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Abstract

Background: In the last years, the importance of independent validation of the prediction ability of a new gene
signature has been largely recognized. Recently, with the development of gene signatures which integrate rather
than replace the clinical predictors in the prediction rule, the focus has been moved to the validation of the added
predictive value of a gene signature, i.e. to the verification that the inclusion of the new gene signature in a prediction
model is able to improve its prediction ability.

Methods: The high-dimensional nature of the data from which a new signature is derived raises challenging issues
and necessitates the modification of classical methods to adapt them to this framework. Here we show how to
validate the added predictive value of a signature derived from high-dimensional data and critically discuss the
impact of the choice of methods on the results.

Results: The analysis of the added predictive value of two gene signatures developed in two recent studies on the
survival of leukemia patients allows us to illustrate and empirically compare different validation techniques in the
high-dimensional framework.

Conclusions: The issues related to the high-dimensional nature of the omics predictors space affect the validation
process. An analysis procedure based on repeated cross-validation is suggested.

Keywords: Added predictive value, Omics score, Prediction model, Time-to-event data, Validation

Background
In the last 15 years numerous signatures derived from
high-dimensional omics data such as gene expression data
have been suggested in the literature. A bitter disillusion
followed the enthusiasm of the first years, as researchers
realized that the predictive ability of most signatures
failed to be validated when evaluated based on indepen-
dent datasets. This issue is now widely recognized and
validation is considered most important in omics-based
prediction research by both quantitative scientists such
as statisticians or bioinformaticians and medical doctors
[1-6], see also topic 18 of the recently published checklist
for the use of omics-based predictors in clinical trials [7].

*Correspondence: debin@ibe.med.uni-muenchen.de
1Department of Medical Informatics, Biometry and Epidemiology,
Ludwig-Maximilians-Universität, Marchioninistr. 15, 81377 München, Germany
Full list of author information is available at the end of the article

A validation dataset can be generated by randomly
splitting the available dataset into a training set and a
validation set. This type of validation does not yield infor-
mation on the potential performance of the signature on
patients recruited in different places or at different times.
The training and validation patients are drawn from the
same population and are thus expected to be similar with
respect to all features relevant to the outcome. In this case,
validation can be seen as an approach to correct for all
optimization procedures taking place while deriving the
signature from the training data [8,9]. External and tem-
poral validations, in contrast, consider patients from a dif-
ferent place or recruited at a later time-point, respectively.
They give information on the potential performance of the
signature when applied to patients in clinical settings in
the future. No matter how the validation dataset is cho-
sen, the evaluation of prediction models using validation
data is known to yield more pessimistic results than the
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evaluation performed on the training dataset using cross-
validation or related techniques [6]. This is especially true
when high-dimensional data are involved, since they are
more affected by overfitting issues.
George [3] states that “the purpose of validation is not

to see if the model under study is “correct” but to ver-
ify that it is useful, that it can be used as advertised, and
that it is fit for purpose”. To verify that the model is use-
ful, validation of the predictive ability of the omics model
is not sufficient, as the clinical interest centers around the
added value compared to previous existing models [10].
To verify that the new model is useful, one also needs to
validate the added predictive value. This concept is not
trivial from a methodological point of view and one may
think ofmany different procedures for this purpose.While
the problem of added predictive value has long been
addressed in the literature for low-dimensional models,
literature on added predictive value of signatures derived
from high-dimensional data is scarce [11], although the
high dimension of the predictor space adds substantial dif-
ficulties that have to be addressed by adapting classical
methods.
In this paper we focus on this latter case, aiming to

provide a better understanding of the process of valida-
tion of the added predictive value of a signature derived
from high-dimensional data. We tackle this issue from
an empirical perspective, using exemplary studies on the
prediction of survival in leukemia patients which use high-
dimensional gene expression data. Our goal is three-fold:
(i) to demonstrate the use of different methods related to
the validation of added predictive value, (ii) to show the
impact of the choice of the method on the results, and
(iii) to suggest an analysis approach based on our own
experience and previous literature.
In order to better shed light on the methodological

issues and the actual use of the validation methods,
we take advantage of two leukemia datasets which are
paradigm cases in biomedical practice. In particular, their
relatively small effective sample size (number of events)
is typical of this kind of study. It is worth noting, how-
ever, that a statistical comparison whose results could
be generalizable needs a large number of studies [12] or
convincing evidence from simulations, and therefore two
examples would have been meant as illustrative even if
they had had a larger effective sample size. Furthermore,
these studies allow us to pursue our goals in two differ-
ent situations: one, ideal from a statistical point of view,
in which the omics data are gathered in the same way
both in the training and in the validation sets, and one in
which they are gathered with different techniques, making
training and validation observations not directly compa-
rable. In particular, in the first dataset we start from the
work of Metzeler and colleagues [13], and we illustrate
alternative approaches to study the added predictive value

of their score, in addition to their performed validation
strategy based on the p-value of a significance test in the
Cox model. The second dataset, instead, allows us bet-
ter insight into the approaches available in a situation in
which a measurement error – in a broad sense includ-
ing the use of different techniques to measure the gene
expressions – makes the validation process more com-
plicated. This is not uncommon in biomedical practice,
especially since specific technologies, such as TaqMan
Low Density Array, enable rapid validation of the dif-
ferential expressions of a subset of relevant genes previ-
ously detected with a more labor-intensive technique [14].
Therefore, it is worth considering this situation from a
methodological point of view. It is worth noting that the
validation of the added predictive value concerns only the
gene signature computed with data collected following the
technique used in the validation set, not its version based
on the training data. When the training and the valida-
tion data are not directly comparable, any analysis must
be performed using only the information present in the
validation set. In particular, a possible bad performance
of the signature, in this case, would not mean an overall
absence of added predictive value, but its lack of useful-
ness when constructed with data obtained with the latter
technique.
We first present the considered leukemia datasets in

the Data section in order to subsequently use them to
illustrate the methods presented in the Methods section.
These methods are compared empirically in the Results
section. In order to improve transparency and facilitate
the readability of our study, we summarize the description
of the data used and the analyses performed in Tables 1
and 2, adapting the REMARK profile [15].

Data
Acute myeloid leukemia
The first dataset comes from a study conducted by
Metzeler and colleagues [13] on patients with cytogeneti-
cally normal acute myeloid leukemia (AML). As one of the
main results of the study, the authors suggest a signature
based on the expression of 86 probe sets for predicting
the event-free and overall survival time of the patients.
In this paper we focus on the latter of the two outcomes,
which is defined as the time interval between entering in
the study and death. The signature was derived using the
“supervised principal component” [16] technique, which
in this study leads to a signature involving 86 probe sets.
The supervised principal component technique consists
of applying principal component analysis to the set of
predictorsmostly correlated with the outcome; in this spe-
cific case, the authors used the univariate Cox scores as a
measure of correlation, and they selected those predictors
with absolute Cox score greater than a specific threshold
derived by a 10-fold cross-validation procedure.
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Table 1 Acutemyeloid leukemia: REMARK-like profile of the analysis performed on the dataset

a) Patients, treatment and variables

Study andmarker Remarks

Marker OS = 86-probe-set gene-expression signature

Further variables v1 = age, v2 = sex, v3 = NMP1, v4 = FLT3-ITD

Reference Metzeler et al. (2008)

Source of the data GEO (reference: GSE12417)

Patients n Remarks

Training set

Assessed for eligibility 163 Disease: acute myeloid leukemia

Patient source: German AML Cooperative Group 1999-2003

Excluded 0

Included 163 Treatment: following AMLCG-1999 trial

Gene expression profiling: Affymetrix HG-U133 A&B microarrays

With outcome events 105 Overall survival: death from any cause

Validation set

Assessed for eligibility 79 Disease: acute myeloid leukemia

Patient source: German AML Cooperative Group 2004

Excluded 0

Included 79 Treatment: 62 following AMLCG-1999 trial 17 intensive chemotherapy outside the
study

Gene expression profiling: Affymetrix HG-U133 plus 2.0 microarrays

With outcome events 33 Overall survival: death from any cause

Relevant differences between training and validation sets

Data source Same research group, different time (see above)

Follow-up time Much shorter in the validation set (see text)

Survival rate Higher in the validation set (see Figure 2)

b) Statistical analyses of survival outcomes

Analysis n e Variables considered Results/remarks

A: preliminary analysis (separately on training and validation sets)

A1: univariate
163 105

v1 to v4 Kaplan-Meier curves (Figure 1)
79 33

B: evaluating clinicalmodel and combinedmodel on validation data (models fitted on training set, evaluated on validation set)

B1: overall prediction

OS, v1 to v4

Prediction error curves (Figure 5)

Integrated Brier score (text)

B2: discriminative ability

Training Comparison of Kaplan-Meier curves for risk groups:

163 105 - Medians as cutpoints (Figure 6),

- K-mean clustering (data not shown - see text)

C-index (text)

Validation K-statistic (text)

B3: calibration

79 33 Kaplan-Meier curve vs average individual survival curves for risk groups
(Figure 7)

Calibration slope (text)

C: Multivariate testing of the omics score in the validation data (only validation set involved)

C1: significance 79 33 OS, v1 to v4 Multivariate Cox model (Table 3)
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Table 1 Acutemyeloid leukemia: REMARK-like profile of the analysis performed on the dataset (Continued)

D: Comparison of the predictive accuracy of clinical and combinedmodels through cross-validation in the validation data (only validation set involved)

D1: overall prediction 79 33 OS, v1 to v4

Prediction error curves based on repeated cross-validation (Figure 8)

Prediction error curves based on repeated subsampling (data not shown -
see text)

Prediction error curves based on repeated bootstrap resampling (data not
shown - see text)

Integrated Brier score based on cross-validation (text)

E: Subgroup analysis (E1-E3 based on training and validation sets, E4 and E5 only on validation set; for all, separate analysis for female andmale population)

E1: overall prediction Female

OS, v1 to v4

Prediction error curves (Figure 9)

E2: discriminative ability
t.: 88 54 C-index (text)

K-statistic (text)v.: 46 16

E3: calibration Male Calibration slope (text)

E4: significance t.: 74 51 Multivariate Cox model (text)

E5: overall prediction v.: 33 17 Prediction error curves based on cross-validation (Figure 10)

The 86 probe set signature was derived using the omics
information contained in a training set of 163 patients,
with 105 events (patients deceased) and 58 right censored
observations. The validation set included 79 patients,
with 33 events and 46 right censored observations. Gene
expression profiling was performed using Affymetrix HG-
U133A&Bmicroarrays for the training set and Affymetrix
HG-U133 plus 2.0 microarrays for the validation set.
Both sets are available in the Gene Expression Omnibus
(reference: GSE12417). Our starting point is the data as
provided in the Web depository; see Table 1 for a brief
description. For further details concerning specimen and
assay issues, in accordance with the criteria developed
by the US National Cancer Institute [7], we refer to the
original paper [13]. We stress the importance, for clinical
applicability of an omics-based predictor, of following the
checklist provided by McShane and colleagues [7,17].
For both the training and validation sets, we also

have information on some clinical predictors, namely
age, sex, FLT3-ITD (internal tandem duplication of the
fms-like tyrosine kinase 3) and NPM1 (mutation in nucle-
ophosmin 1). Here age is a continuous variable rang-
ing from 17 to 83 years in the training set and from
18 to 85 in the validation set. The other three pre-
dictors are dichotomous (male/female, FLT3-ITD/NON-
FLT3-ITD and NMP1 mutated/wild type, respectively).
For more information, we refer to the original paper [13].
To give an initial impression of the data, Figure 1 shows a
first univariate graphical analysis of the clinical predictors
based on the Kaplan-Maier curves, where the threshold
used to dichotomize the predictor age (60 years) is estab-
lished in the medical literature [18]. It can be immediately
seen that there is a large difference in the follow-up times:
in the training set, it ranges from 0 to 2399 days (median
1251, computed by inverse Kaplan-Meier estimate); in the
validation set, from1 to 837 days (median 415). The events

in the training set mainly occur in the first 800 days, and
therefore the non-overlapping time is not highly informa-
tive; in contrast in the validation set there are no events
after 1.5 years (547.5 days), which suggests the existence of
a non-negligible difference between the two sets. From the
analysis of the Kaplan-Meier curves, we can also see that
the effect of the predictor FLT3-ITD seems to vary over
time (this issue is more visible in the validation set, where
FLT3-ITD seems to have no effect in the first 250 days,
while for the training set it seems to have no effect only
in the first 150 days). All the other predictors, however,
seem to have regular behavior, and in the multivariable
Coxmodel that includes all clinical predictors, the propor-
tional hazards assumption is acceptable. Finally, the two
sets differ slightly in terms of survival rate. As can be seen
in Figure 2, the patients in the validation set have a lower
mortality than those in the training set (for graphical clar-
ity, here the Kaplan-Meier curve for the training set is cut
at 1250 days, after the last event).

Chronic lymphocytic leukemia
The second dataset comes from a study conducted by
Herold and colleagues [19] on patients with chronic lym-
phocytic leukemia (CLL). The main goal of this study
is also to provide a signature based on gene expres-
sion which can help to predict time-to-event outcomes,
namely the time to treatment and the overall survival time.
We again focus on the overall survival, as the authors
did. The signature developed in this study is based on
the expression of eight genes and was obtained using the
“supervised principal component” technique, similarly to
the previous study. In this study, however, the selection of
the relevant gene expression predictors is more complex.
The univariate Cox regressions measuring the strength
of the association between survival time and each of
the candidate predictors are not simply conducted based
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Table 2 Chronic lymphocytic leukemia: REMARK-like profile of the analysis performed on the dataset

a) Patients, treatment and variables

Study andmarker Remarks

Marker OS = 8-probe-set gene-expression signature

Further variables v1 = age, v2 = sex, v3 = FISH, v4 = IGVH

Reference Herold et al. (2011)

Source of the data GEO (reference: GSE22762)

Patients n Remarks

Training set

Assessed for eligibility 151 Disease: chronic lymphocytic leukemia

Patient source: Department of Internal Medicine III, University of Munich
(2001 - 2005)

Excluded 0

Included 151 Criteria: sample availability

Gene expression profiling: 44 Affymetrix HG-U133A&Bmicroarrays, 107
Affymetrix HG-U133 plus 2.0 microarrays

With outcome events 41 Overall survival

Validation set

Assessed for eligibility 149 Disease: chronic lymphocytic leukemia

Patient source: Department of Internal Medicine III, University of Munich
(2005 - 2007)

Excluded 18 Due to missing clinical information

Included 131 Criteria: sample availability

Gene expression profiling: 149 qRT-PCR (only selected genes)

With outcome events 40 Overall survival

Relevant differences between training and validation sets

Data source Same institution, different time (see above)

Measurement of gene expressions Affymetrix HG-U133 vs. TaqMan LDA (see text)

Survival rate Lower in the validation set (see Figure 4)

b) Statistical analyses of survival outcomes

Analysis n e Variables considered Results/remarks

F: preliminary analysis (separately on training and validation sets)

F1: univariate
151 41

v1 to v4 Kaplan-Meier curves (Figure 3)
131 40

G: Multivariate testing of the omics score in the validation data (only validation set involved)

G1: significance 131 40 OS, v1 to v4 Multivariate Cox model (Table 5)

H: Comparison of the predictive accuracy of clinical and combinedmodels through cross-validation in the validation data (only validation set involved)

H1: Overall prediction 131 40 OS, v1 to v4
Prediction error curves based on cross-validation (Figure 11)

Integrated Brier score based on cross-validation (text)

on the whole dataset like in the previous study, but are
instead repeated in 5000 randomly drawn bootstrap sam-
ples. In each of these samples, the association between
each predictor and the outcome was computed, and the
predictors with a significant association were selected.
The 17 genes most frequently selected across the 5000
bootstrap replications were considered in a further step,
which was necessary to discard highly correlated genes.
The expressions of the 8 genes surviving this further
selection were finally used to construct the prognostic
signature. The use of a procedure based on bootstrap

sampling is motivated by the necessity of increasing
the stability and potentially reducing the influence of
outliers [20].
For this study, there was also a training set that was

used to derive the signature, and an independent vali-
dation set that was used to evaluate its accuracy. The
former contains clinical and omics information on 151
patients, with 41 events and 110 right censored obser-
vations. Among the 149 patients from the validation set,
18 were discarded due to missing values, resulting in
a sample size of 131, with 40 events and 91 censored
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Figure 1 AML: univariate Kaplan-Meier curves. Acute myeloid leukemia: Kaplan-Meier estimation of the survival curves in subgroups based on
age (first row), sex (second row), FLT3-ITD (third row) and NPM1 (fourth row), computed in the training (first column) and in the validation (second
column) sets.

observations. The gene expression data are available in
the Gene Expression Omnibus with reference number
GSE22762. Further information about the omics data, as
provided in the Web depository, is collected in Table 2.
For this dataset as well, we refer the reader to the origi-
nal paper [19] for the additional details on the preliminary
steps of data collection/preparation (and their compliance
with the US National Cancer Institute’s criteria for the
clinical applicability of an omics-based predictor [7]).
The peculiarity of this study is that the gene expres-

sions were collected using a different technique for the
training set than for the validation set. The training set
gene expressions were measured using Affymetrix HG-
U133 (44 Affymetrix HG-U133 A&B, 107 Affymetrix
HG-U133 plus 2.0), while for the validation patients a
low-throughput technique (TaqMan Low Density Array,
LDA) was used to measure only those genes involved in
the signature. The validation procedures, therefore, are

restricted to use only the validation data and cannot take
into consideration the training set.
The considered clinical predictors were age (consid-

ered continuous as in the previous study), sex, fluorescent
in situ hybridization (FISH) and immunoglobulin vari-
able region (IGVH) mutation status. FISH and IGVH are
two widely used predictors in CLL studies [21]. The for-
mer is an index based on a hierarchical model proposed
by Döhner and colleagues [18] that includes the possi-
ble deletion or duplication of some chromosomal regions
(17p13, 11q22-23, 13q14, 12q13), and has 5 modalities
(0 = deletion of 13q14 only, 1 = deletion of 11q22-23 but
no deletion of 17p13, 2 = deletion of 17p13, 3 = trisomy
12q13 but no deletion of 17p13 or 11q22-23, 4 = no pre-
viously mentioned chromosomal aberration), while the
latter indicates whether IGVH is mutated or not.
Here again we present a preliminary overview of

the univariate effect of the clinical predictors via the
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Figure 2 AML: Kaplan-Meier curves. Acute myeloid leukemia: comparison between the Kaplan-Meier estimation of the survival curves computed
in the training (red line) and in the validation (green line) sets.

Kaplan-Meier curves. The results are reported in Figure 3.
We can see that both FISH and IGVH are able to separate
patients with high risk and patients with low risk well. In
particular, the difference between patients with FISH = 2
(patients with “deletion 17p13”) and the others is obvious.
This group is characterized by a small sample size and very
high risk of death. For this study there is a smaller differ-
ence in terms of follow-up time between the training and
the validation sets: in the former, it ranges from 11 to 2694
days (median computed via reverse Kaplan-Meier curve
equal to 1499); in the latter, from 77 to 1808 days (median
1516). Further, there is a small difference between the two
sets in terms of survival rate. In Figure 4, we can see that
the Kaplan-Meier curve computed for the validation set is
below the one computed for the training set.

Methods
Scores
The term “signature” usually refers to a score synthesiz-
ing several omics markers that is supposed to be related
to the patient’s disease status or outcome. In this paper,
we prefer the term “omics score”, which better empha-
sizes how the score is constructed and clearly outlines its
quantitative character. An omics score is typically derived
by applying an algorithm to a training set. It can either
involve all the features present in the dataset or a subset
of them. For example, in the CLL study (see Data section
for more details), the authors selected (a subset of) eight

genes and defined their omics score as the first principal
component:

OS = 0.16 · SFTPB − 0.151 · MGAT4A − 0.096 · TCF7
+ 0.089 · MGC29506 − 0.11 · PLEKHA1 − 0.108
× PDE8A + 0.081 · MSI2 − 0.208 · NRIP1,

where the abbreviation OS stands for omics score and the
other abbreviations are the names of the involved genes.
This score is linear, but in general scores may also show a
more complex structure. In some cases they do not even
have a simple closed form, for example when they are
derived using machine learning tools like random forests.

Strategies
No matter with which algorithm the omics score was
derived from the training data, its usefulness as a predic-
tor for prognosis purposes has to be evaluated using a set
of patients that have not been considered until now: the
validation data. We now focus on this part of the analysis,
with special emphasis on the question of the added predic-
tive value given other well-established clinical predictors.
The underlying idea is that the new omics score is rele-
vant for clinical practice only if it improves the prediction
accuracy [22] that one would obtain from existing predic-
tors. An exception where the omics score may be useful
even if it does not improve prediction accuracy is when it
is, say, cheaper or faster to measure. We assume that this
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Figure 3 CLL: univariate Kaplan-Meier curves. Chronic lymphocytic leukemia: Kaplan-Meier estimation of the survival curves in subgroups based
on age (first row), sex (second row), FISH (third row) and IGVH (fourth row), computed in the training (first column) and in the validation (second
column) sets. The values of FISH (third row) represent: 0 = deletion of 13q14 only; 1 = deletion of 11q22-23 but no deletion of 17p13; 2 = deletion of
17p13, 3 = trisomy 12q13 but no deletion of 17p13 or 11q22-23, 4 = no previously mentioned chromosomal aberration.

is not the case in most applications and that the question
of the added predictive value is an important issue.
Here we consider the following situation: we have at

our disposal the clinical data (predictors Z1, . . . ,Zq) and
the omics data (predictors X1, . . . ,Xp) for both the train-
ing and the validation sets. Furthermore, we know how
the omics score can be calculated from the omics data. In
the case of linear scores like those suggested in the two
considered leukemia studies, it means that we know the
coefficients and the name of each involved gene, either
from a table included in a paper or from a software object.
In the rest of this paper, the function used to calculate the
omics score from the omics predictors X1, . . . ,Xp will be
denoted by f̂ T (X1, . . . ,Xp), where the hat and the super-
script T indicate that this function was estimated based
on the training set.
A. Evaluating the clinical model and the combined

model on validation data. The most direct approach to

the validation of the added predictive value of an omics
score consists of (i) fitting two models to the training data:
one involving clinical predictors only and one combining
clinical predictors and the omics score of interest, and (ii)
evaluating their prediction accuracy on the validation set.
The added predictive value can then be considered val-
idated if the prediction accuracy of the combined score
(i.e., the score involving both the clinical predictors and
the omics score) is superior to the prediction accuracy of
the clinical score (i.e., the one based only on clinical pre-
dictors). This general approach has to be further specified
with respect to

1. the procedure used to derive a combined prediction
score;

2. the evaluation scheme used to compare the
prediction accuracy of the clinical and combined
prediction scores on the validation set.
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Figure 4 CCL: Kaplan-Meier curves. Chronic lymphocytic leukemia: comparison between the Kaplan-Meier estimation of the survival curves
computed in the training (red line) and in the validation (green line) sets.

Regarding issue 1), a natural approach consists of simply
fitting a multivariate Cox model with the clinical predic-
tors and the omics score as predictors to the training data.
The resulting linear score can then be regarded as a com-
bined score, since it involves both clinical predictors and
the omics score. More precisely, the model

λ
(
t|Z1, . . . ,Zq, OS

) = λ0(t) ·exp
⎛
⎝

q∑
j=1

βj · Zj + β∗ · OS

⎞
⎠ ,

(1)

is fit bymaximization of the partial likelihood on the train-
ing set, yielding the estimates β̂T

j (for j = 1, . . . , p) and
β̂T∗ , where the exponent T stands for the training dataset
that is used for fitting. In model (1), the omics score OS is
given as OS= f̂ T (X1, . . . ,Xp). The clinical model

λ
(
t|Z1, . . . ,Zq

) = λ0(t) · exp
⎛
⎝

q∑
j=1

βj · Zj

⎞
⎠ , (2)

is computed in the same way, without taking into account
the omics information.
Regarding issue 2), we need to specify how we measure

the prediction accuracy of the prognostic rules based on
the clinical and the combined prediction scores. This
involves a graphical or numerical investigation of their
discriminative ability and calibration, either separately

or simultaneously. We will focus later on this issue 2 in a
dedicated section, “Evaluation criteria”. In the meantime,
we want to stress that, within this strategy (strategy A),
the measure of the prediction accuracy is computed in
the validation set. There is a major issue related to this
approach: the omics score, fitted to the training data,
tends to (strongly) overfit these data and to consequently
dominate the clinical predictors. This is because the
training set T is used twice: first for the estimation of f̂ T
and then for the estimation of β̂T

1 , . . . , β̂T
q , β̂T∗ . This issue

will be discussed further when examining the application
to our two exemplary datasets.

B. Multivariate testing of the omics score in the
validation data. To address this overfitting issue, model
(1) can also be fitted on the validation data, yielding the
estimates β̂V

j (for j = 1, . . . , p) and β̂V∗ for the clinical pre-
dictors Z1, . . . ,Zq and the omics score OS, respectively.
Here the exponent V stresses the fact that the estimates
are computed using the validation data. By fitting the
model on the validation data, we do not face the over-
fitting issues mentioned above, because different sets are
used to derive OS and to fit the coefficients of model (1).
In this approach the clinical predictors of the training set
are not used.
A test can then be performed to test the null-hypothesis

β∗ = 0, for instance a score test, a Wald test or a
likelihood ratio test. The p-value can be used as a simple
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and familiar measure of association between the score
and the outcome. However, the p-value is more related to
the explained variability than to the prediction error, and
a small p-value can also be found if the omics score hardly
adds anything to the predictive value [11]. Therefore, the
use of the p-values for the validation of the additional
predictive value of an omics score is not sensible. For
example, the p-value gets smaller simply by increasing
the sample size, even if the predictive ability of the model
does not change [11].

C. Comparison of the predictive accuracy of the
models with and without omics score through cross-
validation in the validation data. To focus on predictive
ability, one option consists of evaluating the combined
model (1) and the model based on clinical data only (2)
through cross-validation (or a related procedure) on the
validation set. The main reason to perform this procedure
is to avoid the overfitting issues related to the afore-
mentioned double use of the training data for variable
selection and parameter estimation. The cross-validation
procedure mimics the ideal situation in which three sets
are available: one to construct the omics score, one to esti-
mate the parameters and one to test the model. This is
performed by splitting the validation set into k subsets: in
each of the k iterations, the outcome of the k-th fold (“test
set”) is predicted using both the clinical and the combined
models fitted in the remaining k−1 folds (“learning set”) in
turn. Comparing these predictions with the actual values
of the outcome present in the k-th fold, we can compute
a measure of prediction accuracy. As already stated for
strategy A, the prediction accuracy of the prognostic rules
based on the clinical and the combined prediction scores
can bemeasured in terms of discriminative ability, calibra-
tion, or these two properties simultaneously. The details
are explained in the dedicated section. Since in each cross-
validation step parameter estimation and measurement
of the prediction accuracy are performed in independent
sets, we do not face overfitting issues. The averages of the
results (in terms of prediction accuracy) obtained in the k
iterations for the two models allow the assessment of the
added predictive value of the omics score.
Note that for this approach standard multivariate Cox

regression may be replaced by any other prediction
method if appropriate, for example a method which
deals better with the collinearity of the clinical predictors
Z1, . . . ,Zq and the omics score.

D. Subgroup analysis. Subgroup analyses may be help-
ful in the context of added predictive value for different
reasons. Firstly, biological reasoning may be available.
If there are few existing predictors, examining the per-
formance of the omics score in all possible subgroups
defined by the existing predictors is a direct approach

to determine its added predictive value, i.e. whether it
can discriminate between patients when existing pre-
dictors cannot (since they have the same values for all
predictors). Secondly, even if there are toomany combina-
tions of existing predictors to apply this direct approach,
applying the methods described in the above sections to
subgroups may yield interesting results, for instance that
the omics score has more added predictive value in a
particular subgroup. The most important drawbacks of
such subgroup analyses are related to sample size (each
subgroup being smaller than the whole dataset) and mul-
tiple testing issues (if several subgroups are investigated in
turn). Care is required in assessing the value of subgroup
analyses.

Evaluation criteria
In the description of the different strategies, we have seen
that a relevant aspect of validating the added predictive
value of an omics score is how to measure the prediction
accuracy of a prognostic rule. As we stated above, this can
be done by investigating, either separately or combined,
the discriminative ability and the calibration. Specifically,
the former describes the ability to discriminate between
observations with and without the outcome, or, in the case
of continuous outcome, correctly ranking their values: in
the case of survival data, for example, predicting which
observations have the higher risk. Since in this paper we
focus on survival analysis, we refer only to those methods
that handle time-to-event data. This is true also for the
calibration, which, in this context, can be seen as a mea-
sure describing the agreement between the predicted and
the actual survival times.

Discriminative ability: In the context of survival
curves, the discriminative ability is, in principle, reflected
by the distance between the survival curves for individ-
uals or groups [23]. Therefore, a graphical comparison
between the Kaplan-Meier curves can be used to assess
this property: the best rule, indeed, is the one which leads
to the most separated curves. In practice, we can split the
observations into two groups, assembled considering the
estimates of the linear predictors ηcomb = ∑q

j=1 βj · Zj +
β∗ · OS and ηclin = ∑q

j=1 βj · Zj, for example, using their
medians as cutpoints. In this way, we define a low- and a
high-risk group for both cases (using ηcomb and ηclin), and
we can plot the resulting four Kaplan-Meier curves. If the
two curves related to the groups which are derived using
η̂comb are much more separated than those related to the
groups derived using η̂clin, then we can assert the presence
of added predictive value. In principle, more prognos-
tic groups can be constructed, reflecting a division more
meaningful from a medical point of view. Nevertheless,
for the illustration purpose of this graphic, the two-group
split is sufficient. In the same vein, the choice of the
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cutpoint is also not relevant, and we would expect similar
results with different (reasonable) cutpoints.
Numerical criteria, instead, can be based on the estima-

tion of the concordance probability or on the prognostic
separation of the survival curves. The most popular index
which exploits the former idea is probably the C-index
[24]. It consists of computing the proportion of all the
“usable” pairs of patients for which the difference between
the predicted outcomes for the pairs and the difference
between the true outcomes for the pairs have the same
sign. Here “usable” means that censoring does not prevent
the ordering of them. This limitation shows the depen-
dence of this index on the censoring scheme, which may
compromise its performance. To cope with this issue, in
this paper we use the version of the C-index described in
Gerds and colleagues [25]. Moreover, for the same reason,
we also consider the alternative index proposed by Gönen
& Heller [26], which relies on the proportional hazards
assumption and is applicable when a Cox model is used.
For both indexes, the highest value denotes the best rule
(on a scale from 0 to 1).
Calibration: The calibration can also be evaluated

graphically. A simple method consists of comparing the
Kaplan-Meier curve (observed survival function) com-
puted in the validation set with the average of the
predicted survival curves of all the observations of the val-
idation sample [23]. The closer the predicted curve is to
the Kaplan-Meier curve, the better calibration the prog-
nostic rule has. Under the proportional hazards assump-
tion, a numeric result can be obtained via the “calibration
slope”. This particular approach consists of fitting a Cox
model with the prognostic score as the only predictor.
Good calibration leads to an estimate of the regression
coefficient being close to 1. It is worth pointing out that
this procedure focuses on the calibration aspect and does
not constitute itself, as sometimes claimed in the litera-
ture, a validation of the prediction model [23]. Calibration
is often considered less important than discriminative
ability, because a recalibration procedure can be applied
whenever appropriate.
Overall performance: a measure of the overall per-

formance of a prognostic rule should incorporate both
discrimination and calibration. The integrated Brier score
[27,28] is such a measure. It summarizes in a single index
the time-dependent information provided by the Brier
score [29] (which measures the prediction error at a spe-
cific time t), by integrating it over the time. The best
prediction rule is the one which leads to the smallest value
for the integrated Brier score. The Brier score can also
be plotted as a function of time to provide the prediction
error curve, which can be used to graphically evaluate the
prediction ability of the model: the lower the curve, the
better the prediction rule is. The integrated Brier score
corresponds to the area under this curve.

We note that, in order to compute these measures,
different levels of information from the training set are
needed [23]. For example, the baseline hazard function
is necessary to assess calibration, while it is not needed
to evaluate the discriminative ability via Kaplan-Meier
curves.
The literature provides several other measures for the

evaluation of the prediction ability of a model for sur-
vival outcomes [23,28]. They can be either specifically
developed in the survival analysis framework, such as the
Royston-Sauerbrei D-measure [30] or Zheng et al. [31]’s
positive prediction value, or adapted from different con-
text, for example from classification problems. Examples
of the latter kind of measures are the net reclassifica-
tion index [10,32,33] and decision curve analysis [34,35].
Finally, different variants of model-based R2-type coeffi-
cients of explained variation are also commonly used in
the literature for different regression models, including
models for survival outcomes [36]. All these alternative
measures can be easily computed within the described
strategies instead of themeasures considered in this paper,
providing different insights into the added predictive
value of the omics score, but without changing the gen-
eral principles. We summarize the characteristics of the
measures considered in our paper in Table 3.

Results
Acute myeloid leukemia
In this subsection we illustrate the application of different
methods and their impact on the results by using the acute
myeloid leukemia dataset. For a summary of the analyses
performed, we refer to the profile provided in Table 1.

A. Evaluating the clinical model and the combined
model on validation data. We have seen that the easi-
est way to derive a prediction combined score is to fit a
multivariate Cox model which includes as covariates the
clinical predictors and the omics score. The added predic-
tive value of the latter is then validated by looking at the
prediction properties (calibration, discrimination, overall
performance) of this model compared to the model fitted
using only the clinical predictors. For the AML dataset,
therefore, we compare the combined model (see Table 4)
with the clinical model (i.e., the model without the omics
score).
While estimates from these models come from the

training set, the prediction properties must be evaluated
in the validation set. Starting by gaining an overall view of
their predictive ability, we consider the Brier score, both
by investigating graphically the prediction error curves
representing its value versus time (Figure 5) and by mea-
suring the area under these curves, commonly called the
integrated Brier score. Since for late time-points the error
estimates (Brier scores) are based on a small number of
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Table 3 Characteristics of themeasures implemented to evaluate the prediction ability of amodel

Aspect Measure Characteristics

Discriminative ability Kaplan-Meier curves for risk groups Better with greater distance between the Kaplan-Meier curves for the
low- and high risk groups

C-index Estimates the concordance probability, i.e. the probability that the score
correctly orders two patients with respect to their survival time; higher
values correspond to better prediction

K-statistic Alternative to the C-index; works only under the proportional hazards
assumption

Calibration Survival curves Compares the observed survival function with the average predicted
curve

Calibration slope Computes the regression coeffcient of the prognostic score as unique
predictor; the best values are those close to 1; related to overfitting
issues

Overall prediction Prediction error curves Presents the Brier score versus time; the closer the curves are to the
X-axis, the better the prediction

Integrated Brier score Computes the area under the prediction error curves; the smaller is the
value, the better the prediction

observations (generally with few/no events) and are there-
fore unreliable, the researchermay prefer to evaluate Brier
score-based quantities up to a specific time, which would
ideally have a clear clinical meaning. In this case, since we
do not have any time value highly relevant from a clin-
ical point of view, we choose to compute the integrated
Brier score up to 1.5 years, following the graphical investi-
gation of the Kaplan-Meier curves performed in the Data
section. The values of the integrated Brier score are 0.201,
0.181 and 0.190 for the null, the clinical and the combined
models, respectively, and, therefore, we cannot validate
the added predictive value of the omics score. The graphi-
cal investigation of the prediction error curves in Figure 5
confirms this point: after an initial time period of around
300 days in which the three lines are indistinguishable (i.e.,
the prediction models do not provide any information),
the red (clinical model) and the green (combined model)
fall below the black (null model), showing that there is an
advantage in using a predicitonmodel. Nevertheless, there
is no evidence of a better performance of the combined

Table 4 Acutemyeloid leukemia: estimates of the
log-hazard in amultivariate Coxmodel fittedon the
validationdata, with the standard deviations and the
p-values related to the hypothesis of nullity of the
coefficients (simple null hypothesis)

Variable Coeff Sd(coeff) P-value

Omics score 0.523 0.243 0.0312

Age (continuous) 0.022 0.015 0.1340

Sex (male) 0.643 0.404 0.1114

FLT3-ITD 0.436 0.440 0.3220

NPM1 (mutated) -0.377 0.404 0.3497

model compared to the clinical model (the green line is
not constantly below the red line).
If we consider calibration and discriminative ability sep-

arately, we can see that the main issues are related to
the former. The discriminative ability of the combined
model, indeed, is slightly better both according to the
C-index (0.631 versus 0.605 for the clinical model) and to
the K-statistic (0.674 versus 0.653). The difference, how-
ever, is definitely not large, and the values themselves are
small (the C-index and the K-statistic range from 0.500,
which corresponds to a complete random situation, to 1,
which indicates perfect concordance). We can draw the
same conclusion from graphical inspection of Figure 6:
the graphic shows the Kaplan-Meier curves for the low-
and the high-risk groups (defined using the median score
as a cutpoint) derived using the combined (green line)
and the clinical (red line) models. The green lines are
slightly more separated than the red ones, showing a lit-
tle improvement in discrimination. We also tried to define
low- and high-risk groups using a K-means clustering pro-
cedure (2-means), obtaining very similar results (here not
shown).
A different result is obtained when considering calibra-

tion. Figure 7 displays the graphical comparison between
the Kaplan-Meier curve, i.e., the observed survival curve
(continuous black line), and the average predicted survival
curves (continuous line) of the subjects in the validation
set, for both the clinical (red) and combined (green)
models. Both predicted curves are relatively far from the
observed one. This poor calibration is partly due to the
difference between the two sets, which leads to different
estimates of the baseline survival function (calibration-in-
the-large): in order to show the effect of this difference,
we have reported in a dashed line the average survival
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Figure 5 AML: prediction error curves. Acute myeloid leukemia: prediction error curves based on the Bier score computed in the validation set
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Figure 7 AML: comparison between observed and average predicted survival curves in the validation set. Acute myeloid leukemia:
comparison between the observed survival curve (Kaplan-Meier, black line) and the average predictive survival curves computed in the validation
set using the clinical (red line) and combined (green line) models fitted on the training data. Continuous lines represent the average predictive
survival curves computed interpolating the baseline survival curve derived in the training set. Dashed lines represent the same curves computed
using an estimation of the baseline survival curve derived in the validation set. For the dotted curves, the estimates of the regression coefficients are
shrunk toward 0.

curves predicted using the baseline survival function
computed in the validation data (please note that this is
done to interpret the graphic, for validation purposes only
the continuous lines are relevant). We can see that with
this “correction”, the average survival curves becomes
slightly closer to the observed one. The other aspect that
we should consider is the calibration slope: being directly
related to the linear predictors, it is of high interest in
terms of validation of the added predictive value of the
omics score. In order to focus on this aspect, we obtain a
numerical result by estimating the regression coefficients
of the clinical and of the combined score when used as a
predictor in a Cox model. Since the intercept is absorbed
in the baseline hazard, indeed, this procedure does not
take into account the calibration-in-the-large [37]. The
values obtained for the calibration slope confirm the
impressions of the graphical investigation: the estimates
of the regression coefficient using the clinical score and
the combined score are 0.900 (sd=0.314) and 0.888
(sd=0.245), respectively. There is a slight worsening when
considering the omics score, and both values are relatively
far from the ideal case, in this case a coefficient equal to 1.

Possible sources of overfitting. As stated by
Steyerberg et al. (2010) [28], calibration-in-the-large and

calibration slope issues are common in the validation
process, and they reflect the overfitting problem [38]
that we mentioned previously in the Methods section.
With particular regard to calibration slope, the overfit-
ting issue can be related to the need for the shrinkage
of regression coefficients [28,39,40]. If we go back to
Figure 7 and shrink the regression coefficients toward 0,
we can see that, in this way, we obtain good calibration
(dotted lines, almost indistinguishable from the black
one). In the clinical model, the shrinkage is performed
by applying a factor of 0.92 to all four regression coeffi-
cients: the small amount of shrinkage necessary to move
the average predicted curve close to the observed one
reveals the relatively small effect of the overfitting issue
in a model constructed with low-dimensional predictors.
In order to obtain the same results with the combined
model, instead, we applied a relatively large shrinkage fac-
tor, 0.5, to the regression coefficient related to the omics
score (and, therefore, leaving those related to the clinical
predictors unchanged). This reflects the typical situation
of a model containing a predictor derived from high-
dimensional data: since this predictor (omics score) has
been constructed (variable selection and weight estima-
tion) and its regression coefficient estimated in the same
set (the training set), the overfitting issue largely affects
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the combined model. The fact that we need to apply the
shrinkage factor only to the regression coefficient of the
omics score, moreover, is a clear signal of how much the
omics score, inasmuch derived from high-dimensional
data, dominates the clinical predictors. This may explain
the large distance between the red and the green (con-
tinuous) lines in Figure 7. As a result, the effect of the
(possibly overfitting) omics score may turn out to hide
the contribution of the clinical predictors when estimated
on the same training set, in a way that in the validation
step we in fact mostly evaluate the predictive value of
the omics score. The fact that the problem of overfitting
largely affects the calibration of the models, moreover,
may influence the analyses based on a direct computa-
tion of the Brier score (strategy A), and a more refined
approach (strategy C) may be required.
To highlight the overfitting problem, we re-estimated

the regression coefficients of the combined model using
the validation set. Table 5 shows the estimated log-hazard
ratios of all considered predictors based on the training
set (first column) and the validation set (second column).
It can be seen that the log-hazard ratios of the predictors
age, FLT3-ITD and NPM1 are not noticeably different,
while the value of the log-hazard ratio of the omics score
decreases substantially from the training set – where
overfitting is plausible – to the validation set. This con-
firms our suspicions and strengthens the idea that, if the
effect of the omics score is to be assessed through a mul-
tivariate model, this model cannot be fitted on the same
set used for the construction of the score (training set),
but instead needs to be fitted on an independent dataset.
Obviously, if we use the validation set for this purpose,
i.e., as in van Houweliengen’s definition [41], to update
the model, we need a third set for the validation. We have
seen that this idea motivates strategy C.

B. Multivariate testing of the omics score in the
validation data. The combined multivariate model pre-
viously fitted on the training set can be further used to

Table 5 Acutemyeloid leukemia: differences in the
estimates of the log-hazard ratio when the combined
model is fitted on the training (first column) or on the
validation (second column) data

Log-hazard ratios

Variable Training Validation

Omics score 0.642 (0.172) 0.523 (0.243)

Age (continuous) 0.021 (0.008) 0.022 (0.015)

Sex (male) -0.024 (0.208) 0.643 (0.404)

FLT3-ITD 0.448 (0.253) 0.436 (0.440)

NPM1 (mutated) -0.370 (0.215) -0.377 (0.404)

Standard deviations are reported between brackets.

derive the p-value corresponding to the null-hypothesis
that the coefficient of the omics score is zero, by estimat-
ing its regression coefficients on the validation set. The
results are reported in Table 4, and are in line with those
presented in the original paper [13]. More precisely, the
authors used as clinical predictors only age, FLT3-ITD
and NPM1, while here we also consider sex. Nevertheless,
the effect of sex being weak (with a p-value of 0.111), the
p-value of the score that we are interested in is hardly
affected by this additional predictor (here p-value =
0.031, in the original paper, 0.037). Since these values are
in a borderline area between the most commonly used
significance levels of 0.01 and 0.05, we cannot clearly con-
firm the added predictive value of the omics score. Most
importantly, this significance testing approach within the
multivariate model does not provide any information on
prediction accuracy, an aspect that is considered in the
next section.

C. Comparison of the predictive accuracy of the
models with and without omics score through cross-
validation in the validation data. The combined model
fitted on the validation set in the last subsection cannot
be evaluated using the validation set again: the same set,
indeed, cannot be used both to update and to validate the
model. Since a third set is rarely available, an option is to
evaluate this model based on a cross-validation approach
(10-fold CV in this paper) as described in the Methods
section, and to ultimately compare its performance to the
performance of the model including clinical predictors
only. Since the results of cross-validation usually depend
highly on the chosen random partition of the data [42,43],
we repeat cross-validation 100 times for different ran-
dom partitions and finally average the results over these
repetitions. The results are reported in terms of Brier
score via the prediction error curves in Figure 8. Although
the clinical and the combined models have very similar
behaviors, we can see a little improvement by including
the omics score in the prediction model. This is proba-
bly not sufficient to clearly validate its added predictive
value (thus agreeing with the borderline result obtained
with the previous approach), but it confirms the influ-
ence of the overfitting issue: as we saw in Table 5, the
regression coefficient for the omics score fitted in the
training set seems to be too dependent on the training
data, leading to prediction errors (Figure 5) for the com-
bined model bigger than for the clinical one. When we
fit the models on the validation data, as in this case,
the problem disappears, and the combined model per-
forms better than the clinical one (Figure 8). The values
of the integrated Brier score computed for the differ-
ent models (all up to 1.5 years) confirm these results:
for the null model it is 0.208, 0.191 for the clinical and
0.188 for the combined. It is worth noting, however, that
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Figure 8 AML: prediction error curves based on 10-fold cross-validation. Acute myeloid leukemia: prediction error curves based on Brier score
computed via 10-fold cross-validation (100 replications). The null (black line), the clinical (red line) and the combined (green line) models are
considered. Only the validation set is used.

in the first 300 days the behaviors of the three curves
are similar, strengthening the considerations stated for
approach A.
Note that other resampling techniques for accuracy esti-

mation might be used in place of 10-fold cross-validation.
The respective advantages and pitfalls of these techniques
have been the topic of a large body of literature [44,45]. As
a sensitivity analysis, we also performed our analysis using
a 3-fold cross-validation procedure (repeated 100 times):
the results, however, are very similar (data not shown).
Please note that the repeated cross-validation is very
similar to the repeated subsampling procedure, which has
often been used in the context of high-dimensional data
analysis [46-48]. The latter considers at each iteration
only one of the k cross-validation splits into learning and
test sets. For a large number of subsampling iterations or
a large number of cross-validation repetitions, respec-
tively, both procedures are known to yield similar results
[49], which was corroborated by our preliminary analyses
(data not shown). Another alternative is the bootstrap:
in each bootstrap iteration, the models can be fitted on
a bootstrap sample (i.e., a sample randomly drawn with
replacement from the validation set) and then evaluated
using those observations that are not included in the
bootstrap sample. Using the “0.632+” version of bootstrap
introduced by Efron and Tibshirani [50], based on 1000
bootstrap replications, we obtain results very similar to

those obtained by the aforementioned techniques (data
not shown).

D. Subgroup analysis (male and female populations
separately). For this acute myeloid leukemia dataset,
therefore, all the approaches seem to agree on the scarce
improvement of including the omics score in the model
in term of prediction ability. One aspect that remains
to be investigated is the peculiar behavior of the pre-
dictor sex, which yields substantially different regression
coefficient estimates in the training and validation sets
(Table 5). Although the relevance of this predictor in the
analysis is not obvious (it would have certainly been dis-
carded by a variable selection procedure in the training
set, the p-value related to a significance test in the valida-
tion set being 0.1114; see Table 4), it is the best candidate
to use as a splitting criterion in order to illustrate the
subgroup analysis described in the Methods section, and
to highlight possible issues related to this strategy. Our
goal, then, is to validate the added predictive value of the
omics score in the male and in the female populations
separately. The training set contains 88 female patients
(54 events) and 74 male patients (51 events), while in the
validation set there are 46 female patients (16 events) and
33 male patients (17 events). The sample sizes are very
small, but not uncommonly so in studies dealing with
omics data.
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The results are striking: although the omics score was
derived using the whole population, the difference in its
usefulness in predicting the survival times for male and
female patients is huge. While for the female subgroup
its additional predictive value is sizable both in term
of calibration (the calibration slope moves from 0.761
(sd=0.353) for the clinical model to 1.058 (sd=0.305)
for the combined model) and discriminative ability
(the C-index is equal to 0.632 for the clinical model and
0.689 for the combined model), in the male population
the addition of the omics score worsens, in a very clear
way, both the calibration (calibration slope from 0.698,
sd=0.635, to 0.157, sd=0.397) and the discriminative abil-
ity (C-index from 0.584 to 0.493, even worse than the
0.500 representing the random situation) of the model.
The prediction error curves plotted in Figure 9 clearly
show the different effect of the omics score in the female
and male populations: while the green curve (combined
model) is definitely under the red one (clinical model)
in the first graphic (female population), in the second
graphic (male population) it is not only above the red
curve, but also the black curve representing the prediction
error curve of the null model.
To address the overfitting issue associated with this pro-

cedure, we then also repeat the analyses described above

in both subgroups separately. Although both the positive
effect (in the female subgroup) and the negative effect
(in the male subgroup) of the omics score are substan-
tially smaller in the validation set than in the training set in
absolute value, the first impression is confirmed. The pre-
diction error curves based on a 100 replication of a 10-fold
cross-validation procedure (Figure 10) seem to confirm
the results of the previous approaches (those performed
in the two subgroups separately). The p-values from the
combined model fitted on the validation set provide the
same evidence, with a test on the nullity of the regression
coefficient of the omics score yielding a p-value of 0.004
in the female population and 0.753 in the male one.
In particular, with regard to the overfitting issues, it is

worth looking at the differences between the slopes of
the prediction error curves in the graphics. If we look at
Figure 9, we note that in the female population the pre-
diction error curves for the three models have, more or
less, the same slope, and the difference in their behaviors
is basically a shift in the central part. The same happens
in Figure 10. This is not the case for the male population.
When the regression coefficients are estimated from the
validation set (Figure 10), we experience a similar situa-
tion, but when the regression coefficients are estimated
from the training set (Figure 9), the slope of the error
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prediction curve for the combinedmodel has a completely
different behavior. This could be the result of overfitting
mechanisms that may affect the predictions in the male
subgroup and not in the female subgroup. Nevertheless,
the instability of the prediction error curves, derived by
the small number of observations available in the two sub-
groups, does not allow us to draw any conclusion. The
considerations made on the results of this subgroup anal-
ysis should be seen as an example of interpretation of the
outcomes and not as an analysis on the specific dataset.
In any case, an unexpected relation between sex and the

omics score seems to be present. A different way to inves-
tigate this relation consists of fitting a multivariate Cox
model on the validation set, considering also the interac-
tion between these two predictors. Although the p-value,
as we stressed in the Methods section, is more related
to the ability of the predictor to explain the outcome
variability than to the predictive ability, its value for the
interaction term (0.0499) seems to support the existence
of an interaction. This result is hard to explain. Nothing
in the medical literature seems to confirm such a strong
interaction between sex and gene-expression for leukemia
(there are only rare cases of specific gene deletions known
to be related to sex, but they are not considered here). This
is in contrast to the case, for example, of the interaction

between the omics score and FLT3-ITD, which is well-
known and was clearly stated in the original paper by
Metzeler and colleagues [13]. This iteration could possi-
bly be shown by performing the subgroup approach on
the sample split between those patients with and those
without the FLT3-ITD: unfortunately, the small number of
patients without FLT3-ITD does not allow us to use this
variable to illustrate the subgroup analysis. The total inde-
pendence between sex and FLT3-ITD in the sample (if we
test the hypothesis of independence through a Fisher exact
test, we obtain a p-value equal to 1) allows us to exclude
the presence of spurious correlation. Moreover, we note
that in a multivariate Cox model which includes the inter-
action term score*sex, the effect of the omics score is more
significant (p-value 0.0035) than in the model without the
interaction term (p-value 0.031, see Table 4). If we con-
sider the interaction FLT3-ITD*score in the Cox model,
instead, the p-value of the omics score is high (0.4189),
showing that all its explanatory ability lies in the interac-
tion with FLT3-ITD (p-value= 0.0020). It is worth noting,
however, that the effective sample size (in survival anal-
ysis we should consider relevant only those observations
where an event occurs) in the subgroup analysis is small
(16 events for women, 17 for men). The results may thus
be affected by peculiar characteristics of the sample such
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as a specific pattern in the censoring scheme. To support
this idea, we report the fact that the K-statistic com-
puted in the two sub-populations (male and female) gives
results completely different from the C-index: its value,
indeed, is increased by the inclusion of the omics score in
the prognostic index both in the female (from 0.684 for
the clinical model to 0.694 for the combined model) and
in the male (from 0.631 to 0.665) subgroups. We would
like to stress that the provided interpretations should be
understood as illustrative, and not as a conclusion for the
leukemia study.

Chronic lymphocytic leukemia
Here we show the possibilities to validate the added
predictive value in a dataset where the training and vali-
dation data are different. We refer to the profile provided
in Table 2 for a summary of the analyses performed.

A. Evaluating the clinical model and the combined
model on validation data. The most notable peculiar-
ity of this dataset is the different measurements of the
gene expressions in the training and validation sets. Part
of the advantage of the signature proposed in Herold
et al. [19], indeed, lies in the relatively small number of
involved genes (eight), which allows the practitioner to
use a cheaper and more convenient platform to collect
the data needed to compute the omics score. Neverthe-
less, the different measurements affect the validation
strategy to be used for assessing the added predictive
value of the omics score. In particular, it makes no sense
to estimate a model which includes clinical predic-
tors and omics score based on the training data and to
apply this model to the validation data. Since the goal
is to validate the added predictive value of the omics
score when the gene expressions are collected with
the technique used in the validation set, it is necessary
to fit the considered models based on the validation
data. This is what we do when applying the methods
discussed below.

B. Multivariate testing of the omics score in the val-
idation data. While it is not possible to compare the
predictive ability of clinical and combined models fitted
to the training set, methods fitting the coefficients of the
models based on the validation set are fully applicable.
In particular, a test can be conducted to test the nullity
of the coefficient β∗ of the omics score in a multivariate
model fitted on the validation set. The results presented in
Table 6 (p-value< 0.0001 for the omics score) confirm the
utility of including the omics score in the predictivemodel
for explaining the variability. We have already stressed
that a significant p-value is not necessarily associated with
added predictive ability and therefore we proceed with the
cross-validation approach based on the Brier score.

Table 6 Chronic lymphocytic leukemia: estimates of the
log-hazard in amultivariate Coxmodel fitted on the
validationdata, with the standard deviations and the
p-values related to the hypothesis of nullity of the
coefficients (simple null hypothesis)

Variable Coeff Sd (coeff) P-value

Omics score -0.589 0.150 8.65× 10−05

Age (continuous) 0.113 0.023 6.82× 10−07

Sex (female) 0.157 0.343 0.6472

FISH=1 0.171 0.459 0.7092

FISH=2 1.352 0.590 0.0219

FISH=3 -0.195 0.665 0.7694

FISH=4 -0.459 0.427 0.2823

IGVH (mutated) 0.695 0.416 0.0949

C. Comparison of the predictive accuracy of the
models with and without omics score through cross-
validation in the validation data. We conduct the same
analysis as for the AML dataset. Prediction error curves
are displayed in Figure 11, clearly showing the added
predictive value of the omics score. The curve of the com-
bined model (green line) is clearly under the curve of the
clinical model (red line). It can also be seen that the clini-
cal model has better predictive ability than the null model
(black line). These results are in line with the correspond-
ing values of the integrated Brier score (null model: 0.142,
clinical model: 0.113, combined model: 0.101, all com-
puted up to 1500 days, value selected by looking at the
Kaplan-Meier curves). We note that the prediction error
curve for the combined model already starts to be below
the one for the clinical and null models after only one
year of follow-up, i.e., when the observations are numer-
ous and the estimates stable. As in the previous example,
these results are averaged over 100 repetitions of a 10-fold
cross-validation procedure.

Discussion
In this paper we deliberately focused on the case of the
validation of omics scores fitted on training data in the
context of survival analysis in the presence of a few clin-
ical predictors. Other situations may be encountered in
practice. Firstly, the omics score may be given from a pre-
vious study, in which case the overfitting issue leading
to an overestimation of its effect is no longer relevant
and the omics score can be treated as any other candi-
date biomarker. Secondly, there may be situations where
a validation set is not available (typically because the
available dataset is not large enough to be split). In this
case, other (resampling-based) approaches may be taken
to test predictive value and assess the gain of predictive
accuracy [51,52]. Thirdly, the outcome of interest may be
something other than the survival time. Binary outcomes
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Figure 11 CLL: prediction error curves based on 10-fold cross-validation in female and male populations. Chronic lymphocytic leukemia:
prediction error curves based on 10-fold cross-validation (100 replications).

(e.g., responder vs. non-responder) are common. The
evaluation criteria used to assess predictive accuracy are
of course different in this case. Fourthly, one may also con-
sider the added predictive value of a high-dimensional set
of predictors versus another high-dimensional set of pre-
dictors. This situation is becoming more common with
the multiplication of high-throughput technologies gen-
erating, for example, gene expression data, copy number
variation data, or methylation data. Data integration is
currently a hot topic in statistical bioinformatics and pre-
diction methods handling this type of data are still in their
infancy.
Furthermore, we did not address in our paper the prob-

lem of the construction of the omics score. We simply
assumed that it was estimated based on the training data
with an appropriate method. The construction of such
an omics score is of course not trivial and has indeed
been the subject of numerous publications in biostatis-
tics and bioinformatics in the last decade. From the point
of view of predictive accuracy it may be advantageous to
construct the omics score while taking the clinical pre-
dictors into account [47,53,54] in order to focus on the
residual variability, a fact that we did not consider in this
paper but plan to investigate in a subsequent study. The
two omics scores analyzed here, indeed, were constructed
without this expedient, and optimized to take the place of

the clinical predictors rather than focusing on the added
predictive value of the omics data.
Finally, we point out that, even in the case considered

in our paper (validation of omics scores fitted on training
data in the context of survival analysis in the presence of
a few clinical predictors), further approaches are conceiv-
able. For example, other evaluation criteria for prediction
models may be considered; see [23] for a recent overview
in the context of external validation. When considering
combined predictionmodels we focused on themultivari-
ate Cox model with clinical predictors and omics score as
covariates and with linear effects only. Of course further
methods could be considered in place of the Cox model
with linear effects, including models with time-varying
coefficients, parametric models or non-linear transforma-
tions of the predictors such as fractional polynomials.
As soon as one “tries out”many procedures for assessing

added predictive value, however, there is a risk of con-
scious or subconscious “fishing for significance” – in this
case “fishing for added predictive value”. To avoid such
pitfalls, it is important that the choice of the method used
in the final analyses presented in the paper is not driven
by the significance of its results. If several sensible analy-
sis strategies are adopted successively by the data analysts,
they should consider reporting all results, not just the
most impressive in terms of added predictive value.
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Here we have summarized all our analyses in REMARK
type profile tables (namely, Tables 1 and 2), in order to
increase transparency and to allow the reader to eas-
ily go through the study. Transparency is an important
issues, and was also highlighted in the US National Can-
cer Institute’s criteria for the clinical applicability of an
omics-based predictor [7,17]. Among the 30 points listed
in this checklist, one is clearly devoted to the validation
of the omics-based predictor: the validation should be
analytically and statistically rigorous. These papers also
stress the importance of reproducibility of the analysis:
in this vein, we provide all R-codes used to obtain the
results presented in this paper at http://www.ibe.med.uni-
muenchen.de/organisation/mitarbeiter/070_drittmittel/
de_bin/index.html.

Conclusion
In this paper we illustrated and critically discussed the
application of various methods with the aim of assessing
the added predictive value of omics scores through the use
of a validation set. In a nutshell, our study based on two
recent leukemia datasets outlined that:

• When testing is performed for a multivariate model
on the validation data, the omics score may have a
significant p-value but show poor or no added
predictive value when measured using criteria such as
the Brier score. This is because a test in multivariate
regression tests whether the effect of the omics score
is zero but does not assess how much accuracy can be
gained through its inclusion in the model.

• To gain information on – and “validate” – predictive
value, it is necessary to apply models with and
without the omics score to the validation data. There
are essentially two ways to do that.

• The first approach (denoted “Evaluating the clinical
model and the combined model on validation data” in
this paper) consists of fitting a clinical model and a
combined model on the training data and comparing
the prediction accuracy of both models on the
validation data. This is essentially the most intuitive
way to proceed in low-dimensional settings. The
problem in high-dimensional settings is that the
omics score is likely to overfit the training data. As
a result, its effect might be overestimated when its
regression coefficient is estimated using again the
same set using for its construction. We have seen
how this leads to serious problems, especially in term
of bad calibration. Furthermore, this approach is not
applicable when the omics data has been measured
with different techniques in the training and
validation sets, as in the CLL data.

• The second approach, which we recommend in
high-dimensional settings, consists of using a

cross-validation-like procedure to compare models
with and without the omics score using the validation
set. By using the validation set only, we avoid the
overfitting problem described above. When using this
approach, it is recommended performing as many
repetitions of CV as computationally feasible (and to
average the results over the repetitions) in order to
achieve more stable results.

• Alternatively, one could also fit the models on the
validation set and use an additional third set to
assess them. This approach would avoid the use of
cross-validation procedures that are known to be
affected by a high variance, especially in
high-dimensional settings. However, the opportunity
to assess the models based on a third set is rarely
given in the context of omics data, since datasets are
usually too small to be split.

• In any case, it is important that training and
validation sets are completely independent. The
practice of evaluating the prediction ability of a
model, correctly fitted only on the training set, on the
whole dataset obtained by merging the training and
validation sets is not appropriate. This would indeed
result in an overoptimistic estimation of prediction
accuracy, because of the overoptimism observed due
to the evaluation on the training data, only partially
mitigated by the correct estimate obtained on the
independent validation data [7,55].

• All in all, our procedures are in line with the
recommendations given in a recent paper by Pepe
and colleagues [22]. This paper suggests that, in the
case of binary outcome, all the tests based on the
equality between the discriminative abilities of the
clinical and the combined scores refer to the same
null hypothesis, namely the nullity of the coefficient
of a predictor in a regression model. Assuming that
this statement also roughly applies to the survival
analysis framework considered in our paper, it would
mean that we can rely on the likelihood test
performed on the regression coefficient of the omics
score in the combined Cox model to test the
difference in performance of the models with and
without omics predictors. However, the same authors
also claim that estimating the magnitude of the
improvement in the prediction ability is much more
important than testing its presence [22]. This cannot
be done by looking at the regression coefficient of
the omics score, as often discussed in the literature
[56,57] and illustrated through our AML data
example. In this paper we have seen some procedures
to quantify the improvement in prediction accuracy
of a model containing an omics score derived from
high-dimensional data, in order to validate its added
predictive value.

http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/de_bin/index.html
http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/de_bin/index.html
http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/de_bin/index.html
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• Subgroup analyses might give valuable insights into
the predictive value of the score, and therefore
illustrated through the example of the AML dataset.
Normally, the subgroups analysis should be inspired
by a clear biological reason and, importantly,
performed as far as allowed by the sample sizes.
However, one should keep in mind that these
analyses are possibly affected by multiple testing
issues. Their results should be considered from an
explorative perspective.

Due to our experience with the analysis of the two
considered leukemia datasets and further similar datasets
(data not shown), we recommend comparing the predic-
tive accuracy of the models with and without omics score
through a resampling-based approach on the validation
data. The repeated cross-validation procedure is the nat-
ural candidate, but we have seen that alternative methods
can be implemented.
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