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SUMMARY

Master regulators of the epithelial-mesenchymal
transition such as Twist1 and Snail1 have been
implicated in invasiveness and the generation of
cancer stem cells, but their persistent activity in-
hibits stem-cell-like properties and the outgrowth
of disseminated cancer cells into macroscopic
metastases. Here, we show that Twist1 activation
primes a subset of mammary epithelial cells for
stem-cell-like properties, which only emerge and
stably persist following Twist1 deactivation. Conse-
quently, when cells undergo a mesenchymal-epithe-
lial transition (MET), they do not return to their original
epithelial cell state, evidenced by acquisition of inva-
sive growth behavior and a distinct gene expression
profile. These data provide an explanation for how
transient Twist1 activation may promote all steps
of the metastatic cascade; i.e., invasion, dissemina-
tion, and metastatic outgrowth at distant sites.
INTRODUCTION

During epithelial-mesenchymal transition (EMT), apical-basal

polarized epithelial cells are converted to front-to-back polar-

ized mesenchymal cells with unrestricted motility (Lamouille

et al., 2014). EMT programs effect morphogenetic steps during

embryogenesis and are orchestrated by pleiotropic transcription

factors (TFs) such as Twist1 and Snail1 (Lim and Thiery, 2012;

Nieto, 2011).

EMTs have been implicated in metastatic dissemination of

carcinoma cells and in the generation of cancer stem cells

(CSCs; Ansieau, 2013; Lamouille et al., 2014; Scheel and Wein-
C

berg, 2012). However, metastases of breast cancer are typically

epithelial (Kowalski et al., 2003), and numerous experimental

systems have shown that mesenchymal-epithelial transition

(MET) is required for actively proliferating metastases (Chaffer

et al., 2006; Ocaña et al., 2012; Stankic et al., 2013; Tran et al.,

2014; Tsai et al., 2012). Other studies indicate that epithelial,

rather than mesenchymal, attributes are enriched in tumorigenic

cell populations, leading to the conclusion that EMT inhibits

stem-cell-like properties (Celià-Terrassa et al., 2012; Korpal

et al., 2011; Sarrio et al., 2012). To reconcile these contrasting

observations, we closely monitored the dynamics and functional

consequences of transient Twist1 activation in humanmammary

epithelial cells (HMLEs). Thereby, we discovered that Twist1

primes a subset of cells for stem-cell-like traits that emerge as

stable traits after Twist1 deactivation.

RESULTS

EMT and Stem-Cell-like Traits Induced by Transient
Twist1 Activation
We utilized immortalized HMLEs (Elenbaas et al., 2001) retrovir-

ally transduced with Twist1 fused to a mutated estrogen recep-

tor (ER) ligand binding domain (Casas et al., 2011). To prevent

selection of pre-existing mesenchymal cells (Scheel et al.,

2011), we sorted bulk HMLE cells into purified epithelial subpop-

ulations with high or low levels of the surface marker CD24 (24hi

and 24lo; Figures 1A–1C).

First, Twist1 was activated for 15 days by adding 4-hydroxy-

tamoxifen (TAM) to the growth medium every 2 days. During

this period, EMT manifested as a progressive loss of E-cadherin

expression, upregulation of vimentin, and acquisition of front-to-

back polarization (Figures 1D and S1A). After TAM withdrawal,

some 24hi cells reverted back to an epithelial phenotype, indi-

cated by re-expression of E-cadherin, whereas others remained

mesenchymal (Figures 1D and S1A). E-cadherin upregulation as
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Figure 1. EMT and Stem-Cell-like Traits Induced by Transient Twist1 Activation

(A) Fluorescence-activated cell sorting (FACS): CD44 and CD24 cell surface staining of HMLE-Twist1-ER cells and postsort analysis after 3 days in culture.

(B) Histogram overlay of postsort analysis 24hi (gray) and 24lo (blue).

(C) Bright-field microscopy: 24neg cells display a mesenchymal morphology, whereas 24lo and 24hi cells are epithelial. Scale bar represents 100 mm.

(legend continued on next page)

132 Cell Reports 10, 131–139, January 13, 2015 ª2015 The Authors



well as downregulation of several mesenchymal markers at the

transcriptional level also suggested MET in a subset of 24hi cells

(Figure S1B). Twist1 deactivation after TAM withdrawal was

confirmed bymonitoringmRNA levels ofWnt5a, a transcriptional

Twist1 target (Shi et al., 2014). Strikingly, none of the 24lo cells re-

expressed E-cadherin (Figures 1D and S1A). These responses

could not be attributed to different Twist1 levels since immuno-

fluorescence staining of 24hi and 24lo cells revealed similarly het-

erogeneous expression before, during, and after TAM treatment

(Figures S1C and S1D).

To test motility, we assessed the ability of single cells to

migrate through porous membranes. As expected, migrating

cells were significantly increased in mesenchymal cell popula-

tions generated by TAM treatment (Figures S1E and S1F). After

TAM withdrawal, the proportion of migrating cells decreased in

the 24hi cells, corresponding to the reappearance in epithelial

cells. To assess stem-cell-like traits, we utilized the mammo-

sphere (MS) assay, which quantifies clonal growth in anchorage

independence (Dontu et al., 2003). To determine MS-forming

ability in 24hi and 24lo cells after complete EMT, cells were either

continuously treated during MS formation (Twist1 on, +) or TAM

was withdrawn upon plating (Twist1 on/off, +/�; Figure 1E). Un-

expectedly, MS formation was only observed upon TAM with-

drawal, indicating thatMS formationwas dependent on transient,

but not continuous, Twist1 activation (Figures 1F, S1G, and S1H).

Given these results, we determined the impact of MET on MS

formation by withdrawing TAM for 9 days before plating cells into

the MS assay (Figure 1E). Remarkably, allowing MET to take

place increased the frequency of MS-forming cells 20-fold

in 24hi cells (Figures 1G and S1I). Serial passaging in limiting

dilution enriched the frequency of MS-forming cells to one of

three cells, suggesting long-term repopulating ability (Figure 1H).

Taken together, these observations indicated that Twist1 elicits a

potential for MS formation in 24hi HMLE cells that emerges only

after Twist1 deactivation.

Stem-Cell-like Traits Are Enriched in Cells
that Undergo MET
To determine whether MS-forming ability was contained within

mesenchymal cells or those that underwent MET, we employed

differential trypsinization to obtain fractions enriched for mesen-

chymal (M), epithelial (E), and strongly trypsin-resistant epithelial

(E+) cells (Figures 2A and 2B). Of note, the E fraction did contain

5%–10% mesenchymal cells. Remarkably, MS-forming cells

were highly enriched in the E fraction but depleted in the M frac-

tion (Figure 2C). The E+ fraction generated few MS, suggesting

that MS-forming cells display epithelial plasticity. In support of

these observations, immunofluorescence staining revealed MS

to contain both E-cadherin- and vimentin-positive cells (Fig-
(D) Immunofluorescence: E-cadherin (green), vimentin (red), and 40,6-diamidino-

control (�), treated with TAM for the indicated number of days and followed by 9

(E) Setup for MS assay: 24hi or 24lo cells with TAM for 15 days before plating. TAM

9 days prior plating (+/� 9d).

(F) Quantification of MS formed by 24hi (gray) and 24lo (blue) cells treated accord

(G) Quantification of MS according to (E). n.d., not detectable (n = 20).

(H) Limiting dilution analysis: 24hi cells (+/� 9 days TAM) serially passaged for fo

Data are presented as mean ± SEM. See also Figure S1.

C

ure 2D) and the expression of intermediate transcript levels of

E-cadherin and mesenchymal markers (Figure 2E). Wnt5a levels

remained low, indicating that Twist1 was not reactivated. Thus,

MS-forming cells were enriched in cell populations with epithelial

plasticity, but not in those with a fixed mesenchymal or epithelial

phenotype.

In support of these observations, 97% of MS cells retained

expression of the epithelial marker CD24 (Figures 2F and S2A).

To elucidate whether CD24 levels predicted MS-forming ability,

TAM-treated 24hi cells were sorted into CD24neg and CD24hi

populations (Figure 2G). Remarkably, MS-forming ability was en-

riched 6-fold in the CD24hi compared with the CD24neg popula-

tion (Figure 2H). Moreover, CD24hi cells passed through MET,

whereas CD24neg cells maintained a mesenchymal phenotype,

indicating that MS-forming ability is enriched in cells undergoing

MET after Twist1 deactivation (Figure 2I).

To determine whether passage through EMT was required to

prime cells for MS-forming ability, cells were treated with TAM

for 24, 48, and 72 hr followed by (1) plating into the MS assay

or (2) plating after a 9-day period of TAMwithdrawal (Figure S2B).

During this short-term induction, cell morphology, E-cadherin

and vimentin protein subcellular localization and transcript levels

of epithelial and mesenchymal markers did not change signifi-

cantly compared with control cells (Figures S2C and S2D). Strik-

ingly, 48 hr of TAM-treatment followed by delayed plating was

sufficient to generate MS with long-term repopulating activity

(Figures S2E and S2F). These results suggest that cells primed

for MS-forming ability by Twist1 expand during the period of

TAM withdrawal or progressively convert to MS-forming cells.

However, complete EMT did not appear to be required for Twist1

to prime epithelial cells for MS-forming ability.

MS-Forming Cells Display Invasive Growth in 3D
Collagen Gels
Considering functions of Twist1 that contribute to MS formation

independently of EMT,we reasoned thatMS-formingcells survive

anchorage independence (Frisch and Francis, 1994). Indeed, in

contrast to 24hi control, cells treated for 15 days with TAM sur-

vived prolonged anchorage independence and maintained this

acquired trait after TAM withdrawal (Figures 3A and 3B).

Based on these observations, we tested whether the inability

of cells with active Twist1 to form MS was linked to lack of

proliferation in a 3D environment. Indeed, when plated as sin-

gle-cell suspensions in collagen gels, cells with active Twist1

formed markedly fewer colonies than control or MS-derived

cells (Figures 3C–3E). In contrast, TAM-treated cells prolifer-

ated vigorously in monolayer culture, suggesting that Twist1

activity specifically suppressed proliferation under 3D conditions

(Figure 3F).
2-phenylindol-dihydrochlorid (DAPI) (blue) in FACS-purified 24hi and 24lo cells:

days of withdrawal. Scale bar represents 20 mm.

was continued (+) or discontinued (+/�) or cells were cultured without TAM for

ing to (E). n.d., not detectable (n = 20).

ur generations (n = 10 per generation).
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Figure 2. Stem-Cell-like Traits Are Enriched in Cells that Undergo MET

(A) Differential trypsinization: transiently TAM-treated 24hi cells were separated into amesenchymal (M), epithelial (E), and strongly trypsin-resistant epithelial (E+)

fraction. Immunofluorescence: E-cadherin (green), vimentin (red), and DAPI (blue). Scale bar represents 20 mm.

(B) RT-PCR: E-cadherin, N-cadherin, Zeb1, and FoxC2 mRNA expression in 24hi control (�) and in differentially trypsinized M, E, and E+ fractions (n = 3).

(C) MS assay: quantification of MS formed by M, E, and E+ fractions (n = 20).

(D) Immunofluorescence: E-cadherin (green), vimentin (red), and DAPI (blue) of compact and loose MS. Scale bar represents 100 mm.

(E) RT-PCR: E-cadherin, N-cadherin, Zeb1, FoxC2, and Wnt5a mRNA expression of 24hi control (�), 15-day TAM (+) and MS (n = 3).

(F) FACS: CD44 and CD24 cell surface staining of MS.

(G) FACS: layout for resorting of 15-day TAM-treated 24hi cells into a CD44hi/CD24neg and a CD44pos/CD24hi population.

(H) Quantification of MS formed by resorted CD44hi/CD24neg and CD44pos/CD24hi cells according to (G) (n = 20).

(I) Bright-field microscopy: images of resorted populations (according to G) taken 7 days after sort. Scale bar represents 50 mm.

Data are presented as mean ± SEM. See also Figure S2.
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Figure 3. MS-Forming Cells Display Invasive Growth in 3D Collagen Gels

(A) Anoikis assay: experimental setup. GF, growth factor.

(B) Anoikis assay: colony-forming units (CFUs) of HMLE-Twist1-ER 24hi cells in 2D after anoikis challenge: control (�), 15-day TAM (+), and 15-day TAM followed

by 3-day withdrawal (+/�) prior to assay (n = 3).

(legend continued on next page)

Cell Reports 10, 131–139, January 13, 2015 ª2015 The Authors 135



With respect tomorphology, the round colonies formed by 24hi

control cells displayed smooth margins with continuous laminin-

1 expression (a basement membrane component; Figures 3C

and 3H; Movie S1). The elongated colonies generated by MS-

derived cells displayed patchy laminin-1 expression, indicating

invasive growth. Consistent with a noninvasive phenotype, col-

onies generated by 24hi control cells frequently contained a

lumen and displayed a basal layer of E-cadherin/vimentin-posi-

tive cells, membranous b-catenin, and expression of the tight-

junction component ZO-1 as well as cortical F-actin (Figures 3I

and 3J; Movie S2). Clumps and single cells detaching from the

margins were observed in colonies generated after transient

Twist1 activation. Remarkably, these invading cells remained

E-cadherin positive, expressed membranous b-catenin, and

ZO-1 and simultaneously showed cortical F-actin as well as

stress fibers. In contrast, cells with active Twist1 remained

mesenchymal and were dispersed in the collagen gel as singly

invading cells. Together, these results indicated that transient

Twist1 activation facilitates the coexistence of epithelial and

mesenchymal traits, thereby enabling invasive growth.

Transient Snail1 Activation Is Sufficient to Elicit
MS-Forming Ability
Next, we determined whether other EMT-TFs might also prime

cells for stem-cell-like traits and epithelial plasticity. Analogous

to our strategy employed for HMLE-Twist1-ER cells (Figure 1A),

we purified an epithelial CD24hi population from HMLE-Snail1-

ER cells (Figures S3A and S3B; Mani et al., 2008). In contrast

to Twist1-ER, many epithelial cells did not convert to a mesen-

chymal phenotype after prolonged TAM treatment (Figures

S3C and S3G). This incomplete EMT was reflected at the func-

tional level where, in contrast to TAM-treated Twist1-ER cells,

we observed a modest increase in migratory cells (Figure S3D).

Moreover, MS-forming cells were generated both in continued

presence and absence of TAM and preceded that of mesen-

chymal cells (3 days versus 6 days, respectively; Figures S3C

and S3E). However, serial passaging enriched for MS-forming

cells more efficiently after TAM withdrawal (Figure S3F). There-

fore, Snail1 induced MS-forming potential as a stable trait that

is maintained after its deactivation.

Transient Twist1 Activation Permanently Alters Cell
State
Our data suggested that stem-cell-like properties and epithe-

lial plasticity arise in some cells as stable traits after transient
(C) 3D collagen gels: carmine staining of colonies formed by 24hi cells: control

(1,000 cells per well).

(D) 3D collagen gels: quantification of colonies. Cells grown as described in (C).

(E) 3D collagen gels: number of population doublings. Cells were grown as desc

(F) Growth curves: 2D proliferation of 24hi cells, control (�), 15-day TAM and contin

(G) 3D collagen gels: Quantification of non-invasive colonies (dark gray) and invasiv

(H) Confocal microscopy of 3D collagen gels: laminin-1 (green), vimentin (red), and

Scale bar represents 100 mm.

(I) Confocal microscopy of 3D collagen gels: E-cadherin (green), vimentin (red),

continued (+/�). Scale bar represents 50 mm.

(J) Confocal microscopy of 3D collagen gels: b-catenin (green), F-actin (white), ZO

continued (+/�). Scale bar represents 50 mm.

Data are presented as mean ± SEM. See also Figure S3.
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Twist1 or Snail1 activation. To determine whether these

changes were indicative of an altered cell state, we performed

gene expression profiling of HMLE subpopulations: (1) epithe-

lial 24lo and 24hi cells before Twist1 activation, (2) 24lo and 24hi

cells with active Twist1, (3) 24hi cells after transient Twist1 acti-

vation, and (4) MS (Figure 4A). Principal component analysis

following unsupervised clustering indicated distinct cell states

corresponding to these subpopulations (Figure 4B). As ex-

pected, RNA expression profiles of cells after transient Twist1

activation and MS clustered in-between epithelial and mesen-

chymal populations (PC2). However, MS were different to

all other cell states (PC1). To identify genes regulated by

transient Twist1 or Snail1 activation independently of culture

conditions, differentially expressed genes in MS and 2D-

cultured cells after transient Twist1 activation were compared

with epithelial and mesenchymal populations. Considering a

concordant trend, we identified a set of 189 genes, represent-

ing the cell state arising after transient Twist1 or Snail1

activation (Figures 4C–4E). GO-term analysis revealed terms

associated with intracellular protein kinase signaling to be

significantly overrepresented within the 189-gene signature

(Figure 4F). ROS1, an orphan receptor tyrosine kinase consid-

ered an oncogene in a subset of non-small-cell lung carci-

nomas (Bergethon et al., 2012), was validated by RT-PCR to

be induced by Twist1 and further upregulated after Twist1

deactivation (Figure S4A). Chromatin immunoprecipitation

confirmed that Twist1 directly binds the ROS1 promoter (Fig-

ure 4G). Next, we treated late-passage MS with the small-

molecule Crizotinib, thereby preventing phosphorylation and

signaling through ROS1 (Rossi et al., 2014). Crizotinib reduced

MS formation significantly (1.5-fold at 0.3 mM; Figures 4H,

S4B, and S4C). This effect was further increased upon

passaging of MS, suggesting efficient inhibition of long-term

repopulating ability (Figure S4D).

DISCUSSION

Following the discovery that EMT generates CSCs (Mani et al.,

2008; Morel et al., 2008), efforts have focused on targeting

mesenchymal cells within breast cancer cell populations

(Gupta et al., 2009; Tam et al., 2013). However, our data

indicate that transient Twist1 activation enabled long-term

invasive growth by promoting coexistence of epithelial and

mesenchymal traits, whereas constitutive Twist1 activation

switched cells to a migratory, nonproliferative state. According
(�TAM), 15 days TAM continued during assay (+ TAM) and MS-derived (MS)

n.d., not detectable (n = 3).

ribed in (C) (n = 3).

ued TAM every 24 hr (+) or not continued (+/�) for a duration of 4 days (n = 10).

e colonies (light gray). Assessed by staining for E-cadherin and vimentin (n = 2).

DAPI (blue); colonies formed by 24hi control (�TAM) or MS-derived cells (MS).

and DAPI (blue): 24hi control (�TAM), 16-day TAM and continued (+) or not

-1 (red), and DAPI (blue): 24hi control (�TAM), 15d TAM and continued (+) or not
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Figure 4. Transient Twist1 Activation Permanently Alters Cell State

(A) Cells included in gene expression profiling: control (green), 15-day TAM (red), 15-day TAM followed by 9-day TAM withdrawal (blue), MS (purple),

HMLE-Twist1-ER 24lo (circle), and 24hi (rhomb), HMLE-Snail1-ER 24hi (triangle).

(legend continued on next page)
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to these observations, targeting mesenchymal cells might in

some instances promote, rather than inhibit, proliferation both

in the primary tumor and at metastatic sites.

These observations are in line with recent studies usingmouse

models of breast and squamous cell tumorigenesis to demon-

strate that Snail1 or Twist1 deactivation is necessary for meta-

static outgrowth (Tran et al., 2014; Tsai et al., 2012). Similarly,

EMT was previously shown to inhibit rather than promote

stem-cell-like traits in a number of experimental systems

(Celià-Terrassa et al., 2012; Korpal et al., 2011; Sarrio et al.,

2012). Finally, some EMT-TFs, such as Prrx1, promote mesen-

chymal differentiation and invasion, but not tumorigenicity

(Ocaña et al., 2012). In support of these experimental data, we

did not observe an overt loss of E-cadherin expression in serial

sections of samples taken from the invasive front of 126 high-

grade ductal carcinomas (Figure S4E; Table S1), consistent

with recent observations that complete mesenchymal transdif-

ferentiation is not required for Twist1 to induce invasion (Shamir

et al., 2014).

We contribute an integrative mechanism of EMT-TF action to

the contradictory observation that EMT is associated both with

induction and inhibition of stem-cell-like traits because these

can arise as stable traits after Twist1 or Snail1 deactivation.

We hypothesize that the resultant altered epithelial cell state

might promote metastatic outgrowth. Indeed, this priming

mechanism adds to the increasing number of oncogenic func-

tions of EMT-TFs not linked to EMT directly (Puisieux et al.,

2014).

Our observations suggest that transient Twist1 or Snail1 acti-

vation may leave a tractable epigenetic footprint, a plausible

scenario, since these master regulators are capable of recruiting

chromatin modifiers (Bedi et al., 2014). Within a gene expression

signature characteristic for this altered epithelial cell state, we

identified the orphan receptor tyrosine kinase ROS1 as a poten-

tial drug target. Future studies might yield diagnostic tools to

determine whether tumor cells have experienced EMT-TF activ-

ity in the past and develop strategies to target metastatic

outgrowth.

EXPERIMENTAL PROCEDURES

Migration Assay

Cells (2.5 3 104) were seeded into 24-well culture inserts with 8 mm pores (BD

Falcon). After 24 hr, nonmigrated cells were removed from the upper side of

the insert with a cotton swab, and cells on lower insert surface were fixed

and stained with the Hemacolor Rapid staining Set (Merck). All migrated cells
(B) Principal component analysis following unsupervised clustering of samples d

(C) Venn diagram: differentially expressed genes regulated in Snail1-MS, Twis

signature represents the overlap of differentially regulated genes shared by thes

(D) Heatmap: top 15 upregulated and downregulated expression values of the 18

expression values. Scale bar is in log2. The legend is as in (A).

(E) Top 10 upregulated genes of the 189 gene signature with corresponding fold

(F) GO-term analyses: significantly enriched terms containing top-10 upregulated

(G) Chromatin Immunoprecipitation: HMLE-Twist1-ER 24hi control (�) and 15-day

Dotted line indicates IgG background (n = 3).

(H) MS assay: fourth generation of MS derived from 24hi cells. Crizotinib was adde

Cell number quantified with Cell-Titer Glo.

Data are presented as mean ± SEM. See also Figures S4.
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per insert were counted. Data are presented as migrated cells per insert. Ex-

periments were performed in triplicates.

MS Assay

The assay was performed as previously described with modifications (Dontu

et al., 2003). One hundred cells or less were seeded per well in 96-well ultra-

low-adhesion plates (Corning) in Dulbecco’s modified Eagle’s medium/F12

medium (Life Technologies) containing 1.0% methylcellulose (R&D Systems)

supplemented with 5 ng/ml epidermal growth factor (Millipore), 20 ng/ml basic

fibroblast growth factor (Millipore), 0.5 mg/ml hydrocortisone (Sigma), 10 mg/ml

insulin (Sigma), 4 mg/ml heparin (Sigma), and 13 B27 (Life Technologies). For

serial passaging, spheres were dissociated into single cells by trypsinization

and replated.

3D Collagen Cultures

For 3D embedded cultures, gels containing 1.3 mg/ml collagen (BD Biosci-

ences) and 0.1 M HEPES were mixed with cells in mammary epithelial cell

growth medium, poured in 6- or 24-well plates and allowed to solidify prior

feeding. Carmine and immunostaining of gels was done according to standard

protocols, and gels were analyzed using either a standard light microscope or

a laser scanning confocal microscope (Olympus). To measure proliferation in

3D collagen cultures, gels were digested with collagenase I followed by tryp-

sinization to obtain a single-cell suspension. The number of cell doublings (n)

was calculated as follows: 2n = (number of cells at endpoint/number of initially

seeded cells).

Statistical Analysis

Data are presented as mean ± SEM. A Student’s test (two-tailed) was used to

compare two groups (p < 0.05 was considered significant) unless otherwise

indicated.
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J., and Benezra, R. (2013). TGF-b-Id1 signaling opposes Twist1 and promotes

metastatic colonization via amesenchymal-to-epithelial transition. Cell Rep. 5,

1228–1242.

Tam, W.L., Lu, H., Buikhuisen, J., Soh, B.S., Lim, E., Reinhardt, F., Wu, Z.J.,

Krall, J.A., Bierie, B., Guo, W., et al. (2013). Protein kinase C a is a central

signaling node and therapeutic target for breast cancer stem cells. Cancer

Cell 24, 347–364.

Tran, H.D., Luitel, K., Kim, M., Zhang, K., Longmore, G.D., and Tran, D.D.

(2014). Transient SNAIL1 expression is necessary for metastatic competence

in breast cancer. Cancer Res. 74, 6330–6340.

Tsai, J.H., Donaher, J.L., Murphy, D.A., Chau, S., and Yang, J. (2012). Spatio-

temporal regulation of epithelial-mesenchymal transition is essential for squa-

mous cell carcinoma metastasis. Cancer Cell 22, 725–736.
ell Reports 10, 131–139, January 13, 2015 ª2015 The Authors 139


	Stem-Cell-like Properties and Epithelial Plasticity Arise as Stable Traits after Transient Twist1 Activation
	Introduction
	Results
	EMT and Stem-Cell-like Traits Induced by Transient Twist1 Activation
	Stem-Cell-like Traits Are Enriched in Cells that Undergo MET
	MS-Forming Cells Display Invasive Growth in 3D Collagen Gels
	Transient Snail1 Activation Is Sufficient to Elicit MS-Forming Ability
	Transient Twist1 Activation Permanently Alters Cell State

	Discussion
	Experimental Procedures
	Migration Assay
	MS Assay
	3D Collagen Cultures
	Statistical Analysis

	Accession Numbers
	Supplemental Information
	Acknowledgments
	References




