of the BF can be calculated explicitly, allowing a

simple analytic computation of P-values. For more complicated
alternative hypotheses, P-values can be obtained easily by simu-

lation under the null.
In the SEM setting, the statistical problem is a simple one,

namely, of detecting a mean shift in a (typically small) number

of observations. Our method is the obvious Bayesian approach
to the problem, and when the resulting BF is used as a test

statistic it is effectively equivalent to the obvious frequentist ap-

proach. We have, necessarily, used particular prior distributions
for the change in mean trait value caused by the PTVs. In our

method these are relatively broad, but they could be adjusted as

our biological knowledge grows, as could the priors in the GEM

Fig. 3. (a) Protein and transcript locations of APOC3 mutations,

including predicted impact of splice variant on transcript splicing.

Transcript diagram demonstrates that variant c.IVS2þ 1G4A will dis-

rupt proper splicing of the second exon and create a new spliced mRNA

with exon 1 and exon 3 joining because of proper recognition of splice

sequence in the donor site of exon 1 and acceptor site of exon 3. Genomic

codon position is shown for the stop-gain mutation, i.e. g.55C 4T.

(b) Prior, likelihood and posterior of mean trait value after combining

data from the Oxford Biobank study and GoT2D study. The shaded

histogram in each panel represents the distribution of trait values for

the relevant PTV carriers

Table 3. Comparison of association P-values and BFs for APOC3

truncating variants and plasma triglyceride levels in the GoT2D exome-

sequencing study

Measure Collapse SKAT SKAT-O lm SEM GEM-NMD

P-value 0.00065 0.0016 0.00063 0.003 0.00065 0.00066

BF — — — — 63.4 42.3

Note: P-value for GEM-NMD is based on 1 000 000 simulations and its 95%

empirical confidence interval is (0.000607–0.000707).
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model. As more genes are discovered where PTVs affect quanti-
tative traits, the priors could be informed by knowledge of the
effect sizes of PTVs at these genes. Two caveats are appropriate

here. The first is that early discoveries are likely to correspond to
genes where PTVs have larger effects, and the second is that a
more precise specification of the prior will gain power if it reflects

reality but could substantially lose power otherwise.
What are the sample sizes required to obtain exome-wide

significant results? Under the assumption that effect sizes are 2,

1.5 and 1 SDs from the mean, to get a P-value of 2:5� 10�6

(where 2:5� 10�6 is obtained by Bonferroni correction¼ 0.05/
number of genes), using the SEM would require 8, 14 and 31

PTV carriers, respectively, to achieve 80% power to detect the
association. PTV frequencies are likely to vary orders of magni-
tude between genes, and our current understanding is that only

a limited number of genes have a low frequency (40.1%)
PTV, whereas in most genes any single PTV will be private or

extremely rare. If a fraction 10�k of the population
(k ¼ 2, 3, 4, . . .) carries a PTV at a particular gene, then we
need to sample �1:0� 101þk, 1:7� 101þk or 3:6� 101þk individ-

uals to achieve 80%probability of finding at least 8, 14 or 31 PTV
carriers at that gene, respectively.
As we generate more cellular genomics data, we will improve

our understanding of the impact of PTVs on gene function. For
example, combining DNA and RNA sequence data will enable
better predictions of mechanisms underlying NMD, which will,

in turn, give more accurate predictions of the biological conse-
quences that the analyzed variants may have. Current annotation
of loss of function variants is based on some reference transcript

set, for example, GENCODE (Harrow et al., 2012), and selection
of variants mapping within the units to include is chosen from
the most deleterious annotation across all transcripts. Transcript

quantifications for the relevant tissue or cell types will enable
better annotation and selection of rare variants for combining

in statistical analyses. Thus, now is a good time to think about
how this knowledge can be used in future data analyses. Our
Bayesian framework provides one way to do this, and we hope

that it will stimulate research on both the methodological aspects
of these models and on the enhanced prior specification based
on biological knowledge.

5 CONCLUSION

We have developed and studied a novel statistical method for

assessing the association between PTVs and a quantitative trait.
The approach is formulated in a Bayesian statistical framework,

and can be used in a Bayesian framework or in providing a test
statistic for frequentist application. Bayesian application is rec-
ommended in ranking genes for follow-up in a discovery dataset.

The frequentist application allows calculation of P-values for
association, which can be helpful in settings where these are
required.

We have presented two versions of the method. In the first,
SEM, all PTVs are assumed to have effects in the same direction.
This would be appropriate, for example, if all PTVs were thought

to result in loss of function of that copy of the gene. We also
described a more general version of the approach allowing
different classes of PTV in terms of their effect on trait values.

We see the major application of this more general method in

taking a more nuanced view of the consequences of PTVs, and
distinguishing between those likely to be subjected to NMD and
those that escape NMD (e.g. many or all PTVs in the last exon of

the gene) and may result in gain of function. As our biological
understanding of the NMD mechanism increases, we expect that

it will add power to allow potentially different effects for PTVs
escaping NMD, for example, by applying GEM-NMD (in which

they may have similar effects or different effects) and SEM (in
which their effect on the trait would be the same, even though the

molecular consequences of the mutation would be different).
Finally, we have established and replicated an association

between PTVs in APOC3 and lowering of plasma triglyceride

levels.
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