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ABSTRACT 
Motivation: Adoptive T cell therapies based on introduction of new 
T cell receptors (TCRs) into patient recipient T cells is a promising 
new treatment for various kinds of cancers. A major challenge, 
however, is the choice of target antigens. If an engineered TCR can 
cross-react with self-antigens in healthy tissue, the side-effects can 
be devastating. We present the first webserver for assessing epitope 
sharing when designing new potential lead targets. We enable the 
users to find all known proteins containing their peptide of interest. 
The web server returns not only exact matches, but also approxi-
mate ones, allowing a number of mismatches of the users choice. 
For the identified candidate proteins the expression values in vari-
ous healthy tissues, representing all vital human organs, are ex-
tracted from RNA-Seq data as well as from some cancer tissues as 
control. All results are returned to the user sorted by a score, which 
is calculated using well established methods and tools for immuno-
logical predictions. It depends on the probability that the epitope is 
created by proteasomal cleavage and its affinities to the TAP trans-
porter and the MHC class I alleles. With this framework we hope to 
provide a helpful tool to exclude potential cross-reactivity in the early 
stage of TCR selection for use in design of adoptive T cell immuno-
therapy. 
Availability: The Expitope web server can be accessed via 
http://webclu.bio.wzw.tum.de/expitope. 
Contact: haase@wzw.tum.de 

1 INTRODUCTION  

In adoptive immunotherapy, engineered T cell receptors are intro-

duced into natural patient cytotoxic T lymphocytes. After this 

treatment, the T cells recognize a specific tumor antigen and will 

thus start to target cancer cells. It is vital for the success of the 

therapy that the antigen is only expressed in cancer cells or non-

vital tissue, otherwise the effects can be devastating for the pa-
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tients. 

Recent studies showed that not only the expression of the direct 

target has to be examined across all vital tissues, but also approxi-

mate sequences have to be considered, as T cell receptors are not 

perfectly exact in their epitope choice. In one study, Morgan and 

coworkers reported cross-recognition of a MAGE-A3 TCR with a 

MAGE-A12 epitope that was later found to be expressed in the 

brain. The MAGE-A12 epitope had one mismatch when compared 

to the initial target of the study, but was apparently recognized by 

the TCR and the treatment was fatal for some patients (Morgan et 

al., 2013). In another case, Linette and coworkers used a different 

MAGE-A3-specific TCR that was found to show cross-recognition 

of an epitope present in titin, a protein expressed in the heart, 

although the titin-associated epitope had four mismatches com-

pared with the original MAGE-A3 epitope. Nevertheless, titin was 

targeted by the engineered T cells and the patients suffered cardiac 

arrest (Linette et al., 2013). 

In order to see potential off-target recognition when designing new 

lead targets, until now one needed to search protein databases for 

approximate hits and than evaluate each hit for its potential to be 

an epitope. Our Expitope web server combines all these searches 

and evaluation in one place and even reports the expression of the 

associated transcripts in all vital human tissues to facilitate TCR 

selection. 

2 METHODS 

2.1 RNA-seq database 

As the basis for the epitope expression analysis we set up a database con-

taining RNA-seq results from multiple different healthy tissues. A very 
comprehensive set can be found in the Illumina Human Body Map (GEO 

identifier: GSE30611), which provides 16 normal tissues from unrelated 

donors. To provide a positive control for most of the cancer antigens, we 
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also included expression values for three cancerous cell lines from the 

ENCODE project (GEO identifier: GSM758575, GSM981253 and 
GSM958749) (ENCODE Project Consortium, 2011). To obtain expression 

values for all annotated transcripts, we used GenCodeV19 (Harrow et al., 

2006) and counted the reads per every exon, so we could sum up the cover-
age over all alternative transcripts. As raw read counts are not easily com-

parable between different samples due to different library sizes, we normal-

ized the counts to FPKM (Fragments Per Kilobase of exon per Million 
fragments mapped) values with the bamutils tool count (Breese and Liu, 

2013). 

As the brain constitutes one of the most vital organs, for which cross reac-
tion has to be excluded very vigorously, we integrated additional brain 

isoform expression data published by Wang et al. (2008). They analyzed 

the transcriptomes of 15 different human tissues, among them six individu-
al brain samples, and provide the RPKM values for 23,115 Ensembl gene 

identifier. As the integration of RNA-seq data into the database is fully 

automated, it is very easy to add additional tissues or cell types on demand. 

 

2.2     Epitope Lookup 
Our server requires an epitope (a string of amino acids in one letter code) 

and a number of allowed mismatches (integer value) as input.  
A search for all occurrences of the given epitope is implemented against the 
entire NCBI protein sequence database, including all annotated isoforms. 

All matches with zero up to the defined number of mismatches are reported 

and the corresponding protein IDs stored. All obtained protein identifiers 
from entries of interest are mapped to Ensembl transcript identifiers via a 

lookup file downloaded from biomart (Smedley et al., 2009). 

The set of transcript IDs is then used to query the database of expression 
values in all tissues, as described above. These results are presented to the 

user in form of a table, which additionally contains the exact epitope found 

in a certain protein and its sequence position. 

 

2.3   Output Ranking 

2.3.1 Combined score 
To sort the potentially long list of results with regard to their real potential 

to function as an epitope, we apply a scoring function as proposed by 

Keşmir et al. (2002). It combines the probability that a given peptide is 
cleaved from its original sequence, transported to the endoplasmic reticu-

lum and bound by MHC class I proteins. The resulting score Q is defined 

as 

Q = 
P

ATAP  × AMHC

 

 
where P is the proteasomal cleavage probability and the A-terms are affini-

ties in IC50 values (dose of peptide which displaces 50% of a competitive 
ligand) to the transporter associated with antigen processing (TAP) and the 

MHC complex. 

 
2.3.2 Proteasomal cleavage prediction 
To calculate the proteasomal cleavage probability we used the program 

NetChop 3.1 (Keşmir et al., 2002, Nielsen et al., 2005). We ran the pro-
gram on all current RefSeq protein entries and obtained a cleavage proba-

bility for every position. These values are stored in an additional database 
table to avoid executing NetChop for every web server query. We are using 

the prediction method “C-term 3.0” which is a neural network trained on a 

database containing 1,260 publicly available MHC class I ligands. 
 

2.3.3 TAP affinity prediction  
Peters et al. (2003) have established a 9 x 20 matrix, mati,j, that contains for 

each amino acid at every possible epitope position (of length nine) a 

log(IC50) value which can be summed up to obtain an IC50 value for the 
complete peptide. When evaluating their method, the authors observed that 

the best concordance to experimental values is achieved, when taking 

precursor peptides into account, i.e. instead of the initial nonamer they 
calculated the affinity for an N-terminal elongated sequence. In order to use 

this approach with epitopes of fixed length provided by the users, we 

modified the established formula to work without precursor sequences. 

Hence, only the IC50 values for the C-terminal residue as well as a weighted 
sum of the three N-terminal amino acids are used for the scoring. 

 

2.3.4 MHC binding prediction 
For the affinity prediction of the epitopes to the major histocompatibility  

complex (MHC) for a large range of HLA-alleles, we integrated NetMHC 

3.0 (Nielsen et al., 2003, Lundegaard et al., 2008a,b) into our Web server. 

It offers artificial neural networks trained on 55 different MHC alleles and 

returns the affinity of a given peptide to the specified alleles in nM IC50 

values. The Expitope server reports the exact IC50 values predicted by 
NetMHC for every MHC allele that was selected in the query, but only the 

best (lowest) is used in the calculation of the combined score Q. 

3    CONCLUSION 
 

To test the capability of Expitope, we investigated a previous TCR 

gene therapy in which unanticipated cross-recognition of healthy 
tissues led to patient deaths. We used the target that Linette et al. 
(2013) had engineered in their study and allowed for up to four 
mismatches. Cross-recognition of titin was identified by our Web 
server and although the sequence has four mismatches, the predict-
ed affinity to MHC allele A0101 was even higher for the titin 
antigen than that for the original MAGE-A3 peptide. Although we 
would like to remind all users that the predictions are only to be 
used as a first instance of TCR selection and need to be validated 
experimentally before used in therapy, we expect our Expitope 
Web server to be a useful tool for recognizing potential cross-
reactivity in the early stage of TCR selection and designing adop-
tive T cell immunotherapies. 
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