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Abstract

In many image and signal processing applications, as interferometric synthetic aperture
radar (SAR) or color image restoration in HSV or LCh spaces the data has its range on the
one-dimensional sphere S1. Although the minimization of total variation (TV) regularized
functionals is among the most popular methods for edge-preserving image restoration such
methods were only very recently applied to cyclic structures. However, as for Euclidean
data, TV regularized variational methods suffer from the so called staircasing effect. This
effect can be avoided by involving higher order derivatives into the functional.
This is the first paper which uses higher order differences of cyclic data in regularization
terms of energy functionals for image restoration. We introduce absolute higher order
differences for S1-valued data in a sound way which is independent of the chosen represen-
tation system on the circle. Our absolute cyclic first order difference is just the geodesic
distance between points. Similar to the geodesic distances the absolute cyclic second order
differences have only values in [0, π]. We update the cyclic variational TV approach by our
new cyclic second order differences. To minimize the corresponding functional we apply
a cyclic proximal point method which was recently successfully proposed for Hadamard
manifolds. Choosing appropriate cycles this algorithm can be implemented in an efficient
way. The main steps require the evaluation of proximal mappings of our cyclic differences
for which we provide analytical expressions. Under certain conditions we prove the con-
vergence of our algorithm. Various numerical examples with artificial as well as real-world
data demonstrate the advantageous performance of our algorithm.

1 Introduction

A frequently used method for edge-preserving image denoising is the variational approach which
minimizes the Rudin-Osher-Fatemi (ROF) functional [40]. In a discrete (penalized) form the
ROF functional can be written as∑

i,j

(fi,j − xi,j)2 + λ
∑
i,j

|∇xi,j |, λ > 0,
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where f ∈ RN,M is the given corrupted image and ∇ denotes the discrete gradient operator
which contains usually first order forward differences in vertical and horizontal directions.
The regularizing term

∑
i,j |∇xi,j | can be considered as discrete version of the total variation

(TV) functional. Since the gradient does not penalize constant areas the minimizer of the ROF
functional tends to have such regions, an effect known as staircasing. An approach to avoid this
effect consists in the employment of higher order differences/derivatives. Since the pioneering
work [10] which couples the TV term with higher order terms by infimal convolution various
techniques with higher order differences/derivatives were proposed in the literature, among
them [8, 11, 12, 15, 16, 27, 29, 31, 32, 41, 42, 43].
In various applications in image processing and computer vision the functions of interest take
values on the circle S1 or another manifold. Processing manifold-valued data has gained a
lot of interest in recent years. Examples are wavelet-type multiscale transforms for manifold
data [25, 37, 49] and manifold-valued partial differential equations [13, 24]. Finally we like to
mention statistical issues on Riemannian manifolds [19, 20, 36] and in particular the statistics
of circular data [18, 28]. The TV notation for functions with values on a manifold has been
studied in [22, 23] using the theory of Cartesian currents. These papers were an extension of
the previous work [21] were the authors focus on S1-valued functions and show in particular
the existence of minimizers of certain energies in the space of functions with bounded total
cyclic variation. The first work which applies a cyclic TV approach among other models for
imaging tasks was recently published by Cremers and Strekalovskiy in [44, 45]. The authors
unwrapped the function values to the real axis and proposed an algorithmic solution to account
for the periodicity. An algorithm which solves TV regularized minimization problems on
Riemannian manifolds was proposed by Lellmann et al. in [30]. They reformulate the problem
as a multilabel optimization problem with an infinite number of labels and approximate the
resulting hard optimization problem using convex relaxation techniques. The algorithm was
applied for chromaticity-brightness denoising, denoising of rotation data and processing of
normal fields for visualization. Another approach to TV minimization for manifold-valued data
via cyclic and parallel proximal point algorithms was proposed by one of the authors and his
colleagues in [50]. It does not require any labeling or relaxation techniques. The authors apply
their algorithm in particular for diffusion tensor imaging and interferometric SAR imaging. For
Cartan-Hadamard manifolds convergence of the algorithm was shown based on a recent result
of Bačák [1]. Unfortunately, one of the simplest manifolds that is not of Cartan-Hadamard
type is the circle S1.
In this paper we deal with the incorporation of higher order differences into the energy func-
tionals to improve denoising results for S1-valued data. Note that the (second-order) total
generalized variation was generalized for tensor fields in [46]. However, to the best of our
knowledge this is the first paper which defines second order differences of cyclic data and uses
them in regularization terms of energy functionals for image restoration. We focus on a dis-
crete setting. First we provide a meaningful definition of higher order differences for cyclic
data which we call absolute cyclic differences. In particular our absolute cyclic first order dif-
ferences resemble the geodesic distance (arc length distance) on the circle. As the geodesics
the absolute cyclic second order differences take only values in [0, π]. This is not necessary
the case for differences of order larger than two. Following the idea in [50] we suggest a cyclic
proximal point algorithm to minimize the resulting functionals. This algorithm requires the
evaluation of certain proximal mappings. We provide analytical expression for these mappings.
Further, we suggest an appropriate choice of the cycles such that the whole algorithm becomes
very efficient. We apply our algorithm to artificial data as well as to real-world interferometric
SAR data.
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The paper is organized as follows: in Section 2 we propose a definition of differences on S1.
Then, in Section 3, we provide analytical expressions for the proximal mappings required in
our cyclic proximal point algorithm. The approach is based on unwrapping the circle to R and
considering the corresponding proximal mappings on the Euclidean space. The cyclic proximal
point algorithm is presented in Section 4. In particular we describe a vectorization strategy
which makes the Matlab implementation efficient and provides parallelizability, and prove its
convergence under certain assumptions. Section 5 demonstrates the advantageous performance
of our algorithm by numerical examples. Finally, conclusions and directions of future work are
given in Section 6.

2 Differences of S1–valued data

Let S1 be the unit circle in the plane

S1 := {p21 + p22 = 1 : p = (p1, p2)
T ∈ R2}

endowed with the geodesic distance (arc length distance)

dS1(p, q) = arccos(〈p, q〉).

Given a base point q ∈ S1, the exponential map expq : R→ S1 from the tangent space TqS1 ' R
of S1 at q onto S1 is defined by

expq(x) = Rxq, Rx :=

(
cosx − sinx
sinx cosx

)
.

This map is 2π-periodic, i.e., expq(x) = expq((x)2π) for any x ∈ R, where (x)2π denotes the
unique point in [−π, π) such that x = 2πk + (x)2π, k ∈ Z. Some useful properties of the
mapping (·)2π : R→ [−π, π) (which can also be considered as mapping from R onto R/2πZ)
are collected in the following remark.

Remark 2.1. The following relations hold true:

i)
(
(x)2π ± (y)2π

)
2π

= (x± y)2π for all x, y ∈ R.

ii) If z = (x− y)2π then x = (z + y)2π for all x ∈ [−π, π), y ∈ R.

While i) follows by straightforward computation relation ii) can be seen as follows: For z =
(x− y)2π there exists k ∈ Z such that

x− y = (x− y)2π + 2πk = z + 2πk.

Hence it follows x = z + y + 2πk and since x ∈ [−π, π) further

x = (x)2π = (z + y + 2πk)2π = (z + y)2π.

To guarantee the injectivity of the exponential map, we restrict its domain of definition from
R to [−π, π). Thus, for p, q ∈ S1, there is now a unique x ∈ [−π, π) satisfying expq(x) = p.
In particular we have expq(0) = q. Given such representation system xj ∈ [−π, π) of pj ∈ S1,
j = 1, 2 centered at an arbitrary point q on S1 the geodesic distance becomes

dS1(p1, p2) = d(x1, x2) = min
k∈Z
|x2 − x1 + 2πk| = |(x2 − x1)2π|. (1)
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Actually we need only k ∈ {0,±1} in the minimum. Clearly, this definition does not depend
on the chosen center point q.
We want to determine general finite differences of S1-valued data. Let w = (wj)

d
j=1 ∈ Rd\{0}

with

〈w, 1d〉 =
d∑
j=1

wj = 0, (2)

where 1d denotes the vector with n components one. We define the finite difference operator
∆(·;w) : Rd → R by

∆(x;w) := 〈x,w〉 for all x ∈ Rd.

By (2), we see that ∆(·;w) vanishes for constant vectors and is therefore translation invariant,
i.e.,

∆(x+ α1d;w) = ∆(x;w) for all α ∈ R.

Example 2.2. For the binomial coefficients with alternating signs

w = bn :=

(
(−1)j+n−1

(
n

j − 1

))n+1

j=1

we obtain the (forward) differences of order n:

∆(x;w) = ∆n(x) = 〈x, bn〉 =

n+1∑
j=1

(−1)j+n−1
(

n

j − 1

)
xj .

Note that ∆n does not only fulfill (2), but vanishes exactly for all ‘discrete polynomials of order
n−1’, i.e., for all vectors from span{(jr)nj=0 : r = 0, . . . , n−1}. Here we are interested in first
and second order differences

∆1(x1, x2) = ∆(x; b1) = x2 − x1,
∆2(x1, x2, x3) = ∆(x; b2) = x1 − 2x2 + x3.

Moreover, we will apply the ‘mixed second order’ difference with w = b1,1 := (−1, 1, 1,−1)T

and use the notation

∆1,1(x1, x2, x3, x4) = ∆(x; b1,1) = −x1 + x2 + x3 − x4.

We want to define differences for points (pj)
d
j=1 ∈ (S1)d using their representation x :=

(xj)
d
j=1 ∈ [−π, π)d with respect to an arbitrary fixed center point. As the geodesic distance (1)

these differences should be independent of the choice of the center point. This can be achieved
if and only if the differences are shift invariant modulo 2π. Let Id := {1, . . . , d}. We define the
absolute cyclic difference of x ∈ [−π, π)d (resp. (pj)

d
j=1 ∈ (S1)d) with respect to w by

d(x;w) := min
α∈R

∣∣∆([x+ α1d]2π;w
)∣∣ = min

j∈Id

∣∣∆([x− (xj + π)1d]2π;w
)∣∣, (3)

where [x]2π denotes the component-by-component application of (t)2π if t 6= (2k + 1)π, k ∈ Z
and [(2k + 1)π]2π = ±π, k ∈ Z. The definition allows that points having the same value are
treated separately, cf. Figure 2. This ensures that d(·;w) : (S1)d → R is a continuous map.
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For example we have d
(
(−π, 0,−π)T; b2

)
= 0. Figures 1 and 2 illustrate definition (3). For

the absolute cyclic differences related to the differences in Example 2.2 we will use the simpler
notation

dn(x) := d(x; bn) and d1,1(x) := d(x; b1,1).

The following equivalent definition of absolute cyclic differences appears to be useful.

Lemma 2.3. Let x ∈ [−π, π)d be sorted in ascending order as −π ≤ xj1 ≤ . . . ≤ xjd < π
and set x1 := (xji)

d
i=1. Let P denote the corresponding permutation matrix, i.e., Px = x1 and

x = PTx1. Consider the 2π shifted versions of x1 given by

xk = x1 + 2π
k−1∑
j=1

ej k = 2, . . . , d,

where ej ∈ Rd denotes the j-th unit vector. Then it holds

d(x;w) = min
k∈Id

∣∣∆(PTxk;w)
∣∣ = min

k∈In

∣∣∣∆(xk;w) + 2π
〈k−1∑
j=1

ej , Pw
〉∣∣∣. (4)

Proof. The first equality in (4) follows directly by definition (3). To see the second one, note
that by linearity of the inner product we have

〈PTxk, w〉 = 〈PTx1, w〉+ 2π
〈k−1∑
j=1

ej , Pw
〉

= 〈x,w〉+ 2π
〈k−1∑
j=1

ej , Pw
〉
. (5)

For the geodesic distance we obtain by (1) that d1(x) =
∣∣(∆1(x))2π

)∣∣. In general the relation

d(x;w) = |(〈x,w〉)2π| for all x ∈ [−π, π)d (6)

does not hold true as the following example shows.

Example 2.4. In general the n-th order absolute cyclic difference cannot be written as dn(x) =
|(〈x, bn〉)2π| = |(∆n(x))2π)|. Consider for example the absolute cyclic third order difference for
x := π

16(−15,−13, 12, 14)T given by (4) as

d3(x1, x2, x3, x4) = min
k=1,2,3,4

∆3(x
k), ∆3(x) = −x1 + 3x2 − 3x3 + x4.

We obtain

∆3(x
1) = ∆3(x) =

−46π

16
, ∆3(x

2) = ∆3(x
4) =

−78π

16
, ∆3(x

3) =
18π

16
,

so that d3(x) = 18π
16 > π.

For w ∈ {b2, b1,1} relation (6) holds true by the next lemma.
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x2

x3

x1

x′1

−π

π

x1

x3

x2

x′2

−π

π

p1

p∗1

p2

p∗2

p3

(a) expp∗
1

(top) and expp∗
2

(bottom).

p1

p2

p3

p∗3

x1

x2

x3

x′3

−π

π
2

x1x2 x3q−π
2

π

(b) expp∗
3

(top) and expq (bottom).

−2π −π 0 π 2π

x1x1 x2 x2x3x3

expp∗
3

expp∗
1

exp∗p2

(c) Settings from the tangential maps of p∗j , j = 1, 2, 3, on R using the represen-
tation system according to expq.

Figure 1. Three points pj , j = 1, 2, 3, on the circle (blue) and their inverse exponential
maps at p∗j , j = 1, 2, 3, (dark blue), where p∗j denotes the antipodal point of pj .
In other words, we cut the circle at the point pj and unwind it with respect to
the tangent line at the antipodal point p∗j . The absolute cyclic differences take the
three pairwise different positions of the points xj , j = 1, 2, 3 to each other into
account. These are shown in (c) with respect to the representation system from the
arbitrary point q in (b).
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p1 = p3

p2

x2 x3x1 q

−π π

Figure 2. Three points pj , j = 1, 2, 3 on the circle, where p1 = p3 and expq, q = p∗1.
Though p1, p3 denote the same point on the circle they are treated separately in
the definition of the absolute cyclic differences.

Proposition 2.5. For w ∈ {b2, b1,1} the following relation holds true:

d(x;w) = min
k∈Z
|∆(x;w) + 2πk| =

∣∣(∆(x;w)
)
2π

∣∣.
Note that we need only the minimum over k ∈ {0,±1,±2} in Proposition 2.5 and more precisely

d(x;w) =


|∆(x;w)| if |∆(x;w)| ∈ [0, π],

|∆(x;w)− 2πσ| = 2π − |∆(x;w)| if |∆(x;w)| ∈ (π, 2π],

|∆(x;w)| − 2π if |∆(x;w)| ∈ (2π, 3π],

|∆(x;w)− 4πσ| = 4π − |∆(x;w)| if |∆(x;w)| ∈ (3π, 4π),

where σ = sgn (∆(x;w)) ∈ {−1, 1} and

sgn(x) :=


1 if x > 0,
0 if x = 0,
−1 otherwise.

Proof. Since |xj − xk| < 2π for xj , xk ∈ [−π, π), we see that |∆2(x)| < 4π and |∆1,1(x)| < 4π.
First we consider d2. By Lemma 2.3 we obtain

d2(x) = min
k∈I3

∣∣∆(PTxk; b2)
∣∣ = min

k∈I3

∣∣∣∆2(x) + 2π
〈 2∑
j=1

ej , P b2
〉∣∣∣, (7)

where we can assume by the cyclic shift invariance of d2 that xj1 = x1.
If x1 = (x1, x2, x3)

T, then the corresponding permutation matrix P in Lemma 2.3 is the identity
matrix. Further we obtain that ∆2(x) = (x1 − x2) + (x3 − x2) ∈ (−2π, 2π) and by (7) we get

|∆2(P
Tx2)| = |∆2(x

2)| = |∆2(x) + 2π| and |∆2(x
3)| = |∆2(x)− 2π|.

If x1 = (x1, x3, x2)
T, then P =

(
1 0 0
0 0 1
0 1 0

)
and ∆2(x) ∈ (−4π, 0]. In this case we get

|∆2(P
Tx2)| = |∆2(x) + 2π| and |∆2(P

Tx3)| = |∆2(x) + 4π|.
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This proves the first assertion.
For d1,1 we can again assume that xj1 = x1. Exploiting that

∆1,1(x1, x2, x3, x4) = ∆1,1(x1, x3, x2, x4)

we have to consider the following three cases:
If x1 = (x1, x2, x3, x4)

T, then P is the identity matrix, ∆1,1(x) = (x2 − x1) + (x3 − x4) ∈
(−2π, 2π) and

|∆1,1(x
2)| = |∆2(x)− 2π|, |∆1,1(x

3)| = |∆2(x)|, |∆1,1(x
4)| = |∆2(x) + 2π|.

If x1 = (x1, x2, x4, x3)
T, then P =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
and ∆2(x) ∈ [0, 2π). By (5) we have

|∆1,1(x
2)| = |∆2(x)− 2π|, |∆1,1(x

3)| = |∆2(x)|, |∆1,1(x
4)| = |∆2(x)− 2π|.

If x1 = (x1, x4, x2, x3)
T, then P =

(
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

)
and ∆2(x) ∈ [0, 4π). Here we obtain

|∆1,1(x
2)| = |∆2(x)− 2π|, |∆1,1(x

3)| = |∆2(x)− 4π|, |∆1,1(x
4)| = |∆2(x)− 2π|.

This finishes the proof.

3 Proximal mapping of absolute cyclic differences

For a proper, closed, convex function ϕ : RN → (−∞,+∞] and λ > 0 the proximal mapping
proxλϕ : RN → RN is defined by

proxλϕ(f) := arg min
x∈RN

1

2
‖f − x‖22 + λϕ(x),

see [34]. The above minimizer exits and is uniquely determined. Many algorithms which were
recently used in variational image processing reduce to the iterative computation of values of
proximal mappings. An overview of applications of proximal mappings is given in [35].
In this section, we are interested in proximal mappings of absolute cyclic differences d(·;w)p,
i.e., proxλd(·;w)p : (S1)d → (S1)d, for w ∈ Rd. More precisely, we will determine for S1-valued

vectors represented by f ∈ [−π, π)d the values

proxλd(·;w)p(f) := arg min
x∈[−π,π)d

1

2

d∑
j=1

d(xj , fj)
2 + λd(x;w)p, λ > 0

for p ∈ {1, 2} and first and second order absolute cyclic differences d(·;w), w ∈ {b1, b2, b1,1}.
Here arg minx∈[−π,π)d means that we are looking for the representative of x ∈ (S1)d in [−π, π)d.

In particular, we will see that these proximal mapping are single-valued for f ∈ [−π, π)d with
|(〈f, w〉)2π| < π and have two values for |(〈f, w〉)2π| = π.
We start by considering the proximal mappings of the appropriate differences in Rd. Then we
use the results to find the proximal functions of the absolute cyclic differences.
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3.1 Proximity of differences on Rd

First we give analytical expressions for proxλ|〈·,w〉−a|p , where p ∈ {1, 2} and w ∈ Rd, a ∈ R.
Since we could not find a corresponding reference in the literature, the computation of the
minimizer of

E(x; f, a, w) :=
1

2
‖f − x‖22 + λ|〈x,w〉 − a|p, λ > 0

is described in the following lemmas. We start with p = 1.

Lemma 3.1. For given f ∈ Rd and 0 6= w ∈ Rd, a ∈ R set

s := sgn(〈f, w〉 − a) and µ :=
〈f, w〉 − a
‖w‖22

.

Then the minimizer x̂ of

E(x; f, a, w) :=
1

2
‖f − x‖22 + λ|〈x,w〉 − a|, λ > 0

is given by
x̂ = f − s min{λ, |µ|}w (8)

and the minimum by

E(x̂; f, a, w) =

{
‖w‖22 1

2µ
2 if |µ| ≤ λ,

‖w‖22
(
1
2λ

2 + λ(|µ| − λ)
)

otherwise.
(9)

Proof. Since w 6= 0, there exists a component wj 6= 0 and we rewrite

E(x; f, a, w) =
1

2
‖f − x‖22 + λ|wj |

∣∣〈 w
wj
, x− a

wj
ej
〉∣∣.

Substituting y := x− a
wj
ej , g = f − a

wj
ej and ν := λ|wj |, v := w

wj
we see that x̂ = ŷ, where ŷ

is the minimizer of

F (y; g, v) :=
1

2
‖g − y‖22 + ν|〈v, y〉|.

The (Fenchel) dual problem of arg miny∈Rd F (y) reads

t̂ := arg min
t∈R

{
‖g − t w‖22 subject to |t| ≤ ν

}
(10)

and the relation between the minimizers of the primal and dual problems is given by

ŷ = g − t̂ v. (11)

Rewriting (10) we see that t̂ is the minimizer of

(t− µ̃)2 subject to |t| ≤ ν,

where µ̃ := 〈v,g〉
‖v‖2 . Hence we obtain

t̂ =

{
µ̃ if |µ̃| ≤ ν,

sgn(µ̃)ν otherwise.

and by (11) further
ŷ = g − sgn(µ̃) min{ν, |µ̃|} v.

Substituting back results in (8) and plugging x̂ into E we get (9).
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Example 3.2. Let p = 1, a = 0, and E(x; f, w) := E(x; f, 0, w).

i) For w = b1 = (−1, 1)T and f ∈ R2 we get ‖w‖22 = 2 and s = sgn(f2 − f1) so that the
minimizer of E(x; f, b1) follows by soft shrinkage of f with threshold λ:

x̂ =

(
f1 + sm
f2 − sm

)
, m := min{λ, |f2 − f1|

2
}.

ii) For w = b2 = (1,−2, 1)T and f ∈ R3 we obtain ‖w‖22 = 6 and s = sgn(f1 − 2f2 + f3).
Consequently, the minimizer of E(x; f, b2) is given by

x̂ =

 f1 − sm
f2 + 2sm
f3 − sm

 , m := min

{
λ,
|f1 − 2f2 + f3|

6

}
.

iii) For w = b1,1 = (−1, 1, 1,−1)T and f ∈ R4 we obtain ‖w‖22 = 4 and s = sgn(f2−f1+f3−f4),
so that the minimizer of E(x; f, b1,1 is given by

x̂ =


f1 + sm
f2 − sm
f3 − sm
f4 + sm

 , m := min

{
λ,
|f2 − f1 + f3 − f4|

4

}
.

We will apply the following corollary.

Corollary 3.3. Let 0 6= w ∈ Rd. Further, let f, f̃ ∈ Rd and a, ã ∈ R be given such that
|〈f, w〉 − a| < |〈f̃ , w〉 − ã|. Then

min
x∈Rd

E(x; f, a, w) < min
x∈Rd

E(x; f̃ , ã, w).

Proof. Set µ := 〈f,w〉−a
‖w‖22

and µ̃ := 〈f̃ ,w〉−ã
‖w‖22

. By assumption |µ| < |µ̃| and according to (9) we

have to consider three cases.

1. Let |µ̃| ≤ λ. Then by assumption also |µ| < λ and we conclude by (9) that

min
x∈Rd

E(x; f, a, w) =
1

2
‖w‖22µ2 <

1

2
‖w‖22µ̃2 = min

x∈Rd
E(x; f̃ , ã, w).

2. Let |µ̃| > λ and |µ| ≤ λ. By (9) this implies

min
x∈Rd

E(x; f, a, w) =
1

2
‖w‖22µ2,

min
x∈Rd

E(x; f̃ , ã, w) =
1

2
‖w‖22λ2 + ‖w‖22λ(|µ̃| − λ).

Since ‖w‖2λ(|µ̃| − λ) > 0 and |µ| ≤ λ we obtain minx∈Rd E(x; f, a, w) < minx∈Rd E(x; f̃ , ã, w).

3. Let |µ̃| > λ and |µ| > λ. By (9) this implies

min
x∈Rd

E(x; f, a, w) =
1

2
‖w‖22λ2 + ‖w‖22λ(|µ| − λ)

<
1

2
‖w‖22λ2 + ‖w‖22λ(|µ̃| − λ) = min

x∈Rd
E(x; f̃ , ã, w)

and we are done.
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Next we consider the case p = 2.

Lemma 3.4. Let 0 6= w ∈ Rd.

i) Then, for f ∈ Rd and a ∈ R, the minimizer x̂ of

E(x; f, a, w) = ‖f − x‖22 + λ
(
〈x,w〉 − a

)2
, λ > 0 (12)

is given by

x̂ = f − λ(〈f, w〉 − a)

1 + λ ‖w‖22
w

and the minimum by

E(x̂; f, a, w) =
λ

1 + λ ‖w‖22
(
〈f, w〉 − a

)2
. (13)

ii) If
(
〈f, w〉 − a

)2
<
(
〈f̃ , w〉 − ã

)2
for some f, f̃ ∈ Rd and a, ã ∈ R, then

min
x∈Rd

E(x; f, a, w) < min
x∈Rd

E(x; f̃ , ã, w).

Proof. i) Setting the gradient of (12) to zero results in

2(x− f) + 2λ(〈x,w〉 − a)w = 0,

(I + λwwT)x = f + λaw.

Using the Sherman-Morrison formula [7, p. 129] it follows

x̂ =

(
I − λ

1 + λ ‖w‖22
wwT

)
(f + λaw)

= f − λ〈f, w〉
1 + λ ‖w‖22

w + λaw − λ2a ‖w‖22
1 + λ ‖w‖22

w

= f − λ(〈f, w〉 − a)

1 + λ ‖w‖22
w.

For the corresponding energy we obtain by straightforward computation

E(x̂; f, a, w) = ‖f − x̂‖22 + λ
(
〈x,w〉 − a

)2
=
λ2 (〈f, w〉 − a)2(

1 + λ ‖w‖22
)2 ‖w‖22 + λ

[
〈f, w〉 − λ (〈f, w〉 − a) ‖w‖22

1 + λ ‖w‖22
− a
]2

=
λ

1 + λ ‖w‖22
(
〈f, w〉 − a

)2
.

ii) follows directly from (13).
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3.2 Proximity of absolute cyclic differences of first and second order

Now we turn to S1-valued data represented by f ∈ [−π, π)d. We are interested in the minimizers
of

E(x; f, w) :=
1

2

d∑
j=1

d(fj , xj)
2 + λd(x;w)p, λ > 0 (14)

on [−π, π)d for p ∈ {1, 2} and w ∈ {b1, b2, b1,1}. We start with the case p = 1.

Theorem 3.5. For w ∈ {b1, b2, b1,1} set s := sgn(〈f, w〉)2π. Let p = 1 and f ∈ [−π, π)d, where
d is adapted to the respective length of w.

i) If |(〈f, w〉)2π| < π, then the unique minimizer of E(x; f, w) is given by

x̂ = (f − smw)2π, m := min

{
λ,
|(〈f, w〉)2π|
‖w‖22

}
. (15)

ii) If |(〈f, w〉)2π| = π, then E(x; f, w) has the two minimizers

x̂ = (f ∓ smw)2π, m := min

{
λ,

π

‖w‖22

}
.

Note that for w = b1 case ii) appears exactly if f1 and f2 are antipodal points.

Proof. By (1) and Lemma 2.5 we can rewrite E in (14) as

E(x; f, w) :=
1

2

d∑
j=1

min
kj∈Z
|fj − xj − 2πkj |2 + λmin

σ∈Z
|〈x,w〉 − 2πσ|

= min
k∈Zd
σ∈Z

1

2
‖f − x− 2πk‖22 + λ|〈x,w〉 − 2πσ|,

where k = (kj)
d
j=1. Let

Ek,σ(x) :=
1

2
‖f − x− 2πk‖22 + λ|〈x,w〉 − 2πσ|.

We are looking for

min
x∈[−π,π)d

E(x; f, w) = min
x∈[−π,π)d

min
k∈Zd
σ∈Z

Ek,σ(x) = min
k∈Zd
σ∈Z

min
x∈[−π,π]d

Ek,σ(x), (16)

where the last equality can be seen by the following argument: If for some k, σ the minimizer
x̂ := arg minx∈[−π,π]d Ek,σ(x) has components x̂j = π for j ∈ J ⊆ Id, then we get using

x̃ := x̂− 2π
∑

j∈J ej ∈ [−π, π)d, that

Ek,σ(x̂) =
1

2
‖f − x̃− 2π (k −

∑
j∈J

ej)︸ ︷︷ ︸
k̃

‖22 + λ|〈x̃, w〉 − 2π (σ − 〈
∑
j∈J

ej , w〉)︸ ︷︷ ︸
σ̃

| = Ek̃,σ̃(x̃).
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By Lemma 3.1 the minimizers over Rd of Ek,σ(x) are given by

x̂k,σ = f − 2πk − sk,σmk,σ w, (17)

where

sk,σ := sgn (νk,σ) , mk,σ := min

{
λ,
|νk,σ|
‖w‖22

}
and νk,σ := 〈f, w〉 − 2π(〈k,w〉+ σ).

By Corollary 3.3 the minimum of Ek,σ is determined by |νk,σ|. Note that |〈f, w〉| < 2π for w =
b1 and |〈f, w〉| < 4π for w ∈ {b2, b1,1}. We distinguish two cases.

1. If 〈f, w〉 ∈ ((2r − 1)π, (2r + 1)π), r ∈ Z then νk,σ attains its smallest value exactly for
〈k,w〉+ σ = r and

νk,r−〈k,w〉 = 〈f, w〉 − 2πr = (〈f, w〉)2π.
By (17) we obtain

x̂k,r−〈k,w〉 = f − 2πk − smw

with s,m as in (15). Corollary 3.3 implies that

Ek,r−〈k,w〉(x̂k,r−〈k,w〉) < Ek,σ(x̂k,σ) ≤ min
x∈[−π,π]d

Ek,σ(x) ∀σ ∈ Z\{r − 〈k,w〉}.

Finally, there exists exactly one k∗ ∈ Zd such that x̂k∗,r−〈k∗,w〉 ∈ [−π, π)d and by (16) we
conclude that

x̂ := x̂k∗,r−〈k∗,w〉 = f − 2πk∗ − smw = (f − smw)2π

is the unique minimizer of E(x; f, w) over [−π, π)d.

2. If 〈f, w〉 = (2r − 1)π, r ∈ Z, then νk,σ attains its smallest value exactly for 〈k,w〉 + σ ∈
{r, r − 1} and by Corollary 3.3 the minimum of the corresponding functions Ek,σ is smaller
than those of the other functions in (16). We obtain

νk,r−〈k,w〉 = −π, νk,r−1−〈k,w〉 = π

and

x̂k,r−〈k,w〉 = f − 2πk +mw, x̂k,r−1−〈k,w〉 = f − 2πk −mw, m := min

{
λ,

π

‖w‖22

}
.

As in part 1 of the proof we conclude that x̂ = (f ±mw)2π are the minimizers of E(x; f, w)
over [−π, π)d. This finishes the proof.

Next we focus on p = 2.

Theorem 3.6. Let p = 2 in (14), w ∈ {b1, b2, b1,1} and f ∈ [−π, π)d, where d is adapted to
the respective length of w.

i) If |(〈f, w〉)2π| < π, then the unique minimizer of E(x; f, w) is given by

x̂ =

(
f − λ(〈f, w〉)2π

1 + λ ‖w‖22
w

)
2π

.
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ii) If |(〈f, w〉)2π| = π, then E(x; f, w) has the two minimizers

x̂ =

(
f ∓ λπ

1 + λ ‖w‖22
w

)
2π

.

Proof. The proof follows the lines of the proof of Theorem 3.5 using Lemma 3.4.

Finally, we need the proximal mapping proxλd(f,·)2 for given f ∈ (S1)N . The proximal mapping
of the (squared) cyclic distance function was also computed (for more general manifolds) in [17].
Here we give an explicit expression for spherical data.

Proposition 3.7. For f, g ∈ [−π, π)N let

E(x; g, f) := d(g, x)2 + λd(f, x)2 =

N∑
j=1

d(gj , xj)
2 + λd(fj , xj)

2.

Then the minimizer(s) of E(x; g, f) are given by

x̂ =

(
g + λf

1 + λ
+

λ

1 + λ
2π v

)
2π

,

where v = (vj)
N
j=1 ∈ RN is defined by

vj :=

{
0 if |gj − fj | ≤ π,
sgn(gj − fj) if |gj − fj | > π

and the minimum is

E(x̂; g, f) =
λ

1 + λ
(g − f)22π.

Proof. Obviously, the minimization of E can be done component wise so that we can restrict
our attention to N = 1.

1. First we look at the minimization problem over R which reads

min
x∈R

(g − x)2 + λ(f − x)2

and has the following minimizer and minimum:

x̂ =
g + λf

1 + λ
, (g − x̂)2 + λ(f − x̂)2 =

λ

1 + λ
(g − f)2.

2. For the original problem

min
x∈[−π,π)

E(x; g, f) = min
x∈[−π,π)

{
d(g, x)2 + λd(f, x)2

}
= min

x∈[−π,π)

{
min

k∈{0,sgn(g)}
(g − x− 2πk)2 + min

l∈{0,sgn(f)}
λ(f − x− 2πl)2

}
we consider the related energy functionals on R, namely

Ek,l(x; g, f) := (g − x− 2πk)2 + λ(f − x− 2πl)2, k ∈ {0, sgn g}, l ∈ {0, sgn f}.
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By part 1 of the proof these functions have the minimizers

x̂k,l =
(g − 2πk) + λ(f − 2πl)

1 + λ
=
g + λf − 2π(k + λl)

1 + λ

and

Ek,l(x̂k,l; g, f) =
λ

1 + λ
((g − 2πk)− (f − 2πl))2 =

λ

1 + λ
(g − f − 2π(k − l))2 . (18)

We distinguish three cases:

a) If |g − f | < π, then the minimum in (18) occurs exactly for k = l and it holds

x̂k,k =
g + λf − 2πk(1 + λ)

1 + λ
=
g + λf

1 + λ
− 2πk.

For k = 0 we see that x̂0,0 ∈ [−π, π) and E(x̂; g, f) = λ
1+λ(g − f)2.

b) If |g − f | > π, then (18) has its minimum exactly for k − l = sgn(g − f) and

x̂k,k−sgn(g−f) =
g + λf − 2π(k + λ(k − sgn(g − f)))

1 + λ
=
g + λ(f + sgn(g − f)2π)

1 + λ
− 2πk

which is in [−π, π) for k = 0 or k = sgn(g) and

E(x̂; g, f) =
λ

1 + λ
(g − f − sgn(g − f)2π)2.

c) In the case |g − f | = π the minimum in (18) is attained for k − l = 0,±1 so that we have
both solutions from i) and ii). This completes the proof.

4 Cyclic proximal point method

The proximal point algorithm (PPA) on the Euclidean space goes back to [39]. Recently this
algorithm was extended to Riemannian manifolds of non-positive sectional curvature [17] and
also to Hadamard spaces [2]. A cyclic version of the proximal point algorithm (CPPA) on
the Euclidean space was given in [4], see also the survey [3]. A CPPA for Hadamard spaces
can be found in [1]. In the CPPA the original function J is split into a sum J =

∑
l Jl and,

iteratively, the proximal mappings of the functions Jl are applied in a cyclic way. The great
advantage of this method is that often the proximal mappings of the summands Jl are much
easier to compute or can even be given in a closed form. In the following we develop a CPPA
for functionals of S1-valued signals and images containing absolute cyclic first and second order
differences.

4.1 One-dimensional data

First we have a look at the one-dimensional case, i.e., at signals. For given S1-valued signals
represented by f =

(
fi)

N
i=1 ∈ [−π, π)N , N ∈ N, and regularization parameters α, β ≥ 0,

max{α, β} 6= 0, we are interested in

arg min
x∈[−π,π)N

J(x), J(x) = J(x, f) := F (x; f) + αTV1(x) + β TV2(x), (19)
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where

F (x; f) :=
1

2

N∑
i=1

d(fi, xi)
2,

TV1(x) :=

N−1∑
i=1

d(xi, xi+1), TV2(x) :=

N−1∑
i=2

d2(xi−1, xi, xi+1).

To apply a CPPA we set J1(x) := F (x; f), split αTV1 into an even and an odd part

αTV1(x) =
1∑

ν=0

α

⌊
N−1

2

⌋∑
i=1

d(x2i−1+ν , x2i−ν) =:

1∑
ν=0

J2+ν(x)

and β TV2 into three sums

β TV2(x) =
2∑

ν=0

β

⌊
N−1

3

⌋∑
i=1

d2(x3i−2+ν , x3i−1+ν , x3i+ν) =:
2∑

ν=0

J4+ν(x)

Then the objective function decomposes as

J =
6∑
l=1

Jl.

We compute in the k-th cycle of the CPPA the signal

x(k) := proxλkJ6

(
proxλkJ5 . . .

(
proxλkJ1(x(k−1))

))
.

The different proximal values can be obtained as follows:

i) By Proposition 3.7 with x(k−1) playing the role of g we get

x(k−1+
1
6
) := proxλkJ1(x(k−1)).

ii) For ν = 0, 1, we obtain the vectors

x(k−1+
ν+2
6

) := proxλkJ2+ν

(
x(k−1+

ν+1
6

)
)

by applying Theorem 3.5 with w = b1 independently for the pairs (x2i−1+ν , x2i+ν), i =
1, . . . ,

⌊
N−1
2

⌋
.

iii) For ν = 0, 1, 2, we compute

x(k−1+
ν+4
6

) := proxλkJ4+ν

(
x(k−1+

ν+3
6

)
)

by applying Theorem 3.5 with w = b2 independently for the vectors (x3i−2+ν , x3i−1+ν , x3i+ν),
i = 1, . . . ,

⌊
N−1
3

⌋
.

The parameter sequence {λk}k of the algorithm should fulfill
∞∑
k=0

λk =∞, and

∞∑
k=0

λ2k <∞. (20)

This property is also essential for proving the convergence of the CPPA for real-valued data
and data on a Hadamard manifold, see [1, 4]. In our numerical experiments we choose λk :=
λ0/k with some initial parameter λ0 > 0 which clearly fulfill (20). The whole procedure is
summarized in Algorithm 1.
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Algorithm 1 CPPA for minimizing (19) or (21) for cyclic data

Input {λk}k fulfilling (20) and α, β or α = (α1, α2), β = (β1, β2), γ
data f ∈ [−π, π)N or f ∈ [−π, π)N×M

function CPPA(α, β, λ0, f)
Initialize x(0) = f , k = 0
Initialize the cycle length as c = 6 (1D) or c = 15 (2D)
repeat

for l← 1 to c do
x(k+

l
c
) ← proxλkJl(x

(k+ l−1
c

))

k ← k + 1
until a convergence criterion are reached
return x(k)

4.2 Two-dimensional data

Next we consider two-dimensional data, i.e., images of the form f :=
(
fi,j)

N,M
i,j=1 ∈ [−π, π)N×M ,

N,M ∈ N. Our functional includes horizontal and vertical cyclic first and second order
differences d1 and d2 and d iagonal (mixed) differences d1,1. For non-negative regularization
parameters α := (α1, α2), β := (β1, β2) and γ not all equal to zero we are looking for

arg min
x∈[−π,π)N×M

J(x), J(x) = J(x, f) := F (x; f) + αTV1(x) + β TVhv
2 (x) + γ TVd

2(x), (21)

where

F (x; f) :=
1

2

n,m∑
i,j=1

d(fi,j , xi,j)
2,

αTV1(x) := α1

N−1,M∑
i,j=1

d(xi,j , xi+1,j) + α2

N,M−1∑
i,j=1

d(xi,j , xi,j+1),

β TVhv
2 (x) := β1

N−1,M∑
i=1,j=2

d2(xi−1,j , xi,j , xi+1,j), β2

N,M−1∑
i=2,j=1

d2(xi,j−1, xi,j , xi,j+1)+

γ TVd
2(x) := γ

N−1,M−1∑
i,j=1

d1,1(xi,j , xi+1,j , xi,j+1, xi+1,j+1).

Here the objective function splits as

J =

15∑
l=1

Jl (22)

with the following summands: Again we set J1 := F (x; f) and compute the proximal value of
λkJ1 by Proposition 3.7. Each of the sums in TV1 and TVhv

2 can be split analogously as in the
one-dimensional case, where we have to consider row and column vectors now. This results in
2(2 + 3) = 10 functions J2, . . . , J11 whose proximal values can be computed by Theorem 3.5.
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Finally, we split TVd
2 . into the four sums

γ TVd
2(x) =

1∑
µ,ν=0

γ

⌊
N−1

2

⌋
,
⌊
M−1

2

⌋∑
i,j=1

d1,1(x2i−1+µ,2j−1+ν , x2i+µ,2j−1+ν , x2i−1+µ,2j+ν , x2i+µ,2j+ν)

and denote the inner sums by J12, . . . , J15. Clearly, the proximal values of the functions λkJl,
l = 12, . . . , 15 can be computed separately for the vectors

(x2i−1+k,2j−1+l, x2i+k,2j−1+l, x2i−1+k,2j+l, x2i+k,2j+l), i = 1, . . .
⌊N − 1

2

⌋
, j = 1, . . . ,

⌊M − 1

2

⌋
by Theorem 3.5 with w = b1,1. In summary, the computation can be done by Algorithm 1.
Note that the presented approach immediately generalizes to arbitrary dimensions.

4.3 Convergence

Since S1 is not a Hadamard space, the convergence analysis of the CPPA in [1] cannot be
applied. We show the convergence of the CPPA for the 2D S1-valued function (21) under
certain conditions. The 1D setting in (19) can then be considered as a special case. In the
following, let I := {1, . . . , N} × {1, . . . ,M}.
Our first condition is that the data f ∈ (S1)N×M is dense enough, this means that the distance
between neighboring pixels

d∞(f) := max
(i,j)∈I

max
(k,l)∈Ni,j

d(fi,j , fk,l), Ni,j :=
{

(k, l) ∈ I : |i− k|+ |l − j| = 1
}

is sufficiently small. Similar conditions also appear in the convergence analysis of nonlinear
subdivision schemes for manifold-valued data in [47, 48]. In the context of nonlinear subdivision
schemes, even more severe restrictions such as ‘almost equally spaced data’ are frequently
required [26]. This imposes additional conditions on the second order differences to make the
data almost lie on a ‘line’. Our analysis requires only bounds on the first, but not on the
second order differences.
Our next requirement is that the regularization parameters α, β, γ in (21) are sufficiently small.
For large parameters any solution tends to become almost constant. In this case, if the data
is for example equidistantly distributed on the circle, e.g., fi = 2πi/N in 1D, any 2πj/N shift
is again a solution. In this situation the model loses its interpretation which is an inherent
problem due to the cyclic structure of the data.
Finally, the parameter sequence {λk}k of the CPPA has to fulfill (20) with a small `2 norm.
The later can be achieved by rescaling.
Our convergence analysis is based on a convergence result in [1] and an unwrapping procedure.
We start by reformulating the convergence result for the CPPA of real-valued data, which is a
special case of [1] and can also be derived from [3].

Theorem 4.1. Let E =
∑c

l=1El, where El, l = 1, . . . , c, are proper, closed, convex functionals
on RN×M . Let E have a global minimizer. Assume that there exists L > 0 such that the iterates

{x(k+ l
c
)} of the CPPA (see Algorithm 1) satisfy

El(x
(k))− El(x(k+

l
c
)) ≤ L‖x(k) − x(k+ l

c
)‖2, l = 1, . . . , c,
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for all k ∈ N0. Then the sequence {x(k)}k converges to a minimizer of E. Moreover the iterates
fulfill

‖x(k+ l−1
c

) − x(k+ l
c
)‖2≤ 2λkL,

‖x(k+1) − x‖22 ≤ ‖x(k) − x‖22 − 2λk[E(x(k))− E(x)] + 2λ2kL
2c(c+ 1) for all x ∈ RN×M .

The next lemma states a discrete analogue of a well-known result on unwrapping or lifting
from algebraic topology. We supply a short proof since we did not found it in the literature.

Lemma 4.2. Let x ∈ (S1)N×M with d∞(x) < π
2 . For q ∈ S1 not antipodal to x1,1 fix an x̃1,1 ∈ R

such that expq(x̃1,1) = x1,1. Then there exists a unique x̃ ∈ RN×M such that for all (i, j) ∈ I
the following relations are fulfilled:

i) expq(x̃i,j) = xi,j ,

ii) d(xi,j , xk,l) = |x̃i,j − x̃k,l|, (k, l) ∈ Ni,j.

We call x̃ the lifted or unwrapped image of x (w.r.t. a fixed x̃1,1).

Proof. For xk,l, (k, l) ∈ N1,1, it holds by assumption on d∞(x) that d(x1,1, xk,l) <
π
2 . Hence

we have sk,l := (xk,l − x1,1)2π ∈
(
−π

2 ,
π
2

)
, where with an abuse of notation xk,l stands for an

arbitrary representative in TqS1 of xk,l. Then obviously x̃k,l := x̃1,1 + sgn(sk,l)d(x1,1, xk,l) ,
(k, l) ∈ N1,1 are the unique values satisfying i) and ii).
For x2,2 ∈ N2,1 ∩N1,2 consider

x̃2,2 := x̃1,2 + sgn
(
(x2,2 − x1,2)2π

)
d(x1,2, x2,2)

= x̃1,1 + sgn(s1,2)d(x1,1, x1,2) + sgn
(
(x2,2 − x1,2)2π

)
d(x1,2, x2,2),

ỹ2,2 := x̃2,1 + sgn
(
(x2,2 − x2,1)2π

)
d(x2,1, x2,2)

= x̃1,1 + sgn(s2,1)d(x1,1, x2,1) + sgn
(
(x2,2 − x2,1)2π

)
d(x2,1, x2,2).

By assumption on d∞(x) we see that |x̃2,2 − ỹ2,2| < 2π so that x̃2,2 = ỹ2,2. Thus x̃2,2 is the
unique value with properties i) and ii).
Proceeding this scheme successively, we obtain the whole unique image x̃ fulfilling i) and ii).

For δ ∈ (0, π) we define

S(f, δ) :=
{
x ∈ (S1)N×M : d∞(x, f) ≤ δ

}
,

where
d∞(x, f) := max

(i,j)∈I
d(xi,j , fi,j),

to measure how ‘near’ the images f and x are to each other.

Lemma 4.3. Let f ∈ (S1)N×M with d∞(f) < π
8 and q ∈ S1 be not antipodal to f1,1. Fix f̃1,1

with expq(f̃1,1) = f1,1 and let f̃ be the corresponding lifting of f . Let δ ∈ (0, π8 ].

i) Then every x ∈ S(f, δ) has a unique lifting x̃ w.r.t. to the base point q with |x̃1,1− f̃1,1| ≤ π
8 .
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ii) For J defined by (21), let J̃ denote its analog for real-valued data, i.e.,

J̃(x) = J̃(x, f̃) := F̃ (x; f̃) + αT̃V1(x) + βT̃V
hv

2 (x) + γT̃V
d

2(x), (23)

where the cyclic distances in F and in the TV terms are replaced by absolute differences in F̃
and T̃V. Then it holds

J(x) = J̃(x̃) for all x ∈ S(f, δ). (24)

Proof. By definition of S(f, δ) and assumption on f we have for any x ∈ S(f, δ) that

d(xi,j , xk,l) ≤ d(xi,j , fi,j) + d(fi,j , fk,l) + d(fk,l, xk,l) <
3π

8
, (k, l) ∈ Ni,j ,

and hence d∞(x) < 3π
8 . Further it holds d(x1,1, f1,1) <

π
8 . Consequently, every x ∈ S(f, δ) has

a unique lifting x̃ by Lemma 4.2 w.r.t. to the base point q fulfilling |x̃1,1 − f̃1,1| ≤ π
8 .

To see (24) we show the equality for the involved summands in J and J̃ separately.
First we consider TV1. By properties of the lifting in Lemma 4.2 we have d(xi,j , xi,j+1) =

|x̃i,j − x̃i,j+1| and d(xi,j , xi+1,j) = |x̃i,j − x̃i+1,j |. By the definition of TV1 and T̃V1, this

implies TV1(x) = T̃V1(x̃).
Next we consider TVhv

2 . The corresponding second order differences are given by the expres-
sions d2(xi−1,j , xi,j , xi+1,j) and d2(xi,j−1, xi,j , xi,j+1), respectively. We exemplarily consider the
first term. Since

d(xi−1,j , xi+1,j) ≤ d(xi−1,j , fi−1,j) + d(fi−1,j , fi+1,j) + d(fi+1,j , xi+1,j) <
π

8
+
π

4
+
π

8
=
π

2

the distance between any two members of the triple is smaller than π
2 . Due to the properties of

the lifting x̃ this implies |∆(x̃i−1,i, x̃i,j , x̃i+1,j ; b2)| < π. Then we conclude by Proposition 2.5

that TVhv
2 (x) = T̃V

hv

2 (x̃). Similarly it follows that TVd
2(x) = T̃V

d

2(x̃).
Concerning the data term F (x; f) we consider ei,j := d(xi,j , fi,j) and ẽi,j := |x̃i,j − f̃i,j |. By
definition of S(f, δ) we have ei,j ≤ δ = π

8 and by construction of f̃ and x̃ that ẽi,j = ei,j+2πki,j ,

ki,j ∈ N and k1,1 = 0. Furthermore it holds |ẽi,j+1− ẽi,j | =
∣∣|x̃i,j+1− f̃i,j+1|− |x̃i,j − f̃i,j |

∣∣ ≤ 2δ.
If ki,j 6= ki,j+1, then there exists k ∈ Z\{0} such that

|ẽi,j+1 − ẽi,j | = |ẽi,j+1 − ẽi,j + 2πk| ≥ 2π − 2δ > 2δ

which is a contradiction. Thus ki,j = ki,j+1. Similarly we conclude ki,j = ki+1,j . In summary
we obtain ki,j = k1,1 = 0 for all (i, j) ∈ I which implies ei,j = ẽi,j . This finishes the proof.

Remark 4.4. The set S(f, δ) is a convex subset of (S1)N×M which means that for x, y ∈ S(f, δ)
and t ∈ [0, 1] we have [x, y]t ∈ S(f, δ). Here [x, y]t denotes the point reached after time t on the
unit speed geodesic starting at x in direction of y. Recall that a function ϕ is convex on S(f, δ)
if for all x, y ∈ S(f, δ) and all λ ∈ [0, 1] the relation ϕ([x, y]t) ≤ tϕ(x) + (1− t)ϕ(y) holds true.
Let f ∈ (S1)N×M with d∞(f) < π

8 and δ ∈ (0, π8 ]. Then we conclude by Lemma 4.3, since J̃ is
convex, that J is convex on S(f, δ).

Lemma 4.5. Let f ∈ (S1)N×M and m := max{α1, α2, β1, β2, γ} > 0. Let ε > 0 such that

TV1(f) + TVhv
2 (f) + TVd

2(f) ≤ ε2

m
. (25)
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Then any minimizer x∗ of J in (21) fulfills

d∞(x∗, f) ≤

N,M∑
i,j=1

d(x∗i,j , fi,j)
2

 1
2

≤ ε.

Proof. Any minimizer x∗ of (21) satisfies

J(x∗) ≤ J(f) ≤ m
(
TV1(f) + TVhv

2 (f) + TVd
2(f)

)
.

As a consequence we obtain

d∞(x∗, f)2 ≤
N,M∑
i,j=1

d(x∗i,j , fi,j)
2 ≤ m

(
TV1(f) + TVhv

2 (f) + TVd
2(f)

)
≤ ε2.

Remark 4.6. Lemma 4.5 holds also true for real-valued data and J̃ in (23).

Now we combine Lemma 4.5 and 4.3 to locate the minimizers of J and J̃ .

Lemma 4.7. Let f ∈ (S1)N×M with d∞(f) < π
8 and 0 < ε < δ ≤ π

8 be given. Choose the
parameters α, β, γ of J in (21) such that (25) with ε holds true. Then any minimizer x∗ of J
lies in S(f, δ). Furthermore, if f̃ is the unique lifting of f w.r.t. a base point q and fixed f̃1,1
with expq(f̃1,1) = f1,1, then each minimizer y∗ of J̃ defines a minimizer x∗ := expq(y

∗) of J .

Conversely, the uniquely defined lifting x̃∗ of a minimizer x∗ of J is a minimizer of J̃ .

Proof. By Lemma 4.5 we obtain d∞(x∗, f) ≤ ε < π
8 so that x∗ ∈ S(f, δ).

In order to show the second statement note that the mapping x 7→ x̃ is a bijection from S(f, δ)
to the set S̃(f, δ) defined by

S̃(f, δ) :=
ą

(i,j)∈I

[
f̃i,j − δ, f̃i,j + δ

]
.

If y∗ minimizes J̃ , then it lies in S̃(f, δ) which follows by Remark 4.6. By (24) and the
minimizing property of y∗ we obtain for any x ∈ S(f, δ) that

J(expq(y
∗)) = J̃(y∗) ≤ J̃(x̃) = J(x).

As a consequence, expq(y
∗) is a minimizer of J on S(f, δ). By Lemma 4.5 all the minimizers

of J are contained in S(f, δ) so that expq(y
∗) is a minimizer of J on (S1)N×M .

We proceed with the last statement. Let x∗ be a minimizer of J with lifting x̃∗. Then we get
for any ỹ ∈ S̃(f, δ) that

J̃(x̃∗) = J(x∗) ≤ J(expq(ỹ)) = J̃(ỹ).

This shows that x̃∗ is a minimizer of J̃ on S̃(f, δ). Since by Remark 4.6 all minimizers of J̃ lie
in S̃(f, δ), the last assertion follows.

Next we locate the iterates of the CPPA for real-valued data on a ball whose radius can be
controlled.
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Lemma 4.8. For f ∈ RN×M and λ := {λk}k with property (20), let
{
x(k+

l
c
)
}

be the sequence

produced by Algorithm 1 for J̃ . Assume that ‖f − x(k+
l
c
)‖∞ ≤ π. Let x∗ ∈ RN×M be the

minimizer of J̃ . Then, for k ∈ N0 and l ∈ {1, . . . , c}, it holds

‖x(k+ l
c
) − x∗‖2 ≤ R :=

√
‖f − x∗‖22 + 2‖λ‖22L2c(c+ 1) + 2‖λ‖∞cL, (26)

where c = 15 denotes the number of inner iterations and L = 4.

The assumption on the distances |fi,j−x
(k+ l

c
)

i,j |, (i, j) ∈ I, to be smaller than π is automatically

fulfilled for any unwrapping of S1-valued data.

Proof. By Theorem 4.1 we know that

‖x(k+1) − x‖22 ≤ ‖x(k) − x‖22 − 2λk[J̃(x(k))− J̃(x)] + 2λ2kL
2c(c+ 1). (27)

As a constant L we can choose the maximum of the Lipschitz constants of the involved sum-

mands. For T̃V1, T̃V
hv

2 and T̃V
d

2 the Lipschitz constants are 1, 4, and 4, respectively. For the
quadratic data term we have

1

2

∣∣|fi,j − xi,j |2 − |fi,j − yi,j |2∣∣ ≤ 1

2
|2fi,j − xi,j − yi,j ||xi,j − yi,j | ≤ π|xi,j − yi,j |.

Therefore, we can set L = 4. Plugging in the minimizer x = x∗ into (27) and using x(0) = f
yields

‖x(k+1) − x∗‖22 ≤ ‖x(k) − x∗‖22 + 2λ2kL
2c(c+ 1)

≤ ‖x(0) − x∗‖22 + 2

k∑
j=0

λ2jL
2c(c+ 1)

≤ ‖f − x∗‖22 + 2‖λ‖22L2c(c+ 1). (28)

By Theorem 4.1 it holds

‖x(k+ l
c
) − x(k+ l−1

c
)‖2≤ 2λkL. (29)

Using the triangle inequality we obtain

‖x(k+ l
c
) − x∗‖2 ≤ ‖x(k+

l
c
) − x(k+ l−1

c
)‖2+ . . .+ ‖x(k+ 1

c
) − x(k)‖2+‖x(k) − x∗‖22,

which implies the assertion by (28) and (29).

Now we compare the proximal mappings acting on data with values in S1 and R.

Lemma 4.9. For f ∈ (S1)N×M with d∞(f) < π
8 , let J be defined by (21) with the splitting (22).

Let f̃ be the unique lifting of f w.r.t. a base point q not antipodal to f1,1 and fixed f̃1,1 with
expq(f̃1,1) = f1,1. Further, denote by J̃ the functional (23) corresponding to J . Then, for any
x ∈ S(f, δ), δ ∈ (0, π8 ] and its lifting x̃ w.r.t. q, we have

proxλJl(x) = expq(proxλJ̃l(x̃)), l ∈ {1, . . . , 15}, (30)

i.e., the canonical projection expq commutes with the proximal mappings.
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Proof. The function J1 is based on the distance to the data f . Since x ∈ S(f, δ), we have
d(xi,j , fi,j) ≤ π

8 for all (i, j) ∈ I. The components of the proximal mapping proxλJ1 are given
by Proposition 3.7 from which we conclude (30) for l = 1.
The proximal mappings of Jl, l = 2, . . . , 15, are given via proximal mappings of the first and
second order cyclic differences. We consider the first order difference d1 = d. By the triangle
inequality, we have d(xi,j , xi,j+1) ≤ 3π

8 as well as d(xi,j , xi+1,j) ≤ 3π
8 . By the explicit form of

the proximal mapping in Theorem 3.5 we obtain (30) for Jl, l = 2, . . . , 5.
Next we consider the horizontal and vertical second order differences d2(xi−1,j , xi,j , xi+1,j)
and d2(xi,j−1, xi,j , xi,j+1). We have that d(xi,j−1, xi,j) < 3π

8 , d(xi,j , xi,j+1) < 3π
8 as well

as d(xi,j−1, xi,j) < π
2 . Hence all contributing values of x lie on a quarter of the circle. Applying

the proximal mapping in Theorem 3.5 the resulting data lie on one half of the circle. An
analogous statement holds true for the horizontal part. Hence the proximal mappings of the
ordinary second differences agree with the cyclic version (under identification via expq). This
implies (30) for Jl, l = 6, . . . , 11.
Finally, we consider the mixed second order differences d1,1(xi,j , xi+1,j , xi,j+1, xi+1,j+1). As
above, we have for neighboring data items that the distance is smaller than 3π

8 . For all four
contributing values of x we have that the pairwise distance is smaller by π

2 . Thus again they
lie on a quarter of the circle. Hence, the proximal mapping for the ordinary mixed second
differences agree with the cyclic version (under identification via expq). This implies (30) for
Jl, l = 12, . . . , 15.

We note that Lemma 4.9 does not guarantee that proxλJl(x) remains in S(f, δ). Therefore
it does not allow for an iterated application. In the following main theorem we combine the
preceding lemmas to establish this property.

Theorem 4.10. Let f ∈ (S1)N×M with d∞(f) < π
8 . Let λ := {λk}k fulfill property (20) and√

ε2 + 2‖λ‖22L2c(c+ 1) + 2‖λ‖∞cL <
π

16
,

for some ε > 0, where c = 15 and L = 4. Further, assume that the parameters α, β, γ of the
functional J in (21) and ε satisfy (25). Then the sequence {x(k)}k generated by the CPPA in
Algorithm 1 converges to a global minimizer of J .

Proof. Let f̃ be the lifting of of f with respect to a base point q not antipodal to f1,1 and fixed
f̃1,1 with expq(f̃1,1) = f1,1. Further, let J̃ denote the real analog of J . By Lemma 4.3 we have

TV1(f) = T̃V1(f̃) and TV•2(f) = T̃V
•
2(f̃) for • ∈ {hv, d} such that (25) is also fulfilled for the

real-valued setting. Then we can apply Remark 4.5 and conclude that the minimizer y∗ of J̃
fulfills ‖y∗ − f̃‖2 ≤ ε < π

16 . By (26) we obtain

R =

√
‖y∗ − f̃‖22 + 2‖λ‖22L2c(c+ 1) + 2‖λ‖∞cL

≤
√
ε2 + 2‖λ‖22L2c(c+ 1) + 2‖λ‖∞cL <

π

16
.

By Lemma 4.8 the iterates y(k+
l
c
) of the real-valued CPPA fulfill

‖y(k+ l
c
) − y∗‖2 ≤ R <

π

16
.

Hence ‖y(k+ l
c
) − f̃‖∞ < π

8 which means that all iterates y(k+
l
c
) stay within S̃(f̃ , π8 ).
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Next, we consider the sequence {x(l+ k
c
)} of the CPPA for the S1-valued data f . We use

induction to verify x(k+
l
c
) = expq(y

(k+ l
c
)). By definition we have x(0) = f = expq(f̃) =

expq(y
(0)). Assume that x(k+

l−1
c

) = expq(y
(k+ l−1

c
)). By bijectivity of the lifting, cf. Lemma 4.3,

and since y(k+
l−1
c

) ∈ S̃(f̃ , δ), we conclude x(k+
l−1
c

) ∈ S(f, δ). By Lemma 4.9 we obtain

expq(y
(k+ l

c
)) = expq

(
proxλkJ̃l(y

(k+ l−1
c

))
)

= proxλkJl(x
(k+ l−1

c
)) = x(k+

l
c
).

By the same argument as above we have again x(k+
l
c
) ∈ S(f, δ).

Finally, we know by Theorem 4.1 that

x(k) = expq(y
(k))→ expq(y

∗) as k →∞
and by Lemma 4.7 that x∗ := expq(y

∗) is a global minimizer of J . This completes the proof.

5 Numerical results

For the numerical computations of the following examples, the algorithms presented in Section 4
were implemented in MatLab. The computations were performed on a MacBook Pro with
an Intel Core i5, 2.6 Ghz and 8 GB of RAM using MatLab 2013, Version 2013a (8.1.0.604) on
Mac OS 10.9.2.

5.1 Signal denoising of synthetic data

The first example of an artificial one-dimensional signal demonstrates the effect of different
models containing absolute cyclic first order differences, second order differences or both com-
bined. The function f : [0, 1]→ [−π, π) given by

f(x) :=



−24πx2 + 3
4π for 0 ≤ x ≤ 1

4 ,

4πx− π
4 for 1

4 < x ≤ 3
8 ,(

−πx− 3
8

)
2π

for 3
8 < x ≤ 1

2 ,(
− j+7

8 π
)
2π

for 3j+16
32 < x ≤ 3j+19

32 , j = 0, 1, 2, 3,
3
2π exp

(
−35

7 − 1
1−x
)
− 3

4π for 7
8 < x ≤ 1,

is sampled equidistantly to obtain the original signal fo =
(
f
(
i−1
N−1

))N
i=1

at N = 500 samples.

This function is distorted by wrapped Gaussian noise η of standard deviation σ = 1
5 to get

fn :=
(
fo +(η)2π

)
2π

= (fo +η)2π, see also Remark 2.1. The functions fo and fn are depicted in
Figure 3 (a). Note the following effects due to the cyclic data representation on [−π, π): The
linear increase on

[
1
4 ,

3
8

]
of f is continuous and the change from π to −π at 5

16 is just due to
the chosen representation system. Similarly the two constant parts with the values −π and 7

8π
differ only by a jump size of −π

8 . For the noise around these two areas, we have the same
situation.
We apply Algorithm 1 with different model parameters α and β to fn which yields the restored
signals fr. The restoration error is measured by the ‘cyclic’ mean squared error (cMSE) with
respect to the arc length distance

e(fo, fr) :=
1

N

M∑
i=1

d(fo,i, fr,i)
2.
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(b) TV1, e(fo, fr) ≈ 6.06× 10−3.
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(c) TV2, e(fo, fr) ≈ 4.34× 10−3.
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(d) TV1&TV2, , e(fo, fr) ≈ 3.53× 10−3.

Figure 3. Denoising of an one-dimensional signal by minimizing (19) with CPPA. (a)
Original signal fo (dashed red) and disturbed signal by wrapped Gaussian noise fn
(solid black). (b)— (d) Reconstructed signals fr using (b) only the TV1 regularizer
(α = 3

4), (c) only the TV2 regularizer (β = 3
2), and (d) both of them (α = 1

2 ,
β = 1). While (b) suffers from the staircasing effect, (c) shows weak results at
constant areas. The combination of both regularizers in (d) yields the best image.
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We use λ0 = π and k = 4000 iterations as stopping criterion. For any choice of parameters
α, β the computation time is about 6 seconds.
The result fr in Figure 3 (b) is obtained using only the TV1 regularization (α = 3

4 , β = 0).
The restoration of constant areas is favored by this regularization term, but linear, quadratic
and exponential parts suffer from the well-known ‘staircasing’ effect. Utilizing only the TV2

regularization (α = 0, β = 2
3) , cf. Figure 3 (c), the restored function becomes worse in flat

areas, but shows a better quality in the linear parts. By combining the regularization terms
(α = 1

2 , β = 1) as illustrated in Figure 3 (d) both the linear and the constant parts are
reconstructed quite well and the cMSE is smaller than for the other choices of parameters.
Note that α and β were chosen in 1

4N with respect to an optimal cMSE.

5.2 Image denoising of InSAR data

The complex-valued synthetic aperture radar (SAR) data is obtained emitting specific radar
signals at equidistant points and measuring the amplitude and phase of their reflections by the
earth’s surface. The amplitude provides information about the reflectivity of the surface. The
phase encodes both the change of the elevation of the surface’s elements within the measured
area and their reflection properties and is therefore rather arbitrary. When taking two SAR
images of the target area at the same time but from different angles or locations. The phase
difference of these images encodes the elevation, but it is restricted to one wavelength and also
includes noise. The result is the so called interferometric synthetic aperture radar (InSAR)
data and consists of the ‘wrapped phase’ or the ‘principal phase’, a value in [−π, π) representing
the surface elevation. For more details see, e.g., [9, 33].
After a suitable preregistration the same approach can be applied to two images from the same
area taken at different points in time to measure surface displacements, e.g., before and after
an earthquake or the movement of glaciers.
The main challenge in order to unwrap the phase is the presence of noise. Ideally, if the surface
would be smooth enough and no noise would be present, unwrapping is uniquely determined,
i.e., differences between two pixels larger than π are regarded as a wrapping result and hence
become unwrapped.
There are several algorithms to unwrap, even combining the denoising and the unwrapping, see
for example [5, 6]. For denoising, Deledalle et al. [14] use both SAR images and apply a non-
local means algorithm jointly to their reflection, the interferometric phase and the coherence.

Application to synthetic data. In order to get a better understanding in the two-dimen-
sional case, let us first take a look at a synthetic surface given on [0, 1]2 with the profile shown
in Figure 4 (a). This surface consists of two plates of height ±2π divided at the diagonal, a
set of stairs in the upper left corner in direction π

3 , a linear increasing area connecting both
plateaus having the shape of an ellipse with major axis at the angle π

6 , and a half ellipsoid
forming a dent in the lower right of the image with circular diameter of size 9

25 and depth 4π.
The initial data is given by sampling the described surface at M = N = 256 sampling points.
The usual InSAR measurement would ideally result in data as given in Figure 4 (b), i.e., the
data is wrapped with respect to 2π. In the figure the resulting ideal phase is represented using
the hue component of the HSV color space. Again, the data is perturbed by wrapped Gaussian
noise, standard deviation σ = 0.3, see Figure 4 (c).
For an application of Algorithm 1 to the minimization problem (21), we have to fix five param-
eters α1, α2, β1, β2, γ which were chosen on 1

8N such that they minimize the cMSE. Using only
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(d) TV1, e(fo, fr) = 7.09 × 10−3.
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(e) TVhv
2 , e(fo, fr) = 6.70 × 10−3.
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(f) TV1 & TVhv
2 , e(fo, fr) = 5.37 × 10−3.

Figure 4. Denoising of two-dimensional artificial data by minimizing (21) with CPPA.
(a) Artificial surface, (b) its wrapped variant, and (c) wrapped image corrupted by
wrapped Gaussian noise. (d)– (f) Reconstructed images fr using (d) only the TV1

regularizer (α = (38 ,
1
4)), (e) only the TVhv

2 & TVd
2 regularizer (β = (18 ,

1
8), γ = 1

8),
and (f) both of them (α = (14 ,

1
8), β = (18 ,

1
8), γ = 0).
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(b) Denoised Vesuvius data.

Figure 5. (a) Noisy InSAR data set of the Vesuvius taken by the ERS-1 satel-
lite [38]. (b) Denoised image by minimizing (21) with CPPA (α =

(
1
4 ,

1
4

)
, β =

(
3
4 ,

3
4

)
and γ = 3

4).

the cyclic first order differences with α = 1
8(3, 2), see Figure 4 (d), the reconstructed image fr

reproduces the piecewise constant parts of the stairs in the upper left part and the background,
but introduces a staircasing in both linear increasing areas inside the ellipse and in the half
ellipsoid. This is highlighted in the three magnifications in Figure 4 (d). Applying only cyclic
second order differences with β1 = β2 = γ = 1

8 manages to reconstruct the linear increasing
part and the circular structure of the ellipsoid, but compared to the first case it even increases
the cMSE due to the approximation of the stairs and the background, see especially the mag-
nification of the stairs in Figure 4 (e). Combining first and second order cyclic differences by
setting α1 = α2 = 1

8(2, 1) and β1 = β2 = 1
8 , γ = 0, these disadvantages can be reduced, cf.

Figure 4 (f). Note especially the three magnified regions and the cMSE.

Application to real-world data. Next we examine a real-world example. The data from
[38] is a set of InSAR data recorded in 1991 by the ERS-1 satellite capturing topographical
information from the Mount Vesuvius. The data is available online1 and a part of it was also
used as an example in [50] for TV based denoising of manifold-valued data. In Figure 5 the
phase is represented by the hue component of the HSV color space. We apply Algorithm 1 to
the image of size 426 × 432, cf. Figure 5 (a), with α1 = α2 = 1

4 and β1 = β2 = γ = 3
4 . This

reduces the noise while keeping all significant plateaus, ascents and descents, cf. Figure 5 (b).

1at https://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/
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The left zoom illustrates how the plateau in the bottom left of the data is smoothened but
kept in its main elevation shown in blue. In the zoom on the right all major parts except the
noise are kept. We notice just a little smoothening due to the linearization introduced by TV2.
In the bottom left of this detail some of the fringes are eliminated, and a small plateau is build
instead, shown in cyan. The computation time for the whole image using k = 600 iterations
as stopping criterion was 86.6 sec and 11.1 sec for each of the details of size 150× 150.

6 Conclusions

In this paper we considered functionals having regularizers with second order absolute cyclic
differences for S1-valued data. Their definition required a proper notion of higher order dif-
ferences of cyclic data generalizing the corresponding concept in Euclidian spaces. We derived
a CPPA for the minimization of our functionals and gave the explicit expressions for the ap-
pearing proximal mappings. We proved convergence of the CPPA under certain conditions.
To the best of our knowledge this is the first algorithm dealing with higher order TV-type
minimization for S1-valued data. We demonstrated the denoising capabilities of our model on
synthetic as well as on real-world data.
Future work includes the application of our higher order methods for cyclic data to other
imaging tasks such as segmentation, inpainting or deblurring. For deblurring, the usually
underlying linear convolution kernel has to be replaced by a nonlinear construction based on
intrinsic (also called Karcher) means. This leads to the task of solving the new associated
inverse problem.
Further, we intend to investigate other couplings of first and second order derivatives similar
to infimal convolutions or GTV for Euclidean data. Finally, we want to set up higher order
TV-like methods for more general manifolds, e.g. higher dimensional spheres. Here, we do not
believe that it is possible to derive explicit expressions for the involved proximal mappings – at
least not for Riemannian manifolds of nonzero sectional curvature. Instead, we plan to resort
to iterative techniques.
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