
0

From deterministic Boolean networks

to stochastic continuous models

Master Thesis
by

Sebastian Winkler

Technische Universität München (TUM)

Department of Mathematics

M.sc Mathematics in Bioscience

Supervisor: Prof. Dr. Dr. Fabian Theis

Advisor: Dr. Christiane Fuchs

Submission date: 28. August 2014

1

2

Technische Universität München

Fakultät für Mathematik

Titel der Masterarbeit, englisch:

From discrete Boolean networks

to stochastic continuous models

Titel der Masterarbeit, deutsch:

Von diskreten Boolschen Netzwerken

 zu stochastischen stetigen Modellen

Verfasser: Sebastian Winkler

 (Matrikelnummer 03608811)

Aufgabensteller: Prof. Dr. Dr. Fabian Theis

Betreuerin: Dr. Christiane Fuchs

Abgabedatum: 28.08.2014

3

4

Ich erkläre hiermit, dass ich die vorliegende Masterarbeit selbstständig

und nur mit den angegebenen Hilfsmitteln angefertigt habe.

München, den 28. August 2014, ______________________

 Sebastian Winkler

5

6

Danksagung

Ich möchte folgenden Personen, Lebewesen und/oder sonstigen Entitäten

meinen Dank aussprechen:

1. Meiner Familie und auch allen anderen, insbesondere aber meinen Hunden

 Schnitzlon von Schnitzly (R.I.P.)

 und

 Zwirni (Zwirniratzis) Zwirnodopoulos.

2. Frau Dr. Christiane Fuchs für die angenehme und hilfreiche Betreuung.

3. Herrn Prof. Dr. Dr. Theis und Frau Dr. Fuchs für die Möglichkeit diese Arbeit am ICB

im Rahmen der dort vorliegenden Gesamtsituation verfassen zu können.

7

8

Abstract

The overall topic of this thesis is the relationship between various models for biochemical

systems in general and for gene regulatory networks in particular. According to classical

dipolar characteristics like continuity vs. discreteness of the state space, continuity vs.

discreteness of time, spatial homogeneity vs. heterogeneity or determinism vs. stochasticity,

different respectively suitable model classes can be applied in order to model systems which

are thought to be best modeled with a particular modeling framework. Boolean network

models are chosen as a point of departure for the exploration of the outlined issue and are

thus covered in slightly more detail than other modeling approaches. In particular, part of

the main part of the thesis addresses the question of parameter inference in specific

Boolean models. Another focus lies on methods which extend and enrich the basic state-

discrete, time-discrete, spatially homogeneous and non-stochastic framework of Boolean

networks. Hence the title of the thesis: From discrete Boolean networks to stochastic

continuous models.

While the first chapter provides some biological background and outlines basic graph-based

modeling approaches, the second chapter deals with two classical modeling approaches:

deterministic models based on ordinary differential equations on the one hand and

stochastic chemical kinetics and its extensions and approximations on the other hand. The

third chapter then contains a description of Boolean modeling including the indicated

extensions with respect to the respective nature of states, time, space and stochasticity

where a particular focus in laid on so called generalized kinetic models (GKL). Chapter 4

proposes a simple estimation procedure for GKL networks with exponentially distributed

time delays. While these are mathematically convenient it is argued that exponential

distributions are not particularly well-suited for the situations modeled with GKL networks

and hence Weibull distributed time delays are motivated and implemented. Chapter 5 deals

with models which incorporate discrete and continuous characteristics into a single

modeling framework. These are generically called hybrid models. Chapter 5 especially

considers stochastic hybrid models and explores a simple example of this model class by

means of example.

9

10

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit dem Zusammenhang zwischen verschiedenen

Ansätzen zur Modellierung biochemischer Netzwerke im Allgemeinen und von

Genregulationsnetzwerken im Besonderen. Modellierungsansätze für biochemische

Netzwerke können gemäß klassischer dipolarer Merkmale wie etwa Stetigkeit vs. Diskretheit

des Zustandsraumes, Stetigkeit vs. Diskretheit der Zeit, räumliche Homogenität vs.

Heterogenität oder Determinismus vs. Stochastizität klassifiziert werden und haben jeweils

spezifische Anwendungen abhängig von der angenommenen Adäquatheit eines jeweiligen

Ansatzes für ein konkretes biologisches System. Boolsche Netzwerke bilden im skizzierten

Gesamtzusammenhang einen weiteren Schwerpunkt der Arbeit und werden daher ein wenig

ausführlicher behandelt als andere Ansätze. Ein Teil der Arbeit beschäftigt sich mit der

Parameterschätzung in bestimmten Boolschen Modellen, während ein weiterer Teil sich

detailliert mit verschiedenen Ansätzen befasst, die zum Ziel haben, die klassischerweise

Zustands-diskreten, Zeit-diskreten, Raum-homogenen und deterministischen Boolschen

Netzwerk Modelle entsprechend zu erweitern und idealerweise zu bereichern. Daher der

Titel der Arbeit: Von diskreten Boolschen Netzwerken zu stochastischen stetigen Modellen.

Nachdem im ersten Kapitel einige biologische Hintergrundaspekte und grundlegende

Graphen-basierte Modellierungsansätze besprochen wurden, behandelt Kapitel zwei die

klassischen Ansätze der Modellierung mit gewöhnlichen Differentialgleichungen einerseits

und jenen der stochastischen chemischen Kinetik andererseits, Erweiterungen und

Annährungen zu letzterer eingeschlossen. Das dritte Kapitel schließlich behandelt Boolsche

Netzwerke und die angedeuteten Erweiterungen hinsichtlich Zustandsraum, Charakter der

Zeit, Räumlichkeit und Stochastizität. Einen speziellen Fokus innerhalb dieses Kapitels

erfahren die sogenannten verallgemeinerten Modelle der logischen Kinetik (engl.:

generalized kinetic logic, abgekürzt GKL). Daran anknüpfend, studiert Kapitel vier eine

einfache Methode zur Parameterschätzung in GKL-Modellen mit exponential-verteilten

Verzögerungszeiten. Dieser Ansatz ist zwar mathematisch bequem, jedoch erscheinen seine

Annahmen für die gegebene zu modellierende Situation eines biochemischen Netzwerkes

inadäquat und es wird demgemäß eine Modifikation vorgeschlagen und implementiert,

welche letztlich durch Weibull-verteilte Verzögerungszeiten charakterisiert ist. Kapitel 5

untersucht anhand von eines speziellen Beispiels das Zusammenspiel von diskreten und

stetigen Variablen im allgemeineren Gesamtzusammenhang der stochastischen

Hybridmodelle.

11

12

Contents

1 Biological background: biochemical networks …………………………………………………. 18

1.1 Signal transduction networks ……………………………………………………………………… 18

1.2 Metabolic networks ……………………………………………………………………………………. 22

1.3 Gene regulatory networks (GRNs) ..…………………………………………………………….. 24

 1.3.1 Gene expression: the central dogma (and beyond) …………………………….. 24

 1.3.2 Transcription factors (TFs) and TF-binding sites…………………………………… 28

 1.3.3 TF-DNA interactions: GRNs………………………………………………………………….. 29

 1.3.4 Gene regulation functions ………………………………………………………………….. 30

 1.3.5 Example 1: -phage infection of E.coli ………………………………………………… 30

 1.3.6 Example 2: the synthetic repressilator…………………………………………………. 31

1.4 Interconnections between network types ……………………………………………………. 33

1.5 Hypergraphs and Systems Biology ……………………………………………………………….. 38

 1.5.1 Graph-based models: hypergraphs………………………………………………………. 38

 1.5.4 Top-down “vs.” bottom-up modeling ………………………………………………….. 43

2 Modeling approaches for biochemical networks ……………………………………………….. 46

2.1 Reaction rate equations: ODE models…………………………………………………………… 46

2.2 Stochastic models for biochemical networks…………………………………………………. 49

 2.3.1 Stochasticity in biomolecular systems ……………………………………………….. 50

 2.3.2 Stochastic chemical kinetics: the chemical master equation (CME) ..…. 51

 2.3.3 Exact stochastic simulation: the Gillespie algorithm…………………………… 53

 2.3.4 Approximate stochastic simulation: -leaping ………………………………….. 56

 2.3.5 Diffusion approximation: the chemical Langevin equation (CLE)………… 57

 2.3.6 Parameter estimation for stochastic biochemical models…………………… 58

3 From discrete Boolean networks to stochastic continuous models for biochemical

networks ………. 60

3.1 Boolean models: representation, update regimes, attractors………………………. 61

3.2 Random Boolean networks (RBNs): the ensemble approach……………………….. 65

 3.2.1 Biologically meaningful update rules………………………………………………… 66

3.3 Probabilistic Boolean networks (PBNs)………………………………………………………… 67

13

3.4 Stochasticity and continuous time…………………………………………………………….. 68

3.5 Generalized kinetic logic (Thomas formalism)……………………………………………. 71

 3.5.1 Semi-informal description and motivation of GKL…………………………… 72

 3.5.2 Formal definitions for GKL networks………………………………………………. 80

3.6 Piecewise linear differential equations (PLDEs)…………………………………………. 85

 3.6.1 Relation to logical models and qualitative simulation…………………….. 88

3.7 Petri nets………………………………………………………………………………………………….. 89

3.8 Fuzzy logic, SQUAD and Odefy………………………………………………………………….. 90

 3.8.1 Fuzzy logical models………………………………………………………………………. 91

 3.8.2 Standardized qualitative dynamical systems (SQUAD)……………………. 92

 3.8.3 Multivariate polynomial interpolation: Odefy………………………………… 93

3.9 Boolean models for apoptosis…………………………………………………………………... 93

4 Parameter estimation for GKL networks with probabilistic time delays…………..98

4.1 Model philosophy and specification………………………………………………………….. 98

4.2 Parameter estimation based on absorption frequencies…………………………..105

 4.2.1 A simple example…………………………………………………………………………..105

 4.2.2 Circuits with more than three elements…………………………………………110

 4.2.3 Another three element circuit………………………………………………………..114

 4.2.4 Mixture models for absorption frequency

 based parameter estimation…………………………………………………………..117

4.3 Further considerations……………………………………………………………………………...118

5 PLSDEs and general stochastic hybrid systems (GSHSs)…………………………………..120

5.1 Probabilistic interpretation of PLDEs………………………………………………………….120

5.2 Piecewise linear stochastic differential equations (PLSDEs)………………………..121

5.2 General stochastic hybrid systems (GSHSs)…………………………………………………133

6 Summary and Outlook…………………………………………………………………………………….136

A Appendix……138

 A.1 Exponential and Weibull distribution…………………………………………………………138

 A.2 Sampling from probability distributions…………………………………………………....140

 A.3 Adaptive rejection sampling of Weibull random variables T

 conditioned on events of the form  T t for t 0 …………………………………143

14

 A.3.1 Adaptive rejection sampling (ARS) for log-concave densities………….. 144

 A.3.2 Sampling from the conditioned Weibull distribution with ARS…………149

 A.4 M-file for Subsections 4.2.1 and 4.2.3……………………………………………………….153

 A.5 R-scripts for Section 5.2…………………………………………………………………………….163

B Bibliography ………………………………………………………………………………………………167

15

16

Notation

The notation adopted is either standard mathematical notation or else (hopefully) defined

properly. Some notational “bottlenecks” are nevertheless outlined here:

 : 1,2,3,4,5,... is the set of positive integers

 0 : 0 

For n define    n : 1,2,...,n 1,n 

 0 : 0,  

A denotes the cardinality of a set A

For sets 1 nA ,...,A , n :
n

n 1 n

i 1

A : A A


  

17

18

1 Biological background: biochemical networks

Generally speaking a biochemical “network” can be understood as a collection of biochemical

species (different kinds of molecules) which through their respective interactions (chemical

reactions, for example) form a (in general) very complex system. As a first intuitive approach

one indentifies chemical species with the nodes (vertices) of a network (mathematically, a

graph, see Subsection 1.5.1) and the (so far unspecified) interactions between these species as

connections (arcs, edges) between these nodes. This (up to now) highly qualitative and even

imprecise model is intuitively very pleasing and frequently used throughout all of molecular

biology [Bornholdt 2008].

One can identify certain types of biochemical networks according to the types of molecules

involved, the type of molecular interactions taking place, the function which is accomplished

by the network or the time-scales on which the network acts and so on. Because of these

differences the subdivision of different kinds of biochemical networks makes, as a first

approximation, conceptual sense and is usually adopted throughout the literature. But it leaves

of course open the question what kind of problems could arise when one tries to combine

models for different sorts of networks what would certainly be asked for if the ultimate goal

of Systems Biology ([Klipp et al. 2009], [Alon 2007], [Walhout et al. (ed.) 2013]) namely the

understanding of whole organisms as a correspondence to the interactions of their parts, is to

be accomplished in the future. See Section 1.4 for some illustrations.

One very important category of a biochemical network is given by gene regulatory networks

(GRNs) which are networks where the nodes are genes or proteins (transcription factors)

encoded by their respective genes which in turn have some influence on the expression of

other genes whose gene products again may influence some other genes and so on and so

forth [Alon 2007], [De Jong 2002]. GRNs are the main focus of the thesis and a more detailed

description and some examples of GRNs are given in Section 1.3 and Subsection 1.5.1.

First I will take a brief and superficial look, based on characteristic examples, at two further

important sorts of biochemical networks, namely signal transduction networks (or signalling

networks) in section 1.1 and metabolic networks in section 1.2.

Finally section 1.4 shortly discusses the crucial interplay of the discussed three main types of

biochemical interaction networks in living cells by means of example and section 1.5 formally

introduces ‘the’ graph representation of biochemical networks and makes some general

remarks on different modelling approaches in systems biology.

1.1 Signal transduction networks

Signalling networks do not work via the direct alteration of gene expression (as GRNs, see

section 1.3), but instead only rely on successive minor modifications (phosphorylation,

methylation, etc.) to some existing molecules or multimerizations depending on some input

19

signal (usually the presence or absence of some molecules registered or not registered by

some kind of molecular receptor)[Purves et al. 2006: chapter 15], [Klipp et al. 2009: chapter

3.2]. Signalling networks, since the elaborate and relatively time-consuming process of gene

expression is not directly involved, usually act on much faster timescales than GRNs. Of

course, in real biological systems Signalling and Gene Regulatory networks are highly

interwoven such that it is often necessary to give up the to some extent (though not totally)

artificial separation between signalling networks and GRNs. One typical situation usually

involves some signalling network sensing some alteration in the environment which is then

transmitted through the network to alter some GRN in order to change gene expression.

The NF- B signalling pathway

One simple paradigmatic example of a signalling pathway is the so called NF- B pathway

which is involved in ‘stress response’ (‘stress’: ultraviolet radiation, bacterial or viral antigens

etc., ‘stress response’: inflammation, proliferation of immune cells, etc.) in many animals

[en.wikipedia: NF- B; 2014]. By example of a (tiny) part of this pathway depicted in figure

1.1 below we try to exemplify the signalling paradigm. NF- B stands for ‘nuclear factor

kappa-light-chain-enhancer of activated B cells’ and is the shortcut for a protein complex

which in the figure below is constituted as a dimer between a protein called RelA and another

protein called p50. In addition some further protein, called I B  is bound to that dimer and

under normal, i.e. stress-free conditions prevents the complex to assert a certain action on

some specific region of the DNA in the cell nucleus. Now, if some ‘stress factors’ are sensed

by the receptors in charge, some modifications of signalling molecules (not shown) take place

such that ultimately a protein called IKK gets ‘activated’ (via some chemical modification).

Activated IKK then phosphorylates the protein I B  which is bound to the RelA-p50

complex.

Fig. 1.1. Conceptual Logic of the NF-B pathway

 (from [en.wikipedia: NF- B 2014])

20

This phosphorylation leads to the dissociation of I B  and the complex and while I B  is

degraded (by a machinery called proteasome) the RelA-p50 complex is transferred to the cell

nucleus where it binds to some very specific region of the DNA and somehow ‘recruits’

further proteins (RNA polymerase for example) which are necessary for the transcription of

so called target genes. This eventually leads to the alteration of gene expression in response to

the stress signal.

I should remark that the just described conceptual example underscores the complexity of the

whole NF-B signalling pathway which involves many ways of stimulation (i.e. activation by

certain inputs), different context-dependent ways of reacting to these inputs, various output

possibilities via NF-B variants and finally the interaction with other signalling pathways. A

more complete picture of the NF-B signalling pathway can be anticipated in the figure below

(figure 1.2).

Fig. 1.2. Detailed NF-B pathway (from [CellSignalingTechnology NF-B 2014])

21

In figure 1.2 above one can see that there are several trans-membrane receptors, for example

IL-1R or TNFR, which respond to specific signalling molecules like IL-1 or TNF and induce

a downstream cascade of signalling events which ultimately culminate in the activation of the

NFB-complex which is then transferred to the cell nucleus where it positively influences

genes involved in stress response. One can also see that there are other signalling pathways

(upper left) which also feed into the NFB pathway and in contrast to the external signals like

TNF there can also be cell-internal signals like JNK on the middle left for example which

responds to stress like toxic metals or UV radiation and then triggers the NFB pathway via

its specific route of activation. The exact legend of the scheme in figure 1.2 and further

explanations can be looked up at [CellSignalingTechnology NFB 2014], i.e. the exact

meaning of the different colours of the diverse chemical species (indicating a certain type of

molecule, like protein kinases which phosphorylate other proteins for example) or the

meaning of the different interaction arrows. In general [CellSignalingTechnology 2014] is a

place to find good depictions of signalling pathways. More detailed and annotated data on

biochemical networks (and hence potentially more useful data) can of course be found via the

various (often non-commercial) databases available on the internet [en.wikipedia: List of

BioDatabases 2014] like for example the Reactome database for human signalling pathways

[Joshi-Tope et al. 2004].

Circadian cycles in cyanobacteria

In the example of NFB signalling the involved signal pathway(s) finally leads to a change in

gene expression. There are however signalling processes which do not depend on some

alteration of gene expression for their function in the sense that the output of the signalling

pathway invariably induces some change in gene expression which then ultimately can bring

about the necessary changes in order to cope with the environmental or cell-internal

conditions sensed as the input to the signalling pathway. Instead, some signalling pathways

just use the logic of modifications of some target molecules which then bring about the

desired adaptation to the arriving signals. For example there is evidence that circadian cycles

of certain cyanobacteria function only through the use of signalling modifications (phosphor-

rylation in this case) but without the use of some process-specific change of gene expression

[Nakajima et al.; 2005], [Dong, Golden; 2008]. (Of course, the involved proteins have to be

produced at some point via gene expression, but the adaptations brought about by the

signalling pathway only rely on the existing proteins. Maybe there are differences in the

functionality (reaction time or response strength for example) of the pathway depending on

the state of gene expression of the involved proteins but the adaptation to the environmental

signal itself does not rely on some sort of alteration in gene expression.)

For a review on the systems biology of signal transduction pathways one can consult [Klipp et

al. 2009: chapter 3.2] and [Mariottini, Iyengar 2013]. For a more experimentally oriented

review on the systems biology of signalling pathways I refer to [Kulkarni, Perrimon 2013].

22

1.2 Metabolic pathways

The second types of biochemical network I want to discuss are metabolic networks. They are

responsible for the process by which organisms utilize chemicals (nutrients) to gain energy

and useful molecules which are again used by biosynthetic metabolic pathways to build up

cell- and organism-specific bio molecules. Metabolic pathways mainly consist in linear, cyclic

and branched cascades of successive enzyme-catalyzed reactions which constitute the to some

extent already iconic pictures of biochemical pathways [Michal, Schomburg 2012].

Glycolysis

To get a feeling for the flavour of a typical metabolic pathway I provide a highly superficial

look at one of the most important ones in life: glycolysis [en.wikipedia: Glycolysis; 2014],

[Munk et al. 2008: chapter 7]. Glycolysis is highly conserved throughout the kingdom of life

and almost every organism uses the same pathway for glucose utilization which indicates that

the pathway is one of the most ancient biochemical pathways in all of evolutionary history. Of

course there are minor modifications in some organisms like for example the Entner-

Doudoroff pathway which is a variant of glycolysis adopted by some prokaryotes

[en.wikipedia: Entner-Doudoroff 2014]. The ‘real’ glycolysis (i.e. the most frequent one) on

the other hand is sometimes also called Embden-Meyerhof-Parnas pathway (EMP pathway).

In figure 1.3 on the next page one can see the enzyme-catalyzed reaction cascade by which

the sugar glucose gets transformed into pyruvate with the ultimate result of energy production

in the form of ATP (adenosintriphosphate) later on. ATP is the most important energy carrier

in all life forms. Some details on the process of glycolysis depicted in figure 1.3 are explained

below the figure.

Metabolic modelling

Metabolic reactions and pathways have been subject to mathematical modelling since the

early days of enzyme kinetics [Michaelis, Menten 1913] and there exists a huge literature with

diverse approaches on the topic. [Cornish-Bowden 2012] is a good introduction to classical

enzyme kinetics and also to more modern topics. Almost every book on biochemical

modelling or systems biology will usually also contain sections on enzyme kinetics and

metabolic models [Klipp et al. 2009: chapters 2.1 and 3.1], [Kremling 2012: chapter 6]. A

more mathematically detailed starting point is [Heinrich, Schuster 1996]. Approaches

specifically designed for metabolic pathways are for example biochemical systems theory

(BST) [Savageau 2009 (1976)] or metabolic control analysis (MCA) [Fell 1997], [Klipp et al.

2009: chapter 2.3], [Kremling 2012: chapter 10.3]. So called stochiometric and constraint-

based modelling, for example Flux Balance Analysis (FBA), is also very closely associated to

the modelling of metabolic pathways [Klamt, Stelling 2006], [Klipp et al. 2009: chapters 2.2

and 9.1], [Kremling 2012: chapter 13], [Haggart et al. 2011] and pathway optimization

methods in metabolic engineering based thereon apply various mathematical optimization

techniques [Torres, Voit 2002], [Klipp et al.: chapters 9.1 and 9.2] from classical non-linear

optimization to linear and integer-linear programming. The so called whole-genome

23

reconstruction of metabolic pathways, i.e. the model-based reconstruction of the entire

metabolic map of an organism and the elucidation of the associated ‘implementation’ of that

map in the genome of the organism is reviewed for example in [Hefzi et al. 2013] and

[Haggart et al. 2011].

24

1.3 Gene Regulatory Networks (GRNs)

As outlined gene regulatory networks (GRNs) are the biological focus of this thesis and

therefore the description of this particular type of biochemical network is a little bit more

detailed than the ones in the preceding sections. First we will encounter the basics of gene

expression and its regulation in Subsection 1.3.1 while afterwards we will look more

specifically at the two ingredients of GRNs, namely transcription factors (TFs) and cis-

regulatory elements (CREs) in Subsection 1.3.2. Then in Section 1.3.3 we explore the

interactions between TFs and CREs while Section 1.3.4 is concerned with the combinatorial

action of TFs at CREs via so called gene regulation functions. Then, finally, in the last two

subsections specific examples of GRNs are introduced: the infection of the bacterium

Escherichia coli by -phage in Subsection 1.3.5 and the synthetic repressilator in Subsection

1.3.6.

General references for GRNs include [Bulyk, Walhout 2013], [Bolouri 2008], [Klipp et al.

2009: chapter 6], [Alon 2007] and [Davidson 2006]. For some basic material on gene

expression it is referred to [Purves et al. 2006: Chapters 12, 13 and 14].

1.3.1 Gene expression: the central dogma (and beyond)

This subsection concerns the basic mechanism by which the genes of an organism exert their

action: transcription and translation. Together (with some additional features indicated

below) these processes are also called gene expression. Most information provided in this

subsection is generally extracted from [Purves: Chapters 12, 13, 14], [Lewin 2008], [Klipp et

al. 2009: Section 6.1] and [Orphanides, Reinberg 2002], all other sources are indicated in the

respective places.

Gene expression is immensely complex. The following survey tries to give a basic overview

but is certainly incomplete. For example, I spare out microRNAs [Klipp et al. 2009:

Subsection 6.1.4], just to mention one omission and I am sure that there a many more I am not

even aware of. For the purposes of this thesis, a double-stranded DNA (deoxyribonucleic acid)

molecule is a pair of sequences        
2

1 2
DNA str ,str A,T,C,G  with    1 2

i istr str

such that A T , T A , G C and C G .  denotes the length of the DNA molecule.

Of course, A, T, C and G code for the bases adenine, thymine, cytosine and guanine which

(together with so called desoxyribose and phosphate molecules) define DNA and form pairs

(so called base pairs) according to the rule defined above (complementary base pairing). A

and T as well as C and G are called complementary bases respectively. The structure of DNA

is the famous double helix model introduced by James Watson and Francis Crick based on

work of Rosalind Franklin and others in 1953 [en.wikipedia DoubleHelix 2014]. DNA

molecules have a defined directionality as shown in the following figure 1.4 on the next page.

25

On the left you can see a schematic

picture of four base pairs of a DNA

molecule. The bases pair according to

the rules of complementary base pairing

and the bases of one strand are

connected by the so called phosphate-

deoxyribose backbone (sugar-phosphate

backbone). This backbone is a linear

chain of alternating deoxyribose and

phosphate molecules such that the bases

are respectively attached to the sugar

molecules. But as you can see the

backbone is not symmetric in the sense

that one end possesses a phosphate and

the other does not and that this

phenomenon is reversed in the two

strands of the DNA molecule (the so

called antiparallelity of the DNA

strands).This of course has well-defined

 biochemical reason which I ignore.

What is important here, is the directionality thus defined: a single strand of DNA has a

direction defined by its respective so called 3’ and 5’ ends which are defined as the sugar ends

and the phosphate ends of the sugar-phosphate backbone respectively.

DNA is the carrier of genetic information, the information being encoded in the sequence of

base pairs. DNA sequence information is transformed (transcribed) into so called mRNA

(messenger RNA) by a process called transcription. RNA (ribonucleic acid) molecules have

multiple roles in the processes of life and are single linear chains of bases connected by a

sugar-phosphate backbone (with thymine substituted by uracil (U) and the sugar being ribose

instead of deoxyribose). The mRNA molecules transport the genetic information to the so

called ribosomes (complex biomolecular machines) where the information is transformed

(translated) to respective protein sequences by a process called translation according to the

rules of the genetic code. This is the basic form of the central dogma of molecular biology as

formulated by Francis Crick:

transcription translation

DNA RNA protein 

The proteins then fulfil the various tasks defining a living organism. This is nothing but the

simplest summary of the process of gene expression capturing only the fundamental logic and

there are a lot more subtleties involved, especially when it comes to the regulation of gene

expression as explained in the following subsections. Figure 1.5 on page 19 shows the process

of (eukaryotic) gene expression in more detail. For further explanations you can consult the

subtext of this figure (maybe after you had a look at Subsections 1.3.2 and 1.3.3.

Fig. 1.4: DNA directionality. See main text for

explanations. From [en.wikipedia DNA 2014]

26

Before we proceed to aspects concerning the regulation of gene expression in the next

subsections we have a closer look on how a gene is represented on/in the DNA. Actually,

what is a gene? For the purposes of this thesis genes are segments of DNA which are defined

by a particular structure of gene defining DNA segments. This somewhat circular “definition”

will become clearer in a moment. A gene (in its simplest form) looks like follows (where the

boxes represent DNA segments on one of the DNA strands):

The so called coding sequence is the DNA segment of the gene which carries the actual

information with respect to the protein the gene encodes. The segment called promoter is

decisive in the initiation of transcription. The promoter is bound by RNA polymerase (RNAp)

and other proteins which ultimately will trigger transcription by their characteristic

interactions. RNA polymerase is then released and transcribes the coding sequence to mRNA.

RNA is also based on bases and hence this just happens by complementary pairing.

The kingdom of life can be roughly divided into eukaryotes and prokaryotes (and archea).

Eukaryotes are the “complicated” life forms like humans and yeast while prokaryotes are

mainly represented by bacteria [Purves 2006: Part V], [Munk et al. 2008 : Section 1.1].

Eukaryotes possess a cell nucleus and cell organelles (mitochondria for example) while

prokaryotes simply possess “one room for everything”, i.e. they have no nucleus and no

organelles. There are many more differences, but the important one here is that there are huge

differences concerning the complexity of gene expression. It turns out that eukaryotic genes

most of the time do not possess only one uninterrupted coding sequence but that the coding

sequence is actually “scattered”. The segments dividing the different coding segments (called

introns) are called exons. After transcription the exons are removed by a process called

splicing. So, the structure of a eukaryotic gene roughly looks like follows:

Conceptionally we thus arrive at the following mRNA transcript:

These are now some of the basics of gene expression. The next subsections deal with the

regulation of gene expression by means of transcription factors.

RNAp

promoter coding sequence

promoter

exons introns

mRNA

transcription

splicing

27

Fig. 1.5: Gene expression. From [Orphanides, Reinberg 2002]. The story starts on the bottom left:

“Chromatin”. Chromatin, a conglomerate of proteins that is attached to the DNA, has to decompactify in

order to enable gene transcription. When the chromatin is in its compact form, genes are so to speak not

accessible by the transcription machinery. Chromatin decompaction is controlled by various ways which

constitute an active area of research today [Dekker, van Steensel 2013]. Once the gene of interest is

accessible the basal transcription machinery can assemble at the promoter (maybe assisted by some

activating transcription factors and mediators, see Subsection 1.3.2): RNA polymerase II, so called general

transcription factors like TFIIB, TFIIE, TFIIF or TFIIH, the TATA-box binding protein (TBP) (and many more).

This process is called transcription initiation. After initiation the RNA polymerase is released from the

initiation complex and starts to transcribe the DNA into RNA, a process known as elongation. After

termination the produced pre-mRNA is released. The processes of pre-mRNA processing involve the

addition of a so called 5’-cap at the 5’ end of the RNA (5’ capping) and of a so called polyA tail at the 3’ end

(3’ polyadenylation). These are mainly signals for transport and protection appendages. Then splicing takes

place and the RNA is now simply called mRNA, see the main text. After the mRNA is further packaged into a

protecting protein coat it is exported to the cytoplasm where it is translated at the ribosomes. The

emerging polypeptide chains then fold to functional proteins. Some of these proteins are so called

transcription factors (TFs) which can be activated for example by signalling cascades triggered by some

external ligand molecule binding some respective transmembrane receptor. The activated TF is then

“brought” to the nucleus through nuclear pores where it affects the expression of its target genes, see

Subsection 1.3.2 and 1.3.3.

28

1.3.2 Transcription factors (TFs) and TF-binding sites

This subsection is based on [Bulyk, Walhout 2013], [Lewin 2008: Chapters 24 and 25] and

[Klipp et al. 2009: Section 6.1].

The main ingredients of GRNs are proteins called transcription factors (TFs) and their

respective DNA binding sites. As proteins, TFs are expressed like any other proteins by the

already described transcription-translation path. But in contrast, for example, to proteins that

act as signal transmitters or are part of the cell as building material, transcription factors can

directly (!) influence the expression of genes (their target genes) by binding at specific places

in the DNA called TF-binding sites. These binding sites are often located in front of the

promoter of a gene and are often also called operators. Segments in front of the promoter

which contain many TF-binding sites (usually for many different TFs) are also called cis-

regulatory elements or modules (CREs/CRMs). “cis” refers to the direction of the gene

defined by the directionality of DNA indicated in the preceding section. For our purposes

“cis” simply refers to the location “in front” of a promoter.

When TFs bind to DNA they can have diverse effects on the regulated gene. In principle these

can be activation or inhibition but the precise ways of influence are very diverse and so I just

indicate two typical examples. TFs can repress (inhibit) transcription simply by physically

blocking the RNA polymerase from transcribing the gene:

A typical situation of activation would be that a TF “recruits” RNAp to the promoter (usually

with help from some so called mediator):

 ...

coding sequence promoter

RNAp

TF-binding site

DNA-bound TF prevents RNAp from

transcribing the gene

RNAp
RNAp

29

In the scheme on the last page, the TF “directs” the RNAp to the promoter and hence the

transcription rate goes up. As indicated complex DNA loopings can also play a role in gene

regulation, see for example [Vilar, Leibler 2003].

There a many more variations and subtleties but I leave it at that.

1.3.3 TF-DNA interactions: GRNs

In summary, we have genes which may code for TFs or some other protein. If they code for

TFs, these influence the expression of other genes and hence one can draw a map (graph)

where genes are connected if one encodes a TF which influences the other gene. This map

(graph) then represents the notion of a gene regulatory network (GRN).

For the purposes of this thesis a GRN is assumed to be given, but in the real world it is very

involved to figure out which TF binds to an operator of which gene and how different TFs

effectively integrate their inputs if they are bound at the same time to operators influencing

one and the same gene. See the next subsection for an indication of this particular topic.

Furthermore things are complicated because TF-encoding genes can be alternatively spliced
1

or form variable multimers with different regulatory functions respectively [Bulyk, Walhout

2013]. So, the simple picture of one TF-encoding gene corresponding to one and only one TF

is already a simplification.

More precisely, a GRN could be defined as a directed bipartite graph [Bulyk, Walhout 2013]

with genes (or their regulatory sequences) as one vertex set and the corresponding proteins as

the other vertex set while edges go from genes to proteins if the respective protein is encoded

by the gene and edges go from proteins to genes if the respective protein has a regulatory

influence on the particular gene. In this setting, proteins which do not function as TFs but

fulfil some other role in the organism, for example in signalling or in bringing about the

physical structure of the organism as building material, have only incoming edges but no

outgoing edges. The question how to proceed with proteins which only act as heterotypic

multimers (i.e. as assemblies of different protein subunits)
2
 can in principle be settled by only

considering the functional monomers as vertices and encode their multimerity by several

ingoing edges which originate from the respective genes which code for the protein subunits.

Analogously alternative splicing would result in several edges originating from the same gene

vertex. For some possible exact definitions, see Subsection 1.5.1.

There exist various experimental and computational techniques to assess TF-DNA binding (or

protein-DNA binding more generally) which are reviewed for example in [Bulyk, Walhout

2013].

1
 Alternative splicing refers to the fact that in the process of splicing (see Section 1.3.1) exons may be variably

included or excluded into the final mRNA transcript [Lewin 2008: Chapter 26].
2
 A homotypic multimer consists of several numbers of the same subunits and would just be connected by a

directed edge to its gene in the usual way from gene to protein.

30

1.3.4 Gene regulation functions

The gene regulation function of a gene ideally describes the transcription rate of a gene as

function of all species which influence the expression of the gene [Klipp et al. 2009: Section

6.2], [Alon 2007: Subsection 2.3.5]. Theoretically, one can try to determine the functional

form of gene regulation functions from purely thermodynamical considerations by making

some assumptions, for example equilibrium binding of the various regulators of the gene to

their DNA binding sites [Klipp et al. 2009: Section 6.2], [Bintu et al. 2005a], [Bintu et al.

2005b]. These functions can then be parameterized based on experimental measurements of

the actual gene regulation function. Both was done for example in [Setty et al. 2003] where

the promoter activity of the so called lac gene of E.coli was measured by a reporter gene

construct in response to two of its regulators, cAMP (cyclic adeninemonophosphate) and

IPTG (isopropyl--D-thiogalactopyranosid). The resulting gene regulation function is shown

in Figure 1.6. [Kaplan et al. 2008] measured many two-dimensional gene regulation functions

involved in the sugar utilization of E.coli cells by the same methodological rationale.

1.3.5 Example 1: -phage infection of E.coli

This subsection indicates a concrete example of a GRN. The example concerns the gene

regulatory network of so called -phages, viruses which infect E.coli bacteria. The following

condensed description is based on [Ptashne 2004].

-phages consist of a protein coat and DNA which is enclosed by the coat. They attach to

E.coli cells and insert their DNA (the protein coat remains outside) and usually this leads to

the occupation of the host cell’s gene expression machinery to express genes of the injected

virus DNA in such a way that new virus DNA and coat proteins are produced until finally the

new synthesized virus particles are released from the host. This process is referred to as lysis

or lytic pathway. But in some situations a different scenario shows up. It is possible that

Fig. 1.6. From [Setty et al. 2003]. A typical two-dimensional gene regulation function.

31

instead of pursuing lysis of the cell one of the virus DNA molecules gets integrated into the

E.coli genome and establishes some kind of dormant virus state while equipping the cell with

resistance to lysis. This is referred to as the lysogenic pathway. Upon UV radiation exposure

for example the lysogenic phage DNA flip to a lysis pathway which is different from the one

described first because the initial situation is different (the DNA has to be excised from the

host’s genome again for example) but which ultimately follows the same regulatory rules until

enough new virus particles are manufactured and the new phages lyse the cell.

In terms of gene regulation, the lytic and the lysogenic pathways are mainly determined by

two TFs encoded in the phage genome, named cI and cro. In the lysogenic state the situation

with respect to the phage genes is such that the cI TF (also called  repressor) is the only

phage gene which is transcribed thereby activating its own expression and effectively

inhibiting all other phage genes including the cro gene.

cI also prevents other phage DNA which enters the cell from inducing lysis, just by the same

mechanisms of repression which are applied to the integrated phage genes. In the case of lysis

on the other hand, cro is expressed and inhibits cI. In addition to inhibiting cI the cro TF also

activates the (more complex regulatory pathway) which ultimately results in lysis.

As always, there a many more subtleties involved in -phage gene regulation. For example it

is very interesting how the initial decision whether to take the lytic or lysogenic pathway is

actually brought about in the first place. For this and many other thrilling issues one can have

a look at [Ptashne 2004] and [Oppenheim et al. 2005].

1.3.6 Example 2: the synthetic repressilator

[Elowitz, Leibler 2000] designed an artificial GRN, measured its functionality and examined

a mathematical model of their constructed system. The system they constructed is known as

the repressilator. It is built out of three species, A, B and C say, and its fundamental

regulatory logic can be depicted as follows:

As shown above, the logic comes down to: A represses B, B represses C and C represses A.

The repressilator examined by [Elowitz, Leibler 2000] was a synthetic one which was

implemented using fundamental tool from genetic engineering. Many regulatory sequences of

DNA are exchangeable in the sense that for example the promoter of gene x can drive the

expression of gene y if located at the right place in front of y. [Elowitz, Leibler 2000] used

A C B

32

three different genes from different organisms and implemented them on a so called plasmid.

Plasmids are relatively small rings of DNA which are the working horses of genetic

engineering. The repressilator was constructed by placing a promoter which is negatively

regulated by gene A in front of gene B, a promoter which is negatively regulated by gene B in

front of C and finally a promoter which is negatively regulated by C in front of A. The

dynamical behaviour of the repressilator system was tested in E.coli hosts by introducing

another plasmid which carried a promoter which was repressed by gene A and controlled the

gene encoding for a protein called green fluorescent protein (GFP) which can be detected with

fluorescence microscopy if present in the system and hence could be used to investigate the

system behaviour over time. As can somehow be expected from the logic shown in the

diagram above, the system is able to show oscillations. Figure 1.7 shows the implementation

of the system in the form of plasmids while Figure 1.8 depicts the oscillations of the GFP

fluorescence over time. Both figures are from [Elowitz, Leibler 2000].

Fig. 1.7: Plasmid implement-

tation of the repressilator and

the reporter system.

 [Elowitz, Leibler 2000].

TetR-lite,  cI-lite and LacI-lite

are the three genes consti-tuting

the repressilator. gfp-aav is the

GFP gene which is controlles

by LacI. PLlac01, PLtet01 and

PR are the promoters which

are regulated by the products of

the re-specttive genes. ampR

and kanR are so called selection

markers which are needed for

reliable successful cloning.

pSC101 and ColE1 are so

called replication origins

which are needed in order that

the plasmids can be replicated

in their host.

Fig. 1.8: Oscillations of the

 repressilator.

 [Elowitz, Leibler 2000].

The first row of pictures taken

over time is the fluorescence

microscopical evaluation while

the second row is the same

spot pictured under normal

conditions.

Figure c finally diagrams the

measured GFP fluorescence.

Oscillations are clearly visible.

The linear increase in overall

fluorescence could be due to

the growth of the population.

(Plasmids are also replicated…)

33

1.4 Interconnections between network types

As indicated in Section 1.1 on signalling pathways, different pathways can interact with each

other, for example the so called BCR-, TCR- and TLR-pathways all interact with the NFB-

pathway as indicated on the upper left side in Figure 1.2 (although the exact way of

interaction is not shown). These pathways are all signalling pathways. There are also many

interactions between metabolic pathways and GRNs, metabolic pathways and signalling

pathways or GRNs and signalling pathways (as already seen in the NFB example since

there, the activation of the NFB complex, which is a transcription factor, by the signalling

cascade ultimately leads to the regulation of some genes (responsible for the ‘stress response’)

what clearly belongs to the realm of GRNs). One could say that living organisms are networks

of different network types and the distinction between GRNs, metabolic and signalling

networks is mainly motivated by the types of entities (genes and their CREs together with TFs

vs. metabolites and enzymes vs. signalling proteins like kinases), the types of interactions

(TF-DNA binding, transcription and translation vs. enzyme-catalyzed metabolite conversions

vs. protein-protein interactions and minor modifications like phosphorylation or methylation)

and their respective functions (gene regulation vs. energy production and biosynthesis vs.

sensing of the environment). The three types of networks also typically act on different time-

scales. For example, it can take hours for gene expression to be effectively altered while

signalling pathways usually act on the scale of seconds [Alon 2007: chapter 1]. But in order to

be able to understand the structure and function of living organisms it is necessary to cope

with their various interconnections. For an overview on modelling approaches addressing this

issue see [Covert et al. 2008] and [Gonçalves et al. 2013].

We now give two interesting examples which exemplify the interconnection issue further. The

first one deals with the timed gene regulatory control of the arginine biosynthesis pathway

(i.e. we have a GRN-metabolic interaction) while the second example deals with the so called

Warburg effect related to cancer biology representing an interesting example for the

interactions of metabolism with signalling.

Gene regulatory control of the E.coli arginine biosynthesis pathway

Arginine is one of twenty-three amino acids needed as building blocks of proteins [Munk et

al. 2008: chapter 4]. Amino acid biosynthesis pathways are metabolic pathways that can build

up amino acids given some initial substrates, often other amino acids. For example, in humans

there are nine amino acids which cannot be synthesized de novo (i.e. humans posses no

biosynthesis pathway for these amino acids) and these are called essential amino acids and

have to be consumed via nutrition [en.wikipedia EssentialAA 2014].

In E.coli bacteria there exists an arginine biosynthesis pathway [Zaslaver et al. 2004] (in

humans too) which is based on the three amino acid substrates glutamate (glutamic acid),

glutamine and aspartate. Bacteria which encounter an arginine-free medium have to

synthesize arginine themselves via this pathway. Bacteria which are grown in an arginine-rich

34

medium on the other hand shut down their arginine biosynthesis since it is much cheaper

energetically for them to just pick up the arginine present in the medium. What it basically

means to shut down a metabolic pathway is that the enzymes associated to that pathway are

no longer produced by the transcription-translation machinery of the bacterium, i.e. the

respective genes are no longer expressed and therefore after some time (assuming plenty of

arginine in the medium) none of these enzymes will be present in the cell anymore (because

of enzyme degradation).

[Zaslaver et al. 2004] have grown E.coli in arginine-rich medium (so that the arginine

biosynthesis pathway was not active and its enzymes not expressed) and then transferred them

to arginine-free medium making sure that the substrates for arginine biosynthesis glutamate,

glutamine and aspartate were present. Then the gene expression of the enzymes responsible

for the arginine pathway was measured via reporter gene constructs and it was found that the

expression proceeded in a timed fashion in the sense that enzymes which are needed first are

produced first. This is shown in Figure 1.9 below (from [Zaslaver et al. 2004]). A

mathematical model of this timed transcriptional activation of a metabolic pathway was also

developed by [Zaslaver et al. 2004].

So the regulation of the arginine biosynthesis pathway constitutes a nice example of GRN-

metabolic network interconnection. See also [Alon 2007: Chapter 5] for an introduction to the

described arginine biosynthesis example.

The Warburg effect

For an example which involves the interaction of signalling and metabolic pathways I shortly

describe the so called Warburg effect. The Warburg effect is named after the biochemist Otto

Heinrich Warburg (1883-1970) [en.wikipedia OHWarburg 2014] and describes the fact that

cancer cells usually produce much more lactate from pyruvate than normal cells

[CellSignaling Warburg 2014]. Pyruvate is the end product of glycolysis as described in

Section 1.2 and given pyruvate most cells have different possibilities to process this chemical

species further. Usually, given enough oxygen available, this is done via the citric acid cycle

(Krebs cycle) in the mitochondria, see Figure 1.10.

In cancer cells however it may happen that pyruvate is converted in unusually high rates to

lactate, which is normally only done if the cell lacks oxygen. Ignoring the danger of even

further surpassing the acceptable threshold of non self-made, coloured pictures the situation

describing the Warburg effect is shown in Figure 1.10. The interactions between signalling

and metabolic pathways involved are also indicated.

35

Integration of models for different network types

For conceptual clarification regarding the interactions between the different network types in

living organisms I reproduce Fig.1 from [Goncalves et al. 2013], here it is Figure 1.11. As

explained in the figure description and as exemplified in the examples above, there are

various types of possible interactions.

Some modelling frameworks for biochemical networks are to some degree universally

applicable, for example the detailed mechanistic approaches based on a chemical reaction

network (see Subsection 1.5.1) like ODE-based or stochastic chemical kinetics models as

reviewed in Chapter 2.

In order to model biochemical networks with these approaches “all one has to do” is to set up

a detailed model of all the chemical reactions taking place in the network. With this approach

it is (theoretically) irrelevant whether one examines signalling, gene regulatory or metabolic

networks or a combination thereof.

Fig. 1.9. Timed arginine biosynthesis. From [Zaslaver et al. 2004]. As described in the main text arginine is
ultimately produced from its three amino acid precursors. The intermediate species are given by the boxes
with the respective names filled in while the enzymes responsible for the respective conversions are
represented by the blue ovals between the boxes. The arrows carry the name of the respective enzymes
and connect the enzyme boxes to the time-course data of the respective reporter gene constructs
(interpretable via the “Normalized Lux/Absorbance” scale on the bottom left). Red values indicate high
concentrations of the respective enzyme while blue ones represent low concentrations.

36

But mechanistic models become infeasible when the number of modelled species and

interactions becomes larger and hence this approach has its technological limitations. To

simplify matters when modelling large networks one often uses more coarse-grained

qualitative models like Boolean models (see Chapter 3).

Fig. 1.10. Warburg effect. From [CellSignaling Warburg 2014]. Ignoring again most aspects of the
figure, the main issues relating to the indicated Warburg effect are colored (by myself). First, the
reactions of glycolysis are colored red and the end product pyruvate is underlined in dark red. As
already explained in the main text pyruvate can be further processed by the Krebs cycle (marked
green) or alternatively transformed to lactate (underlined in purple) through the action of an enzyme
called LDHA (lactate dehydrogenase A) which is underlined in yellow.

Concerning the interplay of the signaling and metabolic pathways you can see that through the action
of so called growth factor receptor signaling pathways, indicated on the upper right of the figure,
several signaling molecules are activated, for example Akt (circled light blue) and c-Myc (circled
brown). These in turn induce effects on some enzymes involved in glycolysis (like PFK,
phosphofructokinase, underlined orange) or the LDHA enzyme responsible for lactate production from
pyruvate. In cancer cells the signaling pathways are often impaired due to the cancer-causing gene
mutations and hence the described metabolic Warburg effect might become explainable. This is an
active area of research and already very difficult for biochemists and hence I regard it as appropriate
not to say anything more about these issues. But what remains, is another very interesting example
for interacting network types, in this case signaling and metabolic pathways.

37

Boolean models involve state variables which only can take values in the set  0,1 indicating

qualitative system properties like “gene transcribed”, “no signal” or “no phosphorylation” etc.

(see Chapter 3 for details). While this approach is applicable mainly to gene regulatory (“gene

transcribed/not transcribed” or “TF present/not present”) or signalling pathways (“signal vs.

no signal” implemented for example via “methylation/no methylation”) it is not well-suited to

metabolic pathways since the decisive properties are not a matter of information as in signal

or gene regulatory pathways but more related to mass flow as opposed to information flow

[Goncalves et al 2013]. This is one reason for the various model types especially crafted for

metabolic networks indicated in Section 1.2. I just make these remarks because I want to

briefly foreshadow some of the issues which can arise when one tries to combine models of

different networks types, for example a Boolean gene regulatory model with a classical

metabolic model which also deals with mass flows. For a review on issues relating to the

integration of models for different network types one could consult [Goncalves et al. 2013].

Modularity

A related concept concerns what usually is called modularity [Szallasi et al. 2006], [Klipp et

al. 2009: Section 8.3]. Modularity is the idea that the web of biochemical networks which

constitutes a living organism can be subdivided into functional modules where every module

Fig. 1.11. Abstract visualisation between different types of biochemical networks. From [Goncalves

et al. 2013]. As defined by the legend different networks and their interactions are shown. For

example the merging of two red RNA ovals at one enzyme could mean that the enzyme is actually a

dimer which is defined by the subunits defined by the two mRNAs. TFs are influenced by signalling

molecules and metabolites or enzymes are of course also affected by signalling pathways as in the

Warburg effect example. Conclusion: life is complicated!

38

has its characteristic function mainly implemented in the wiring of itself and to some extent

independent of the “surrounding” networks. This implies that modules are more or less

standalone networks which are capable of specific functionalities. The interaction of different

modules then brings about the overall behaviour of larger systems. As an example, one can

think of glycolysis. It has the function to produce pyruvate from glucose whereas pyruvate

then has diverse routes of further utilization (think of to the Warburg effect above) which

constitute other metabolic modules like the Krebs cycle or lactate production. Although the

idea is very conceivable at first it is not so straightforward in general and it is an ongoing

debate on how to define modularity properly in different contexts or even if modularity in

biochemical systems is fact or fiction. For example, two “modules” can show functional

modularity with respect to some specific functions but nevertheless together can show higher

order functions not producible by each of them alone and so on and so forth [Szallasi et al.

2006], [Klipp et al. 2009: Section 8.3]. For a study concerning modularity in the context of

signalling pathways see [Saez-Rodriguez et al. 2004].

1.5 Hypergraphs and systems biology

Systems biology aims at elucidating the highly complex dynamic behaviour which is brought

about by the various interactions of a lot of single biomolecular entities [Walhout et al. (eds.)

2013]. That networks of various entities (see the preceding sections) play a crucial role in this

endeavour is somewhat obvious. This section first reviews the proper mathematical setting for

the conception of a “network” namely graphs or more generally hypergraphs. Subsection

1.5.2 finally ends the chapter by indicating the difference between the so called bottom-up

and top-down approaches in systems biology.

1.5.1 Graph-based methods: hypergraphs

Many biological systems can be modelled to a first degree as some sort of graph and many

more advanced models still incorporate some graph-based structure as their basis. This

subsection gives some basic definitions, which are useful again and again in the sequel, and

finally provides two detailed standard examples of graph-based modelling. In Section 3.1 we

will see how hypergraphs can be utilized in the context of Boolean models. For reviews on the

topic of graph-based models see [Klamt et al. 2009] and [Aittokallio, Schwikowski 2006].

As already mentioned right at the beginning of this chapter, intuitively a graph can be

described a set of vertices (nodes) which are “in contact” or “interact” with each other via

edges (arcs, connections). The edges can be undirected, meaning that contacts and interactions

are symmetrical, or they can be directed, meaning that edges have a “start” vertex and an

“end” vertex. Furthermore edges could carry signs or quantitative weights to encode for

positive/negative effects or quantitative influences. This basic graph model can be extended to

hypergraphs which are defined in the following. I follow [Klamt et al. 2009] which is an

39

accessible overview on (hyper-) graph-based methods, issues and examples in computational

biology) in the definitions and examples.

For technical simplicity (and biological common sense) all occurring sets are assumed to be

finite throughout the rest of this subsection.

Definition 1.5.1 (Undirected hypergraph) [Klamt et al. 2009]

 An undirected hypergraph is a tuple  H V,E where V can be any set

 and E is a set of subsets of V. More formally, V a set,  E V .

The elements of V are called vertices or edges while the elements of E are called hyperedges.

Undirected hypergraphs are also known as set systems and if A B A B   for all

A,B E (i.e. if no edge contains another edge) the resulting hypergraph is also known as

Sperner hypergraph or clutter [Klamt et al. 2009]. A biological example given in [Klamt et al.

2009] involves protein-protein interaction networks. Proteins can interact with each other and

form complexes and one protein can participate in several different protein complexes. A

natural undirected hypergraph representation of this kind of network is given with the proteins

as vertices and the complexes (i.e. the subsets of proteins which form a complex respectively)

as edges. See [Klamt et al. 2009] for further explanations (especially about algorithmic issues)

concerning undirected hypergraphs. Classical undirected graphs (without self-loops) are

obtained as hypergraphs with
V

E
2

 
  
 

 where  
V

: A V : A k , k 0,1,..., V
k

 
    

 
 and

hyperedges are then simply called edges. Undirected graphs with self-loops are obtained with

V V
E

2 1

   
    
   

.

Definition 1.5.2 (Directed hypergraph) [Klamt et al. 2009]

 A directed hypergraph is a tuple  D V,A where V can be any set

 while    A V V  , i.e. for every a A there are T,H V such

 that  a T,H .

The elements of V are again called vertices or nodes. The elements of A are called hyperarcs.

The classical directed graphs (with self-loops) can be recovered by setting
V V

A
1 1

   
    
   

.
3

3
 Technically one then has to make the following identification:       u , v u,v u,v V  .

40

A classical directed graph  D V,A is said to be bipartite if there exist G,P V such that

G P V  and    A G P P G    . As outlined in Subsection 1.3.4 a GRN could be

represented by such a (via definition) bipartite graph where G is the set of genes in the

network and P are functional (possibly multimeric) proteins. Concerning the edges one has for

g G and p P ,  g,p A if gene g encodes for (at least) one subunit of protein p and

 p,g A if protein p is a TF of g, i.e. edges e G P  correspond to gene expression and

edges r P G  correspond to regulatory influences of TFs on genes. For a gene g G one

could define its protein range by   g : p P : g,p A   and for proteins p P similarly the

regulatory range given by   g : g G : p,g A   . Non-regulatory proteins (signalling

proteins, structural proteins, etc.) can be defined as proteins p P with g  . Heterotypic

multimer proteins would be characterized by more than one incoming edge at a given protein

vertex and alternative splicing would correspond to several outgoing edges from a given gene

vertex.

As for classical graphs one also can define weighted hypergraphs:

Definition 1.5.3 (Weighted directed hypergraph) [Klamt et al. 2009]

 A weighted directed hypergraph is a tuple  D V,A where V is any set

 and A is the set of all tuples  T Ha T,c ,H,c with T,H V ,
Tc : T 

 and
Hc : H .

Alternatively to defining the weight functions
Tc : T  and

Hc : H to have the

respective tail vertices T and head vertices H as domains one could also take the whole vertex

as respective domains and set
T 0c : V and

H 0c : V with
T V\T

c 0 and

H V\H
c 0 . In addition one could of course consider more general ranges for

Tc and
Hc but

for most biological applications the integers seem to be sufficient. There are some (very

formal) variations on the definition, for example, in Section 3.1 the logical interaction

hypergraph is introduced where edges are of the form   a T,s, i for some T V , i V

and a weight function  s : T 1, 1   , i.e. only the tail vertices are weighted.

Standard directed weighted graphs can be recovered via T H 1  and the definition of a

weight function that then applies to the edge itself. (One certainly could define the weight

function formally in terms of
Tc and

Hc (in various ways) but this seems a little bit too formal

and in our context is considered unnecessary.)

To exemplify the above concepts a detailed description of chemical reaction systems in terms

of weighted hypergraphs as outlined also by [Klamt et al. 2009] is given.

41

Weighted hypergraph representation of chemical reaction networks

A chemical reaction network (or system) consists of (chemical) species  1 n,..., and

reactions  1 m,..., , where n is the number of species and m the number of

reactions in the system. A reaction j is usually written in the form
n n

r e

ij i ij i

i 1 i 1

s s
 

  where

r

ijs  represents the number of molecules of species i involved on the reactant side and

e

ijs  the number of molecules of species i involved on the educt side of the reaction, i.e. in

order that reaction j can take place one needs r

ijs molecules of species i and as consequence of

reaction j taking place e

ijs molecules of species i are produced. For example, consider a

chemical reaction system with four species
i , i 1,...,4 and in which the reaction j :

1 2 2 32   takes place. Here, we have r e r e r e

1j 1j 2 j 2 j 3j 3js 1, s 0, s 2, s 1, s 0, s 1     

and r e

4 j 4 js s 0  .

This kind of system can conveniently be represented formally as a weighted directed

hypergraph as follows. The hypergraph is given by the tuple  , with the species as

vertices and the reactions as edges. The edges, i.e. the reactions, are further specified by

the tuples
    j j j j

j r er e
,s , ,s with reactants

 
j

r
 , educts

 
j

e
 and weight

functions
j

r 0s :  ,
j

e 0s :  such that  j

r is 0 ( j

e is 0) exactly if
 
j

i r
 (

 
j

i e
). More precisely the reactants are defined as

        
1 j

j

r r j r j
,...,



  where

 kr j
 is the k-th reactant of reaction j with  k 1,.., j  and  j 0,1,...,n  being the

number of reactants. Notice that the case  j 0  and
 
j

r
 is possible. This would

correspond for example to some constant production of some housekeeping protein.

Analogously  j 0,1,...,n  denotes the number of educts of reaction j and
 
j

e
 could

correspond to some export processes (with respect to the model boundaries) of the species out

of the cell nucleus for example (if the model is restricted to processes in the nucleus).

The classical stochiometric matrix (see for example [Kremling 2012: Chapter 13])

 i 1,...,nij
j 1,...,m

S s 


 is encoded in the hypergraph framework through
       j j

ij i ie r
s s s  

while one can define the so called directed stochiometric matrix  i 1,...,nij
j 1,...,m

D d 


 via

   j

ij i 0r
d : s  . The stochiometric matrices are useful for the compact definition of the

mass action ODE system corresponding to a given reaction network, see Subsection 2.1.1.

42

The dependency matrix: An example of graph-based model analysis

Once a graph model is given one can subject it to various analytic techniques. Just to give one

example I describe the concept of the so called dependency matrix introduced by [Klamt et al.

2007]. In intuitive terms the dependency matrix captures the essential influence species can

have on each other. These are defined as activation, inhibition, total activation, total

inhibition, ambivalent influence and non-influence and are precisely defined in terms of the

underlying graph structure as follows.

Let us assume a (standard) weighted directed graph  G V,E,s with vertex set V  ,

edges E V V  and weight function  s : E 1, 1   is given. The weights of the edges are

thought to represent the nature of the influence which the tail has on the head vertex and the

graph G can also be conceived as a classical signed graph. Here,  s u, v 1  ( s u, v 1 )

means that vertex u has a positive (negative) influence on v. This can mean that v is “switched

on” (“off”) or simply that more of species u directly (!) leads to more (less) of species v. It

may not always be possible to unambiguously associate a sign to a given edge because the

influences may also depend on the context (i.e. the states of other vertices) as it is sometimes

the case in Boolean models, see Chapter 3. Here, I will suppose that every edge can be

uniquely signed independent of the state of the system which corresponds to the assumption

that all edges respectively represent the same quality of influence regardless of the states of all

other vertices.

Now, one can define a directed path of length k V as a tuple   k

1 kv ,..., v V of distinct

vertices iv V, i 1,...,k  such that  i i 1v ,v E  for every i 1,...,k 1  .
1v is called the tail

vertex and
kv is called the head vertex of the directed path. If in addition,  k 1v , v E the

tuple   k

1 kv ,..., v V is called a directed cycle (loop) of length k.

Given the above weighted (signed) graph structure and the definition of paths one can define

activating and inhibiting paths. An activating path between to two vertices 1 kv , v V is a

directed path   k

1 kp v ,..., v V  such that    
k 1

i i 1

i 1

s p : s v , v 1






   while an inhibiting path

is given by a directed path   k

1 kp v ,..., v V  such that  s p 1  . Further for any two nodes

u,v V we define           k

0u,v : u,..., v u V v : k , u,..., v directed path     as

the set of all directed paths (where       0u V v : u,v  ) and partition it into the

activating paths       u,v : p u,v :s p 1     and the inhibiting paths  u, v

defined by       u,v : p u,v :s p 1     , i.e. we have      u,v u,v u,v   .

Based on the preceding definition we can already define four of the six above mentioned

global influence signatures for given nodes u,v V :

43

 u activates v    : u, v u,v 

 u inhibits v    : u, v u,v 

 u is ambivalent for v    : u,v u,v    

 u is without influence on v  : u, v 

While these definitions are straightforward there are subtleties introduced by the possible

existence of negative feedback loops. We already defined the notion of a directed loop above

and a negative feedback loop is defined to be a directed loop   k

1 kv ,..., v V  such that

     
k 1

k 1 i i 1

i 1

s : s v , v s v , v 1






   . If it happens that for a given directed path  p u, v

there exist nodes 1 2w , w p (where  is abused in the canonical way
4
) such that there is a

negative feedback loop such that 1 2w ,w  we say that p is negatively looped. For

u,v V we set     u,v : p u,v : p is negatively looped   and analogously

    u,v : p u,v : p is negatively looped   . With these notions defined we can finally

define the remaining two global influence signatures for any u, v V :

 u totally activates v  : u, v 

 u totally inhibits v  : u, v  .

The dependency matrix for the graph G is then defined as   V V

uvD d


  where

 1 6c ,...,c is any set of six distinct symbols that respectively code for one of the global

influence signatures: u activates v     uv 1u,v u,v : d c    , etc. For an example

of a dependency matrix, see figure 3.1 on p. 96.

1.5.2 Top-down “vs.” Bottom-up modelling

Bottom-up modeling refers to the modeling approach which addresses specific small- to

medium scale biochemical systems and models these by incorporating biochemical

knowledge like reaction mechanisms or at least the qualitative nature of (known) interactions

based on data usually generated by small-scale often model-specific experiments [Kell,

Knowles 2006]. Bottom-up models happen to be the focus of this thesis and will be examined

in some facets in the following chapters. Typical bottom-up approaches comprise ODE-

models (Section 2.1) or models based on stochastic chemical kinetics (Section 2.2). But

4
 Let A  be any set and k . Then the mapping  kset : A A is defined by    1 kset a : a ,...,a A 

for   k

1 ka a ,...,a A  . Notation (kA, a A ):  a : set a   .

44

Boolean models (Chapter 3), although usually dealing with larger systems, can also be seen as

bottom-up modeling tools (depending on the usage).

In contrast top-down models are usually designed for (characteristically large-scale) systems

where most mechanism of interactions of the system-constituting parts are not well-known

and naturally have a statistical character. Top-down models address the question of inference

on partially unknown systems based on (usually high-throughput) datasets like massive DNA

microarray data. So in effect, top-down approaches are statistical models. One of the most

used model types in statistical modeling in general and in systems biology are so called

Bayesian networks [De Jong 2002], [Friedman et al. 2000]. One keyword in this area is

reverse engineering which describes the area of study which tries to infer the overall

topological and interactive structure of biochemical systems based on experimental data with

the ultimate aim of automatization [Markowetz, Spang 2007], [Huang et al. 2009]. Reverse

engineering is model-based and (dynamic) Bayesian networks (DyBNs) is only one example

for a statistical model which was applied in order to infer the structure of regulatory networks

[Friedman, Koller 2003]. Based on the models used, the inferred models (if it happens to be

possible to infer something) of course somehow may provide different “kinds” of structural

information which has to be interpreted from model to model. There is also a relatively big

literature on reverse engineering Boolean network models (see Chapter 3). The first and most

famous algorithm attacking this task is the so called REVEAL algorithm [Liang et al. 1998].

Further approaches include for example (!!!) Bernoulli mixture models [Saeed et al. 2012] or

delay inference with MCMC methods [Dümcke et al. 2014].

45

46

2 Modelling approaches for biochemical systems

This chapter deals with approaches for the dynamic modelling of biochemical networks.

Section 2.1 introduces ODE-based models (ODE: ordinary differential equations), Section 2.2

deals with classical stochastic models and Section 2.3 indicates some contexts that might not

be covered by the approaches described in the preceding sections.

2.1 Reaction rate equations: ODE models

General introductions for classical ODE models in the context of biochemical systems can be

found [Murray 2004], [Edelstein-Keshet 2005], [Klipp et al 2009: Chapter 2] or [Conrad,

Tyson 2006].

In order to apply ODE-based models to a chemical of reaction system, it is assumed that the

system is spatially homogeneous and well-stirred, i.e. everything is mixed up such that at

every point in the “reaction space” (i.e. the physical volume where the reactions take place,

for example a test tube) every reaction is exactly as probable as in every other point of the

reaction space. This implies that the concentration levels of all species are constant

throughout the reaction space. In addition the system is non-stochastic in the sense that there

are so many molecules of each species that the probabilities for the reactions are constant over

time and space, i.e. the system is deterministic and can be modelled as a system of ordinary

differential equations [Klipp et al. 2009: Section 2.1], [Conrad, Tyson 2006].

An n-dimensional system of ODEs describing a biochemical system with n species can be

written down in its basic form as follows:

    

 

0

0 0

x t f x t t

x t x

  


 (2.1)

Here,       
T n

1 nx t x t ,..., x t  is the continuous time-dependent vector of concentration

variables, i.e.  ix t is the concentration of species i 1,...,n at time 0t  .
n nf :  

describes the dependence of the rate of change of the concentrations (given through the

derivative x of x) as a function of the concentrations.   n

0 0 0x t x   with 0 0t 

defines the initial value of the system. (2.1) constitutes a classical initial value problem for

ordinary differential equations (with time-independent right-hand side) [Walter 2000].

Most of the time, the right-hand sides involved in biochemical modelling fulfil certain

smoothness conditions such that the theorem of Picard-Lindelöf can be applied guaranteeing

the existence of a unique solution to (2.1) [Walter 2000: II § 6]. However, see Section 4.2 on

piecewise linear differential equations.

47

As introduced in Subsection 1.5.1 a (bio-) chemical reaction system  , is a hypergraph

with species  1 n,..., and reactions  1 m,..., , where n is the number of

species and m the number of reactions in the system. As also detailed in 1.5.1 the

reactions can formally be represented as the edges of a chemical reaction system hypergraph

with the species as vertices. Here we only work with the resulting stochiometric matrix

  n m

i 1,...,nij
j 1,...,m

S s 




  and the directed stochiometric matrix   n m

i 1,...,nij 0
j 1,...,m

d d 




  .

The classical mass action ODE system [Klipp et al. 2009: Subsection 2.2.1], [Keener, Sneyd :

Chapter 1], associated to such a reaction network is defined by      f x t : S x t  where S

is the stochiometric matrix and   n m

1 m 0 0,..., :       is given by   ij

n
d

j j i

i 1

x : k x


  

where   n

1 m 0x x ,..., x   , j 0k  and directed stochiometric matrix D.  j x is called

the reaction rate of reaction j given concentrations
n

0x  .

Mass action kinetics, i.e. mass action ODE systems, are based on the assumption that the

occurrence of a reaction j and hence its rate j is directly proportional to the product of the

involved reactants. The proportionality constants j 0k  are called kinetic constants

(parameters).

As always, there are situations where the assumption of mass action kinetics may not be valid.

It turned out that some metabolic systems (which otherwise fulfill all the assumptions

concerning the appropriateness of an ODE-based approach) can be better modelled by so

called S-systems [Klipp et al. 2009: Subsection 2.1.5].

On the other hand, the detailed modelling of all reactions by mass action kinetics can be

unnecessary for some reason. For example, the rate of product formation of enzyme-catalyzed

reactions may be better modelled via some specific enzyme kinetic law, like Michaelis-

Menten kinetics for example [Klipp et al. 2009: Subsection 2.1.3], [Cornish-Bowden 2012:

Chapter 2]. There, the corresponding differential equation for the product species p could

(assuming that it is only produced by an enzyme-catalyzed reaction following Michaelis-

Menten kinetics and degraded with rate 0) be written as maxv es
p p

K s
  


 where

max 0v  is the maximal conversion rate, 0K  is the so called Michaelis(-Menten)

constant and s and e denote the concentrations of substrate and enzyme respectively. The

decisive point here is, that the Michaelis-Menten law can be derived from a detailed mass

action law involving an enzyme-substrate intermediary complex ES (a chemical species) and

in principle it is possible to model larger systems by explicitly incorporating these kinds of

intermediates involved in the enzymatic reactions [Klipp et al. 2009: Section 2.1]. But since it

is possible to deduce the ES-independent Michaelis-Menten kinetic given the so called quasi-

steady-state assumption (or corresponding to a slightly alternative approach, the quasi-

equilibrium assumption) (see [Murray 2004: Chapter 6], [Edelstein-Keshet 2005: Chapter 7]

48

or [Klipp et al. 2009: Subsection 2.1.3]) one can (given that these assumptions about the

enzymatic reaction are fulfilled) substitute the Michaelis-Menten rate in place for the full

mass action laws and thus kick out the intermediate ES species from the model.

In a similar fashion one often encounters rate laws which are governed by so called Hill

functions which are given by  
m

i
i i m m

i i

x
h x , ,m :

x

  


 and    j j j jh x , ,m : 1 h x , ,m    

[De Jong 2002], [Alon 2007: Chapter 2 and Appendix A]. Here, i 0m,   are parameters

and ix is the concentration of some species i. Hill functions are sigmoid functions with

inflection point i such that  ih 0, ,m 0   and  i ih x , ,m 1   as ix  (

 ih 0, ,m 0   and  i ih x , ,m 0   as ix ) while for large enough m one has

 i ih x , ,m 0    and  i ih x , ,m 1    ( i ih x , ,m 1    and  i ih x , ,m 0    for

small 0  . Formally,  i ih x , ,m 0    and  i ih x , ,m 1    as m . So, Hill

functions are (for large enough m) step-like functions and can therefore describe switch-like

changes of influence of a given species in dependence of its concentration. The location of

that switch is defined by the Hill threshold parameter i and the strength of the switch is

defined by the Hill coefficient m. Physically Hill functions often arise through a phenomenon

called cooperativity and multimerization already described in Subsection 1.3.5 in the context

of gene regulation functions which indicates that Hill functions play a natural role in the

modeling of some processes of gene regulation. For illustration assume that some gene is

controlled by a TF in such a way that mRNA is transcribed at rate (approx.) 0a 

whenever the TF is bound to some operator region in the form of a tetramer and is more or

less untranscribed when no TFs are bound to the operator. Then the resulting mRNA

dynamics can be modeled via

  
 

 
 

4

4

a TFd
mRNA mRNA

dt TF
  


where  i denotes the concentration of species i , 0  is some multimerization-specific

threshold and 0  the rate of mRNA degradation.

Once a reaction network is transformed into an appropriate system of ODEs one can try to

solve this system. This is usually only possible by numerical integration methods [Deuflhard,

Bornemann 2008], [Quateroni et al. 2002]. Notice however that in ODE systems derived from

biochemical reaction networks one often has to deal with so called stiff systems [Petzold,

Gillespie 2006], [Deuflhard, Bornemann 2008: Chapter 6]. Complementary to numerically

solving the ODE system, one can also try to apply the various qualitative methods of

dynamical systems theory like stability and bifurcation theory to gain insights about the

system [Guckenheimer, Holmes 2002], [Murray 2004], [Edelstein-Keshet 2005].

49

A further challenge is the parameterization of ODE models, i.e. the inference of suitable

kinetic parameters from experimental data [Ashyraliyev et al. 2009], [Jaqaman, Danuser

2006]. A parameterization clearly is a prerequisite for solving the system numerically. An

important question relating to the estimation of the kinetic parameters (and for parameter

estimation in general) is for example (!) the issue of non-identifiability of parameters.

Usually, one differentiates between a priori (or structural) non-identifiability and a posteriori

(or practical) non-identifiability [Raue et al. 2009]. Structural non-identifiability describes a

situation where a parameter (or a set of parameters) cannot be estimated properly because the

overall structure of the system is such that particular parameters are in principle not estimable

whatever the data may be. A typical example would be two parameters which only appear via

their respective product in the system equations. On the other hand practical non-

identifiability describes a situation where parameters are not properly estimable because of

the concrete data set used to conduct the estimation. [Raue et al. 2014] compare different

methods for identifiability analysis.

2.2 Stochastic models for biochemical networks

In this section I will give a condensed review on the stochastic modelling of biochemical

networks. The need for stochastic models is shortly motivated in Subsection 2.2.1. The

remaining sections show, in a semi-rigorous way, how to proceed from the chemical master

equation (CME) (Subsection 2.2.2) and the equivalent exact simulation schemes like the

Gillespie algorithm (Subsection 2.2.3) consecutively to the approximate simulation schemes

called -leaping methods (Subsection 2.2.4), from there to Langevin-leaping and the chemical

Langevin equation (CLE) and finally to the deterministic RRE setting (Subsection 2.2.5). The

given presentation of the indicated model cascade is mainly inspired by [Petzold, Gillespie

2006] and supplemented with some elements from [Ullah, Wolkenhauer 2012]. The section

finally ends with Subsection 2.2.6 which tries to give a very basic overview on parameter

estimation for stochastic models in systems biology.

There are mainly three reasons for the existence of this section. First, it is motivated by the

general theme of this thesis, i.e. the relation between different modelling approaches, but in

contrast to the title of the thesis “From discrete Boolean networks to stochastic continuous

models” in this section the appropriate heading would rather be “From discrete-state

stochastic models via continuous-state stochastic models to continuous-state deterministic

models” (or vice versa) even if this heading does not capture every aspect of the indicated

model hierarchy as will be seen in the sequel. Second, in Section 5.2 I shortly look at so called

PLSDEs (piecewise linear stochastic differential equations) which are straightforward

extensions obtained by introducing Langevin-type stochasticity to the differential evolution of

the well established piecewise linear differential equation (PLDEs) models. PLDEs are

reviewed in Section 3.6. Finally, stochastic models increasingly become inevitably more and

more used and valued in systems biology [Wilkinson 2009] and the study of stochasticity in

biochemical systems is an extremely interesting field of modern biology (Subsection 2.2.1). In

50

summary, a semi-short description of the most basic modelling tools involved in this area of

study is included here.

2.2.1 Stochasticity in biomolecular systems

Stochasticity in biomolecular systems is a huge and highly active field of study. For review,

see for example [Raj, van Oudengaarden 2008]. Typical studies address for example the

distinction between intrinsic and extrinsic noise [Elowitz et al. 2002]
5
 or how noise spreads in

larger networks [Pedraza, van Oudengaarden 2005]. Further issues concern what is called

stochastic fate decision. For example, the decision of sporulation in Bacillus subtilis is known

to be governed by noise [Maamar et al. 2007]. Also, the fate decision of -phages (described

in Subsection 1.3.5) was conjectured to be influenced by noisy processes [Arkin et al. 1998],

[Singh, Weinberger 2009]. But there are also studies indicating that noise is maybe not

everything. For example, [St. Pierre, Endy 2008] shows that phage fate might be significantly

influenced by the size of the infected E.coli hosts. [Zang et al. 2010] provide evidence that the

number of phages invading a given host is a decisive determinant of fate decision. The

principal question is indicated in figure 2.1 (from [St. Pierre, Endy 2008]). There are many

more interesting issues and already the literature merely about stochasticity and -phages is

extremely large. In the following subsections, the main classical modeling tool for stochastic

biochemical systems are outlined while in Chapter 5 we come back to another kind of

stochastic model class in the context of stochastic hybrid systems.

5
 Intrinsic noise can be seen as noise which stems from molecular noise which is not due to some other kind of

coincidence like the number of RNA polymerases in a given cell or so. The latter would be referred to as

extrinsic noise since it influences different cells differently while intrinsic noise would (in theory) affect every

cell the same way.

Fig. 2.1 (from [St.Pierre, Endy 2008]):

Stochastic or deterministic cell fate

decisions?

The figure shows the basic scientific

dispute in the field of bioregulatory fate

decision. In the  example, the question

is whether the decision to pursue lysis or

lysogeny (see Subsection 1.3.5) is

governed by chance (A) or by so far

unknown deterministic variation (B) in

terms of the host cells or the number of

infecting phages, etc.

There is evidence for both (see the main

text) and hence it seems likely that the

truth is some in between.

51

2.2.2 Stochastic chemical kinetics: the chemical master equation (CME)

In this subsection the chemical master equation (CME) is reviewed. The next subsection deals

with the exact Gillespie-type simulation approaches which are used to sample trajectories

from the stochastic dynamics described by the CME. Naturally the CME and Gillespie-type

simulation are equivalent in a sense made precise in the following subsection and rely on the

same fundamental modelling assumptions. In addition to the assumptions of spatial

homogeneity and a well-stirred system (which they share with RREs) they are most

fundamentally based on the assumption that the dynamics follows a time-continuous

homogeneous Markov jump process [Ullah, Wolkenhauer 2011: Section 5.1] what can also be

derived by physical theory as outlined by [Petzold, Gillespie 2006] and conducted in detail by

[Gillespie 1992]. Here, these assumptions are taken as given. In the stochastic framework one

no longer works with continuous concentrations as in ODE models but with the actual copy

number of each species and reactions will change the discrete states (representing the copy

numbers of each species) according to the stochiometric matrix of the reaction system under

study.

More precisely, if one has a reaction system  , with species  1 n,..., and

reactions  1 m,..., , where n is the number of species and m the number of

reactions in the system, the state of the system at time  t 0,  is described by a discrete

variable       
T n

1 n 0X t : X t ,...,X t  where  i 0X t  represents the number of

molecules of species i present in the system at time t. When   n m

i 1,...,nij
j 1,...,m

S s 




  is the

stochiometric matrix of the reaction system, the occurrence of the reaction j will shift the

state from
n

0X to n

*j 0X S  where  
T

n

*j 1j nj 0S : S ,...,S  is the j-th column of S.

Often it is assumed that all reactions are at most bimolecular, i.e. only involve at most two

reaction partners. This assumption is referred to as the assumption of elemental reactions.

This is often justified since real chemical reactions usually proceed by successive reactions

which are at most bimolecular although the overall reaction may formally involve more than

two reaction partners.

The decisive quantities in regard to the stochastic evolution of the system are the so called

propensities. Let
n

0S denote the set of all possible states of the system. Based on

theoretical physical considerations one can derive [Gillespie 1992] that for every reaction j

there is a propensity function  ja : 0, S such that  ja x dt is the probability that given

the system is in state  X t x at time t, the reaction j will occur in the time interval

 t, t dt where dt is an “infinitesimal amount of time”. Mathematically this is of course not a

very strict statement but for the purposes of this thesis it is defined to be sufficient. Given a

52

reaction j : i k the propensity can be derived to be  j j ia x c x for some constant

jc 0 . For bimolecular reactions j : i k  with i k one has  j j i ka x c x x for

some constant jc 0 and for reactions j : i i k  one gets    j j i i

1
a x c x x 1

2
  for

some constant jc 0 [Petzold, Gillespie 2006]. The constants jc 0 are again called kinetic

constants and can be precisely related by physical theory to the deterministic kinetic constants

[Petzold, Gillespie 2006], [Ullah, Wolkenhauer 2011: Subsection 5.2.5].

Given a reaction system and the respective propensity functions one can derive the classical

chemical master equation (CME). The CME specifies the time evolution of the probabilities

      0 0 0 0P x, t x , t : X t x X t x   where is the law of the Markov process

governing the dynamics of the system and
n

0 0x  is the specified initial value of the system

at some time
0t t .

A semi-rigorous derivation of the CME based on [Petzold, Gillespie 2006] is now given.

First, given a time infinitesimal dt, subjecting  0 0P x, t dt x , t to the law of total probability

gives the following result:

           

         

     

0 0 0 0

m

*j 0 0 j

j 1

m

0 0 j * j 0 0 j

j 1

P x, t dt x , t X t x X t x no reaction in t, t dt X t x

 X t x S X t x occurs in t, t dt X t x

 P x, t x , t 1 a x dt P x S , t x , t a x S





     

     

 
     

 



  
m

*j

j 1

dt




.

Under the assumption that dt is “sufficiently infinitesimal” it is subsumed that no more than at

most one reaction can take place in the interval  t, t dt which justifies the above equations.

In terms of the underlying Markov process this equation corresponds to the so called

Chapman-Kolmogorov equation (just as well as the “final” CME).

By rearranging it follows

             
m

0 0 0 0 *j 0 0 j *j 0 0 j

j 1

P x, t dt x , t P x, t x , t P x S , t x , t a x S P x, t x , t a x dt


     

and this finally corresponds to the following differential equation, the CME:

 

        
m

0 0

*j 0 0 j *j 0 0 j

j 1

dP x, t x , t
P x S , t x , t a x S P x, t x , t a x

dt 

    (CME)

By interpreting xS as an index the above equation system (the CME) describes the time

evolution in terms of S coupled ordinary differential equations.

53

Biochemical systems which evolve according to a Markov jump process as indicated above

are said to be governed by stochastic chemical kinetics (SCK).

As can be expected, the CME is usually not analytically solvable. Only in the most trivial

examples is an analytic treatment possible, for example in the case of a system with two

reactions
1 2 and

2 1 under the constraint that    1 2X t X t N   for all

t 0 . In that case it turns out that  0 0P x, t x , t is given by a binomial distribution [Ullah,

Wolkenhauer 2011: Subsection 5.5.1]. In principle the CME could be solved by standard

numerical methods for ODE systems but this turns out to be difficult because the number of

equations S is usually extremely large. As indicated in [Ullah, Wolkenhauer 2011: Section

5.1], specialized numerical approaches for solving the CME are for example (!) the finite state

projection algorithm [Munsky, Kammash 2006], the so called sliding windows method [Wolf

et al. 2010] or the method of conditional moments [Hasenauer et al. 2014]. Further methods

try to apply spectral methods [Mugler et al. 2009], [Engblom 2009] or utilize stochastic

hybrid systems [Henzinger et al. 2010].

A philosophically different but in essence equivalent approach is to sample realizations of the

process itself. This is referred to as stochastic simulation and is shortly reviewed in the next

subsection.

2.2.3 Exact stochastic simulation: the Gillespie algorithm

Exact stochastic simulation of stochastic chemical kinetics refers to the approach in which

samples from the stochastic dynamics described by the CME are drawn. The basic algorithm

which simulates the Markov jump process of stochastic chemical kinetics is the Gillespie

algorithm (also called stochastic simulation algorithm, SSA) introduced by [Gillespie 1977].

A high-level description of the Gillespie algorithm can be given as follows. Given that the

system is in a particular state the corresponding propensities can be evaluated and based on

these propensities one samples the time and index of the next reaction, i.e. which reaction

occurs next and when? The exposition in this subsection is again based on [Petzold, Gillespie

2006].

In order to derive the Gillespie algorithm one defines

         jp , j x, t d : no reaction in t, t and occurs in t , t d X t x          

where d is again an infinitesimal time span such that only one reaction can occur in the

interval  t , t d     . So,  p , j x, t is the probability that given that the system is in

state x at time t the next reaction will be j and will happen at time t   .

54

With       0P x, t : no reaction in t, t X t x     one has (with the definition of

conditional expectation and by ignoring the infinitesimal) the following two identities:

      0 jp , j x, t d P x, t a x d     (2.2.1)

      
m

0 0 j

j 1

P d x, t P x, t 1 a x d


 
      

 
 . (2.2.2)

The first one states that the probability that the next reaction occurs at t   and will be

reaction j given that  X t x can be obtained as the probability of no reaction occurring

in  t, t   given that  X t x times the probability that reaction j (and only reaction j

!) occurs given  X t x   . The second identity states that the probability of no reaction

occurring in  t, t d   given  X t x can be written as the probability that no reaction

occurs in  t, t   given  X t x times the probability of no reaction occurring in

 t , t d     given  X t x   . Equation (2.2.2) corresponds to the following

differential equation:
 

 
m

0

j

j 1

dP x, t
a x

d 





 .

This elementary equation has the solution    
m

0 j

j 1

P x, t exp a x


 
   

 
 (the initial value

given by one since almost surely no reaction will occur in zero time). Substituting this

expression into equation (2.2.1) (and “dividing” by d) finally gives the following result:

      
 

 
    

m
j

j j 0 0

j 1 0

a x
p , j x, t a x exp a x a x exp a x

a x

 
      

 
 (Gillespie)

In the above equation it is defined    
m

0 j

j 1

a x : a x


 . The identity (Gillespie) is the basis of

the Gillespie algorithm. It contains the fact that the time until the next reaction and the type of

the next reaction are independent. Furthermore     0 0a x exp a x  can be identified as the

density of an exponential distribution with parameter  0a x and hence the time until the next

reaction is given by a random variable      0T X t x ~ Exp a x while the type of the

reaction is determined by a categorical distribution over the reactions with weight
 

 
j

0

a x

a x
 for

reaction j . These considerations then lead to the following theoretical basic form of the

Gillespie algorithm:

55

ALGORITHM 2.1 [Gillespie algorithm]

Input: I1.  , with stochiometric matrix S # reaction system

 I2.  ja : 0, S # propensity functions

 I3.
0x S ,  0t 0,  # initial state and start time

 I4.  max 0t t ,  # maximal simulation time

Output: O1.   n

0 max 0X : t , t  # sample of the stochastic kinetics defined by  ,

(1)  0 0X t x , 0t t , 0x x # initialization

(2) while (maxt t)

 (2.1) compute  ja x , j 1,...,m # update propensities

(2.2)    
m

0 j

j 1

a x a x




(2.3) sample   0~ Exp a x # sample time to next reaction

(2.4) sample
 

 
j

0

a x
k ~ Cat

a x

 
  
 

 # sample the type of the next reaction

(2.5) if maxt t  

(2.5.1)  X t ' x for  t ' t, t 

(2.5.2)   *kX t x S    , *kx x S  # update of state

(2.5.3) t t  # update of time

(2.6) else

(2.6.1)  X t ' x for  maxt ' t, t

For a quick summary on how to simulate random variables in general and exponential and

categorical variables in particular it is referred to Appendix A.2.

The Gillespie algorithm, i.e. stochastic simulation, is equivalent to the CME in the sense that

it generates i.i.d. samples from the process described by the CME. In principle one could

solve the CME by infinitely often simulating with the Gillespie algorithm for an infinite

amount of time respectively.

For larger biochemical systems exact stochastic simulation is not feasible anymore. Although

there exist adapted exact simulation schemes like the next reaction method [Gibson, Bruck

2000] which are faster for some systems, it becomes inevitably inefficient to exactly simulate

56

stochastic chemical kinetics if the systems are more complex. In such a situation one has to

resort to approximate simulation schemes like the one discussed in the next subsection.

2.2.4 Approximate stochastic simulation: -leaping

The approximate stochastic simulation algorithm called -leaping was introduced by

[Gillespie 2001]. Instead of simulating every single reaction event it simulates a whole bunch

of reactions which happen in time intervals of fixed length 0  respectively and simulates

the state of the system accordingly at multiples of . is called leap size and is a

hyperparameter of the algorithm which has to satisfy a so called leap condition. The leap

condition describes the assumption that the propensities do not change significantly if the

system is evolved according to the leap size.

More precisely the -leaping algorithm is based on the fact that the reactions have

exponentially distributed waiting times with parameter  ja x for their respective next

occurrences given. This can be seen as follows. Define

        j j jp x, t d : does not occur in t, t but occurs in t , t d X t x           .

With       j

0 jP x, t : does not occur in t, t X t x     one has

      j

j 0 jp x, t d P x, t a x d     (2.2.3)

       j j

o 0 jP d x, t P x, t 1 a x d      (2.2.4)

by the definition of conditional probability. Deriving the canonical ODE from (2.2.4) leads to

    j

0 jP x, t exp a x    and the substitution of this formula into 2.2.3 finally gives

       j j jp x, t a x exp a x    .

Since  jp x, t is the density of the random variable describing the time to the next

occurrence of reaction j one can conclude that this time is exponentially distributed with

parameter  ja x .

Based on that, for -leaping to work it is further assumed that for each reaction j the

number of reactions in a suitable small interval of length  given  X t x follows a Poisson

distribution with parameter  ja x  and that these numbers are independent. This can be

satisfied if the leap condition is satisfied: Given  X t x the propensities do not change

“significantly” during a -leaping step of the following form:

57

  
m

j *j

j 1

X t x YS


    with   j jY ~ Poi a x  (-leaping)

The above formula is the basis of -leaping. For this algorithm to work it is necessary to be

able to choose a leap size which satisfies the leaping condition, see for example [Gillespie,

Petzold 2003]. Given a suitable leap size and  X t x the algorithm simulates the number

of reactions j during the interval  t, t   as   j jY ~ Poi a x  and the system of the state

at time t   is then updated by adding the respective numbers of columns of the

stochiometric matrix to the old state x.

-leaping is an approximation algorithm and hence does not simulate stochastic chemical

kinetics exactly. However, if  01 a x  the next update will be as good as exact. If the

leaping condition can only be satisfied such that this relationship holds it is advisable to use

the Gillespie algorithm instead [Petzold, Gillespie 2006]. Another issue with -leaping is that

one has to take care that the state of the system does not become negative.

So far the states describing the system were discrete and given by the respective molecule

numbers. One further step can be to again postulate continuous concentration levels instead

but to keep the stochasticity. This is shown in the next subsection.

2.2.5 Diffusion approximation: the chemical Langevin equation (CLE)

If in addition to the leap condition one has  ja x 1 for all reactions j one can utilize the

fact that if  one has
 

2
kk

2
1

e e
k! 2




 





 and one therefore can draw the “number”

of occurrences of reaction j as a normal random variable with mean and variance  ja x  .

Note that the leaping condition and  ja x 1 constitute a „small but large” condition.

Assuming both are satisfied one can then introduce the so called Langevin leaping formula for

the state of the system at time t   given  X t x :

      
m m

*j j *j j j

j 1 j 1

X t x S a x S a x Z
 

       with  j iidZ ~ 0,1 .

This corresponds to  
m

*j j

j 1

X t x S Z


    with     j independent j jZ ~ a x ,a x .

The Langevin leaping formula can be interpreted as a discretization of the following

stochastic differential equation:

58

        
m m

*j j *j j j

j 1 j 1

dX t S a x dt S a x dB t
 

    (CLE I).

This equation is known as the chemical Langevin equation (CLE) [Gillespie 2000]. Here,

      
T

1 mB t B t ,...,B t is m-dimensional standard Brownian motion (see [Oksendal 2010:

Section 2.2]). The state of the system over time is now described as an n-dimensional

continuous stochastic process given by the solution       
T

1 nX t X t ,...,X t of (CLE I).

The given derivation of the CLE is of course somehow rough since at first  has to be small

but not too small and then it finally goes to zero.

By setting       
T m

1 ma x : a x ,...,a x  ,    A x : Sa x and     
1 2

D x : S diag a x 

one can also write the Langevin equation as          dX t A X t dt D X t dB t  [Ullah,

Wolkenhauer 2011: Subsection 5.4.2]. As also shown in [Ullah, Wolkenhauer 2011:

Subsection 5.4.2] one can reformulate as          
1 2

dX t A X t dt X t dB t     with

     
T

x : D x D x  and n-dimensional standard Brownian motion  B t .

The CLE is often termed a diffusion approximation of stochastic chemical kinetics (i.e. the

respective Markov jump process). There are other such approximations, like for example the

Fokker-Planck equation (which is actually equivalent to the Langevin equation) [Fuchs 2013:

Chapter 4].

From the CLE one can finally obtain the deterministic RRE systems by a transition termed

thermodynamical limit, see [Petzold, Gillespie 2006].

2.2.6 Parameter estimation for stochastic biochemical models

As in ODE modeling, SCK models ask for appropriate parameterizations. One of the main

differences to the ODE case is that in stochastic models the uncertainty not only comes from

measurement errors but also naturally from the model itself. [Wilkinson 2009] is a very good

overview on stochastic modeling in general and parameter estimation for stochastic models in

particular. Roughly, one can divide the approaches according to whether they try to estimate

parameters for discrete stochastic models (i.e. pure stochastic chemical kinetics, i.e. the

Markov jump process) [Boys et al. 2008] or do so for the respective diffusion approximations

[Golightly, Wilkinson 2005], [Fuchs 2013]. The latter is considered easier but it has to be

pointed out that it is still difficult. For further details, see [Wilkinson 2009] and the references

therein.

59

2.3 Spatial inhomogeneity: PDEs and the RD-CME

By dropping the assumption of spatial homogeneity, one is urged to make the transition from

ODE models to models involving partial differential equations (PDEs) and take into account

the spatial dependencies intrinsic to the processes in question [De Jong 2002], [Kruse, Elf;

2010], [Murray 2004: Chapters 11, 12, 13; 2008], [Edelstein-Keshet 2005: Chapters 9, 10,

11]. This becomes important for example if some reactions only take place at particular sites

(some specific cellular organelles for example) in the cell or if one wants to model the

transport of molecules (through space) explicitly and so on and so forth.

One particular type of PDE model is reaction-diffusion models. In its simplest form

(involving only two chemical species) a reaction-diffusion equation (for two chemical

species) can be written in the following basic form:

 

 

t 1 1 r 1 1 1 2

t 2 2 r 2 2 1 2

x D x f x , x

x D x f x , x .

   

   

Here    1 1 2 2x x r, t , x x r, t 0   are the concentrations of the involved species which are

now space-dependent as indicated through dr , d . The above equations are a

description of the space-time-evolution in terms of diffusion terms
i r iD x and reaction terms

 i 1 2f x , x describing the interaction between the species.
iD 0 is the diffusion constant of

species i.

All issues concerning the analysis of ODE models apply with even more peculiarity in the

case of PDE models: dependence on numerical methods, qualitative techniques and the

difficulty in parameterizing the system based on experimental data.

By combining spatial inhomogeneity with stochastic chemical kinetics one arrives at the so

called reaction diffusion chemical master equation (RD-CME), see [Kruse, Elf 2006].

60

3 From discrete Boolean networks to stochastic

 continuous models for biochemical networks

This chapter is dedicated to the topic of discrete Boolean models and the attempts to

reintroduce continuity in time or space and the possibilities to incorporate various forms of

stochasticity in these models. There are many good review articles on Boolean models for

biochemical networks: [Bornholdt 2008], [Albert, Wang 2009], [Morris et al. 2010], [Glass,

Siegelmann 2010], [Wang et al. 2012], [Albert et al. 2013], [Chaouiya, Remy 2013]. In

Section 3.1 there will be some general definitions and considerations concerning the

motivation, justification and methodology of Boolean models for biochemical systems. In

particular, the issues of model representation, updating schemes and attractors are

considered. In Section 3.2 I shortly mention the classical ensemble approach of Stuart

Kauffman [Kauffman 1969] by defining the classical notion of random Boolean networks

(RBNs). Extensions are outlined and some studies addressing the question of so called

biologically meaningful update rules are mentioned. In Section 3.3, probabilistic Boolean

networks (PBN) are briefly defined and their applications indicated [Shmulevich et al. 2002a,

2002b]. In Section 3.4 several further approaches to introduce stochasticity into Boolean

models are discussed. Also, first examples for approaches which incorporate continuous time

into an otherwise Boolean framework are given. In Section 3.5 the basic notions concerning

the time-continuous generalized kinetic logic (GKL) networks (Thomas formalism) [Thomas,

D’Ari 1990] are defined. The dynamics of GKL networks are given by species specific time

delays which can be either deterministic or stochastic [Thomas 1979]. The stochastic version

of GKL is also the topic of Section 4.1. Section 3.6 deals with piecewise linear differential

equation (PLDE) models [Glass, Kauffman 1973] which are continuous in time and space but

which are based on an underlying Boolean dynamics. The connections between GKL or other

kinds of discrete models and PLDE models are an active area of research [Jamshidi et al.

2012], [Farcot 2006]. The general rationale for setting up correspondences between discrete

and continuous models is of course the hope of simplifying the continuous models via their

discrete counterparts or vice versa enriching the dynamics of the discrete models via their

continuous counterparts in some meaningful or at least in some abstract sense useful way.

Later, in Section 4.2 I will shortly look at a simple example of a stochastic version of PLDE

models and outline the topic of how to relate this kind of model to GKL models with

stochastic time delays. Section 3.7 shortly introduces Petri net models of biochemical

networks. In Section 3.8 three further approaches which re-inject continuous states into

Boolean models are outlined: fuzzy logic, standardized qualitative dynamical systems

(SQUAD) and multivariate polynomial interpolation (Odefy). In Section 3.9 finally some

specific examples of Boolean modeling are given as illustration. The spectrum of biological

systems modeled with Boolean frameworks is extremely large and for many systems there are

several Boolean models. See for example the review articles cited above and especially the

reviews [Fauré, Thieffry 2009] and [Mbodj et al. 2013] on the various Boolean models for the

cell cycle (of various organisms) and fruit fly signaling pathways respectively. Thus, Section

3.9 concentrates on models for apoptosis (programmed cell death) and exemplifies some

61

methodologies involved in Boolean modeling. This chapter is a coarse-grained overview.

Omissions are by coincidence and do not constitute any kind of judgment.

3.1 Boolean models: representation, update regimes, attractors

Boolean or logical models were introduced to biology through the work of [Kauffman 1969]

and are ‘simple’ models of biochemical systems where the state of every biochemical species

(variables, nodes) in the system only has a finite set of possible states. In the classical setup

these states are 0, corresponding to “gene off”, “protein not expressed”, etc. and 1,

corresponding to “gene on”, “protein expressed”, etc.. Given this kind of simplification, one

specifies the interactions of the species through so called logic functions (transfer-, update-,

transition-, Boolean functions), for example as AND-gates defined via the property that some

target gene is on if and only if its, say, two regulators are also on. Having this kind of

discretization of the states of the system (“on”, “off”) and a network of logical interactions

between the involved variables one has to decide on the so called update scheme (update

regime, -schedule). In the classical setup, time is discretized and all variables are updated

according to their logical interactions simultaneously: synchronous updating. Further

approaches update the variables one at a time according to some deterministic or stochastic

scheme. Of course the dynamics of the network crucially depends on the update scheme. A

further characteristic property studied in relation to Boolean networks is their so called

attractor structure. An attractor is a set of states which describes a possible long term

behavior of the system, for example a point in the state space which is a fixed point of the

update function and hence once in that state the system will remain there forever. Further

canonical examples of attractors are periodic limit cycles, i.e. sequences of points in the state

space that repeat over and over again once the system evolves to one of its defining states.

The justification of Boolean modeling stems from the observation that many regulatory

systems seem to be based on switch-like interactions. One can think for example of Hill-type

kinetics with large Hill exponents, i.e. high degrees of cooperativity (Subsection 2.1.1), or the

actually measured gene regulation functions, for example the one shown in figure 1.6 in

Chapter 1 from [Setty et al. 2003], which also often show a step-like character. In summary, if

the underlying dynamics is defined by ‘sufficiently’ step-like interactions one can hope to

capture the essential features of such a system in terms of Boolean models. There are studies

which address these questions, see for example [Wittmann et al. 2010] or [Macía et al. 2009].

An approximately general definition of a Boolean network and the formal starting point for

this section can be framed as follows.

62

Definition 3.1.1 (Boolean Network)

 A Boolean network is a tuple  V,f with species (nodes, vertices, variables)

 V given by a non-empty finite set, w.l.o.g.  V n , and a logic function

    
n n

f : 0,1 0,1 where n is the number of species in the system.

For a state  
n

x 0,1 , the state    
n

y : f x 0,1  is called the successor (state) of x. There are

several variations concerning definition 3.1.1. One can study systems with more than just two

possible qualitative states and accordingly define the logic function to be

   
n n

i i

i 1 i 1

f : 0,1,..., k 0,1,..., k
 

  where ik  is the number of qualitative states for

variable  i n . The classical case corresponds to
ik 1 for all i. Furthermore, although

logically not necessary, the definition of a Boolean model is often based on an underlying

interaction graph  G V,E with the species  V n and ‘regulatory’ interactions encoded

in the directed edges E. The logic function is then specified component-wise by

 
 

 i j pa i
f : 0,1 0,1


 for every  i n with     pa i : j V : j,i E   , i.e. the interaction

graph already encodes which variables are non-irrelevant for the logic function
if . One further

possibility is given by the so called logical interaction hypergraph [Klamt et al. 2007] (see

also Subsection 1.5.1) which can be seen as the other extreme to definition 3.1.1 in the sense

that it already encodes the entire logic function in term of a graph structure. Formally, every

Boolean function  
 

 i j pa i
f : 0,1 0,1


 can be written in sum-product form (disjunctive

normal form, [Aigner 2006: Section 11.2], [Wittmann et al. 2009a]) as follows:

  
       kii j j

1 k i 1 ki i
i i1 ik j: 1 ij j: 0 ij,..., 0,1 f ,..., 1

f x ,..., x x x        

      
 

.

Here,  ik : pa i and  
ii1 ikx ,..., x 0,1 denote the states of the parents of i. Based on this

representation the logical interaction hypergraph is then defined as a weighted directed

hypergraph  H V,A (see Subsection 1.5.1) with  V n being the set of species and

a A if and only if     a pa i ,s, i 6
 for i V and    s : pa i 1, 1   such that there is

    i

i

k

1 k,..., 0,1     with  if 1  and  s j 1  if and only if j 1  . Intuitively the

logical interaction hypergraph thus contains an edge for every summand in the logical sum of

products form such that the tails are the respective parents, the head is the regulated species

and the weights on the parents are such that they represent the on-off relations of the parents’

6
  pa i is the parent set associated to the ‘normal’ interaction graph; one could define the logical interaction

graph also without an underlying ‘normal’ interaction graph just “in terms” of the Boolean functions but the idea

remains the same.

63

states that give rise to  
ii i1 ikf x ,..., x 1 . Note that for every product in the sum-product

representation there is one hyperedge from the respective parents to the respective head

species.

Once the interaction structure and the Boolean logic functions are fixed, the next decision

concerns the choice of a so called update schedule (-regime, -scheme). Given a Boolean

network  V,f , I follow [Aracena et al. 2009] and define a deterministic update schedule to

be a function    s : V 1,...,n 1,...,m  with 1 m n  . The intuitive interpretation of the

update schedule s is that species i is updated before species j if and only if    s i s j .

Formally, the instantaneous dynamical behavior of the Boolean network  V,f with

deterministic update schedule s can then be framed as follows. Given a starting point

 
n0x 0,1 the trajectory of 0x is given by the sequence     

0nt

t
x 0,1 of global 0-1-

states such that for every i 1,...,n one has
    

 i i
1 nt tt 1

i i 1 nx f x ,..., x  with   i

j t t if

   s i s j and   i

j t t 1  if    s i s j for any j 1,...,n .

The classical synchronous update schedule [Kauffman 1969] is given by s 1 with m 1 .

Other approaches include block-sequential updating where s   and m n for a

permutation
nS

7
 of the species or block sequential updating given by a partition

1 mV S S   of the species such that    
m

1
s i i S

   [Aracena et al. 2009]. The

last two update regimes concern the internal structure of the update within one time step when

used to define the instantaneous dynamical behavior as given above (‘instantaneous’ in the

sense that everything happens during a single time step). A different situation is given by the

asynchronous update schedules [Harvey, Bossomaier 1997] which involve the update of only

one species during every time step. This can happen according to a prespecified update order

such that a particular species is updated every third, say, time step while another one is

updated only at every fifth step and so on. The above block-sequential update regime can also

easily be interpreted in a globally asynchronous fashion by updating species in S
 at every

 -th time step. [Gershenson 2002] describes the following update schedule. For each vertex

i V we have update parameters
i i i iQ ,P , P Q  and in time step t vertex i will be

updated if and only if  i it Q mod P . If more than one vertex has to be updated at a given

time step one can either update them all synchronously (semi-asynchronous update) or do so

in an arbitrary (i.e. random) order. In general, randomness can be variously incorporated for

the introduced update schedules. For example, in the sequential update schedule s   a

permutation could be chosen according to a density over the symmetric group while in the

block-sequential case a partition could be chosen randomly according to some suitable

probability law. The so called random order asynchronous update involves choosing a vertex

uniformly at every step [Harvey, Bossomeier 1997]. In Sections 3.5 and 4.1 I deal with so

7

nS , the symmetric group of order n, see for example [Karpfinger, Meyberg 2010: Chapter 9]

64

called generalized kinetic logic (GKL) models which are logical models following update

rules defined by deterministic or stochastic time delays associated to the up- or down-

regulation of specific genes [Thomas, D’Ari 1990]. Asynchronous updates where the

asynchronicity stems from more general stochastic processes have also been considered

[Deng et al. 2007].

Mathematically speaking there seems to be an almost infinite multitude of possible update

regimes and the question what kind of changes in dynamic behavior can arise from changes to

the update regime is certainly crucial as well as difficult in full generality. See for example

[Aracena et al. 2009]. In terms of biology however, the update schedules can be thought to

represent the characteristic timescales on which the respective processes typically act. If, for

example, a species is updated at every second step while another is updated only every fourth

step, this can be interpreted as the latter species having a typical time scale which is twice that

of the first species. Therefore, random order asynchronous update schedules are biologically

implausible since they would basically imply the completely random mixing of relevant

timescales during the dynamical evolution of a biological system. They can however be useful

for exploring the set of possible behaviours of a given Boolean network, see for example

[Álvarez-Buylla et al. 2008]. In contrast, the classical synchronous update regime seems also

not generally appropriate since it leaves out the possibility of differing timescales [Harvey,

Bossomeier 1997]. [Chaves et al. 2008] compare different update schedules in a Boolean

model of Drosophila segment polarity gene regulation. Parts of the main part of this thesis

(especially Section 4.1) will be concerned with appropriate choice of stochastic

asynchronicity in the framework of GKL models.

Another approach relating to update schedules and timescales is the one taken for example in

[Saez-Rodriguez et al. 2007] or [Schlatter et al. 2009]. There, several processes which are

modeled with a Boolean model respectively are known to act on different time scales, i.e.

regulatory influence A is active right from the start while regulatory influence B becomes

active only after some time delay. This knowledge was incorporated a priori into the study of

the respective Boolean models such that the model is successively ‘updated’ according to

which regulatory influences are known to be active at a particular time step and hence one has

in effect different Boolean models at different time steps which can then be analyzed in

succession. I refer to this approach in following as the timescale approach.

One last very important aspect of Boolean modeling has to be covered in this section, namely

the notion of attractors. In terms of gene regulatory networks, attractors are thought to

represent different functional or developmental states of cells. In the case of a Boolean model

of the cell cycle
8
 for example, different functional states (i.e. proliferation state or resting

phase, see [Munk et al. 2008: Chapter 12]) are represented by specific global 0-1, i.e. Boolean

states of the involved species. These functional states are generically transient and reversible.

Developmental states on the other hand relate to the decision of cells which developmental

pathway to pursue and this decision is often irreversible. One such decision is the fate

decision of -phages described in Subsection 1.3.6. In this case the decision is reversible, but

in case of blood cell formation (hematopoeisis) for example, a classical paradigm system for

8
 see [Davidich, Bornholdt 2008a] for a specific example and [Fauré, Thieffry 2009] for a review.

65

stem cell differentiation, the development into different specialized cell types of the blood

system is largely irreversible [Miranda-Saavedra, Göttgens 2008]. Again, the different cell

types or fates are described by characteristic Boolean states of the involved genes and species.

The simplest kind of attractor is a fixed point (or steady state) given by a state  
n

x 0,1 such

that  f x x , i.e. regardless on which deterministic or stochastic update regime is used (!)

the system will always stay in that state once it is reached (as long as there are no noisy

effects which may switch node states randomly, see Section 3.4). For deterministic update

regimes periodic limit cycles of length k are a further class of attractors which are

defined as a repeating sequence of states     
k

n
x 0,1 

 with k minimally chosen such that

if one starts in state x
 for one 1,...,k  after k update steps (conducted under a certain

deterministic (!) update regime) the system is again in that same state x
. The basin of

attraction of a given attractor is defined as the set of states which lead to this attractor. The

size of the basin of attraction of a biologically meaningful attractor in a given model (i.e. an

attractor representing a functional or developmental state) can be used to evaluate the

appropriateness of the model in the sense that the system should have “a tendency” to reach

that attractor) [Davidich, Bornholdt 2008a].

In the case of probabilistic update schedules the definition of attractors is not so

straightforward anymore. While fixed points can be defined in the same way, the definition of

limit cycles becomes difficult due to the fact that from a given state  
n

x 0,1 there may now

be several probabilistic possibilities for the successor state according to the stochastic update

involved and hence the ‘limit cycles’ may ‘branch out’. [Harvey, Bossomeier 1997] defined

so called loose attractors which basically correspond to strongly connected components of the

underlying state transition graph (see Section 3.5 for the definition of the state transition graph

and of ‘loose attractors’ in the context of GKL networks). More on attractors under random

asynchronous update regimes can be found in [Saadatpour et al. 2010].

There is certainly more that could be said about the general framework of Boolean models but

I leave it at that.

3.2 Random Boolean networks (RBNs): The ensemble approach

As already shortly mentioned in the preceding section, the historical starting point for

Boolean modeling of biochemical networks was the work of S. Kauffman in [Kauffman

1969]. In these days the data on bioregulatory systems necessary to set up even coarse-grained

models like Boolean networks was seldomly available and so the original aim of Kauffman’s

paper was not so much to setup models for specific biochemical systems but to introduce a

method to examine general design principles for the entirety of such networks.

66

With this aim in mind he defined random Boolean networks (RBNs). Formally, RBNs are

random variables such that their range comprises Boolean networks with specified properties,

see for example [Wittmann 2010: Chapter 3] or [Gershenson 2004]. For example, in

Kauffman’s original publication he considered networks where every vertex has K

uniformly chosen parents and the logic function of every vertex is also chosen uniformly over

all possible Boolean functions. Then he examined the statistical properties of these randomly

obtained networks, for example their average attractor number or their average attractor

length. These classical RBNs showed ‘ordered’ behavior for K 1 (perturbations do not

spread “very much”) and chaotic behavior for K 2 (perturbations spread “widely”).

Networks with K 2 he identified to be located “on the edge of chaos” and claimed that a

plausible property of real-world biochemical networks could be that they are located on this

edge of chaos, because in that case, on the one side perturbations should not spread too

heavily (which would result in the non-functionality of the network) and on the other side the

network also would not be too insensitive to perturbations what would be advantageous in

terms of the potential of the system to evolve new beneficial traits according to natural

selection.

There have been many developments of the RBN approach since 1969, for example

[Wittmann et al. 2010] considered multi-valued Kauffman networks. [Mesot, Teuscher 2003]

considered networks with asynchronous updating. The described approach is also often called

the ensemble approach and is described in detail in [Kauffman 2000] or [Aldana et al. 2003].

3.2.1 Biologically meaningful update rules

It was noticed that not all logic functions are equally plausible for biological systems and

hence it would be interesting to study ensembles of RBNs which only have certain so called

biologically meaningful update rules. For example it was recognized that so called canalizing

functions are often part of biochemical networks. A canalizing function is a logic function

such that there is one input variable which determines the output completely when it is in one

state and only if it is in the other state do the other variables become relevant [Harris 2002],

[Kauffman et al. 2003], [Kauffman et al. 2004]. Other works dealing with biologically

meaningful update rules are [Raeymaekers 2002], [Nikolajewa 2006] or [Wittmann et al.

2010].

A further special case of Boolean logic functions are the so called threshold functions defined

by

  
 

i j j i

j pa i

f x 1 x


    

where  
n

x 0,1 , constants (weights) j  and
i  being the so called threshold

constant. Boolean networks where the logic functions are all threshold functions of the above

form are called threshold Boolean networks (TBNs) and were studied for example in [Rohlf,

Bornholdt 2002] or [Szejka et al. 2008].

67

3.3 Probabilistic Boolean Networks (PBNs)

One further approach introduced by [Shmulevich et al. 2002a], [Shmulevich et al. 2002b] are

probabilistic Boolean networks (PBNs). PBNs introduce stochasticity into the Boolean

framework at the level of an existing Boolean network, in contrast to the ensemble approach

where the stochasticity comes into play at a higher level. In the basic PBN setup, the

connectivities of the network are assumed to be known and stochasticity enters in terms of

uncertainty concerning the update functions:

[Shmulevich, Dougherty 2010] define for a network with N species the so called gene activity

profiles  
N

N

i 1

s Q : 0,1,...,d 1 D


    as elements of a multi-valued state space. Further,

instead of just one logic function f :Q Q , a PBN can have several update ‘contexts’

f : Q Q  , 1,...,K   , where    i
f : Q D 0,1,...,d 1    is the update function of

species i if context  (out of K) is ‘chosen’. The contexts represent uncertainty about the

logic functions. The probabilistic dynamics is now defined as follows. For a given categorical

random variable    1 KC ~ Cat c , c c ,...,c (corresponding to the “law” of the uncertainty),

the time evolution  ns Q is given by a realization of the stochastic process  nS with

  n j n 1 jj 1,...,K, n : S f s ' S s ' c , s ' S       . So, in every update step one of the K

contexts is randomly chosen according to a probability vector c and the update then proceeds

according to the chosen logic function (context). The described process  nS constitutes a

Markov chain [Norris 1998] (see also Chapter 4) with transition probabilities

        
j

K

n 1 n jf s '
j 1

p s ',s : S s S s ' s c



     .

The above described PBNs are also termed instantaneously random PBNs because at every

update step a new function (which may be the old one) is chosen. An extension are the so

called context-sensitive PBNs which, as the name suggests, involve the (maybe more

persistent) choice of one of the contexts f : Q Q  . A context, as indicated above, is nothing

else than a particular choice of 1,...,K   . For instantaneously random PBNs this choice

is made at every update step. Context-sensitive PBNs now involve a probability  q 0,1

concerning the decision whether to choose a new context or not, i.e. a new context (which

may also be the old one) is chosen when a Bernoulli random variable realizes to one while the

old context is used to update the system if the Bernoulli variable realizes to zero. The

resulting dynamics is again a time-homogeneous, time-discrete Markov chain  nZ but in

contrast to above, the state space is now a combination of the context and the ‘state’ of the

network, i.e.    n n nZ ,S 1,...,K S    . Concerning the transition probabilities one obtains:

68

      

      

      

      '

n 1 n

n 1 n n 1 n 1

n 1 n n 1 n 1

'f s ' f s '

p (,s), (',s') : P Z ,s Z ',s'

 P Z ,s Z ',s' , ' P '

 P Z ,s Z ',s' , ' P '

 s 1 q qc
 



  

  



      

          

          

       
'

s qc





           
'

K

f s' f s '
1

 p (,s), (',s') s 1 q q s c
 





        

There are more refined versions of PBNs, for example one can take into account perturbations

of the states ns or one could choose contexts in such a way that the probability of choosing a

new one depends on the present one. For further details, see [Shmulevich, Dougherty 2010].

The PBN literature is mainly concerned with inference of the model structure based on

experimental data, see [Shmulevich, Dougherty 2010: Chapter 3] and the references therein.

Also, control and intervention theory for PBNs, see [Shmulevich, Dougherty 2010: Chapters 4

and 5] and the references therein, is a highly active field. Asynchronous PBNs also have been

proposed, [Shmulevich, Dougherty 2010: Chapter 6] and the references therein.

For a connection between PBNs and Bayesian networks, see [Lähdesmähki et al. 2006].

3.4 Stochasticity and continuous time

This section is dedicated to several approaches which also incorporate stochasticity into a

Boolean framework. In addition, approaches which deal with time-continuous Boolean

models are also included since sometimes these features overlap. Note however that an often

used class of time-continuous and (potentially) stochastic models, namely GKL (generalized

kinetic logic) networks are introduced in a separate section (Section 3.5, i.e. the next section)

and their exposition is a little bit more detailed since they form an object of further study in

this thesis in Chapter 4.

[Murrugarra et al. 2012] remain in a time-discrete Boolean setting and propose to introduce

noise into Boolean networks as follows. Given a species  i n , there is only one transition

function. But at every time step the actually occurring transition probabilistically depends on

whether the state of species i will increase or decrease. Formally, for every species i there is a

transition function    
n

if : 0,1 0,1 and two associated probabilities  i ip ,p 0,1  such that

the dynamics of the system can be described as follows. Given a state  
ntx 0,1 at time

0t the next state of species i will be equal to  t 1 t

i ix f x  with probabilities

69

 

 

 

t t

i i i

t t

i i i

t t

i i

p if x f x

p if x f x

 1 if x f x





 








and it will be equal to its present state, i.e. t 1 t

i ix x  , with probabilities

 

 

 

t t

i i i

t t

i i i

t t

i i

1 p if x f x

1 p if x f x

 1 if x f x





  


 




.

This means that the state of a species can switch according to its logic function with a certain

probability which depends on the direction of the switch and that species do not switch at all

with one minus that respective probability. The probabilities  i ip ,p 0,1  can be interpreted

as representing the timescales of the respective processes involved in increasing or decreasing

the state of a species. The higher the probability the faster the respective processes. Further,

species are assumed to make their update decisions in independently and therefore global state

transition probabilities can be written as the product of all the respective probabilities for the

single species.

[Garg et al. 2009] examined the concepts of ‘noise in nodes’ and ‘noise in functions’ which,

roughly speaking, relate to the random switching of states of nodes (interpretable for example

as measurement or data discretization errors, termed perturbations in the PBN framework)

and the PBN-type stochasticity applying to the uncertainty in the update functions

respectively. As pointed out by [Garg et al. 2009] the ‘noise in nodes’ concept is often used

throughout the literature, for example in [Álvarez-Buylla et al. 2008] or [Davidich, Bornholdt

2008a]. The basic idea of ‘noise in nodes’ can be described as follows. Given a state

 
ntx 0,1 ‘some’ noisy processes lead to a noisy state  

ntx 0,1 and the next state is then

obtained via  t 1 tx f x  . Alternatively, ‘noise in nodes’ can be applied at the updates

themselves according to the following logic. Given a state  
ntx 0,1 and its formal

successor  t 1 tx f x  , some noisy processes lead to a next state  
nt 1x 0,1  such that some

species’ states are flipped with respect to the formal successor according to some node-

dependent or –independent state flipping probability. ‘Noise in functions’ is accurately

exemplified by the PBNs from Section 3.3. [Garg et al. 2009] tested the robustness of an

existing Boolean model with respect to both types of noise (for the exact choice and

implementation of the noise types, see [Garg et al. 2009]. Robustness in this case relates to the

(probabilistic) persistence of the deterministic attractors of the original model under the

influence of noise, i.e. how often do trajectories lead to the known deterministic attractors of

the original model. The conclusion was, that ‘noise in nodes’ mostly destroys the (biologically

relevant) long-term behavior while ‘noise in functions’ conserves the attractor structure in the

70

sense that attractors which had the biggest basins of attractions in the deterministic Boolean

model also had the highest probability to be reached by the noisy trajectories.

Robustness is a very general concept and roughly means the ‘invariance’ of certain properties

of a system with respect to changes of other properties of the system or the environment of the

system and is also extensively studied in the context of biology [Kitano 2004, 2007], [Stelling

et al. 2004], [Barkai, Shilo 2007], [Wagner 2005]. Of course ‘robustness’ is so general a

concept that it plays a role in almost every branch of science and technology. For a further

study examining ‘robustness’ in the context of Boolean network models it is referred to

[Willadsen, Wiles 2007].

[Teraguchi et al. 2011] implicitly introduced exponentially distributed time delays into

asynchronous Boolean models like the GKL framework described in the next section. [Stoll et

al. 2012] proposed a time-continuous stochastic version of asynchronous Boolean modeling

which is based on the same principles as the model of [Teraguchi et al. 2011] but in addition

[Stoll et al. 2012] also consider state-dependent exponentially distributed time delays and

provide a software tool called MaBoSS (Markov Boolean stochastic simulator) which

implements the Gillespie algorithm for the resulting time-continuous Markov process.

Formally, every species has associated up- and down-regulation rates  up

iR x and  down

iR x

which are dependent on the present state    
n

x x t 0,1  of the system at time  t 0,  .

These rates are thought to be the rates of the continuous-time Markov jump process [Norris

1998: Chapters 2 and 3] as well as [Stoll et al. 2012: Supplement]. For example such a rate

can be of the following form:    up

i 1 j 2 j kR x a x a x x    for some species k, j i and

some constants 1 2a ,a 0 , i.e. the rate of node i is equal to 1a if species j is on and it is equal

to 2a if species j is off but species k is on. Given that the system is in state    
n

x x t 0,1 

at time t, the simulation procedure now simulates the time of the next switching event and the

species which will bring about the asynchronous switch according to the rates  up

iR x and

 down

iR x just as in the Gillespie algorithm described in Subsection 2.2.2 proceeds with the

time to the next reaction and the type of the next reaction. This works since the Gillespie

algorithm is more generally applicable than in the restricted setting of biochemical reaction

networks and can actually be used to simulate any time-continuous Markov jump process

(with only finitely many transitions being possible in every state) based on the knowledge of

the transition rates. As mentioned the models of [Teraguchi et al. 2011] and [Stoll et al. 2012]

can be interpreted as the assumption of exponentially distributed waiting times in a GKL

model. However, as outlined in Chapter 5, the assumption of this kind of distribution applied

to the heterogeneous processes which are involved in switching on and off Boolean variables

might be an oversimplification.

More general time continuous Boolean models have also been proposed, for example by

[Öktem et al. 2002] and [Öktem et al. 2003] who deal with a general kind of Boolean delay

systems which were mathematically studied by [Dee, Ghil 1984] and [Dee, Mullhaupt 1985]

and which are of the general form       i i 1 i1 n inx t f x t t ,..., x t t   for species i and

71

delays
ijt 0 which describe the delay with which a state of species j gets effected through

the Boolean logic function of species i.

Finally, it is noted that [Ivanov, Dougherty 2006] proposed a way to relate time- and state-

continuous models based on stochastic differential equations (SDEs) to time-continuous and

state-discrete Markov chains.

3.5 Generalized kinetic logic (Thomas formalism)

In this section the Generalized Kinetic Logic (GKL) approach developed by R. Thomas and

coworkers [Thomas 1973], [Thomas, D’Ari 1990], [Thomas 2013] is presented.

The most important idea involved in GKL is that of switch-like influences characterized by

thresholds. As already mentioned before, it is often the case that the interactions in

biochemical networks are governed by steep sigmoid regulation functions, called Hill-type

functions (see Subsections 1.3, 2.1 and 3.1). As we will see in Section 3.6 on piecewise linear

differential equations (PLDEs) one possible simplifying departure from the general ODE

formalism with general Hill-type regulation functions is that the regulation functions are

assumed to be “infinitely non-linear”, i.e. real discontinuous switch functions. However, the

state of a PLDE system is still described by a continuous state vector. In contrast, in the GKL

framework the states are now discretized. But the idea of switch-like interactions is, of course,

naturally conserved. In contrast to classical Boolean models the GKL involves multi-valued

discrete levels for the biochemical species. Concerning the dynamics, GKL is characterized

by so called logical parameters (originating from a formal connection to PLDEs [Snoussi

1989], [Thomas, D’Ari 1990]) or more generally by transition functions and an asynchronous

updating scheme which is defined via species-specific time-delays.

Since the dynamics of GKL networks is ultimately determined by so called time-delays

(introduced below) the values and relations of these time-delays are crucially important. In

Chapter 4 I introduce several approaches which aim at meaningful choices of probability

distributions for these time-delays. The idea of introducing probability distributions for the

time-delays is almost as old as the field of GKL itself [Thomas (ed.) 1979], [Thomas 2013]

and also has been conducted in some instances (with uniform distributions over (connected)

intervals): [Thomas (ed.) 1979], [Abou-Jaoudé et al. 2009]. As mentioned in the preceding

section, [Teraguchi et al. 2011] and [Stoll et al. 2012] implicitly introduced exponentially

distributed time delays to GKL networks.

Since notations and some definitions are not unified throughout the literature, the ones

adopted in the following are a (to some extent arbitrary) mixture from [Snoussi 1989],

[Thomas, D’Ari 1990], [Thomas 1991], [Snoussi, Thomas 1993], [Jamshidi et al. 2013],

[Siebert, Bockmayr 2009] and some of my own notational preferences.

72

Before proceeding to the formal definitions in Subsection 3.5.2 I shall first give a semi-formal

motivating description of the details concerning the GKL framework.

3.5.1 Semi-informal description and motivation of GKL

Given one particular species in a biochemical network under study, say species i, it is

assumed that i carries out its various influences on some other species in the network only if

the concentration level of i has surpassed some characteristic threshold for the respective

influences of i with respect to the threshold specific other species. For example, let i

influence another species j. Then, there is postulated to exist a specific threshold
ij 0 

(located on the continuous scale of concentration level for species i) such that i has an

influence on j if and only if the concentration level of i is above or below
ij . So far this is

nothing more than the idea of the step-like interaction of species already encountered in

Chapters 1 and 2. If we now assume that i influences
ik  other species, we have

i ip k ,

ip  thresholds    i1 p

i i0 ,...,    (some influences may have the same threshold) which

can be w.l.o.g. ordered such that    i1 p

i i    . Now it is obvious that we have, depending

on the concentration level of species i,
ip 1 qualitatively different situations defined by the

influences which are exerted due to the fact that i is above or below certain thresholds. This

provides the motivation to define the state space for a regulatory system with N species as
N

i

i 1

: D


 with  i iD : 0,1,...,p .

The interpretation of the introduction of multi-valued logical states as a correspondence to

continuous thresholds describing fundamentally different influence regimes for a species is

originally due to [Van Ham 1979].

For convenience we introduce the following notation: for k,m , k m  we define

   k : m : k,m  . For example, we have  i iD 0: p .

There is an easy and very useful way to transform the model described so far into a purely

Boolean framework, see for example [Snoussi, Thomas 1993]. This is usually done by

associating to every state variable  i iq D , i 1: N  a whole set of variables

    i iq : 1: p


 such that
iq k ,  ik 1: p if and only if  

iq 1

 for every  1: k and

 
iq 0

 for every  ik 1:p  (of course,  i ip 1: p  is defined to mean ). In

terms of the thresholds    i1 p

i i0       associated to i we have    k k 1

i i ix


    (with

 ik 0 : p ,  0

i : 0  ,  ip 1

i :


   and
ix 0 being the (for the GKL approach irrelevant but

physically real) concentration level of species i) if and only if
iq k if and only if  

iq 1

 for

every  1: k and  
iq 0

 for every  ik 1: p   .

73

In summary, up to now we (implicitly) assumed some interaction graph and introduced the

concept of nodes influencing other nodes only in relation to a certain threshold specifically

associated to the edge corresponding to the specific influence. To model the relation of nodes

to their various thresholds the variables describing the state of the nodes are assumed to be

discrete multi-valued and are thought to represent which thresholds are surpassed by the

physical but (with respect to the GKL) imaginary continuous concentration variable

associated to the node in question. Further we introduced a simple transformation approach

which allows one to transform the multi-valued states to a set of purely Boolean variables and

vice versa.

We can incorporate the information concerning which of the thresholds is decisive in the

interaction of two nodes into the interaction graph by simply weighing the corresponding edge

such that the weight indicates the threshold which is important for the ‘activity’ of the edge in

question. What ‘activity’ can mean, will become clearer in the sequel. In addition, one can

sign the weights according to the qualitative impact of the regulating function of the edges

(influences) which they weigh, i.e. activating or inhibiting. Note, however, that a priori some

edges may have different impacts under different contexts, i.e. inhibiting in one situation and

activating in another. We explore that issue below.

Example 3.5

We now introduce a simple example consisting of four species to exemplify the notions

introduced so far. First we present the example by the following interaction graph:

What this interaction graph represents, is a situation with three biochemical species interact

according to influences represented with the directed edges. The weight  e ew ,sgn shown

over some edge e means that the appropriate threshold for the edge to be ‘active’ is the
ew -th

threshold of the regulating node. (The regulating variable of a directed edge  i, j is the node

i; j is called the regulated node.) The sign weight
esgn on the other hand indicates that the

regulating node of the edge is an activator (
esgn  ) or an inhibitor (

esgn  ) of the

regulated node.

So, in terms of the formalism the logic behind the example above is the following. Nodes 2

and 3 positively regulate node 4 which has two thresholds associated while nodes 2 and 3

1

 1,
 1,

 2,

 1,

 1,

2 3

4

74

possess only one threshold. Nodes 2 and 3 activate node 4 whenever they are above their

respective thresholds and in addition node 3 is also activated by node 2. Node 4 on the other

hand has two thresholds. Above the first it negatively regulates node 2 and above threshold

two it additionally inhibits itself (negative auto-regulation). Last but not least node 2 receives

an input signal from node 1.

The overall ‘system-wide’ logic of the network could be that node 4 has to be up-regulated

periodically from time to time (to induce some specific reaction to some input situation

(osmotic stress, toxicity, etc.) sensed by node 2 and modeled by node 1) which is done via the

influences of nodes 2 and 3. But since node 4 has to be down-regulated again (because too

long intervals of high level of species 4 might again be toxic to the cell, for example) there are

two feedback loops which are meant to achieve the down-regulation of species 4. The first

one acts via the whole circuit by inhibiting species 2 as soon as species 4 is above its first

threshold and in effect the activation of 4 by 2 and 3 should be switched off after some time-

delay. A second mechanism acts directly on species 4 via a negative auto-regulatory loop

which is activated if species 4 has still accumulated further such that it exceeds also its second

threshold.

To examine the example further and to finally give meaning to expressions like “j negatively

regulates i” or “i activates j” we have to specify the precise logic of the interactions and

ultimately the dynamics of the system.

So, what still needs to be specified is the dynamics of the GKL. In the most general setting a

first step towards a dynamics of the formalism introduced so far is the introduction of a

transition function f :  which assigns to every state vector a successor state and

describes the overall regulatory logic of the system. Historically it is common to call

   i iQ q : f q the image of variable i given state q . We denote by
iQ the image of

variable I given an abstract state of the system in the sense that we can make assertions such

as ‘… the images of
iQ and

jQ differ by three and therefore…’ indicating that the assertion

made is invariant with respect to the exact states which led to the respective images.  f q is

simply called the image of state q .

Example 3.5 (continued)

Given the interaction graph of our example from above, we can now specify a transition

function. Note however that since the variable ‘input’ is assumed to be constant or in some

sense ‘external’ or under ‘control’ we do not incorporate it into the state space and hence

arrive at the following transition table(s) (i.e. transition function) split up according to the

input node (i.e. transition function):

75

(For aesthetic simplicity we write the vectors  
T 4

1 2 3 4q q ,q ,q ,q  in sequence form, i.e.

1 2 3 4q q q q q ; the same rationale is applied to the image vectors  f q .)

We have already seen how one can transform the multi-valued discrete states to purely

Boolean states and vice versa and naturally it is also possible to transform the respective

transition functions. One can easily check that the transition table above is equivalent with the

following (intuitively convincing) component-wise definitions of the images via the purely

Boolean variables associated to the multi-valued states as introduced above:

    1

1 1Q q : q ,      1 1

2 1 4Q q : q q  ,    1

3 2Q q : q ,         1 1 2

4 2 3 4Q q : q q q  .

Of course, it is much more natural to specify the component-wise images like that first and

only then deduce the transition table (which was actually also done here). Nevertheless the

formally decisive entity is the transition function.

The transition function associates to every state exactly one image. The image of a variable is

thought to indicate the tendency of the respective variable to change its state, i.e. if the image

is larger than the value of the respective state variable, the variable will have the tendency to

rise its level and vice versa if the image is lower, the state variable has the tendency to lower

its state value. It will become clearer below what ‘tendency’ to change state actually means.

Finally, if image and state coincide the variable won’t change its state since the regulatory

logic (i.e. the image) indicates that its state is currently consistent with its state value.

One further assumption of GKL is that given a state and its image only one variable can

change its state. Once this one variable switched its state, the system is in a new state and

therefore also the image has to be changed again which may then lead to again other variables

with the tendency to change and so on so forth. The exact mechanism of the switching (i.e.

which of the variables switches given that several of them have the tendency to switch and the

points in time when such switches take place) is later implemented via time-delays associated

to every variable. For now it is sufficient to note that given state and image the next state can

 q  f q

0000 0000

0100 0011

0010 0001

0001 0000

0002 0000

0011 0001

0101 0011

0110 0012

0012 0000

0102 0010

0111 0012

0112 0010

 q  f q

1000 1100

1100 1111

1010 1101

1001 1000

1002 1000

1011 1001

1101 1011

1110 1112

1012 1000

1102 1010

1111 1012

1112 1010

76

in principle be every state such that this new state differs in exactly one of the state variables

which had the tendency to change their state given the old state. Furthermore the switches

only lead to changes of one, i.e. if a variable is in state k then its new state (given that it

does not coincide with its image) can only be k 1 or k 1 (irrespectively of how different

the state may have been from its image.) In the light of the interpretation of state variables

indicating the location of a continuous concentration level with respect to successive

thresholds this seems very natural since thresholds have to be passed one after the other and

the concentration levels cannot just jump over an interval between two thresholds what would

then correspond to a state variable changing by more than one at one single transition.

One can represent the kind of structure described in the preceding text section via an

asynchronous transition graph. The nodes of the graph represent all the possible states of the

system and two of them are connected by a directed edge if and only if the root vertex

represents a state such that its image allows the transition to the other state according to the

logic described above.

Example 3.5 (continued)

For our example we can see that the state space is partitioned into two sets of states such that

there cannot be any transitions between them. Because the input node, node 1, always has its

very value as its image it will never change its state and hence there are no edges in the state

transition graph leading from a state q with
1q 0 to a state q ' with

1q 1  or vice versa. So,

for illustration purposes we can split the transition graph into two subgraphs each one

representing either the situation with or without input.

The part of the transition graph which represents the no-input regime (and where the first

variable is left out since it is always equal to zero, i.e. the states shown are of the form

2 3 4q q q) is as follows:

000

002

001 100

010

011 101 110

111

012

102

112

77

This graph looks already very complicated. A closer look reveals that the only directed cycle

is the 111-110-cycle (the corresponding edges are colored in orange) and that from every state

we can go in at most three transitions to 000 which is a steady state, i.e. a state which is equal

to its image.

Since the network is thought to react to some input and to be non-functional otherwise the 000

state seems to be most probable for species 2,3 and 4 if no input is present and since 000 is a

steady state the system will show no reaction if there is no input (given that the system is

already completely relaxed, i.e. in state 000). The other vertices in the transition graph

represent states such that the system is not entirely relaxed, maybe because some input

preceded the now occurring no-input phase and the transition graph then reveals the various

ways in which the system can relax itself to the final relaxation state 000. The 111-110-cycle

could have the meaning of some temporary memory such that it may be easier (i.e. faster) to

switch to activity (i.e. high values of species 4) if input occurs to be present again. We explore

this possibility later on.

On the other hand, the part of the transition graph which represents the regime with present

input (again represented by the sequences
2 3 4q q q knowing that

1q 1) looks as follows:

What can be seen regarding this part of the transition graph is the presence of a directed cycle

(colored in orange) from state 000 (again ‘state’ now ambiguously refers to
2 3 4q q q , i.e.

coordinates 2,3 and 4 of the actual state) to state 112 and 012, i.e. to states where species 4

exceeds even its second threshold and hence can influence some processes (which are not part

of the model) designed to be activated exactly when this situation occurs in response to some

initial input
1q 1 . What also can be seen is the fact that all states which are not themselves

000

 000

001

002

011

111 012

010

102 101

100

110

112

78

part of the directed cycle (marked blue) ultimately all lead to some state which is again part of

the cycle. Therefore the cycle represents a stable limit cycle and in the presence of input the

system periodically drives the fourth species above its second threshold.

In a last step one still has to specify the exact update schedule (see Section 3.1) according to

which the transition function f is bound to be applied. In the GKL framework this is usually

done via the introduction of time-delays associated to the variables. Generally, every species

can switch on or off and to every such process a threshold-characteristic time delay is

introduced such that these time delays describe the duration of the respective processes

[Thomas, D’Ari 1990], [Thomas 2013]. In summary, if a species happens to have m

thresholds then there are two times m time delays associated to that variable corresponding to

the timescales for the respective threshold-dependent processes.

With the introduction of time delays, time is effectively modeled by a continuous variable. As

described above the image of a state describes the tendency of the state to change its value

and this now happens according to some species- and threshold-specific time-delay. Let us

denote the state of species i by x for simplicity, i.e.
i ix : x  . The time-delay of species i,

say the one for the up-regulation corresponding to the first threshold, i.e. the switch from 0 to

1 is denoted by  1

x xt t (on-switch time-delay for first threshold) while the time-delay in case

of the switch from 1 to 0 is denoted by  1

x xt t . Assuming that the discrepancy between state

and image, and therefore the first order for the variable to switch, appeared at time t 0 , the

state will switch to the corresponding new state after time
xt t or

xt t (depending on the

character of the proposed switch) (or stay the same if state and image agrees again before time

xt t or
xt t because some other variable switched accordingly).

The following figure (from [Thomas 2013]) depicts the logic of the model for the state x and

its image X. The picture shows the up-switching of x with delay
xt relative to the up-

switching of its image and the following down-switching with delay
xt relative to the down-

switching of its image. Note that although only the state and the image of X is shown the

other species inevitably are also playing a role since the first up-switching of the image as

well as the down-switching of the image which follows ultimately have to be brought about

by some of the other variables changing its state such that the image X of x changes again:

 from [Thomas 2013]

79

Given that every variable has time delays associated the system now evolves according to

inequalities involving the sums of these delays. For example, look at the following snapshot

from the above state transition graph for the GKL network of example 3.5 with input zero:

Assume that the system is in state 110 and that the system just initialized, i.e. we can ignore

all the history the system might possess. There are now two possibilities for the system to

evolve: either species 2 (corresponding to the first number in the state…) switches down first

in which case the next state of the system will be 010 or species 4 (corresponding to the third

number in the state) switches up first in which case the the next state of the system will be

111. This decision is brought about according to which of the time delays, the one associated

to the up-switching of 4, say
4t , or the one associated to the down-switching of 2, say

2t , is

smaller. So, in a deterministic setup the smaller time delay decides the dynamics. Let us

assume that in this example the delay for the up-regulation of 4 is smaller, i.e.
4 2t t , and the

next state of the system is therefore 111. Now there are again two possibilities, either species

4 switches down again and the next state is again 110 or species 2 switches down such that

the next state would be 011. In principal, the decision now again depends on the comparison

of the responsible time delays
4t and

2t . But now we have to take into account that the image

of species 2 differs from its state not just since the last switch of the system but actually since

the step before. So, in order that species, say, 4 switches down, the relation which has to be

fulfilled is now
4 4 2t t t  . Then, again in state 110 the system will switch back to 111 since

we assumed
4 2t t . Notice that species 2 remains ‘activated’ all the time in the sense that it

disagrees with its image without switching. In order for the system to again switch back to

110 the following inequality has to be satisfied:
4 4 22t 2 t t  . Generally, one can see that if

the system starts (without history) in state 110 with
4 2t t there will be  switches from

110 to 111 (and 1 back) until the system finally reaches state 011 where  is the

smallest integer with  4 4 2t t t   . In this sense deterministic time delays determine the

80

dynamical behavior of a GKL network. In terms of continuous time, if the system starts at 110

at time t 0 (without history), it finally reaches state 011 at time  4 4 2t t 1 t t     .

Applications of GKL networks to biological systems

GKL networks have been applied to model biological systems (what is only mildly surprising

taking into consideration the fact that they were invented to do so). In [Thomas (ed.) 1979]

GKL is applied to various example networks. [Thomas 1979] and [Thieffry, Thomas 1995]

apply GKL to model the gene regulatory network of -phage (see Subsection 1.3.7).

[Sánchez, Thieffry 2001] and [Thieffry, Sánchez 2002] address the modeling of the so called

gap gene regulatory system in Drosophila melanogaster embryos. [Sánchez, Thieffry 2003]

then studies the next regulatory step in the Drosophila embryo, the pair-rule gene regulatory

network, while [Sánchez et al. 2008] finally model the so called segment polarity gene

network which is still a step further in the overall fruit fly development than the pair-rule

genes.
9

[Mendoza et al. 1999] model flower morphogenesis in Arabidopsis thaliana with a GKL

model.

[Abou-Jaoudé et al. 2009] apply GKL modeling to the so called p53-Mdm2 system. One

interesting aspect of this study with respect the GKL framework is the introduction of

deterministically time-dependent time delays.

The next subsection will provide the formal definitions concerning GKL networks.

3.5.2 Formal definitions for GKL networks

In this subsection the intuitive notions of the preceding subsection are made precise and

having the informal explorations from the latter in mind, the definitions should be readily

interpretable and in order to keep the exposition within certain bounds, minimal further

explanatory remarks are made in this subsection. First one can define the general form of a

GKL network as follows.

Definition 3.5.1 (GKL network) (adapted from [Jamshidi et al. 2013])

 A GKL network is a tuple  V, ,f with a finite set V  , a level map

 : V  and an image function      
i V i V

f : 0,1,..., i 0,1,..., i
 

    .

9
 For a general overview on the mathematical modeling of

 Drosophila embryogenesis it is referred to [Jaeger 2009].

81

V is also called the species set and in the following I assume w.l.o.g.    V n 1,...,n  for

some n . Any i V is called a species (of the GKL network) and  ip : i  is called the

level of species i. For i V the set   i i: 0,1,...,p is called the (state) range of species i.

The set
n

 i

i 1

:


 is called the state space of the GKL network and the image function can

thus be conceived as a mapping from the state space to itself, i.e. f :  .

GKL networks with ip 1 for all i V correspond to classical Boolean networks as defined

in Section 3.1.

Based on a given GKL network its state transition graph is defined such that transitions are

only possible between states which differ in exactly one state such that this respective state

was ordered to switch according to the image function.

Definition 3.5.2 (State transition graph; STG) [Jamshidi et al. 2013]

 Given a GKL network  N V, ,f  the (state) transition graph  STG N

 of N is defined as    STG N : ,E with state space and the transitions

 E  defined such that  q,q E if and only if

         j j j j j i ij n :q q sgn f q q q i n \ j : q q          .

Logical steady states (fixed points) are defined in straight analogy to the Boolean case as

states q for which  f q q holds. More generally, attractors of a GKL network are

defined as for asynchronous Boolean networks.

Definition 3.5.3 (Attractors of GKL networks)

 Let  N V, ,f  be a GKL network with transition graph    STG N : ,E .

  is called attractor of N if  q,q E : q q \     and

 q,q directed path with tail vertex q and head vertex q   .

82

So far, I defined GKL networks without dynamics. Dynamical behavior in GKL networks is

defined through the introduction of time delays. The following definitions are especially

designed in order to meet the needs of the thesis.

Definition 3.5.4 (Timed GKL network)

 A timed GKL network is a tuple  N,  where  N V, ,f 

 is a GKL network and       i i: p 1, 1 0, : i V       T .

For every i V , the map      i i: p 1, 1 0,      associates level-dependent time-delays to

the respective species which also depend on whether the variable is about to increase or

decrease (see below). I define further
   i i: , 1


     and
   i i: , 1


     for all i V and

 ip .
   i 0,


   describes the time needed to switch the state of species i from 1 to 

while
   i 0,


   describes the time needed to switch the state of species i from  to 1 .

The transition graph for timed GKL networks is just defined to be the transition graph of the

respective GKL network N.

A different approach to formally incorporate time delays was for example taken by [Siebert,

Bockmayr 2009]. There the Thomas formalism was formulated and extended with a view

towards the application of the established theory of so called timed automata studied in

theoretical computer science. The definition above is manufactured in order to fit the needs of

this thesis.

Now, one can define the dynamics for a timed GKL network in terms of its time delays. In

order to be able to make the following definition however it is inevitable to introduce two

more formal notions. Let a (timed) GKL network as in Definition 3.5.4 be given. First, for

q define the children (or successor) states of the state q with respect to the given

transition graph as     STG q : q : q,q E   . Second, I define the so called switching

map             q q q q

1 2 3 STG j

j V

, , : q V p 1, 1


            for every state q by the

following component-wise definitions:

      
n

q

1 j j

j 1

q : j q q


   ,

         
n

q

2 j j j j j

j 1

q : q q q sgn q q 1


       
  ,

     

n
q

3 j j

j 1

q : sgn q q


   .

83

Although this definition of the switching map looks rather complicated, it just describes for a

given state q and one of its successors  STGq q which species has to change its state

(   q

1 q ), which corresponding threshold has to be crossed (   q

2 q ), i.e. which time-

delay plays a role and finally
   q

3 q encodes whether the species specified by
   q

1 q has to

decrease or increase its state by one in order to bring about the transition from q to q .

For state q the set      

           q

1

q q

2 3 STGq
q : q , q : q q


     is called active delay

set of the state and its elements are said to be active for state q. A second useful notion

associated to a state q is the set of active species         q

1 STGq q V : q q    . The

elements of the active species set are called active species with respect to state q . Note

the formal difference between active delays and species respectively. However, there is a

bijective mapping between these two such that every active species gets mapped to its

corresponding active delay and they, active delay and active species, essentially describe the

same situation of switching potential (associated to a certain state q).

Next, a switching delay
0 0: V   will be used to describe the dynamics:  i,   

represents the fact that after the -th overall switching event, species i is still active with

delay   k

i iq 1, 1


   or   k

i iq , 1


  without having switched or a qualitative change in the

respective image having taken place. Formally, we have for a state q the active delay

association map for
0 as

             

        
1

1 2 3q
: , q q , q

   


       

where             1 STG: q q V : q q
  

      is the set of active species in state

 
q


 and where         

            
1

2 3 STGq
: q : q , q : q q

   


       is the set of

active delays in
 

q

 .

Now, we are prepared to algorithmically define the dynamics of a timed GKL network.

Algorithm 3.5 [Dynamics of timed GKL networks]

Input: I.1  N,  # a timed GKL network

 with,  N V, ,f  being a GKL network and  i

i


 and  i

i


 being

 the time delays associated to threshold  i ip  of species i V (see above)

 I.2  0
q  # initial state

84

 I.3  maxt 0,  # maximal time

Output: O1.    0 maxq
Q : 0, t   # continuous time evolution for some 0 

 O2.    1q
 


 # associated jump dynamics,

0 is the number of

 switches which have taken place

(1)  i V : i,0 0    # initialization of switching delays

(2)      
0

0

q
0 q  # initialization of jump process

(3) t 0 # initialization of continuous time

(4) 0 # discrete jump time

(5)  1  # “active states before start” (technically necessary)

(6) while
maxt t :

 (5.1)
      STG q : q : q ,q E
 

   # successor states, this can be done by

 computing the image, i.e. the STG

 has not to be computed a priori!

 (5.2)              1 2 3 STG j

j V

, , : q V p 1, 1
    



           

 # compute the switching map

 (5.3)          1 STG: q V : q q
 

     # active species

 (5.4)      

            
1

2 3 STGq
q , q : q q

  


      # active delays

 (5.5)
             

        
1

1 2 3q
: , q q , q

   


       

 # active delay association map

 (5.6) for
  STGq q


 with
       1 q 1


     :

 # update switching delays for active delays

 (5.6.1) if
             1

1 1q q
   

     :

 (5.6.1.1)          1 1q , q , 1 1
 

      

 #
   1 q


 is active with same delay as before, hence the

 switching delay for the respective delay has to be updated

 (5.6.2) else:

 (5.6.2.1)     1 q , 0


   

 #
   1 q


 is active with new delay, only possible if the

 difference of state and image of the species changed

85

 sign with the switch from
 1

q


 to
 

q


 (5.7) for  i V \  :

 (5.7.1)  i, 0   # “switching” delays of non-active species

 (5.8) for  i  :

 (5.8.1)  i,  # switching delay

 (5.8.2)
i

1

t




   # time since activation of delay

 (
b

a

t : 0


 for all a b)

 (5.8.3)
   i i i


   

 # residual delay with respect to its activation time

 (5.9)
 

i
i

s arg min
 

  # switching species

 (5.10)
 

i
i

t min
 

  # time to next switch

 (5.11)         1

1 STGq q with s q , q q
  

  

 # next state according to switching species

 (5.12)      
0

1

q
1 q


   # update of discrete jump output

 (5.13)        
0

q
t, t t : Q q



    # update of continuous-time output

 (5.12) t t t  # update of continuous time

 (5.13) 1 # update of jump time

In Section 4.1 the above algorithm is slightly adapted to allow for the incorporation of

probabilistic time delays, see algorithm 4.1.

As mentioned before the preceding definitions are manufactured to meet the needs of this

thesis. Other approaches to formally incorporating time delays are [Bernot et al. 2004],

[Ahmad et al. 2007] or [Bockmayr, Siebert 2009].

3.6 Piecewise linear differential equations

Piecewise linear differential equations (PLDEs) were introduced by [Glass, Kauffman 1973].

For a review see for example [De Jong et al. 2004a] and also the respective section in [De

Jong 2002] for a more condensed explanation of the approach.

86

PLDEs are a specialization of the general ODE model framework introduced in Section 2.1:

  i i i ix g x x , i 1,...,n    .

Here
ix is again the continuous concentration level of the i-th chemical species with n being

the number of species involved.
i 0  is the (linear) degradation rate of species i and

degradation is assumed to be linear.

What makes such a system of general ODEs a piecewise linear system of ODEs is the special

structure of the right-hand side, more precisely the nature of the functions n

i 0 0g :   . In

PLDEs they are just Boolean-like step functions, i.e. radical versions of the more physically

realistic sigmoid (Hill-type) regulation functions introduced in section 2.1:

    
i

i ij ij

j L

g x b x


  .

Here,
iL is some (finite) index set, the

ij 0  are parameters describing the strength of the

encoded regulatory interactions and the functions  n

ij 0b : 0,1  finally are sums of

products of step functions   
 

 

j j

j j

j j

1 x
s x , :

0 x


  

  
 

 or
     j j j js x , : 1 s x ,     where

the constants
 
j 0  are thresholds for activation or repression. Every species j can have

several thresholds
 
j 0  ,

i1,...,p  depending on the respective thresholds with which

it influences other species i via their regulation functions
ig . This means that given thresholds

i ip p 10 1 2

i i i i i: 0 :             for every i 1,...,n a system of PLDEs is given by

i i, i ix x , i 1,...,n   

in every open hypercube  i i

1 n

n
j j 1

j ... j i i

i 1

,




   with  i ij 0,...,p where the hypercube-

specific constant
i, 0  is obtained via  i, ig x  for some (and hence all)

1 nj ... jx . The

hypercubes  i i

1 n

n
j j 1

j ... j i i

i 1

,




   are also called the regulatory domains of a given PLDE

system.

To give an example, we model the situation of an AND-logic regulation of some species i via

two other species j and k. Imagine that there are thresholds j k, 0   such that when both the

state variables of j and k are above their respective thresholds the production rate of species i

is set to some constant
i 0  while if just one of the two regulators j or k is below its

respective threshold, species i is not produced at all. The situation described can be easily

captured in the following functional form (with some linear degradation rate
i 0 ):

87

    i i j j k k i ix s x , s x , x      .

Given this kind of simplified ODE formalism one can try the same analyses as with general

ODE systems: examine the steady states, solve numerically, etc. But one has to be careful.

While the system is very well behaved in the regulatory domains (and even analytically

solvable in every such domain) the system as a whole can show subtle behavior depending on

the behavior of the system at the regulatory domain boundaries. Formally, the system is not

defined there but intuitively on can picture a typical situation which can occur at a boundary

as follows (the lines represent boundaries, the red and green arrows on either side of the

boundaries represent the vector fields in the respective regulatory domains and the orange zig-

zag routes exemplify two typical situations of the (time-discretized) dynamics for a PLDE

system at its domain boundaries):

While on the boundary on the left the dynamics just ‘jumps over’ the discontinuity the

dynamics on the right shows a case were the dynamics is somehow trapped onto a boundary

of the system. The situation on the right is usually called a sliding mode solution and is a

well-known phenomenon in the theory of differential equations with discontinuous right-hand

sides and there are ways to formalize the described issues. One is the definition of so called

Fillipov solutions [Fillipov 1988], [Gouzé, Sari 2002], [Casey et al. 2006] where the vector

field of the discontinuous system is extended onto the boundaries of discontinuity by means

of convex combinations of the respective neighboring vector fields. See also [Sastry 1999].

The domain boundaries of a PLDE system are also called switching boundaries or switching

domains.

I point out two further things here. For every regulatory domain , a unique ‘steady state’ is

given by
i, i, ix   for i 1,...,n and if

i,x  for all i 1,...,n the trajectories of the

system will converge to that state once they (somehow) reached the domain. But since the

system is more than just one ODE on only one domain the ‘steady states’ do not always lie in

the regulatory domain to which they are associated to. The state  
T n

1 n 0x x ,..., x   is

called focal point of the regulatory domain . See [Casey et al. 2006] or [Edwards 2000].

Lastly, it can be shown that if
 

 i

i
x 0

i

g x
max max 0,


  


 the set  

n

i

i 1

: 0,max


  is

invariant [De Jong et al. 2004a].

88

3.6.1 Relation to logical models and qualitative simulation

Intuitively it should be clear that the PLDE formalism has logical or Boolean flavor since

regulation is modeled via the combination of functions only taking values 0 or 1, i.e. logic

functions. I exemplified this in the preceding section with the simple model of an AND-gate.

Theorem 1 of [Snoussi 1989] shows that fixed points in the the asynchronous transition graph

(see definition 3.5.2) correspond to asymptotically stable steady states of the ‘associated’

PLDE system and vice versa. It is relatively straightforward to associate a logical model to a

PLDE system just by translating the various combinations of step functions into multi-valued

logical functions. Snoussi formalized that notion by ascribing logical values to the different

regulatory domains where a logical state    
n

1 n i

i 1

g g ,...,g 0,1,..., p


  reflects the fact that

the continuous system is situated in the domain  i i

1 n

n
j j 1

g ...g i i

i 1

, 



   with ip 10

i i: 0, :    .

Let us call  1 ng g ,...,g the logical index of the regulatory domain
1 ng ...g

. Snoussi’s

theorem then says that every focal point which lies within its respective domain (and hence is

an asymptotically stable steady state) is also a logical steady state (fixed point) of the

associated logical model in the sense that the logical index of the domain which belongs to the

‘within-its-domain’ focal point is a fixed point of the logical model.

[Snoussi, Thomas 1993] introduced the concept of loop characteristic states which allows to

identify PLDE steady states which are not ‘within-its-domain’ focal points but so called

singular steady states arising from the behavior of the PLDEs at the switching boundaries.

The approach has to make some specializing assumptions concerning the structure of the

PLDE model and was further evaluated in [Thomas et al. 1995]. See also [Devloo et al. 2003]

and [Plathe et al. 1998].

While the described approaches are mainly thought to be used in order to derive the steady

state behavior (or at least some aspects thereof) of a continuous model by means of related

logical models in Section 3.8 I will describe methods which try to enrich Boolean models

with some kind of continuous dynamics. This ways or the other, the question always arises

whether the behavior (i.e. steady states for example) of one model corresponds ‘somehow’

(i.e. exact, asymptotically or only under some conditions, etc.) to the behavior of the other

model. A general result concerning the correspondence between steady states which

encompasses results proven in [Snoussi 1989] and [Wittmann 2009a] was proven in [Veliz-

Cuba et al. 2012].

I further remark that a qualitative abstraction of PLDE systems termed qualitative simulation

which takes into account the peculiarities which can arise at the switching boundaries was

designed by [De Jong et al. 2004a] and successfully applied for example to model the

regulatory network responsible for the sporulation of Bacillus subtilis [De Jong et al. 2004b].

89

[Chaves et al. 2010] and [Jamshidi et al. 2013] are two further studies addressing the question

of formal relationships between Boolean networks, GKL networks and PLDEs. [Chaves et al.

2010] examine possible transformations between Boolean networks, GKL networks and

PLDE models while [Jamshidi et al. 2013] show that the dynamical behavior can differ

considerably between the GKL and the PLDE framework. For even more details one can

consult [Jamshidi 2012].

3.7 Petri nets

Petri nets have also been used to model regulatory biochemical networks, see [Chaouiya

2007] or [Hardy, Robillard 2004] for review and [Matsuno et al. 2000], [Sackmann et al.

2006] or [Steggles et al 2007] for more specific examples. Petri nets are (in their basic form)

discrete-time, discrete-state models but of a slightly different flavor than Boolean networks.

The inclusion of Petri nets in this chapter is motivated by existing methods to formally relate

Boolean networks and GKL networks to Petri nets: [Chaouiya et al. 2004], [Chaouiya et al.

2008]. Furthermore, there are well-established extensions of Petri nets which incorporate

stochasticity and/or continuity, see for example [Alla, David 1998], [Marsan et al. 1995],

[Haas 2002] or [Bause 2002], which opens up alternative ways to include these features into

discrete Boolean approaches.

In this subsection I briefly define Petri nets based on the definition given in [Chaouiya et al.

2008]. For a general treatment of Petri nets it is referred to [Murata 1989].

Definition 3.7.1 (Petri net) [Chaouyia et al. 2008]

 A Petri net is a 5-tuple  0P,T,Pre, Post, M such that P and T are finite sets

 (called places and transitions respectively) with P T  and P T  ,

 0Pre: P T  , 0Post: T P  and 0 0M : P .

The above definition can also be interpreted in terms of a weighted directed bipartite graph.

The interpretation of the above definition is roughly as follows. The places P represent species

and the amount or the activity of the respective species is represented by so called tokens

where 0 0M : P defines the initial number of tokens for every place (called an initial

marking). The places ‘participate’ in some of the transitions T according to ‘participation

strengths’ (measured in tokens) defined by the weights 0Pre: P T  . The transitions

which take place again have an influence on the activity (amount) of tokens associated to the

places according to 0Post: T P  . Pre and Post can be canonically interpreted as P T -

and T P -matrices respectively. In order to be able to define the dynamical behavior (given

90

by the evolution of token associated to the places over (discrete) time, i.e. by markings

n 0M : P for 0n) the following definition is necessary. A transition t T is called

enabled by a marking 0M : P if    Pre p, t M p for all p P , i.e. if the ‘participation

strength’ of any place (with respect to the transition in question) does not exceed the available

number of tokens at place p as given by the marking M.

The dynamic evolution of a Petri net can now be defined as follows. At every time step, given

a marking n 0M : P , ‘some’ enabled transition t T will happen. It is said that the

transition is firing. The exact choice which of the enabled transition fires is up to the specific

choice of the modeler and leaves plenty of room for model-dependent solutions, see [Murata

1989]. When a particular transition fires, the  Pre p, t tokens are removed from every place p

while  Post p, t tokens are added at each place. Formally this can be expressed with the

incidence matrix
P TT

0C: Post Pre


   as n 1 n iM : M Ce   where    
T

i ij j 1,..., T
e : 0,1


  

describes the firing of the i-th transition.

Steady states in the Petri net framework correspond to so called non-live markings M which

are defined as markings such that not transition t T is enabled by M.

Petri nets where originally invented by Carl Adam Petri [Petri 1962, 1963], [Murata 1989] in

order to model chemical reactions and first mainly have found biological applications in

models of mass flow networks (i.e. chemical reaction networks) such as metabolic networks

[Hofestäd, Thelen 1998], [Heiner, Koch 2004], [Zevedei-Oancea, Schuster 2003] which is

somehow intuitive since tokens can be straightforwardly interpreted as molecule numbers and

pre- and post-weights as stochiometries.

3.8 Fuzzy logic, SQUAD and Odefy

This section summarizes three approaches which were taken to associate some kind of

continuous state space to Boolean models. Subsection 3.8.1 deals with fuzzy logical models

(see references therein), Subsection 3.8.2 with so called standardized qualitative dynamical

systems [Mendoza, Xenarios 2006] which are implemented in the software SQUAD [Di Cara

et al. 2007] and finally, Subsection 3.8.3 summarizes the approach taken by [Wittmann et al.

2009a] via multivariate polynomial interpolation which is implemented in the software Odefy

[Krumsiek et al. 2010]. Both of the latter approaches automatically associate an ODE model

to an existing Boolean model. Reviews on the overall theme of this section can be found in

[Samaga, Klamt 2013] and the respective subsection of [Wittmann et al. 2009a]. Note that the

reverse approach also exists, i.e. the construction of a Boolean model based on existing ODE

models. [Davidich, Bornholdt 2008b] transformed an ODE model of the yeast cell cycle of

[Novak et al. 2001] into a Boolean network model by cleverly ‘substituting’ the respective

normalized rate laws with Boolean logic functions (for Hill-type kinetics for example, this is

91

straightforward). The derived Boolean model was found to resemble the coarse-grained

dynamics of the ODE model.

3.8.1 Fuzzy logical models

Fuzzy logic has recently been applied in order to model biochemical networks: [Zielinski et

al. 2008], [Aldridge et al. 2009], [Huang, Hahn 2009]. The description here is based on the

summary in [Wittmann et al. 2009a].

The idea is that, based on logical interactions, as also given in the standard definition of

Boolean models, the logic is now not only binary or multi-valued but even fuzzified. This

means that there is a continuum between true, i.e. 1, and false, i.e. 0. So, the state of a given

gene is part of the closed interval  0,1 . One interpretation may be that for example a state of

0.5 does not mean something like “the gene is either on nor off but something in between…”

but rather something like “the gene is transcribed half maximal” (take transcription, just to be

concrete) while a state of 0.95 would mean that the gene is almost transcribed at maximal rate

which ultimately would correspond to a state of 1.

Formally, fuzzy logical modeling is done via the introduction of a so called degree of

membership (DOM) function for every variable and in addition, a way to fuzzify the involved

logic functions [Zadeh 1965]. There are two prominent ways of fuzzification for ordinary

logic functions: min-max logic and product-sum logic [Zadeh 1965], [Wittmann et al. 2009a].

Since every logical function can be expressed in normal form by combining AND, OR and

NOT operations via the conjunctive normal form (CNF, product-of-sums form) or the

disjunctive normal form (DNF, sum-of-product form), see [Aigner 2006: Subsection 11.2] and

Subsection 3.1, one ‘only’ needs to fuzzify these general representations.

In the following I describe the two mentioned transformation approaches in an intuitive way.

There are many more subtleties involved in fuzzy modeling, see for example [Zadeh 1995] or

[Sugeno, Yasukawa 1993].

The min-max logic is defined via the following transformation:

  x y min x, y 

  x y max x, y 

 x 1 x   .

Here, x and y denote the fuzzyfied ‘variables’ (actually it is more complex than that but it

captures the main point) while x and y denote the original binary Boolean variables. One nice

thing about the min-max logic is that the ‘outputs’ x, y are automatically contained in the

interval  0,1 and identical to the original logic if and only if  x, y 0,1 .

On the other hand, the product-sum logic is obtained via the following transformation:

92

 x y x y  

 x y x y  

 x 1 x   .

The fuzzification of the OR-gate clearly needs some kind of normalization.

After a fuzzification is chosen, the underlying interaction graph together with the fuzzified

logic rules now constitutes a dynamical system which can now be analyzed. For an ensemble-

type study of fuzzy logical networks see [Wittmann, Theis 2011].

3.8.2 Standardized qualitative dynamical systems (SQUAD)

[Mendoza, Xenarios; 2006] introduced a method to transform a given Boolean network

satisfying certain constraints to a system of ODEs. The constraints appear rather strict since

they demand the logic functions to involve a set of activators and inhibitors in such a way that

if one of the inhibitors is present, the target is automatically off while if none of the inhibitors

is present, only one of the activators has to be present to set the target variable to the on-state.

Semi-formally, for a given node i in the network and its parent nodes
1 kj ,..., j the logic

function governing the evolution of node i, i.e. its state  ix 0,1 , is given in terms of a

relationship of the following form:

      
1 k i ii j j j A i j I if x ,..., x x x

        .

Here,  
ii i 1 kA I j ,..., j  represents a partition of the nodes which influence node i into a set

iA of activating nodes and a set
iI of inhibiting nodes.

For all Boolean networks satisfying the above constraint on their logic functions the

standardized qualitative dynamical system associated to that Boolean network is given by a

differential equation for the (qualitative and normalized) continuous state  ix 0,1 for all the

respective nodes i. The equations consist of a production term and a degradation term where

the degradation term is simply given by a constant times the continuous state. The production

term is a complicated (but systematic) combination of the inputs such that the resulting term is

sigmoidal and thus may resemble Hill-type kinetic laws. The method of automatically

constructing these production terms crucially relies on the above described restrictions

concerning the logic function of the underlying Boolean network. See [Mendoza, Xenarios

2006] for details on the exact form and motivation of the respective production terms.

In order to assess whether steady states of the Boolean model correspond somehow to steady

states of the automatically derived ODE model [Mendoza, Xenarios 2006] performed (clever)

numerical simulations and found that steady states often seem to be preserved. However, this

is not generally true. As pointed out by [Wittmann et al. 2009a], examples can be constructed

93

such that the Boolean steady states do not correspond to continuous steady states of the

system derived by the methodology of [Mendoza, Xenarios 2006].

3.8.3 Multivariate Polynomial Interpolation (Odefy)

[Wittmann et al. 2009a] introduced another methodology to automatically transform Boolean

network models to systems of ODEs via the use of multivariate polynomial interpolation. In

contrast to the standardized qualitative dynamical systems described in the preceding

subsection the method is universally applicable and does not rely on assumptions concerning

the functional form of the logic functions. Moreover, the preservation of steady states can be

formally demonstrated.

Applying multivariate polynomial interpolation [Gasca, Sauer 2000] to transform Boolean

logic functions into functions which accept continuous states as their arguments (so called

continuous homologues of the Boolean functions) leads to a system of ODEs in a analogous

fashion as in [Mendoza, Xenarios 2006] but now the production terms are given by the

respective homologues obtained by multivariate polynomial interpolation. [Wittmann et al.

2009] derive three different homologues: BooleCube, HillCube and normalized HillCube

homologues. The BooleCube homologues are the basic ones which are obtained by

polynomial interpolation, the HillCube homologues are obtained from the BooleCube

homologues by means of transforming the continuous variables with Hill functions (see

Section 2.1) before subjecting them to the normal BooleCube homologues in order to get the

production terms. In contrast to the BooleCube homologues the HillCube homologues are not

perfect homologues in the sense that they coincide with the original Boolean functions on the

n-dimensional hypercube  
n

0,1 (n the number of species). By normalizing the Hill functions

of the HillCube homologues the normalized HillCube homologues are obtained which are

again perfect homologues of the Boolean functions.

[Wittmann et al. 2009a] prove that steady states of the Boolean model are also steady states of

the derived homologue ODE system when BooleCube or normalized HillCube homologues

are used. For HillCube homologues an asymptotic (with respect to the Hill coefficients) result

was proven that guarantees the existence of continuous steady states in certain neighborhoods

of the original Boolean model steady states.

The approach was extended to spatial systems by [Wittmann et al. 2009b] and [Hock 2010].

3.9 Boolean models for apoptosis

This section exemplifies the application of Boolean models by means of specific Boolean

approaches to programmed cell death or apoptosis. None of the described models is covered

in detail but instead it is tried to give a brief impression on Boolean modelling of real

94

biochemical systems. Note that there also exist Boolean models for higher order biological

systems, see for example [Thakar et al. 2007] where a model for the immune response (in

terms of the various immune cells like T- or B-cells etc., see [Purves et al. 2006: Chapter 18])

in reaction to some infection is proposed.

Apoptosis [Kerr et al. 1972], also called programmed cell death, is the process by which

individual cells (in multi-cellular organisms) are killed in an ordered and programmed fashion

in response to certain stimuli via the activation of corresponding apoptosis pathways which

involve signal transduction and gene regulation. This is in contrast to necrosis-type cell death

which is brought about by less intricate ways (in the sense that no elaborate regulatory

networks are involved) by mechanical destruction like unbearable tension or pressure, or

immediately deathly temperatures. Programmed cell death is important in various biological

functions and processes, for example in development. One of the most famous examples are

the webs between the digits of human embryos which are removed by apoptosis before birth

(in contrast to frogs, for example) [Wolpert et al. 2011: Sections 10.12 and 11.17]. Apoptosis

also plays a decisive role to prevent cancer since normally cells with irreversibly damaged

DNA receive the internal signal to start their apoptosis program. When this process fails the

particular cell and the mutations caused by its damaged DNA might constitute the starting

point of cancer. Mutations in genes involved in the regulation of apoptosis ultimately can also

be the manifestation of cancer by altering the apoptosis pathway such that normally apoptotic

conditions do not induce apoptosis anymore. Several other diseases are associated to the

failure of proper apoptosis, for example Parkinson’s or Alzheimer’s disease [Danial,

Korsmeyer 2004]. While an original (and ultimately apoptosis inducing) apoptotic pathway

exists, the regulation of apoptosis is highly complex and involves the integration of various

cell-internal (DNA damage, for example) and cell-external signals (molecules from

neighbouring cells for example) and integrates also the interplay of different signalling and

gene regulatory pathways. The NFB pathway described in Section 1.1 for example has

several outputs which operate directly as inputs for the actual apoptosis pathway [Chaves et

al. 2009].

For a review on the detailed biological facts I recommend [Danial, Korsmeyer 2004] (in the

sense of partial accessibility for non-biologists with non-systematic biological knowledge),

for a short overview see [Klipp et al. 2009: Section 3.5].

Besides Boolean and logical models a number of other modelling approaches were of course

also used to study apoptosis. For ODE models (see Section 2.1) see for example [Klipp et al.

2009: Section 3.5] and the references therein. For Petri net approaches (see Section 4.2) see

[Heiner et al. 2004] and [Li et al. 2007].

[Schlatter et al. 2009] manually developed a Boolean model that integrates several of the key

pathways involved in the regulation of apoptosis on the basis of existing literature and

analyzed it with CNA (CellNetAnalyzer) [Klamt et al. 2007]. Concerning the updating

scheme the timescale approach described was used in Section 3.1 which proceeds by defining

different timescales which determine the interactions (according to their specific scales)

which are active and can therefore influence their respective target nodes. Then, the

95

assessment the system-wide influences by the dependency matrix approach for every separate

timescale ([Klamt et al. 2006] and Subsection 1.5.1) was constructed and the computation of

the logical steady-states ([Devloo et al. 2003] and Section 3.1) under different network

structures and knock-out scenarios was performed. A further feature of the model is the use of

multi-valued logical states motivated by the existence of different thresholds associated to the

effect of some nodes (see Section 3.5 for the explanation for the threshold motivated

introduction of multi-valued logical states into Boolean modelling due to [Van Ham 1979]).

The dependency matrix for time scale 10 is shown in figure 3.1 (for aesthetical reasons).

[Mai, Liu 2009] manually developed another Boolean network model which also integrates

various pathways involved in apoptosis and performed its analysis by simulating the

dynamics starting from 10,000 sampled initial states (the network has 40 nodes and hence
40 122 10 initial states are possible, so they covered 0.000001 % of all possible initial states).

The network is based on a directed signed interaction graph and synchronous updates with

classical weighted threshold-sum logical functions (see Subsection 3.2.1).

[Zhang et al. 2008] study a Boolean model of apoptosis signalling in so called CTL cells

(cytotoxic T lymphocytes; a certain cell type of the immune system, see [Purves et al. 2006:

Chapter 18] in which the malfunctioning of apoptotic signalling causes the so called T-LGL

leukaemia (T cell large granular lymphocyte leukaemia), a type of cancer. By examination of

their manually created Boolean model they arrived at suggesting various biological

conclusions. For example, they identified two species (IL-15 and PDGF) which when

constantly in the on-state (i.e. when their states are kept constantly at state 1 during dynamic

examination of the Boolean model) led to a Boolean dynamics that captures all known

irregularities associated to T-LGL. One aspect of the model which represents a general

strategy in Boolean modelling is the incorporation of so called abstract nodes representing

complex processes instead of single genes or molecules. In the example here, these were for

example “proliferation” or “apoptosis” (as medically decisive output variables) or

“cytoskeleton signalling” representing a bunch of processes interacting with other nodes of

the network which are not all explicitly modelled but condensed into one abstract variable.

Concerning the update scheme the authors adopted asynchronous updates in order to cope

with different timescales. They evaluated the appropriate timescale regime via update

sampling. More precisely the update for node i is defined by
    ii k1 i

1 ki

t 1t 1t 1

i i i ix f x ,..., x
    with

   
ji t 1 t, t 1    for every ji such that the decision whether  

ji t 1 t   of  
ji t 1 t 1   

is determined by a partition of the nodes as described in section 3.1, i.e. given a permutation s

of the nodes one has  
ji t 1 t 1    if and only if    js i s i for all i and ji . In order to

sample update schedules, permutations of the nodes are uniformly sampled. Dynamical

simulations of the Boolean network according to every of the sampled schedules are then

examined in regard to their ability to capture features of the modelled biological system. The

authors also mention that the described sampling in conjunction with initial state sampling

might also be interpreted as a means of simulating cell-to-cell variability in heterogeneous cell

populations. [Saadadpour et al. 2011] analyzed the model of [Zhang et al. 2008] further.

96

 Figure 3.1: Dependency matrix of the Boolean network of [Schlatter et al. 2009](for timescale 10)

 Legend: dark green: total activation, dark red: total inhibition, yellow: ambiguous effect

 black: no influence, light green: activation, light red: inhibition (see Subsection 1.5.1)

rows

97

[Kazemzadeh et al. 2012] developed a literature- and database-based model for the apoptosis

network in the yeast S.cerevisae adopting the timescales approach and first analyzed it with

CNA (steady-state, dependency matrix). In addition they then transformed their model into a

continuous ODE model via two different existing software tools (see Chapter 4). First they

used the SQUAD software based on the so called standardized qualitative dynamical systems

transformation method [Mendoza, Xenarios 2006] (see Subsection 3.8.2) and second they

used Odefy [Krumsiek et al. 2010] which is, as seen in Subsection 3.8.3, based on

multivariate polynomial interpolation of the logic functions in conjunction with Hill-type

transformations of the resulting continuous state variables [Wittmann et al. 2009].

Table 3 in [Kazemzadeh et al. 2012] gives an instructive impression how much literature-

based reconstruction is involved in the process of assembling the logical rules for a Boolean

model and there are even more extensive compilations, see for example the supporting

material of [Zhang et al. 2008]. In parallel, this underlines the (trivial) fact that in order to be

able to build up a Boolean model of any biological process one relies on the laborious work of

many experimental researchers. I counted 29 2 distinct experimental sources leading to ~ 85

interactions. Note, that the model possesses in summary even 115 logical rules but some of

them describe (controllable or constant) inputs or species/processes constantly present

(termed ‘housekeeping’).The other way round, once a core Boolean network is given one can

try out the effects of different modifications of the network like the addition of specific

hypothesized interactions and compare the dynamical consequences to further experimental

evidence in order to ideally elucidate new interactions in the actual biological network.

Ideally of course, researchers try to reverse-engineer Boolean models automatically entirely

from scratch based on suitable largely non-interpreted (!) experimental data (see Subsection

1.5.2).

[Chaves et al. 2009]. Based on a manually constructed Boolean network describing the

interplay of the NFB and the apoptosis pathway several model extensions (in this case, the

addition of regulatory influences between nodes) where evaluated according to their

capability to explain experimental data. The analysis relies on the PLDE formalism described

in Section 3.6 which combines an underlying Boolean regulatory logic with continuous

variables governed by ordinary differential equations which turn out to be linear (affine) on

domains in the state space which are associated to respective logical states defined by

thresholds.

98

4 Parameter estimation for GKL networks

 with probabilistic time delays

In this section I propose two choices for distributions on the time delays of a GKL network

(see Section 3.5 on GKL). The first choice assumes exponentially distributed time delays as

introduced by [Teraguchi et al. 2011]. After evaluating the appropriateness of this choice in

terms of the biological systems which are thought to be modeled by the formalism I conclude

that exponential distributions are not the best choice and hence I propose to use Weibull-

distributed delays. The motivation for the postulation of time delays in general and for the

particular choices made is outlined in Section 4.1. The next section is then concerned with the

task of statistically estimating the parameters of the delay distributions based on mostly

hypothetical and simulated but ideally experimental data. Section 4.2 addresses parameter

estimation in the light of data which is given by absorption frequencies to the respective

logical attractors of the network. Subsection 4.3 finally makes some final remarks concerning

the interpretation and intuition of the two models.

4.1 Model philosophy and specification

In Subsection 3.5.2 I reviewed and adapted the formal definition of timed GKL networks.

The idea of introducing probability distributions for the time-delays is almost as old as the

field of GKL itself: [Thomas (ed.) 1979], [Thomas 2013]. The idea also has been

implemented in some instances with uniform distributions over intervals, for example in

[Thomas et al. 1979] [Abou-Jaoudé et al. 2009]. In [Abou-Jaoudé et al.; 2009] the authors

used uniform distributions for the time-delays to investigate a model for p53 activity where in

addition time-delays are considered context-sensitive, i.e. time delays are in addition to being

stochastic not constant in the sense that they differ in dependence of the present state of the

entire system. Context-sensitive time-delays were also considered by [Siebert, Bockmayr

2009]. Here, time delays are assumed to be context-independent, i.e. they follow distributions

but these distributions are always the same irrespectively of the state of the system.

Assume a timed GKL network which is thought to model a pure GRN with only genes and

TFs. Then the state of the system would correspond to gene activity and the images indicate

the regulatory evolution of the system based on the present actual state. Let for example the

state of gene i mismatch its image. Then the active time delay will represent the duration of

all the possibly diverse processes which have to happen in order to bring about the desired

change of the state of gene i. In the simplest case, imagine i to be regulated by another gene k

such that given that gene i is off and gene k is on, gene i will be activated after the

characteristic time delay. Then, this time delay represents the duration of the processes of

mRNA transcription from gene k, export of that mRNA to the cytoplasm, translation of the

mRNA to a TF, the importing of the TF to the nucleus and finally the process of regulation of

gene i by the TF itself. In addition the time delay not just describes the duration of these

99

processes but rather the “accumulation” of these such that the TF finally reaches a critical

concentration threshold necessary for the up-regulation of gene i. This is only the simplest

case. If the regulatory process involves heterotypic multimers of TFs for example the

respective time delay describes the effective duration of several process chains as described

together such that it finally represents the time-scale on which these many diverse processes

together bring about their regulatory effect. This means that the time delay (stochastic or non-

stochastic) describes very heterogeneous processes and it therefore seems questionable to

postulate a single family of probability distributions to describe them. Nonetheless, this

approach is taken here.

Based on the definitions of Subsection 3.5.2 I first precisely define the introduction of

probabilistic time-delays into timed GKL networks. At this stage no restriction on the time

delay distributions is imposed. Let   1 0, denote the set of probability measures on

 0, .

Definition 4.1.1 (Probabilistic timed GKL network)

 A probabilistic timed GKL network is a tuple  N,  T such that  N V, ,f 

 is a GKL network and        i i 1: : p 1, 1 0, : i V       T is a family

 of maps with the range    1 0, being a set of random variables (defined on

 some probability space) which are distributed according to a measure from   1 0,

 respectively.

For i 1,...,n and  i ip  the random variable    i 1,s 0,  T describes the time delay

which is responsible for switching variable i from i 1  to i if s 1  and from i to i 1 

if s 1  . In the following, let
   i

i i , 1


  := T and
   i

i i , 1


  := T . To specify a

probabilistic GKL network one has to specify the distributions of the random variables  i

i




and  i

i


 for all i 1,...,n and all  i ip  . All definitions made in Subsection 3.5.2 which do

not concern time delays, like that of attractors or the state transition graph, can be directly

transferred to the case of probabilistic timed GKL networks by defining the respective notions

in terms of the GKL network N which is part of the tuple constituting a probabilistic timed

GKL network. See definitions 3.5.2 and 3.5.3.

Before proceeding to the definition of special model types defined by specific assumptions

concerning the distribution of the delays, the general definition of the dynamics of

probabilistic timed GKL networks is given. The following algorithm naturally makes use of

the formal definitions of Subsection 3.5.2 on timed GKL networks, for example of the

100

switching map             q q q q

1 2 3 STG j

j V

, , : q V p 1, 1


            for states q and the

corresponding set of active delays      

           q

1

q q

2 3 STGq
q : q , q : q q


     . Here, as in

Subsection 3.5.2,     STG q : q : q,q E   is the set of potential successors of state q in

the state transition graph. Further remember that the definition of the set of active species

relative to state q is given by         q

1 STGq : q V : q q    . Since the algorithm

again essentially computes a sequence    1q
 


 with 0 being the number of

switches that occurred, we can again simplify the notation and set
 

  q

:



   for all 0 .

The algorithm presented below resembles the one given in Subsection 3.5.2 (algorithm 3.5)

for timed GKL networks. But in addition, algorithm 4.1 below also has to deal with variable

time delays in the sense that delays are probabilistic according to definition 4.1.1. This will

lead to a successive conditioning on events concerning the duration of a given delay until the

state of the associated variable finally switches, coincides with its image again or the sign of

the state-image difference changes without the variable having switched since its activation.

As in algorithm 3.5 a switching delay 0 0: V   will be used where  i,   

represents the fact that after the -th overall switching event, species i is still active with

delay
  k

i iq 1, 1


   or
  k

i iq , 1


  without having switched or a qualitative change in the

respective image having taken place. Formally, we have for a state q the active delay

association map for 0 as

             

        
1

1 2 3q
: , q q , q

   


       

where             1 STG: q q V : q q
  

      is the set of active species in state

 
q


 and where         

            
1

2 3 STGq
: q : q , q : q q

   


       is the set of

active delays in
 

q

 .

Algorithm 4.1 [Simulation of probabilistic timed GKL networks]

Input: I.1  N,  T # a probabilistic timed GKL network

 with,  N V, ,f  being a GKL network and  i

i


 and  i

i


 being

 the time delays associated to threshold  i ip  of species i V (see above)

 I.2
 0

q  # initial state

 I.3  maxt 0,  # maximal simulation time

101

Output: O1.    0 maxq
Q : 0, t   # continuous time evolution for some 0 

 O2.
  0

q 1





 
  
 

 # associated jump process, 0 is the number of

 switches which have taken place

(1)  i V : i,0 0    # initialization of switching delays

(2)      
0

0

q
0 q  # initialization of jump process

(3) t 0 # initialization of continuous time

(4) 0 # discrete jump time

(5)  1  # “active states before start” (technically necessary)

(6) while maxt t :

 (5.1)
      STG q : q : q ,q E
 

   # successor states, this can be done by

 computing the image, i.e. the STG

 has not to be computed a priori!

 (5.2)              1 2 3 STG j

j V

, , : q V p 1, 1
    



           

 # compute the switching map

 (5.3)          1 STG: q V : q q
 

     # active species

 (5.4)      

            
1

2 3 STGq
q , q : q q

  


      # active delays

 (5.5)
             

        
1

1 2 3q
: , q q , q

   


       

 # active delay association map

 (5.6) for
  STGq q


 with
       1 q 1


     :

 # update switching delays for active delays

 (5.6.1) if
             1

1 1q q
   

     :

 (5.6.1.1)
         1 1q , q , 1 1
 

      

 #
   1 q


 is active with same delay as before, hence the

 switching delay for the respective delay has to be updated

 (5.6.2) else:

 (5.6.2.1)
    1 q , 0


   

 #
   1 q


 is active with new delay, only possible if the

 difference of state and image of the species changed

 sign with the switch from
 1

q


 to
 

q


102

 (5.7) for  i V \  :

 (5.7.1)  i, 0   # “switching” delays of non-active species

 (5.8) for  i  :

 (5.8.1)  i,  # switching delay

 (5.8.2)
i

1

t




   # time since activation of delay

 (
b

a

t : 0


 for all a b)

 (5.8.3)
       i i isample from i i
 

      

 # sample from delay conditioned on time passed since activation

 (5.9)
 

i
i

s arg min
 

  # switching species

 (5.10)
 

i
i

t min
 

  # time to next switch

 (5.11)
        1

1 STGq q with s q , q q
  

  

 # next state according to switching species

 (5.12)      
0

1

q
1 q


   # update of discrete jump output

 (5.13)        
0

q
t, t t : Q q



    # update of continuous-time output

 (5.12) t t t  # update of continuous time

 (5.13) 1 # update of jump time

The output
  

 
0

q 1

  


 
    
 

 can be seen as a realization of a time-discrete stochastic

process. This process is in the following denoted as  
0

 
 .

Now that it is theoretically clear how to simulate probabilistic timed GKL networks one can

look at specific types of networks according to different distributions for the delays. In the

following I look at two types of probabilistic timed GKL networks. The first one involves

only time delays which are distributed according to an exponential distribution and the second

extends the first framework such that the delays can be distributed according to a Weibull

distribution. See Appendix A.1 for some basic definitions and facts concerning these

distributions. In the first case it turns out that the simulation comes down to simulating the

jump chain of a continuous-time Markov jump process by just simulating suitable exponential

distributions, see below. In the second case (and in the general case) the ability to simulate the

corresponding probabilistic timed GKL network crucially depends on the ability to efficiently

simulate the delay variables given that the delay is already active for a certain time ((5.8.3) in

algorithm 4.1). It is shown in Appendix A.3 that in the case of Weibull distributed time delays

103

the demanded task is feasible by means of adaptive rejection sampling (ARS). Hence, one can

actually simulate both model classes which are introduced in the following.

The first model, model Exp is thus defined to be a probabilistic timed GKL  N,  T with

time delays specified by
    i i

i i~ Exp
 

  and
    i i

i i~ Exp
 

  for parameters

   i i

i i, 0
 

   for all i 1,...,n and  i ip  .

One characteristic (actually defining) property (see Appendix A.1) of the exponential

distribution is the memoryless property: if  T ~ Exp  with 0  we have for every t 0

that  T t T t ~ Exp   . This means that if we know that the event modeled via its

exponential waiting time has not occurred until time t the distribution of the waiting time is

again the same exponential distribution. This especially means that the mean waiting time is

always the same regardless of the time one is already waiting. This might seem biologically

implausible since the processes modeled with the introduction of time delays are real physical

processes which are in some sense “accumulative”, namely transcription, molecular transport,

translation, etc. These processes are “accumulative” in the sense that they are not memoryless:

the universe will remember if some mRNAs were transcribed (and not degraded afterwards)

simply because they are still there. Now, assuming that some threshold has to be passed by,

say, the number of mRNAs to make the event happen which is described by the time delay it

seems therefore implausible that the delay can be modeled to be memoryless. Nevertheless,

we will for mathematical simplicity adopt the assumption of exponential time delays. One

advantage of this assumption is that the evolution of the states can now be framed in the

formalism of Markov chains [Norris 1998]. Markov chains have already been probed for their

capabilities to describe biological regulatory networks [Kim et al. 2002], [Tournier, Chaves

2009].

If one takes a look at step (5.8.3) of algorithm 4.1 (and also recalls the notation from there),

one realizes that for exponentially distributed delays
     i ~ Exp


  , sampling from

       i ii i
 

     just comes down to sampling from
   i
 itself because of the

memoryless property of the exponential distribution (see Result A.1 in Appendix A.1). This

means in particular that the history of the system, encoded in the time i since activation of

the delay, is not relevant for the probabilistic behavior of the system at every jump and hence

the resulting jump dynamics can be framed as a time-homogenous (delay laws are always the

same), time-discrete Markov chain  
0

 
 . More precisely, let

         1 STG: q V : q q
 

     the set of active species at (jump) time
0 , then

the probability that a particular active species
   1 q '


 switches its state is given by the

   

         
   

           

1

STG 1

2 3q '

2 3q q q

q ' , q '

q , q



 

 



 

 

   

   
 where    

         
1

2 3q
q , q

 


    canonically denotes

104

the parameter of an active delay of an active species    1 q


 . This fact is due to Result A.2 in

Appendix A.1 which gives the probability for the event that a given exponentially distributed

variable is minimal with respect to a family of independent exponentially distributed random

variables. The above expression gives the probability that, given the system is in state  
q


 at

jump
0 , the next state will be the one which is reached if the active species

   1 q '




switches, i.e. the probability of the transition  
q q '


 . Since this probability only depends

on  
q


 (because of the memoryless property) this show that the jump process of a

probabilistic timed GKL network with exponentially distributed time delays is indeed a

Markov chain with the transition matrix    
n n2 2

qq' q,q '
P p 0,1




  (see Appendix A.4) given

by
qq'p 0 if  STGq ' q and

   

         
   

          

q

1

q
STG 1

q q

2 3q'

qq '
q q

2 3q q q

q ' , q '
p

q , q



 

   


   
 if  STGq ' q

(see the next section for concrete examples).

But as indicated before, the assumption of exponentially distributed time delays seems

inappropriate due to the accumulative character [Ahmad et al. 2007] of the processes which

determine the switching events which are mainly given by accumulation until a certain

threshold is exceeded. The general idea on how to overcome the described memoryless

implausibility is to introduce distributions with increasing “hazard” rates. This simply means

that the event described by the time delay becomes more and more probable if more time

elapses. This can lead to the choice of Weibull distributions with shape parameters greater

than one (see Appendix A.1 for the meaning of the shape parameter and Appendix A.5 for an

illustration of the meaning associated to such distributions).

Model WB therefore finally is defined to be a probabilistic timed GKL  N,  T with

time delays specified by
      i i i

i i i~ ,k
  

  and
      i i i

i i i~ ,k
  

  for scale

parameters    i i

i i, 0
 

   and shape parameters    i i

i ik , k 1
 

 for all i 1,...,n and  i ip  .

WB actually contains Exp since WB models where all shape parameters are equal to one

correspond to an instance of model Exp (see Appendix A.1).

Concerning step (5.8.3) of algorithm 4.1, Appendix A.5 shows how to sample from

    for 0  when  ~ ,k  .

Some canonical differences which can arise between the models WB and Exp are shortly

indicated in Section 4.3. The next Section deals with the estimation of the parameters  for

model Exp based on absorption frequencies to steady states.

105

4.2 Parameter estimation based on absorption frequencies

In this section, a simple procedure to estimate the parameters of an instance of Exp is

proposed which only relies on basic Markov chain theory [Norris 1998] and which is based on

absorption frequencies to steady states.

A steady state (or fixed point) is the simplest kind of attractor a logical model can possess (see

Section 3.1 and definition 3.5.3). The following considerations are restricted to such steady

state attractor but the procedure just as well applies (in theory) to the case of more general

attractors as defined in definition 3.5.3. In addition, the described example only deal with

GKL networks where every species has only one threshold, i.e. with classical 0-1 networks

(or classical asynchronous Boolean networks). But this is also not a principal constraint and

the indicated methods (in theory) do not rely in this particular situation.

I start with a simple example dealing with a toy circuit from [Thomas 2013].

4.2.1 A simple example

This first example is from [Thomas 2013]. Everything that goes beyond the mere model

formulation up to image functions and the state transition graph are of course already

contained in [Thomas 2013]. The postulation of exponential time delays was already

considered by [Teraguchi et al. 2011] and [Stoll et al. 2012], but explicitly in the framework

of Thomas’ GKL networks. The proposed procedure to estimate the parameters is new

(although not very fancy and basically just based on very basic Markov chain theory).

Consider the following simple regulatory circuit consisting of three species

 X Y Z

i.e. species X inhibits species Y which activates a third species Z which also activates itself.

Formalizing this system in the sense of the GKL approach described above, we assign to each

species the state of its gene (denoted by the lower case letters x, y,z) and the image of the

corresponding gene state (denoted by the upper case letters X,Y, Z)
10

. The unique image of a

given state is supposed to be determined by the following logic functions:

  X const. 0,1 

 Y x

 Z y z 

10

 X, Y and Z thus denote both, the species and the images of the states of the respective species.

106

The image X of species associated with x is just arbitrarily set to 0 or 1 what can be

interpreted as the (maybe artificial) knock-down or constitutive expression of the gene

associated to x. In the following we arbitrarily set X 1 .

For every possible state there is a unique image according to the above logic functions:

xyz XYZ

000
 

 110

 100 100

010
 

 111

001
 

 111

011


 111

101 101

110
 

 101

111


 101

The plus or minus signs indicate the active species and whether the corresponding switch of

the variable would demand an on-switch or an off-switch. The rows where states and images

are equal correspond to steady states.

The state transition graph is given as follows (from [Thomas 2013]):

The small numbers below the states give the number of steps (switching events) the

corresponding call for a switch is already active. According to the preceding section they are

of course irrelevant when dealing with exponentially distributed time delays. But in Section

107

4.3 the behavior of the above GKL network is compared for exponential and Weibull delays

and then the respective number indicating the history of the system become crucial. The

arrows in the above graph are signed according to the corresponding switching event, i.e. if a

transition happens via the on-switch of species X the arrow is signed with “x” while if the

transition happens via the off-switch of species X the arrow is signed with “ x ”. So far the

example described in [Thomas 2013].

Let us now transform the above GKL network into a probabilistic timed GKL network by

assuming it to be part of the model class Exp , i.e. we assume (independent) exponentially

distributed time delays. For simplicity, denote the parameters for the respective distributions

as x x z, ,..., 0    where x and x for example are understood to denote the parameters

of the up-switching delay distribution and the down-switching distribution for species x

respectively. Then, after indexing the states as follows

 1q 2q 3q 4q 5q 6q 7q 8q

000 100 010 001 011 101 110 111

we can set up the transition matrix      
i j

8 8

q q ij 1 i, j 81 i, j 8
P p p 0,1



  
   of the corresponding

Markov chain as described in the preceding section.

For example, if the system is in state 1q 000 , the active species are species 1 and 2 with

corresponding successor states 2q 100 and 3q 010 and hence one obtains

x
12

x y

p



 

,
y

13

x y

p



 

 and    1kp 0 for all k 1,...,8 \ 2,3  . Proceeding analogously

with the other rows of the transition matrix one finally gets

yx

x y x y

z x

x z x z

y x

x y x y

y z

y z y z

0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0P

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1 0 0

 
 

      
 
 

  
      
 

 
  

      
 
 
 
  
 
       
 
 

108

For  1 8A q ,...,q define  
0

A

i 0 ih : P A s



 
      

 

. A

ih is the probability that the

Markov chain reaches one of the states contained in the subset of states A at some point in

time if the chain is started in state
iq and is also called hitting probability. For  kA q for

k 1,...,8 we write k A

i ih : h . Since
2q 100 and

6q 101 are absorbing states of the

Markov chain the probabilities 2

ih and 6

ih represent the respective absorption probabilities.

Biologically the absorption probabilities could for example correspond to the frequencies of

the respective steady state behaviors within a heterogeneous cell population and therefore it

seems somehow reasonable to assume that 2

ih and 6

ih can be measured at least in principle.

There is a straightforward way to calculate the so called hitting probabilities A

ih for given A

and transition matrix  ij ij
P p [Norris 1998]. The vector of hitting probabilities  A

i
i

h can be

obtained as the minimal solution to the following system of equations (Appendix A.4):

A

i

A A

i ij j

j

h 1 for all i A

h p h for all i A

 

 

Applying this procedure to  2A q 100  we obtain the following system of equations:

y y2 2 2 2x x

1 2 3 3

x y x y x y x y

h h h h
  

   
       

 2

2h 1

 2 2 2 2z x x
3 5 7 7

x z x z x z

h h h h
  

  
     

y2 2 2x

4 5 6

x y x y

h h h 0
 

  
   

 2

5h 0

 2

6h 0

y2

7

y z

h



 

 2

8h 0

In summary we get

 2 2 2 2 2

2 4 5 6 8h 1 , h h h h 0    

    2 2 2

3 1 y 1 xh h 1 h 0     

109

  2 2 2

3 z 3 7 xh h h 0    

  2 2

7 z 7 yh h 1 0    

So we have in essence three (nonlinear) equations and six unknowns. It is clear however that

since
x and

z play no role in the dynamics we will not be able to estimate these two

parameters. So finally, the vector  
T

4

x y y z 0, , ,        is apparently the only set of

parameters we can hope to make some inference about. But first we derive analogous

equations for the second steady-state
6s 101 . Therefore we set  6A s in and obtain:

 6 6 6 6 6

2 4 5 6 8h 0, h h h h 1    

  6 6 6

1 x 1 3 yh h h 0    

    6 6 6

3 z 7 3 x1 h h h 0     

  6 6

7 z 7 y1 h h 0    

Because of 6 2

j jh 1 h  the two equation systems are equivalent and we end up with three

equations for four unknowns:

 2 2 2 2 2

2 4 5 6 8h 1 , h h h h 0    

  2 2 6

3 1 y 1 xh h h 0    

  2 2 2

3 z 3 7 xh h h 0    

 2 6

7 z 7 yh h 0   

Given that all coefficients are non-zero (in particular 2 2

3 1h h and 2 2

3 7h h) it is

straightforward that this system of equations (under the constraint that 0 ) has the one-

dimensional solution space given by

T
2 2 2 2 26

7 7 3 7 31

2 2 6 2 2

1 3 7 3 3

h h h h hh
1, , , : 0

h h h h h

    
    

   

.

This means that if some timescale, i.e. one of the parameters x y y z, , , 0     , is given a

priori, the three other parameters can be inferred from the steady-state absorption frequencies

of the system depending on only three starting states, namely states 1, 3 and 7.

In a computational (i.e. theoretical) setting the parameter
x 0  could easily be estimated by

the amount of time the system needs to switch from state 5 to state 8 (see the state transition

graph above). Since being at state 5 means that the system will switch to state 8 with

probability 1. This gives a direct estimate of
x via the inverse of the sample mean of the

measured time delays for this transition. How realistic these kinds of considerations are in the

110

light of real biological data and the involved data sampling capabilities remains to be

elucidated.

For statistical models from which one can easily simulate given a parameterization, one can

evaluate estimation procedures with simulated data as follows [Bajikar et al. 2014]. Given the

true (chosen and therefore known) parameter set  i i
   one can first simulate M data

sets with the parameters  i i
   and apply the estimation procedure to be tested in order to

obtain M estimates  j
i̂ of parameter

i with j 1,...,M . The mean squared error

        
22

i i i i i
ˆ ˆ ˆ ˆMSE bias Var

                 

11

of the estimator
i̂ of the parameter

i can then be estimated by estimating the bias of the

estimator as  M j

i ij 1

1 ˆ
M 

 
  

 
 and the variance as   

2M j

i ij 1

1 ˆ
M 1 

 

 .

Figure 4.2.1 (on the next page) essentially shows the development of the MSE of the above

proposed estimators for a particular illustrative parameter choice.

4.2.2 Circuits with more than three elements

For a general system (with each species having states 1 or 0), define the set of steady states as

 i ii: q : p 1    . For every state
jq  we have

i

i

jq
h 1


 and thus a priori we

can hope to use at most
12

   1  measured absorption frequencies in order to

estimate the parameters as described in Subsection 4.2.1. Note that   1  can be

very large due to
n2 . But how many of the starting states could actually be

biochemically implemented (for example by genetic engineering) and evaluated in terms of

their absorption frequencies remains open at this point. The actual structure of the network

would of course also affect which frequencies have to be measured. In the example from

Subsection 4.2.1 for instance one had 6

5h 1 due to the structure of the network and hence

this particular absorption frequency is not very useful for parameter estimation. This topic

(which comes down to an identifiability analysis based on network structure) is also left aside

here.

11

 [Czado, Schmidt 2011] with  i i i
ˆ ˆbias     

 
 the bias of the estimator.

12
 Note i

ih 1 for every
iq  .

111

The basic theory however proceeds as follows. Since there are 2n parameters in the system,

one should have   n1 2 2n   in order to have chance to identify all parameters.
13

For practical purposes one should at least achieve   1 F 2n   where n1 F 2  is

number of experimentally implementable starting states. In terms of the method proposed in

the preceding subsection in turns out that all “non-degenerate” starting states, i.e. all kq 

13 In the example above     n1 2 1 8 2 6 2n       but due to 6 6 6

4 5 8h h h 1   the

 structurally determined number of potentially useful data entities was reduced to just three absorption

 frequencies given by 6 6

1 3h , h and 6

7h . Accordingly we were (luckily) able to at least estimate three

 parameters.

Fig. 4.2.1.

The estimation seems to work in an acceptable

manner. But the the plots indicate that sample

sizes of 1000 or greater are needed to really

get reliable results.

One further remark is that all estimators seem

to systematically over estimate the respective

parameters.

112

with  i

kh 0,1 have to be measured in order to conduct the described procedure. This is

simply due to the reliance of the procedure to solve systems of equations which for every

*

iq  with * *, 1   are given by

n2
i i i

i j jk k

k 1

h 1 , j i: h p h


    .

By remembering the notation from Section 4.l the estimation procedure can now be described

as follows. For all steady states *

iq  one makes the following reformulation of the

respective equation system such that for every j i we first get:

 
 

        

 
 

         
 

 
 

         

 
 

        

j j

n
q j

k1

j j
k STG j

q j
k STG j

k1

j j

q j
k STG j

k1

j j

q j
k ST

k1

q q i

2 k 3 k k2
qi i

j jk k
q qk 1 q q

2 k 3 kq q q

q q i

2 k 3 k kq q q

q q

2 k 3 kq q

q , q h

h p h

q , q

q , q h

q , q



 

 

 

 

  
     
   

       
  

 
    
 
 

    
 

 




 G jq

 .



This leads to

 
 

           
 

         
j j j j

q qj j
k STG j k STG j

k k1 1

q q q qi i

2 k 3 k j 2 k 3 k kq q q qq q

q , q h q , q h

  

    
            
    

 

and thus finally to

   

 

         
j j

q j
k STG j

k1

q qi i

k j 2 k 3 kq q q

h h q , q 0 .

 

 
      

 


The method now further proceeds by solving the resulting system of   n1 2  

linear equations with unknowns    1 1

i i, 0   for all i 1,...,n . As we have seen in the

preceding subsection the exact number of (non-trivial) equations depends on the number of

“non-degenerate” starting states and it may be merely possible to solve the system after

certain parameter values are a priori given. In addition one might run into problems if
i i

k jh h

for some k and j.

A theory which clarifies these issues based on the structure of the respective networks would

be nice. For now I close this subsection by remarking that the given derivation of the final

equation system is just as well valid for general attractors instead of just fixed points and does

also not rely on the restriction to 0-1-valued states. The (anyhow incomplete) considerations

about the minimal frequencies needed such that one has a chance to estimate parameters

would of course differ but principally proceed along the same lines.

113

The next subsection looks at a second example. The example again considers only three

species but we have seen that the method generalizes (in theory).

4.2.3 Another three element circuit

We have a look at the following three element molecular circuit from (studied for example by

[Thomas, 1990]):

Again, I adopt the simplified notation already used in Subsection 4.2.1: The three species are

denoted by X, Y and Z and their states by x,y and z respectively. Although it introduces

moderate ambiguity, the images of the state variables x,y and z are also denoted by X,Y and Z

(i.e.  1X f x, y,z , etc.).

The above circuit is formally described by the following image equations:

 X z, Y x, Z y   .

As in Subsection 4.2.1, we obtain the image table:

Again (as in example 4.2.1) there exist two steady states (i.e. states that correspond to their

image) and state variables which are about to change in a particular state are marked by a plus

or minus sign depending on whether up- or down-regulation is up to occur. The steady states

are states four and seven, where we make again the following convention regarding the

xyz XYZ

000
 

 101

 001 001

010
 

 100

011
 

 000

100
 

 111

101
 

 011

110 110

111
 

 010

114

indices of the states (the index of a state minus one is given by the respective binary

representation): 1 2 3 4 5 6 7 8q 000, q 100, q 010, q 001, q 011, q 101, q 110, q 111        .

One obtains the following state transition graph (from [Thomas 1990]):

As before we can derive the transition matrix  ij 1 i, j 8
P p

 
 :

x z

x z x z

yz

y z y z

y y

x y x y

yz

y z y z

yx

x y x y

x z

x z x z

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0 0 0
P

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0

  
      
 
 
 

      
  
 
      

 
 
 
 

      
 

 
      
 
 
 

 
 
       

115

Given P we can now derive, again analogously to Subsection 4.2.1, the equations for the

absorption probabilities  
0

4

i 4 0 ih P q q



 
      

 

, i 1,...,8 , leading to

8

4 4 4 4

4 7 i ji j

j 1

h 1, h 0, h p h , i 4,7


    . (ß2ß)

Again the corresponding equations for the 7

ih ’s would not give something new because of

4 7

i ih 1 h  for i 1,...,8 .

Reformulating (by intuition or according to the principles outlined in the preceding

subsection) one arrives at H 0  with

  
T

6

x x y y z z, , , , ,        

and

4 4 7

2 1 1

4 4 4

2 2 6

4 4 4

3 3 1

7 4 4

5 3 5

7 4 4

6 8 6

4 4 4

8 5 8

h h 0 0 0 h 0

0 0 h 0 h h 0

h 0 0 h h 0 0
H

0 0 0 h 0 h h

0 h h h 0 0 0

0 h h 0 0 0 h

 
 

 
 

  
 

 
 
  

 .

Given that all “non-zero”-entries in H are non-zero, the system H 0  has the following set

of positive
14

 solutions:

      

  

T
4 4 4 4 4 4 4 4 4 4 4 4 74 4
6 8 6 2 1 2 6 2 1 2 3 3 51 2

7 4 7 7 4 4 4 7 4 4 4 4
6 2 1 1 2 1 3 1 1 3 5 3

pos

h h h h h h h h h h h h hh h
1, , , , ,

h h h h h h h h h h h h

      
 
   
 

with  
pos

x : x : 0    for nx .

The M-files ExampleTwo.m, EstimExampleTwoSub.m and EstimExampleTwo.m are

documented in Appendix A.6, contained on the CD and can be used to estimate the

parameters in the setting where
x is assumed to be known.

Rudimentarily evaluating the proposed estimation scheme as in Subsection 4.2.1 gives the

results shown in figure 4.2.2 (on the next page).

14

 The parameters . should be positive since they parametrize exponential distributions.

116

Fig. 4.2.2. In essence the estimators show the

same behavior as in Subsection 4.2.1 and figure

4.2.1.

The only thing one could remark is that now

instead of overestimating, the estimators

seemingly systematically underestimates all (!)

the parameters.

117

4.2.4 Mixture models for absorption frequency

 based parameter estimation

The approach discussed in the preceding subsections only works if the delays are

exponentially distributed. For Weibull delays the resulting process is not a Markov chain and

hence the simple theory outlined above does not apply. In addition, the assumption that one

can measure the absorption frequencies as a function of every possible “non-degenerate” start

state seems, to say it plainly, absurd. This is due to the fact that the number of start states

grows exponentially with the number of species in the system and hence the experimental

work involved might seem a little bit too overwhelming, set aside the question if it is

altogether possible to experimentally implement every needed start state for a particular

biochemical system.

In real biological applications it seems more probable that the initial state of the system under

study is from a well-defined tentatively small set of biologically plausible start states which

are known to be possible. The difficulty then might be that one does not know exactly in

which state the system starts, i.e. one might observe an absorption frequency but cannot say to

which starting state this frequency has to be associated. This kind of situation seems to be a

natural playground for so called mixture models.

In the following “(!?)” indicates a crucial assumption which deserved further consideration.

Let  be the set of “plausible” start states. Here, “plausible” (!?) could be defined by a

priori expert knowledge or just exclude the states which unambiguously kill the organism and

thus cannot be existent in an experimental world. For the set of steady states

 i ii: q : p 1   we can (!?) now count the respective cells absorbed to the steady states

as
iq 0N  . Assume w.l.og.  1 sq ,...,q with s : . Then, with

ii q 0N : N  and by

assuming that cells “decide” independently (!?) from each other to which steady state they

evolve, we can identify the likelihood  1 sN ,..., N for the parameters  (the 's in the

Exp case, the 's and k’s in the WB case) given absorption counts 1 sN ,..., N as the

following mixture of multinoulli distributions:

     
i

j

s
N

i

1 s j j

q i 11 s

N
N ,..., N h

N N 

 
    

 
  .

Here,  j 0,1  is the probability that a cell starts out with initial state jq  ,  i

jh  is the

parameter-dependent absorption probability and N is the number of all cells examined for

their fate. The task to estimate such a mixture model would now be to estimate the j 's and

 based on the absorption counts 1 sN ,..., N . In the above formulation it is assumed that all

cells in one, say, tube are in the same start state (!?). Accordingly, the entire data would

involve different tubes of cells leading to several counts given by    z z

1 sN ,..., N for

z 1,...,L  , say.

118

For inference in mixture models, the so called EM (expectation maximization) algorithm or

one of its extensions like the Monte Carlo EM (MCEM) algorithm can be a valuable tool

[Robert, Casella 2000: Section 5.3], [Bishop 2006: Chapter 9], [Murphy 2012: Chapter 11].

This is due to the fact that the EM algorithm is especially suited to certain types of so called

latent variable models which are model where only part of the system determining variables

are observed. In the above case the unobserved “data” would be the start state of the cell in a

tube of cells. Notice that mixtures of multinoullis are so to speak one of the standard examples

of mixture models which can be estimated with the EM algorithm [Bishop 2006: Exercise

9.19]. But in the canonical case there is a slight difference to the above model. While above

the parameters  do not depend on the respective mixture component (i.e. the start state), the

standard multinoulli mixture model deals with component-dependent parameters
j .

I finally remark that it is relatively straightforward to adapt the EM algorithm to the need of a

Bayesian analysis to perform MAP estimation [Murphy 2012: Section 11.4]. This would

involve the issue of finding a suitable prior. Since the model is highly complex there is

certainly no obvious choice for a prior for  (in the sense of conjugacy, for example). The

prior for the mixing probabilities can canonically be chosen to be Dirichlet-distributed.

Further approaches for Bayesian inference in finite mixture models also include mixture

posterior simulation for example [Robert, Casella 2000: Section 9.3].

The applicability of the above mentioned approaches to the setting defined above is not

detailed in this thesis.

4.3 Further considerations

The data of the preceding section was reduced to absorption frequencies. One could also

consider the estimation task in the light of time series data. Since GKL networks are time-

continuous and state-discrete there are the possibilities to base the parameter estimation on the

time-continuous process (which would correspond to the most information) or on the jump

process, or on a combination thereof. Based on completely observed jump processes for

example one could naively consider to simulate the likelihood (which is possible due to the

fact that one can actually simulate both model types) over a suitable grid of points in

parameter space and then so to speak construct a smooth likelihood surface for example by

means of multivariate smoothing splines [Reinsch 1967]. Unfortunately however these kinds

of questions are not pursued further here.

Instead, the differences between the models WB and Exp are illustrated by means of some

simple simulations. First, consider the network from Subsection 4.2.1. Assume that we start

from state 000 and reach state 010. There one notices that the delay for species one is active

since the last state and hence in the WB this should lead to a faster switching as in the case

where the delay is only activated in the present state. If species one switches this inevitably

119

leads to the steady state 101 what can easily be seen by having a look at the state transition

graph from Subsection 4.2.1. One can ask the question what happens, given scale parameters

 equal for every species and switching direction, to the absorption frequency to steady state

101 or equivalently to 100 (with respect to start state 000) for increasing shape parameters k.

If species one, two and three have the same k’s for up-switching this should intuitively result

in a decreasing frequency of 100-absorption since then at state 000, the active species switch

equiprobable as well as in state 010 if the system was without its history. But by taking the

history into account, if the second state happens to be 010, the shape parameter responsible

for up-switching of species one will drive the system more and more towards 101 if it

increases. Note that one has to vary the up-switch k’s for species 2 and 3 accordingly in order

to balance the switch probabilities to equate to be equiprobable relative to the system evolving

without history. The intuition is partially confirmed in the simulations shown in figure 4.3.1.

In general, it is surprisingly non-straightforward to draw intuitive conclusions about the

expected behavior of the system given a particular parameter constellation.

Fig. 4.3.1:

The figure shows simulated absorption frequencies according to the intuitive logic

described in the main text.

All scale parameters were set to one, for the Weibull model the shape parameters

for up-switching of all three species were increased (simultaneously) from 1 to 3 in

steps of 0.25. All other shape parameters were kept to one.

In the exponential model all parameters were fixed to one.

120

5 PLSDEs and general stochastic hybrid systems (GSHSs)

In this final section I want to give a short impression on stochastic hybrid models and how

they possibly relate to the probabilistic timed GKL networks studied in the preceding section.

In Section 5.1 I begin by briefly looking at an approach which was proposed to associate

transition probabilities to PLDEs in the sense that one asks the question (in some meaningful

sense to be defined) what the probability is for a discrete logical state of the PLDE to follow

upon another. Section 5.2 then deals with a simple stochastic version of PLDEs termed

piecewise linear stochastic differential equations (PLSDEs). They are analogously defined as

PLDEs but in contrast the continuous dynamics on each domain is governed by stochastic

differential equations (SDEs) instead of ODEs. This kind of model is of course not new and

actually an instance of a so called general stochastic hybrid system (GSHS) [Bojuriano,

Lygeros 2008] which are shortly outlined in Section 5.3. The overall section is highly

superficial, merely presents some examples and gives rough outlines of the broader context

involved.

5.1 Probabilistic interpretation of PLDEs

[Chaves, Gouzé 2010] and [Chaves et al. 2013] proposed a method to associate transition

probabilities between the discrete states (corresponding to the different regulatory domains) of

a PLDE system simply by dividing the domains (polytopes defined by the threshold

hyperplanes, see Subsection 3.6) into regions according to the destination of the trajectories

which start in the respective regions. Since the dynamics of a PLDE system in every domain

is uniquely determined by an initial this can always be done. In a first approach [Chaves et al.

2013] defined the one-step transition probabilities between region A and a neighboring region

B as the area of the region of regulatory domain A which contains all the initial values in A

which give rise to trajectories which evolve to regulatory domain B. This Markov-type

transition system is only a crude approximation since the actually happening transitions in a

PLDE system are highly dependent also on domains that were passed in the past before the

trajectory finally led to A. So a second approach therefore considered and defined two-step

transition probabilities which also take into account the possible regulatory domains prior to

regulatory domain A.

The ultimate goal of this kind of analysis (which introduces probabilities to a completely

deterministic system) is to relate the parameters of the PLDE system to more abstract notions

which only involve the transition between logical states (i.e. domains) according to specific

transition probabilities. It seems strange at first to associate probabilities to a deterministic

system is such a way but one could intuitively think about this procedure in terms of noise

which is introduced whenever the domain switches. Normally, a trajectory of a PLDE system

is continuous and just continuously evolves into the next domain (I ignore the possibility of

121

sliding mode solutions) where it again deterministically evolves according to the new vector

field of this new regulatory domain. The probabilistic interpretation of [Chaves et al. 2013]

might correspond to the situation where the system evolves just as before in every regulatory

domain but behaves randomly in terms of the domain switches. Every time a trajectory meets

a switching boundary, the position in the regulatory domain which will normally be

continuously entered could now thought to be chosen uniformly from the entire regulatory

domain. This would correspond to the area definition of the one-step transition probabilities.

The two-step transition probabilities could be interpreted the same way by randomly choosing

an initial value in the new regulatory domain, but now not completely independent but

dependent in order to reflect the history of the system in some meaningful way. Of course,

these models are simply different models than PLDE models but it is nevertheless interesting

under which conditions different but related models can inform each other.

If the connection between two such related systems could be made sufficiently strict and

consistent the possibility arises to use knowledge inferred with either model to inform the

other, for example in term of parameter estimation (also briefly indicated in [Chaves et al.

2013]). This is basically the same logic which is for example applied when inferring the

steady states of a continuous model from a simpler Boolean model as described in Chapter 3.

However as detailed in [Jamshidi 2012] these matters are already very intricate and non-trivial

in a non-stochastic interpretation and it seems probable that the approach of [Chaves et al.

2013] is amenable to some kinds of refinements. For example one could consider stochastic

versions of the qualitative simulation approach of [De Jong et al. 2004a].

One particular aspect concerns the fact that the ‘probabilistic’ interpretation in [Chaves et al.

2013] relates to a completely deterministic system. The next subsection extends the

deterministic PLDE framework in a straightforward manner to an inherently stochastic model

which ideally could be one starting point for more explorations on the topic how discrete

stochastic models (like the probabilistic timed GKL networks from the preceding section)

relate to continuous models.

5.2 Piecewise linear stochastic differential equations (PLSDEs)

It appears straightforward to endow the deterministic differential equation evolution of a

PLDE system on its respective domain with some kind of stochasticity. The resulting model

would then be a piecewise linear stochastic differential equation [Reed, Zwart 2011],

[Simpson, Kuske 2012].

Assume that a system with species  1 n,..., , n  is given. The stochastic chemical

kinetics corresponding to a piecewise linear system for a single domain is given by the

following 2n reactions:

 j j:  ,
 j 1 j:  for j 1,...,n .

122

The corresponding propensities are  j j ja X X  and    j 1 ja X 0,    for j 1,...,n

where  
T n

1 n 0X X ,...,X  is supposed to be the state of the system describing the

molecule numbers.

Following Subsection 2.2.5, one obtains    A X Sa X with

 n 2n

1 1 0 0

0 0 0

S

0 0 0

0 0 1 1



 
 
 
  
 
 
  

 and        2n

1 2na X a X ,...,a X 

and    1 2D X S diag a X     which leads to the corresponding CLE as

     

    

1 2
T

t t t t t

1 2
T

t t t

dX A X dt D X D X dB

 A X dt Sdiag a X S dB

  
 

    

.

Here,  t t t
B


 is n-dimensional standard Brownian motion [Oksendal 2010: Section 2.2] and

tX is the continuous-valued stochastic process which is describes the concentrations of the

species and which is given as the solution of the above stochastic differential equation (SDE).

With     
T

1 n

t t tX X ,...,X this can be written component-wise by

        

       

n 1 2
i kT

t i t t t
ikk 1

1 2
i i i

i i t i i t t

dX A X dt Sdiag a X S dB

 X dt X dB



       

       



.

Now, by making the transition to a multi-domain piecewise linear system we can define a

piecewise linear stochastic differential equation system (PLSDE system) with Langevin noise

(Langevin PLSDE system) as follows.

A Langevin PLSDE system is given by the following SDEs [Oksendal 2010]:

    D D D

t t , t tdX X dt X dB     for
tX D , t 0 .

0 0X ~

Here,
    

T
1 n

t t tX X ,...,X is the n-dimensional stochastic process describing the species

concentrations,  
T

D D D n

1 n 0,...,      the vector of production rates corresponding to the

domain D,  D D D n n

1 n 0diag ,..., 

     the diagonal degradation rate matrix (again given

123

domain D) and the diffusion is given by       1 nD D D D D

, t 1 1 t n n tX diag X ,..., X        

which finally of course also depends on the domain D. Finally,  t t 0
B


 is a n-dimensional

standard Brownian motion process and
0
 is the distribution of the initial condition variable

0X which has range n

0
 (and which will almost always be assumed to be a constant in the

sequel).

It is D with the so called (regulatory) domain set  g: D : g  ,  
n

i

i 1

: 0,1,..., p




while
ip  represents the number of thresholds associated to species i. (g for gene and

for transcription.) Further define the (regulatory) domains  n g g 1

gD : x : x 

     with

       
1 n

n1 ng

g g 0: ,...,        ,  1 ng 1: g 1,...,g 1    for g and the  -relation

understood component-wise. Notice that in terms of the GKL interpretation (see Section

4.1.1) of the thresholds an index can be identified as the corresponding state vector in the

discrete GKL model. This will play a role later on. For now one can further state that for all

 i1,...,p ,  i
  represents the -th threshold of species i while by definition  i

0 : 0 

and  
i

i

p 1 :   for all i 1,...,n . The thresholds are assumed to be ordered according to

     
i

i i i

1 2 p      for every species i 1,...,n . The set of threshold of species i is denoted

by
i , i.e. one has     

i

i i

i 1 p,...,    .

The only difference in the above definitions compared to the usual PLDE systems defined in

Section 3.6 is the diffusion term which makes the system a system of piecewise linear SDEs

instead of ODEs.

Notice that there is an alternative perspective on the domain-dependent production constants
D and degradation rates

D . Exactly as in Section 3.6 on PLDEs these numbers can be

interpreted as the output of some logic function. Given that the continuous state X of the

process (t is suppressed since it does not play a role in the argument) is part the regulatory

domain
gD with some  

n

i

i 1

g 0,1,..., p


  we can suggestively write  gD gg   and

 gD gg     . What this basically means is that production and degradation terms in a

given domain are functions of the logical state (image functions) (as defined in Section 3.5 in

the context of GKL networks) associated to that particular domain. This is of course again in

analogy to the original PLDE idea [Glass, Kauffman 1973].

Notice further that given a (regulatory) domain D (according to appendix A.3) the SDE

    D D D

t t , t tdX X dt X dB     , t 0

0 0X ~

124

is solved by a stochastic process  t t 0
X


 if it holds that

    
t t

D D D

t 0 s , s s

0 0

X X X ds X dB       

for all t 0 where the second integral is defined as an Itô integral [Oksendal 2010: Chapter 3]

A solution of a PLSDE system as a whole is not so straightforward to define since the right-

hand side is discontinuous. PLSDE system are (in analogy to PLDE systems) not defined on

the threshold hyperplanes with the concept of threshold hyperplanes defined the same ways as

for PLDEs being the hyperplanes of the state space where one species is located on one of its

respective thresholds. Furthermore, in accordance with [De Jong et al. 2004] the domains
gD

are also called regulatory domains while the so called switching domains on the other hand

are again defined as the subsets of the state space where regulatory domains ‘meet’. See

Section 3.6 for comparison.

In the following we develop a naïve approach for the simulation of PLSDEs where the

threshold hyperplanes do not play a role. Of course, “do not play a role” simply means that

they are not adequately incorporated into the simulation procedure, it does by no means imply

that the simulated dynamics is not influenced by the discontinuities at the threshold

hyperplanes. For deterministic PLDEs there are numerical methods which take into account

the Fillipov extensions [Fillipov 1988] at the switching domains, see for example [Stewart

1990].

Naïve PLSDE simulation

Given a Langevin PLSDE system one can naively simulate it as follows. Starting from a

particular domain D one simulates the process on every domain one may encounter in the

sequel via the Euler-Maruyama scheme [Fuchs 2013: Subsection 3.3.2] but additionally

checks the following two conditions before one accepts the new simulated state of an iteration

step.

First it is checked which of the variables are negative and the variables for which it turns out

to be so are set to zero since negative concentration are not physical but can arise due to

discretization. This procedure is approximately valid in order to keep the state variables non-

negative if the discretization step is not too large. More advanced procedures would certainly

involve the adaptive choice of variable specific time steps when these variables become

smaller and approach zero.

The second condition which has to be checked is a condition which decides if a switch of the

domain happens or not. That is clearly important since one has to simulate the SDE

corresponding to the domain the state process is situated in. Remember that if any variable

passes one of its thresholds one has a corresponding change of the domain. So given a newly

simulated state of the process one therefore has to check if one of the variables passed one of

125

its thresholds and if so use the SDE corresponding to the well-defined new domain for

simulation in the next iteration instead of the SDE of the then left behind domain. If two or

more variables happen to cross a threshold in a single simulation step one proceeds

accordingly. If a variable happens to be located on one of its thresholds the simulation step is

discarded and a new one is generated. This is necessary since the PLSDE system is not

defined at points where at least one of the variables is equal to one of its thresholds.

It turns out that it is convenient to introduce an additional parameter into the model in order to

be able to control the strength of the noise.

Formalizing the above description we arrive at the following algorithm.

ALGORITHM 5.2 [Naïve simulation of Langevin PLSDE systems]

Input: I1. n # number of species

 I2.
ip   i n  # number of thresholds for each species

 I3.     
i

i i

i 1 p,...,      with      
i

i i i

1 2 p       i n 

 # ordered thresholds for every species

 I4.       
T

g g g n

1 n 0,...,       
n

i

i 1

g 0,1,..., p


  

 # production constants for every domain (indexed by logical state)

 I5.       g g g n n

1 n 0diag ,..., 

      
n

i

i 1

g 0,1,..., p


  

 # degradation rates for every domain (indexed by logical state)

 I6. 0  # step size

 I7.
maxt 0 # maximal simulation time

 I8.
0
, a probability measure on n

0
 # initial value distribution

 I9. 0  # noise strength

Output: O1.    n m 1

0 1 m 0Y Y ,Y ,...,Y
 

  with     
T

1 n n

0Y Y ,...,Y , 0,...,m       .

 (m   with
maxt    )

 # simulated time course of the n-dimensional process

(3) simulate
0Y from

0

(4)  maxY matrix n, t     ,   0Y :,1 Y

(5)  D 0g Y




  # initial domain via its gene logic state  
T

1 ng g ,...,g

126

(6) 0

(7) while   max1 t   :

(7.1) simulate  nB 0,I

(7.2) # Euler-Maruyama iteration:

                 g g g g 1 g g n

1 1 1 n nY Y Y diag Y ,..., Y B                  

(7.3)
 

    
   1 n

1 1,0 ,0
nonneg Y ,..., Y  

 # non-negativity test

(7.4) if nonneg 0 goto (5.5)

 else do for i 1,...,n with  nonneg i 0 : # set negative entries to zero

i

1Y 0 

(7.5) for i 1,...,n # determination of switching variables

 if    
i

i i

1 gY   then
i ig g 1 

 else if    
i

i i

1 g 1Y   then
i ig g 1 

(7.6)   1Y :, 1 Y 

(7.7) 1

A simple example

As in Section 4.2.1 we look at the following simple circuit (from [Thomas 2013]) which

involves three proteins
1P ,

2P and
3P :

1P

2P
3P

The circuit is governed by the following logical relationships (where  ig 0,1 , i 1,2,3  are

associated Boolean variables describing the state of the genes corresponding to the respective

proteins, i.e. 1 transcription and 0 no transcription):

  1g const. 0,1  ,
2 1g g  ,

3 2 3g g g  .

In addition proteins are not only produced or not produced by gene expression but they also

can possibly be degraded, depending on the situation.

In Section 4.2.1 we saw how to study this system using the (stochastic) GKL framework of

Thomas et al. [Thomas, D’Ari 1990]. Here we transform the given circuit information into a

PLSDE model and simulate it by means of algorithm 5.2.

127

In the following we will assume
1g 1 , i.e. the gene of protein

1P is constantly transcribed no

matter what happens otherwise in the system. Biologically this situation could correspond to a

gene mutation that accidentally fixes the expression status of a gene to the on-state. It could

also be that the gene codes for some very essential protein so that the organism wasn’t viable

without the respective gene being expressed. In terms of the production constants needed to

specify a PL(S)DE system this means  g

1 1   for all  
3

g 0,1  and some production

constant
1 0  .

Since the system is classically Boolean with two discrete states for each species it is clear that

in terms of PL(S)DEs this means that every species should posses one threshold. Furthermore

for simplicity it is assumed that all protein, i.e.
1P ,

2P and
3P , have a constant, domain-

independent degradation rate of 0  . Therefore we define  g diag , ,     for all

 
3

g 0,1 and for additional simplification we set 1  .

Concerning the production constants  g

2 of protein
2P we have

   g

2 2 1g   , i.e. for some

2 0  we get  g

2 2   for all  
3

g 0,1 with
1g 0 and  g

2 0  otherwise in agreement

with the logical relationship
2 1g g  . Analogously we have

   g

3 3 2 3g g   for some

3 0  . To fully explore the stochasticity in this simple PLSDE we set
1 2 3 2    .

It remains to specify the location of the thresholds. Recall that in the PLDE case (see Section

3.6) we have that
331 2

0

1 2 3

0, 0, 0, 

      
      

       
 is an invariant set and can therefore be

interpreted simply as the natural range of the respective protein concentrations. Hence

thresholds at  i i
1

i2


 


 would correspond to the subdivision of the typical concentration range

of each species into two equally sized regions. In general one can specify the thresholds

according to  i i
1 i

i


  


 with  i 0,1  . At this point every threshold value is equally

reasonable but since we only want to conceptually indicate the viability of the PLSDE

approach the choice equidistant choice, i.e.
i 1 2  , is perfectly valid. When dealing with the

stochastic PLSDEs,
331 2

0

1 2 3

0, 0, 0, 

      
      

       
 is of course no longer invariant.

The R-script PLSDE_ExampleOne.R implements algorithm 5.2 specifically for the described

example. The script is documented in Appendix A.5 and can also be found on the CD.

Example 5.2.1 Steady states and repressilator with PLSDEs

First recall what should happen in the usual PLSDE scenario. To this end one can run

128

PLSDE_ExampleOne.R by setting the noise-argument to the zero vector. Plotting the time

courses of the concentrations gives (by adjusting production or degradation rates, or

thresholds) the following two (out of three, see below) deterministic scenarios which

correspond to the two steady state possibilities 100 and 101 which were already encountered

in the context of the GLK model from Section 4.2.1 and which by Snoussi’s theorem

(Subsection 3.6.1) correspond to steady states of the associated PLSDE system:

What these scenarios mean in terms of the phase space is shown in figures 5.2.3 and 5.2.4 on

the next page. What you can see there are just the linear evolutions of the trajectories

corresponding to particular domains and domain switches are obviously indicated by the

bends in the trajectories.

Fig. 5.2.1: Steady state corresponding to 101.

(parameters: noise=c(0,0,0), =c(2,1.8,1.8),thres1=0.9)

Fig. 5.2.2: Steady state corresponding to 100.

(parameters: noise=c(0,0,0), =c(2,1.8,2))

129

Now, as outlined above we want to finally check that the PLSDE formalism is capable of

modelling intrinsic noise. The reason for this is the following canonical schematic scenario

showing the noisy situation in two dimensions:

Fig. 5.2.3: Phase space trajectories corresponding to

 the 101 steady state.

 (parameters: noise=c(0,0,0),

 =c(2,1.8,1.8),thres1=0.9)

Fig. 5.2.4: Phase space trajectories corresponding to

 the 100 steady state.

 (parameters: noise=c(0,0,0), =c(2,1.8,2))

130

The above scheme shows four boxes corresponding to four domains and although the two

trajectories start at the same point in phase space (indicated by the circle) they evolve into

different neighbouring domains because of the presence of noise.

By running the script PLSDE_ExampleOne.R at default (see Appendix A.5) multiple times

one arrives at three different probabilistic outcomes differing in transient and long-term

behaviour. The first one possibility obviously corresponds to the 100 steady state:

The second (relatively rare) possibility has the same long-term behaviour as the first one but

differs from it with respect to the transient behaviour of the third variable (the blue one).

Whereas in the first scenario the blue species shows some short-lived peak in its concentration

in the second scenario its concentration level always remains zero. Accordingly the dynamics

is located on the appropriate 2-dimensional hyperplane. The long-term behaviours on the

other hand agree again and correspond to the 100 state.

Of course, by adjusting the parameters in the deterministic PADE system the second scenario

would also be possible and given the defining regulatory logic of the system this dynamic

131

possibility can be interpreted as the case in which the second species never reaches the

threshold beyond which species three would be activated, i.e. the height of the green peak is

below the threshold of species 2, here this is one. Correspondingly the first scenario above

represents the case where species two crosses its threshold and thereby transiently activates

species three before both converge to zero. They both go to zero because species two is

inactivated as soon species one surpasses its threshold (and this happens always) and species

three wasn’t able to cross its threshold such that the positive auto-regulatory loop of species

three would have been activated. The third possibility which can be observed is the one

corresponding to the case where species two crosses its threshold thereby activates species

three while this time species two is active (above its threshold) long enough such that species

three also passes its threshold and thereafter activates itself. This then leads to the steady state

101 and is shown next:

So, basically the same dynamic range is covered by both the deterministic PLDEs and the

stochastic PLSDEs but with the difference that the dynamic ranges are all possible

stochastically with one and the same production-, degradation- and threshold parameters, i.e.

PLSDEs model noise given by intrinsic molecular fluctuations (what was clear a priori). A

PLDE system on the other hand can only model noise with respect to fluctuations of the

parameters in different cells while PLSDEs potentially model noise at a single cell level.

Of course, by experimenting with parameters and noise strength many more possibilities show

up in the PLSDE framework. For example, in correspondence with the logic described above,

repeated peaks of species two show up if one raises the threshold of species one near to its

steady state mean value, see figure 5.2.5. Here this mean is equal to two and the threshold can

thus be specified to 1.8 for example. The phenomenon of multiple peaks is explicable by the

now occurring fluctuations of species one around its threshold concentration. However, in the

system described here, the repeated peaks of species two have no further influence on the

other two species. But imagine for example a situation where species two regulates a some

other species according to some associated threshold which should be below the average peak

height. Then, these species would presumably be influenced by the shifted peaks and given

the overall dynamic of the enlarged system this could surely have some interesting

132

consequences and can be seen as a first semi-concrete indication that PLSDE models can

naturally have more enriched dynamics than PLDE systems.

The Repressilator

Now that I have illustrated some aspects of the PLSDE approach in the case of an example

involving convergence to alternative steady-states I want shortly look at the repressilator

circuit (see Subsection 1.3.6). PLSDE_Repressilator.R does the job, see Appendix A.5.

If one runs deterministically run the script PLSDE_Repressilator.R (i.e. with  noise c 0,0,0

and default otherwise) one will notice the occurrence of sliding mode solutions manifesting in

the state variables ending up being fixed to their respective threshold values. In particular, no

oscillations occur. However, adjusting the production parameters and thresholds gives rise to

deterministic oscillations as is expected for the repressilator model. The following simulations

for example can be reproduced by setting  noise c 0,0,0 ,  c 2,1.5,1  and thres1 0.2 :

Fig. 5.2.5: Multiple noise-induced

 peaks of species 2.

 (parameters: thres1=0.9, t_max =20)

133

Not very surprisingly the oscillatory behaviour can also be obtained in the SPADE case but

interestingly, running PLSDE_Repressilator.R at default already produces oscillations (in

contrast to the deterministic case where sliding mode solutions show up):

In turns out that PLSDEs are a (very, very simple) special case of a more general model calls:

general stochastic hybrid systems. These are now shortly indicated in the following

subsection.

5.3 General stochastic hybrid systems (GSHS)

Generally speaking, hybrid systems are systems (or rather models of systems) which

incorporate discrete and continuous states [Ahmad et al. 2007], [Lygeros et al. 2003],

[Lygeros 2004], [Lunze, Lamnabhi-Lagarrigue (eds.) 2009]. PLDEs for example are hybrid

systems in the sense that a continuous differential evolution represented by the continuous

protein concentrations is governed by discrete states indicating the respective domains. The

discrete states switch so to speak if the continuous trajectory reaches a switching threshold

(and nothing fancy like a sliding mode solution for example shows up). Analogously the

PLSDEs briefly examined in the preceding section are also hybrid systems in this sense and

because they are governed by some kind of stochasticity one could call a PLSDE a stochastic

hybrid system.

In the case of PL(S)DEs the discrete switching dynamics is completely determined by the

continuous evolution in the sense that switching only occurs when the continuous dynamics

reaches another domain. The respective domain then in turn determines the continuous

dynamics, either deterministically or stochastically. In general one could also imagine hybrid

systems where the switching is governed by a random process independent of the continuous

134

evolution or depends on it in some more intricate way than in PL(S)DEs. One can add even

more subtleties, for example by stochastically choosing a respective initial value every time a

switch forces a new continuous dynamics. In PLDE models, this would correspond to

randomly (according to some law) choosing concentration values within a new domain

whenever a trajectory reaches that domain, see Subsection 5.1.3. In principle, this choice

could then depend on the history of the continuous trajectory or just on its last position or it

could be independent from the continuous trajectory and just depend on the new domain, and

so on and so forth.

Of course, such systems are already subject of study in seemingly all possible kinds of

variations. According to [Pola et al. 2003], concerning stochastically influenced hybrid

systems [Cassandras, Lygeros (eds.) 2007], [Blom, Lygeros (eds.) 2006], researchers invented

for example (!) so called piecewise deterministic Markov processes (PDMPs) [Davis 1993],

switched diffusion processes (SDPs) [Ghosh et al. 1997], [Yin, Zhu 2010], models just termed

stochastic hybrid systems (SHSs) [Hu et al. 2000] or so called stochastic timed automata

[Kwiatkowska et al. 2000]. As reviewed in [Pola et al. 2003] these model classes are different

but nonetheless related under circumstances depending on the respective model specifications.

All these model classes formalize (in one way or another) the notion of systems which possess

both a discrete as well as a continuous state space component and which are governed by

some kind of stochasticity. [Bujorianu, Lygeros 2008] proposed a framework which unifies

some of the approaches taken in the literature and termed their general model class general

stochastic hybrid systems (GSHSs).

Stochastic hybrid systems (in the sense of models which possess both a discrete as well as a

continuous state space component and which are governed by some kind of stochasticity)

have been also been applied to biochemical networks: [Singh, Hespanha 2010] is a general

review on the topic while [Kouretas et al. 2006], [Cinquemani et al. 2007], [Crudu et al. 2009]

or [Crudu et al. 2011] may represent (!) more specialized studies on stochastic hybrid systems

in systems biology.

135

136

6 Summary and Outlook

The following table basically summarizes the conceptual part of the thesis (and accordingly

more or less ignores spatial models):

137

[Jamshidi 2012] provides an interesting detailed study on the relation between PLDEs and

different kinds of discrete models. While the situation is already very intricate for the

considered deterministic systems, it might nonetheless be worthwhile to explore possible

stochastic extensions. This would ultimately lead to the study of stochastic hybrid systems as

outlined in Subsection 5.3. Related to these issues is the conception that the established

qualitative simulation approach of [De Jong et al. 2004a,b] based on discrete abstractions of

PLDEs should also be accessible to stochastic extensions (at least in theory by using PLSDEs)

and it would certainly be interesting to be able to conduct stochastic qualitative simulation.

Concerning the estimation of parameters in probabilistic timed GKL networks it is (although

they are biologically not extremely plausible) interesting to try to obtain moderately general

results which relate the structure of the network with the corresponding parameter estimation

task as outlined in Subsections 4.2.1 to 4.2.3. In addition, it would certainly be useful to apply

much heavier statistical machinery as basic Markov chain theory in order for example to

meaningfully be able to deal with the mixture models proposed in Subsection 4.2.4. The same

holds of course even more for time series based estimation. Furthermore, one could look out

for further “feasible” delay distributions and also consider mixed systems where the delay can

come from different distribution families. It would also be nice to find a non-trivial

application for one of the approaches.

A long term theoretical goal would be to formally relate as many modeling approaches as

possible by adopting the idea that it could “somehow” be possible to “construct” a

“continuum” of models connecting even the simplest ones via a chain of intricate

mathematically strictly backed up transformations such that certain properties remain

invariant under these transformations. This could also be used potentially to guide parameter

estimation by clever “model jumping”.

While the last two or three sentences might sound (although philosophically acceptable) a

little bit spongy a clear-cut short-term goal could be to apply the PLSDE approach to a PLDE

model of [Chaves et al. 2009] which models the interplay of the NFpathway and

apoptosis. There, noise was modeled in terms of parameter fluctuations from cell to cell and it

would be interesting to examine the same system in terms of a modeling framework which is

intrinsically stochastic. I already tried my luck but ran into numerical problems which can

almost surely be attributed to the size of the system and my “spontaneous” numerical

capabilities. In principle, it seems a worthwhile goal to extend numerical approaches which

exist for piecewise linear models [Stewart 1990] to PLSDE systems. Considering the huge

time span from 1990 to 2014 it might seem also worthwhile to look for already existing

solutions first.

138

A.1 Exponential and Weibull distribution

This appendix provides the facts on the exponential and the Weibull distribution needed for

the main part of the text. Throughout, random variables X are implicitly given as measurable

functions
dX : where  , , is a probability space and  d

d , is the measurable

space given by the d-dimensional Euclidean space with Borel- -algebra d [Klenke 2008].

Random variables with range
nA are understood to be defined with respect to

corresponding induced  -algebra  AA, . The induced probability measure (the

distribution) of X is denoted by 1

X : X [Klenke 2008].

Exponential distribution

A random variable T is said to be exponentially distributed with parameter 0  if the law
T

of T has the probability density function (pdf)     t

Tf t t 0 e   . The corresponding

cumulative distribution function (cdf) is given by     t

TF t t 0 1 e   . We write

 X ~ Exp  . The following result shows that the exponential distribution is characterized by

its so called memoryless property.

Result A.1.1 (Memoryless property of the exponential distribution) [Norris 1998]

 A random variable T with range  0, has an exponential distribution

 if and only if the following memoryless property holds:

    s, t 0 : T t s T t T s       .

Proof [Norris 1998]:

If  T ~ Exp  it follows for all s, t 0 (since  T t 0  for all t):

  
 

 

 

 
t s

s

t

T s t e
T t s T t e T s

T t e

 





 
       


.

Reversely, suppose    s, t 0 : T t s T t T s       , then see [Norris 1998] p. 71.

139

The memoryless property can be slightly reformulated as follows:

  T ~ Exp      s 0 : T s T s ~ Exp     .

Further, notice that  
1

T 


 for  T ~ Exp  .

Result A.1.2

      i
j j 1 n i n

jj 1

X ~ Exp independent, j 1,..., n P min X ,...,X X




    



Proof:

    

   

 
 

i

i

j

1 n i j i

j i

j i i X

j i0

t

i j
X independent

j i0

min X ,...,X X X X

 X X X t f t dt

 e X t dt













 
   

 

 
   

 

  





 

ji
tt

i

j i0

n i
i j nj 1

0 jj 1

 e e dt

 exp t dt












 


     








Weibull distribution

A random variable T is said to be Weibull distributed with parameters ,k 0  when its law

T
 possesses the pdf      

k

k 1

t

T

k t
g t t 0 e



  
   

  
. The corresponding cdf is given by

      
k

t

TG t t 0 1 e
 

   . We write  X ~ ,k . The following result concerns the pdf

f of the random variable  : T t T t    for t 0 and  T ~ ,k . The result is needed

in Section 4.2 in order to sample from  : T t T t    .

140

Result A.1.3

    
k 1 k k

k t s t t s
f s t 0 exp





       
                    

Proof:

Since  T t 0  for all t is follows:

   
 

 

 

 

 

k

k

k k

T t s
s T t s T t

T t

t s
t 0 exp

t

t 0 exp

t t s
 t 0 exp

 
      



  
      

  
      

    
          

 : R s 



Therefore,      
k 1 k k

k t s t t s
f s R ' s t 0 exp





       
                      

.

A.2 Sampling from probability distributions

This appendix is based on Chapter 2 of [Robert, Casella 2000] and Chapter 3 of [Rizzo 2008]

and is fitted to the needs of this thesis and is definitely not meant to be any kind of even semi-

extensive overview. Throughout, random variables X are implicitly given as measurable

functions
dX : where  , , is a probability space and  d

d , is the measurable

space given by the d-dimensional Euclidean space with Borel- -algebra d [Klenke 2008].

Random variables with range
nA are understood to be defined with respect to

corresponding induced  -algebra  AA, . The induced probability measure (the

distribution) of X is denoted by 1

X : X .

The basis of drawing samples from a given probability distribution is the ability to draw

reliable sample from a uniform distribution  U ~ 0,1 . Algorithms which generate such

sample are called uniform pseudo-random number generators [Robert, Casella 2000]. Such

141

algorithms generate deterministic (!) sequences        0i

i 0u D u 0,1  starting from a

deterministic (!) initial value  0u 0,1 and with    D: 0,1 0,1 being a ‘suitable’

deterministic (!) transformation. If the deterministic sequences  1 nu ,...,u for n can be

reliably seen as an uniform i.i.d. sample  1 nV ,...,V , i.e.  iV ~ 0,1 independently, has to be

assessed by testing the null hypothesis  0 1 n iidH : n : U ,...,U ~ 0,1  which can for

example be done by Kolmogorov-Smirnov tests [Rizzo 2008: Chapter 8] or by utilizing

concepts from time series analysis as indicated by [Robert, Casella 2000: p.37]. One famous

uniform pseudo-random number generator is the so called Kiss generator, see for example

[Robert, Casella 2000: Subsection 2.1.2].

Theoretically every random variable X: can be simulated based on an i.i.d. sample of

uniformly distributed random variables. This is due to the fact sometimes known as

probability integral transform [Robert, Casella 2000: p.36]. Given the cumulative distribution

function (cdf)  XF : 0,1 ,    XF x X x  of X one defines the generalized inverse of

XF as the function  XF : 0,1  via     X XF u : inf x : F x u    . For absolutely

continuous distributions the generalized inverse is just the inverse of the cdf. The probability

integral transform theorem can then be stated as follows: If  U ~ 0,1 , then  X XF U ~ .

Practically the probability integral transform can only be used to generate samples of a

random variable X if the corresponding generalized inverse is easily computable. This is

however most often not case. The exponential distribution and the Weibull distribution are

two examples where the integral transform method works.

As given in the preceding appendix, the cdf of a random variable  X ~ ,k with scale

parameter 0  and shape parameter k 0 is given by    
k

X

x
F x x 0 1 exp

    
           

.

Since X is absolutely continuous one can set for  u 0,1

   
 

k

X

X X

F u
u F F u 1 exp




   

         

 and arrive at     
1 k

XF u ln 1 u     . Specializing to k 1 gives the result for

1
X ~ Exp

 
 
 

. So to generate a (pseudo) sample  1 n iidX ,...,X ~ ,k from generate

 1 n iidU ,...,U ~ 0,1 with a uniform pseudo-random number generator and set

   
1 k

i iX ln 1 U    , i 1,...,n .

142

An application of the inverse transform for a discrete random variable is given by the

following method to generate a sample  1 n iidX ,...,X ~ Cat  from a categorical m-valued

random variable with
mS for some m (see Appendix A.X). To do this, you can sample

 1 n iidU ,...,U ~ 0,1 and set

k 1 k m 1

i j i j j i

j 1 j 1 j 1

X k U ,k m m U 1
 

  

   
            

   
   for

i 1,...,n .

To draw a sample  1 n iid dX ,...,X ~ ,  of a d-dimensional multivariate normal distribution

with mean d and symmetric positive definite covariance matrix
d d (see the

preceding appendix) simple inverse transform methods are not applicable. The classical Box-

Muller method could be used to draw a sample if d 2 and
2 2 diagonal [Robert,

Casella 2000: p.46].

In the general case, the basic principle is given as follows. One first samples  i d dX ~ 0,I

and then, based on a suitable decomposition
TC C  with some matrices C, obtain the

sample  i i dX : CX ~ ,    . Suitable decompositions include the spectral

decomposition, the Cholesky decomposition or the singular value decomposition (SVD)

[Rizzo 2008: Subsection 3.6.1].

For extensive treatments of the topic it is referred to [Robert, Casella 2000] and [Rizzo 2008].

For all practical purposes it seems advisable to use the many built-in sampling algorithms of

R or MATLAB.

A.3 Adaptive rejection sampling of Weibull random variables T

 conditioned on events of the form  T t for t 0

In order to be able to simulate the probabilistic timed GKL networks with Weibull distributed

time delays introduced in Section 4.1, it is necessary to sample from conditioned random

variables T T t with  T ~ ,k , t, 0  and k 1 . If k 1 , then  T ~ Exp  and the

task of sampling from T T t simply reduces to sampling from  T ~ Exp  because of the

memoryless property of the exponential distribution. Some basic definitions and results on the

exponential and the Weibull distribution can be found in Appendix A.1. If k 1 , it turns out

that the density of T T t (or equivalently of  T t T t   ) is log-concave and is thus

predestined to be simulated with adaptive rejection sampling.

143

This section is subdivided into two subsections. Subsection A.3.1 shortly outlines adaptive

rejection sampling (ARS) for log-concave densities while Subsection A.3.2 applies these

concepts to sampling from T T t with  T ~ ,k , t, 0  and k 1 .

A.3.1 Adaptive rejection sampling (ARS) for log-concave densities

Adaptive rejection sampling (ARS) is an instance of the general class of so called accept-

reject sampling methods [Robert, Casella 2000: Section 2.3]. The basic accept-reject

algorithm to sample from a (continuous) density d

f ff : D , D  (called target density)

relies on the existence of some so called instrumental density

  d

g gg : D , supp f D   such that there is an M 0 with    f x Mg x for all

    fx supp f : x D : f x 0    . In addition, it is important that it is comparatively easy to

sample from the instrumental density g. A convenient general characteristic of accept-reject

methods is that the target density needs only be known up to a constant, i.e. is suffices to

know   d

f f
f : D , supp f D   with f c f  with unknown instrumental density f and

unknown normalization constant c 0 . This is very useful in a Bayesian setting where one

wants to sample from a posterior distribution which is only known to be proportional to the

prior times the likelihood.

Algorithm A.3.1 [Accept-reject method]

Input: I1.
ff : D  with f c f  for c 0 and a density ff : D  , d

fD 

 # target density

 I2. A density  g gg : D , supp f D  with    f x Mg x

 for some M 0 and all  x supp f # instrumental density

 I3. n # sample size

Output: O1. 1 n iidY ,...,Y ~ f

(1) k 0

(2) while k n :

 (2.1) sample  U ~ 0,1

 (2.2) sample X ~ g

 (2.3) if
 

 

f X
U

Mg X
 :

144

 (2.3.1) k 1Y X 

 (2.3.2) k k 1 

Lemma A.3.1 (Accept-reject method)

 The sample 1 nY ,...,Y generated with algorithm 5.1 is i.i.d. according to f.

Proof [Robert, Casella 2000: Section 2.3]:

1 nY ,...,Y are independent because U and X are independently sampled anew in each iteration

and hence independence follows for example from Satz 2.26 in [Klenke 2008].

If one denotes the joint density of U and X by       x,u u 0,1 g x   (U and X are

independent) one obtains for  
T

1 d gy y ,..., y D  :

 
 

 

 
 

 
 

 
   

 

 
   

d

i

i 1

g

f x Mg x

,y 0

f x Mg x

D 0

f X
Y y X y U

Mg X

f X
X y, U

Mg X

f X
U

Mg X

x,u du dx

x, u du dx





 
    

 
 

 
   

 
 

  
 








 

 

 
    

 

 
    

        
   

 
 

 

d

i

i 1

g

d

i

i 1

g

min f x Mg x ,1

,y 0

min f x Mg x ,1

D 0

,y

min f x Mg x ,1 f x Mg x

 since f x Mg x
D

du g x dx

du g x dx

1
f x dx

M

1
f x dx

M



















 

 





145

 
 

 

 
 

 

d

i

i 1

f

d

i

i 1

,y

D

f
,y

cf x dx

cf x dx

f x dx F y












 








The probability of acceptance
acceptp in algorithm 5.1 given by

 

 
 

   

g

f x Mg x

accept
D 0

f X c
p : U x,u du dx

Mg X M

 
     

 
 

 

represents the “efficiency” of a given accept-reject method. The higher
acceptp the more

efficient is the algorithm in the sense that it needs (on average) less iterations to produce a

sample of a given length.

Even if one has a suitable instrumental distribution for a given target density it can be the case

that the target f (i.e. f) is difficult to evaluate. In this case, algorithm 5.1 come into trouble

since in every iteration, f has to be evaluated at the simulated X (step (2.3) in algorithm

A.3.1). One way to overcome this bottleneck is by means of so called envelope accept-reject

methods [Robert, Casella 2000: Subsection 2.3.2]. While the instrumental density g bounds

the target density from above (scaled with some constant M), envelope accept-reject methods

additionally introduce a further instrumental function h (which does not need to be a density)

which bounds the target density from below. g is also called rejection envelope and h is also

known as squeezing function [Gilks, Wild 1992].

Algorithm A.3.2 [Envelope accept-reject method]

Input: I1.
ff : D  with f c f  for c 0 and a density ff : D  , d

fD 

 # target density

 I2. A density  g gg : D , supp f D  with    f x Mg x

 for some M 0 and all  x supp f # instrumental density

 I3.  h hh : D , supp f D  such that    h x f x for all  x supp f

 # instrumental lower bound on f

 I4. n # sample size

Output: O1. 1 n iidY ,...,Y ~ f

(1) k 0

146

(2) while k n :

 (2.1) sample  U ~ 0,1

 (2.2) sample X ~ g

 (2.3) if
 

 

h X
U

Mg X
 :

 (2.3.1) k 1Y X 

 (2.3.2) k k 1 

 (2.4) else:

 (2.4.1) if
 

 

f X
U

Mg X
 :

 (2.4.1.1) k 1Y X 

 (2.4.1.2) k k 1 

Lemma A.3.2 (Envelope accept-reject method)

 The sample 1 nY ,...,Y generated with algorithm 5.2 is i.i.d. according to f.

Proof:

Independence follows by the same argument as in the proof of lemma A.3.1.

Concerning the distribution of the sample 1 nY ,...,Y it suffices to notice that a proposal is

accepted if and only if
 

 

f X
U

Mg X
 since h f on  supp f . Hence the same computation as

in the proof of lemma 5.1.1 shows that 1 nY ,...,Y are indeed identically distributed according

to the target density f.

The difference between algorithm A.3.1 and A.3.2 is simply that in algorithm A.3.2 the target

f is only evaluated, if
 

 

f X
U

Mg X
 cannot be ascertained by noticing the stronger condition

 

 

 

 

h X f X
U

Mg X Mg X
  . So, in order to avoid many evaluations of f it is administrable if h is

as tight a lower bound of f as possible. Of course, h should be easy to evaluate.

147

A short look at algorithms A.3.1 and A.3.2 and the respective proofs of their correctness

reveals that independence does not depend on g or h. In addition, the derivation that the single

samples kY follow the desired distribution is viable for every iteration in isolation and hence

one could possibly use different instrumental functions g and h for different iterations given

that they fulfill the demanded properties for instrumental functions. This is now, to a first

approximation, one of the key ideas of adaptive rejection sampling, the other one being to

choose the instrumental functions in an adaptive manner in order to achieve a successively

tighter envelope. In fact, ARS even changes g and h after samples were rejected and hence the

just described logic

Adaptive rejection sampling was invented by [Gilks, Wild 1992] in the context of analyzing

monoclonal antibody data with Bayesian methods. In order to be able to conduct the desired

Bayesian analysis it was necessary to use a Gibbs sampling approach and in order to be able

to sample from the involved conditional distributions [Gilks, Wild 1992] devised adaptive

rejection sampling.

Adaptive rejection sampling is universal in the sense that it provides a automatic method to

sample from any log-concave density. A function f : D with convex dD is said to

be log-concave if its logarithm is concave, i.e. if

           x, y D, 0,1 : logf x 1 y logf x 1 f y          .

In the next subsection it will be shown that the density of  T t T t  with  T ~ ,k ,

t, 0  and k 1 is log-concave what leads to the possibility to sample from  T t T t 

(and hence T T t) by means of ARS. For twice differentiable functions log-concavity is

equivalent to the negativity of its logarithm due to basic facts from analysis.

The main idea of adaptive rejection sampling is best explained with figure A.3.1 in mind.

 What is shown, is a log-concave density function

and its so called lower and upper hulls. In the

following I follow [Robert, Casella 2000]. Given a

log-concave density f : D and a set of

support points  n 0 1 n 1: x ,, x ,..., x D  such that

the log of f is known up to some constant at the

points in
n

. Now, ARS proceeds by defining a

piecewise linear rejection envelope by taking the

respective tangents at the support points and

joining them in the canonical way. Analogously

piecewise linear squeezing function is constructed

by taking the secants from support point to support

point. After consistently defining the envelope at

the boundaries of the domain of f (see [Robert,

Fig. A.3.1 (from [Gilks, Wild 1992])

148

Casella 2000: Subsection 2.3.3]), the basic ARS algorithm can be formulated as follows.

Given a set of support points construct the squeezing function and the rejection envelope as

outlined and perform a respective envelope-rejection step (steps (2.3) and (2.4) in algorithm

A.3.2). If you have to go to step (2.4) take the respective sampled x and join it to the support

points (notice, since you had to go to step (2.4) you already evaluated f at x and therefore the

logarithm is also given.). And so on and so forth. After the proofs of Lemmas A.3.1 and A.3.2

it should be clear that ARS works. The overall logic is such that whenever you have to

evaluate f, you join the respective sample to the support points in order to tighten up the

envelope at the encountered “leaky” point. As a last remark, I point out that sampling from

the (transformed) upper hull is relatively easy [Robert, Casella 2000: Subsection 2.3.3].

A.3.2 Sampling from the conditioned Weibull distribution with ARS

This subsection shows that  T t T t    with  T ~ ,k , t, 0  and k 1 can be

sampled by means of ARS by showing that the pdf (probability density function) f given by

    
k 1 k k

k t s t t s
f s s 0 exp





       
                    

 (see Appendix A.1, result A.1.2)

is log-concave and hence accessible by ARS. To show that f is log-concave it suffices to

show that the second derivative of the log of f is negative on its domain (see the preceding

subsection). Let s 0 , then one has

      
k k

k t s t t s
s : log f s log k 1 log 

       
                     

and therefore

  
 

k 1
k 1d k t s

s
dt t s





  
   

   

i.e. finally

  
 

 

 
k 22

22 2

1 k k k 1d t s
s 0

dt t s





   
   

   

since t, 0  , k 1 and s 0 .

In summary, f is log-concave and can thus be simulated via ARS.

149

The M-file SampleCondWB.m implements the simulation scheme based on an existing ARS-

implementation (ars.m) by [Eaton 2006]. See Appendix A.4 for details on SampleCondWB.m

and the CD in the back of the thesis for the actual M-files SampleCondWB.m and ars.m.

SampleCondWB.m

function [samples, samples2] = SampleCondWB(scale,shape,t,nSamples)

% Sampling from conditioned Weibull distributions (Appendix A.3)
% scale = scale parameter (lambda) > 0
% shape = shape parameter (k) >= 1
% t = condition time --> samples are from
% xi = WB(scale,shape)-t | WB(scale,shape) > t
% nSamples = number of samples one wants to draw
% output: samples = samples from xi
% samples2 = samples from WB(scale,shape) | WB(scale,shape) > t
%
% see SampleCondWBdemo.m on the CD

 if shape < 1
 error('shape parameter must be greater or equal than 1');
 end

 func = @(T,t,scale,shape) log(shape./scale) - (shape-1).*log(scale) +

 (t./scale).^shape + (shape-1).*log(T+t) - ((T+t)./scale).^shape;
 domain = [0 inf];
 a = domain(1);
 b = 1 + scale.*nthroot(1-(1./shape),shape);

 samples = ars(func, a, b, domain, nSamples, t, scale, shape);
 samples2 = samples + t;
end

The following diagrams can be generated by SampleCondWBdemo.m (see CD) and together

they exemplify the basic property of the Weibull distribution in contrast to the exponential

distribution: In the case of Weibull waiting times and due to k 1 it becomes more and more

probable that the described event happens when more and more time goes by. Formally,

   s, t 0 : T t s T t T s       (compare with Appendix A.1). The three (times three)

diagrams show the density of f the samples from  T t T t    and the corresponding

samples from T T t for a Weibull variable  T ~ 1,2 for t 0.5, 1, 2 :

150

 t = 0.5

t = 1

151

t = 2

Intuitively spoken, the for our purposes decisive property of the Weibull distribution with

shape parameter greater than one is the fact that the longer one already waits the more

probable it is that the described event will happen soon. You can nicely see this property for

the plotted examples by comparing the respective heights in the histograms.

The plots above can be produced by SampleCondWBdemo.m which can be found on the CD

in the back of the thesis.

152

A.4 M-files for Subsections 4.2.1 and 4.2.3

The M-file ExampleOne.m can be used to simulate the model from Subsection 4.2.1:

function [N2, N6, tc, TimeEvol] = ExampleOne(Delay, Ncells, start, lambda,

shape)

% input: Delay = 'exp' --> Ncells = number of simulated chains/cells
% lambda = scale parameters of the respective
% exp. dist., 1x6 vector:
% [x_on,x_off,...,z_off]
% Delay = 'WB' --> in addition specify the shape parameters of the
% Weibull dist., 1x6 vector:
% [kx_on,kx_off,...,kz_off]

% output: N2: absorption count to steady state 2 (100)
% N6: -------------- " -------------- 6 (101)
% tc: switching times (in absolute continuous time)
% TimeEvol: times series of jump process according to tc

 if nargin == 4 || nargin == 5

 N2 = 0; N6 = 0;

 TimeEvol = zeros(Ncells,100);
 for i=1:Ncells
 TimeEvol(i,1) = start;
 end

 tc = zeros(Ncells,100);
 for i=1:Ncells
 tc(i,1) = 0;
 end

 len = ones(1,Ncells);

 if strcmp(Delay, 'exp') == 1

 for i=1:Ncells

 state = start;
 t = 1;

 while state ~= 2 && state ~= 6

 if state == 1
 tau1 = exprnd(1/lambda(1));
 tau2 = exprnd(1/lambda(3));
 tau = min(tau1,tau2);
 if tau == tau1
 state = 2;
 N2 = N2 + 1;
 else
 state = 3;
 end
 t = t + 1;

153

 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 3
 tau1 = exprnd(1/lambda(1));
 tau2 = exprnd(1/lambda(5));
 tau = min(tau1,tau2);
 if tau == tau1
 state = 7;
 else
 state = 5;
 end
 t = t + 1;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 4
 tau1 = exprnd(1/lambda(1));
 tau2 = exprnd(1/lambda(3));
 tau = min(tau1,tau2);
 if tau == tau1
 state = 6;
 N6 = N6 + 1;
 else
 state = 5;
 end
 t = t + 1;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 5
 tau = exprnd(1/lambda(1));
 state = 8;
 t = t + 1;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 7
 tau1 = exprnd(1/lambda(4));
 tau2 = exprnd(1/lambda(5));
 tau = min(tau1,tau2);
 if tau == tau1
 state = 2;
 N2 = N2 + 1;
 else
 state = 8;
 end
 t = t + 1;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 else
 tau = exprnd(1/lambda(4));
 state = 6;
 N6 = N6 + 1;
 t = t + 1;

154

 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;
 end

 end

 end

 end

 if strcmp(Delay, 'WB') == 1

 for i=1:Ncells

 state = start;
 t = 1;
 delta = 0;
 deltaStar = 0;
 kap = 0;

 while state ~= 2 && state ~= 6

 if state == 1
 tau1 = SampleCondWB(lambda(1),shape(1),delta,1);
 tau2 = SampleCondWB(lambda(3),shape(3),0,1);
 tau = min(tau1,tau2);
 if tau == tau1
 state = 2;
 N2 = N2 + 1;
 else
 state = 3;
 end
 t = t + 1;
 delta = tau;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 3
 tau1 = SampleCondWB(lambda(1),shape(1),delta,1);
 tau2 = SampleCondWB(lambda(5),shape(5),0,1);
 tau = min(tau1,tau2);
 if tau == tau1
 state = 7;
 else
 state = 5;
 kap = 2;
 end
 t = t + 1;
 delta = tau;
 deltaStar = tc(i,t-1) - tc(i,t-2);
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 4
 tau1 = SampleCondWB(lambda(1),shape(1),0,1);
 tau2 = SampleCondWB(lambda(3),shape(3),0,1);
 tau = min(tau1,tau2);

155

 if tau == tau1
 state = 7;
 N7 = N7 + 1;
 else
 state = 5;
 kap = 1;
 end
 t = t + 1;
 delta = tau;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 5
 if kap == 1
 tau = SampleCondWB(lambda(1),shape(1),delta,1);
 else
 tau = SampleCondWB(lambda(1),shape(1),deltaStar,1);
 end
 state = 8;
 kap = 0;
 t = t + 1;
 delta = tau;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 7
 tau1 = SampleCondWB(lambda(4),shape(4),0,1);
 tau2 = SampleCondWB(lambda(5),shape(5),delta,1);
 tau = min(tau1,tau2);
 if tau == tau1
 state = 2;
 N2 = N2 + 1;
 else
 state = 8;
 kap = 1;
 end
 t = t + 1;
 delta = tau;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 else
 if kap == 1
 tau = SampleCondWB(lambda(4),shape(4),delta,1);
 else
 tau = SampleCondWB(lambda(2),shape(2),0,1);
 end
 state = 6;
 N6 = N6 + 1;
 t = t + 1;
 delta = tau;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;
 end

 end

156

 end

 end

 tcCell = cell(Ncells,1);
 for i=1:Ncells
 tcCell{i,1} = tc(i,1:len(i));
 end
 tc = tcCell;

 TimeEvolCell = cell(Ncells,1);
 for i=1:Ncells
 TimeEvolCell{i,1} = TimeEvol(i,1:len(i));
 end
 TimeEvol = TimeEvolCell;

 end

end

The M-file EstimExampleOne.m can be used to estimate the parameters based on simulated

data:

function estimator = EstimExampleOne(Ncells, scale)

% estimation of Example 1 according to Subsection 4.2.1
% relies on EstimExampleOneSub.m, see CD

% input: Ncells = number of simulated chains/cells
% scale = true chosen scale parameter vector
% 1x6 vector = [x_on,x_off,...,z_off]
%
% output: estimator = estimator of scale

 f2 = zeros(1,8);
 f6 = zeros(1,8);

 for i=[1,3,4,5,7,8]
 N2 = ExampleOne('exp',Ncells,i,scale,0);
 f2(i) = N2/Ncells;
 f6(i) = 1-f2(i);
 end

 estimator = EstimExampleOneSub(f2,f6,scale(1));
 estimator =

[estimator(1),scale(2),estimator(2),estimator(3),estimator(4),scale(6)];

end

157

Concerning Subsection 4.2.3 the M-file ExampleTwo.m can be used to simulate the network

for both model types:

function [N4, N7, tc, TimeEvol] = ExampleTwo(Delay, Ncells, start, lambda,

shape)

% input: Delay = 'exp' --> Ncells = number of simulated chains/cells
% lambda = scale parameters of the respective
% exp. dist., 1x6 vector:
% [x_on,x_off,...,z_off]
% Delay = 'WB' --> in addition specify the shape parameters of the
% Weibull dist., 1x6 vector:
% [kx_on,kx_off,...,kz_off]

% output: N4: absorption count to steady state 4 (001)
% N7: -------------- " -------------- 7 (110)
% tc: switching times (in absolute continuous time)
% TimeEvol: times series of jump process according to tc

if nargin == 4 || nargin == 5

 N4 = 0; N7 = 0;

 TimeEvol = zeros(Ncells,100);
 for i=1:Ncells
 TimeEvol(i,1) = start;
 end

 tc = zeros(Ncells,100);
 for i=1:Ncells
 tc(i,1) = 0;
 end

 len = ones(1,Ncells);

 if strcmp(Delay, 'exp') == 1

 for i=1:Ncells

 state = start;
 t = 1;

 while state ~= 4 && state ~= 7

 if state == 1
 tau1 = exprnd(1/lambda(1));
 tau2 = exprnd(1/lambda(5));
 tau = min(tau1,tau2);
 if tau == tau1
 state = 2;
 else
 state = 4;
 N4 = N4 + 1;
 end
 t = t + 1;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

158

 elseif state == 2
 tau1 = exprnd(1/lambda(3));
 tau2 = exprnd(1/lambda(5));
 tau = min(tau1,tau2);
 if tau == tau1
 state = 7;
 N7 = N7 + 1;
 else
 state = 6;
 end
 t = t + 1;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 3
 tau1 = exprnd(1/lambda(1));
 tau2 = exprnd(1/lambda(4));
 tau = min(tau1,tau2);
 if tau == tau1
 state = 7;
 N7 = N7 + 1;
 else
 state = 1;
 end
 t = t + 1;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 5
 tau1 = exprnd(1/lambda(4));
 tau2 = exprnd(1/lambda(6));
 tau = min(tau1,tau2);
 if tau == tau1
 state = 4;
 N4 = N4 + 1;
 else
 state = 3;
 end
 t = t + 1;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 6
 tau1 = exprnd(1/lambda(2));
 tau2 = exprnd(1/lambda(3));
 tau = min(tau1,tau2);
 if tau == tau1
 state = 4;
 N4 = N4 + 1;
 else
 state = 8;
 end
 t = t + 1;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

159

 else
 tau1 = exprnd(1/lambda(2));
 tau2 = exprnd(1/lambda(6));
 tau = min(tau1,tau2);
 if tau == tau1
 state = 5;
 else
 state = 7;
 N7 = N7 + 1;
 end
 t = t + 1;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;
 end

 end

 end

 end

 if strcmp(Delay, 'WB') == 1

 for i=1:Ncells

 state = start;
 t = 1;
 delta = 0;

 while state ~= 4 && state ~= 7

 if state == 1
 tau1 = SampleCondWB(lambda(1),shape(1),delta,1);
 tau2 = SampleCondWB(lambda(5),shape(5),0,1);
 tau = min(tau1,tau2);
 if tau == tau1
 state = 2;
 else
 state = 4;
 N4 = N4 + 1;
 end
 t = t + 1;
 delta = tau;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 2
 tau1 = SampleCondWB(lambda(3),shape(3),0,1);
 tau2 = SampleCondWB(lambda(5),shape(5),delta,1);
 tau = min(tau1,tau2);
 if tau == tau1
 state = 7;
 N7 = N7 + 1;
 else
 state = 6;
 end
 t = t + 1;
 delta = tau;

160

 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 3
 tau1 = SampleCondWB(lambda(1),shape(1),0,1);
 tau2 = SampleCondWB(lambda(4),shape(4),delta,1);
 tau = min(tau1,tau2);
 if tau == tau1
 state = 7;
 N7 = N7 + 1;
 else
 state = 1;
 end
 t = t + 1;
 delta = tau;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 5
 tau1 = SampleCondWB(lambda(4),shape(4),0,1);
 tau2 = SampleCondWB(lambda(6),shape(6),delta,1);
 tau = min(tau1,tau2);
 if tau == tau1
 state = 4;
 N4 = N4 + 1;
 else
 state = 3;
 end
 t = t + 1;
 delta = tau;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 elseif state == 6
 tau1 = SampleCondWB(lambda(2),shape(2),0,1);
 tau2 = SampleCondWB(lambda(3),shape(3),delta,1);
 tau = min(tau1,tau2);
 if tau == tau1
 state = 4;
 N4 = N4 + 1;
 else
 state = 8;
 end
 t = t + 1;
 delta = tau;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;

 else
 tau1 = SampleCondWB(lambda(2),shape(2),delta,1);
 tau2 = SampleCondWB(lambda(6),shape(6),0,1);
 tau = min(tau1,tau2);
 if tau == tau1
 state = 5;
 else
 state = 7;
 N7 = N7 + 1;

161

 end
 t = t + 1;
 delta = tau;
 tc(i,t) = tc(i,t-1) + tau;
 TimeEvol(i,t) = state;
 len(i) = len(i) + 1;
 end

 end

 end

 end

 tcCell = cell(Ncells,1);
 for i=1:Ncells
 tcCell{i,1} = tc(i,1:len(i));
 end
 tc = tcCell;

 TimeEvolCell = cell(Ncells,1);
 for i=1:Ncells
 TimeEvolCell{i,1} = TimeEvol(i,1:len(i));
 end
 TimeEvol = TimeEvolCell;

end

end

The estimation procedure described in Subsection 4.2.3 can be conducted for simulated data

via the M-file EstimExampleTwo.m:

function estimator = EstimExampleTwo(Ncells, scale)

% input: Ncells = number of simulated chains/cells
% scale = true chosen scale parameter vector
% 1x6 vector = [x_on,x_off,...,z_off]
%
% output: estimator = estimator of scale

 f4 = zeros(1,6);
 f7 = zeros(1,6);

 for i=[1,2,3,5,6,8]
 N4 = ExampleTwo('exp',Ncells,i,scale,0);
 f4(i) = N4/Ncells;
 f7(i) = 1-f4(i);
 end

 estimator = EstimExampleTwoSub(f4,f7,scale(1));

end

162

A.5 R scripts for Subsection 5.2.2

This appendix documents the R-scripts referred to in Section 5.2.

PLSDE_ExampleOne.R

Naive SPADE simulation of simple circuit from [Thomas 2013]

needs rgl package

input

gam: degradation rates, a 3-dimensional vector

beta: production rates, a 3-dimensional vector

0 <= thresi <= 1, i=1,2,3: thresholds corredponding to delta_i (see main text)

delta > 0: step size

t_max > 0: maximal simulation time

start: initial concentrations, a 3-dimensional vector

noise: noise strength, a 3-dimensional vecotr (noise[i] = noise for species i)

ouput

plot of concentration time coursees,

species 1 = red, species 2 = green, species 3 = blue

3D portrait of the trajectory in state space

X_i: conentration values of species i over time, i=1,2,3

time: time

logic: logical trajectory given by a sequences of domains

(3-dimensional 01- vectors)

PLSDE_ExampleOne <-

function(gam=c(1,1,1),beta=c(2,2,2),thres1=.625,thres2=.5,thres3=.5,delta=.001,

 t_max=10,start=c(0,0,0),noise=c(.02,.02,.02)){

 Y <- start # initial value

 X_1 <- c(); X_1[1] <- Y[1]

 X_2 <- c(); X_2[1] <- Y[2]

 X_3 <- c(); X_3[1] <- Y[3]

 theta <- c()

 theta[1] <- thres1*(beta[1]/gam[1]) # definition of continuous thresholds

 theta[2] <- thres2*(beta[2]/gam[1])

 theta[3] <- thres3*(beta[3]/gam[1])

 g_1 <- c(); g_2 <- c(); g_3 <- c() # logical states

 g_1[1] <- 1*(Y[1] >= theta[1])

 g_2[1] <- 1*(Y[2] >= theta[2])

 g_3[1] <- 1*(Y[3] >= theta[3])

 logic <- matrix(,nrow=length(seq(0,t_max,by=delta)),ncol=3)

 # logical trajectory

 logic[1,1] <- g_1[1]

 logic[1,2] <- g_2[1]

 logic[1,3] <- g_3[1]

 p <- c() # production rates

 p[1] <- beta[1]*1

 p[2] <- beta[2]*(1-g_1[1])

 p[3] <- beta[3]*(g_2[1]|g_3[1])

163

 diff <- (sqrt(p[1]+gam[1]*Y[1]),sqrt(p[2]+gam[2]*Y[2]),sqrt(p[3]+gam[3]*Y[3]))

 diff <- diag(diff) # diffusion matrix

 z <- 2

 for (t in seq(delta,t_max,by=delta)){

 for (i in 1:3){

 b <- rnorm(1,0,1)

 Y[i] <- Y[i] + delta*(p[i] - gam[i]*Y[i]) +

 diff[i,i]*(sqrt(delta*noise[i])*b)

 # Euler-Maruyama iteration

 }

 for(i in 1:3){

 if(Y[i] <= 0){Y[i] <- 0}

 }

 X_1[z] <- Y[1]

 X_2[z] <- Y[2]

 X_3[z] <- Y[3]

 g_1[z] <- 1*(Y[1] >= theta[1])

 g_2[z] <- 1*(Y[2] >= theta[2])

 g_3[z] <- 1*(Y[3] >= theta[3])

 logic[z,1] <- g_1[z]

 logic[z,2] <- g_2[z]

 logic[z,3] <- g_3[z]

 p[1] <- beta[1]*1

 p[2] <- beta[2]*(1-g_1[z])

 p[3] <- beta[3]*(g_2[z]|g_3[z])

 diff <- c(sqrt(p[1]+gam[1]*Y[1]),sqrt(p[2]+gam[2]*Y[2]),sqrt(p[3]+gam[3]*Y[3]))

 diff <- diag(diff) # update of diffusion matrix

 z <- z + 1

 }

 time <- seq(0,t_max,by=delta)

 plot(time,X_1,type="l",col="red",

 ylim=c(0,.5 + max(beta[1]/gam[1],beta[2]/gam[2],beta[3]/gam[3])),

 ylab="X_1(red), X_2(green), X_3(blue)",lwd=1.5)

 lines(time,X_2,type="l",col="green",lwd=2)

 lines(time,X_3,type="l",col="blue",lwd=2)

 library(rgl)

 plot3d(X_1,X_2,X_3,type="l",col="orange",lwd=2)

 #plot(time,g_1,type="l")

 #plot(time,g_2,type="l")

 #plot(time,g_3,type="l")

 #plot(time,logic[,1],type="l")

 #plot(time,logic[,2],type="l")

 #plot(time,logic[,3],type="l")

 out <- list(X_1,X_2,X_3,time,logic)

 return(out)

 }

164

PLSDE_Repressilator.R

Naive SPADE simulation of the repressilator

needs rgl package

input

gam: degradation rates, a 3-dimensional vector

beta: production rates, a 3-dimensional vector

0 <= thresi <= 1, i=1,2,3: thresholds corredponding to delta_i (see main text)

delta > 0: step size

t_max > 0: maximal simulation time

start: initial concentrations, a 3-dimensional vector

noise: noise strength, a 3-dimensional vecotr (noise[i] = noise for species i)

ouput

plot of concentration time coursees,

species 1 = red, species 2 = green, species 3 = blue

3D portrait of the trajectory in state space

X_i: conentration values of species i over time, i=1,2,3

time: time

logic: logical trajectory given by a sequences of domains

(3-dimensional 01-vectors)

PLSDE_Repressilator <-

function(gam=c(1,1,1),beta=c(2,2,2),thres1=.5,thres2=.5,thres3=.5,delta=.001,

 t_max=10,start=c(0,0,0),noise=c(.02,.02,.02)){

 Y <- start # initial value

 X_1 <- c(); X_1[1] <- Y[1]

 X_2 <- c(); X_2[1] <- Y[2]

 X_3 <- c(); X_3[1] <- Y[3]

 theta <- c()

 theta[1] <- thres1*(beta[1]/gam[1]) # definition of continuous thresholds

 theta[2] <- thres2*(beta[2]/gam[1])

 theta[3] <- thres3*(beta[3]/gam[1])

 g_1 <- c(); g_2 <- c(); g_3 <- c() # logical states

 g_1[1] <- 1*(Y[1] >= theta[1])

 g_2[1] <- 1*(Y[2] >= theta[2])

 g_3[1] <- 1*(Y[3] >= theta[3])

 logic <- matrix(,nrow=length(seq(0,t_max,by=delta)),ncol=3)

 # logical trajector

 logic[1,1] <- g_1[1]

 logic[1,2] <- g_2[1]

 logic[1,3] <- g_3[1]

 p <- c() # production rates

 p[1] <- beta[1]*(1-g_3[1])

 p[2] <- beta[2]*(1-g_1[1])

 p[3] <- beta[3]*(1-g_2[1])

 diff <- c(sqrt(p[1]+gam[1]*Y[1]),sqrt(p[2]+gam[2]*Y[2]),sqrt(p[3]+gam[3]*Y[3]))

 diff <- diag(diff) # diffusion matrix

165

 z <- 2 # time counter

 for (t in seq(delta,t_max,by=delta)){

 for (i in 1:3){

 b <- rnorm(1,0,1)

 Y[i] <- Y[i] + delta*(p[i] - gam[i]*Y[i]) +

 diff[i,i]*(sqrt(delta*noise[i])*b)

 # Euler-Maruyama iteration

 }

 for(i in 1:3){

 if(Y[i] <= 0){Y[i] <- 0}

 }

 X_1[z] <- Y[1]

 X_2[z] <- Y[2]

 X_3[z] <- Y[3]

 g_1[z] <- 1*(Y[1] >= theta[1])

 g_2[z] <- 1*(Y[2] >= theta[2])

 g_3[z] <- 1*(Y[3] >= theta[3])

 logic[z,1] <- g_1[z]

 logic[z,2] <- g_2[z]

 logic[z,3] <- g_3[z]

 p[1] <- beta[1]*(1-g_3[z])

 p[2] <- beta[2]*(1-g_1[z])

 p[3] <- beta[3]*(1-g_2[z])

 diff <- c(sqrt(p[1]+gam[1]*Y[1]),sqrt(p[2]+gam[2]*Y[2]),sqrt(p[3]+gam[3]*Y[3]))

 diff <- diag(diff) # update of diffusion matrix

 z <- z + 1

 }

 time <- seq(0,t_max,by=delta)

#plot(time,X_1,type="l",col="red",ylim=c(0,1.5),ylab="X_1(red), X_2(green),

 X_3(blue)",lwd=1.5)

 plot(time,X_1,type="l",col="red",

 ylim=c(0,.5 + max(beta[1]/gam[1],beta[2]/gam[2],beta[3]/gam[3])),

 ylab="X_1(red), X_2(green), X_3(blue)",lwd=1.5)

 lines(time,X_2,type="l",col="green",lwd=2)

 lines(time,X_3,type="l",col="blue",lwd=2)

 library(rgl)

 plot3d(X_1,X_2,X_3,type="l",col="orange",lwd=2)

 #plot(time,g_1,type="l")

 #plot(time,g_2,type="l")

 #plot(time,g_3,type="l")

 #plot(time,logic[,1],type="l")

 #plot(time,logic[,2],type="l")

 #plot(time,logic[,3],type="l")

 out <- list(X_1,X_2,X_3,time,logic)

 return(out)

 }

166

B Bibliography

[Abou-Jaoudé et al. 2009] W. Abou-Jaoudé, D.A. Ouattara, M. Kaufman: From structure to dynamics:

 Frequency tuning in the p53-Mdm2 network I. Logical approach.

 Journal of Theoretical Biology, 2009, 258, 561-577

[Ahmad et al. 2007] J. Ahmad, G. Bernot, J.-P. Comet, D. Lime, O. Roux: Hybrid Modelling and Dynamical

 Analysis of Gene Regulatory Networks with Delays. ComPlexUs, 2007, 3, 231-251

[Aigner 2006] M. Aigner: Diskrete Mathematik. 2006, 6. Aufl., Vieweg + Teubner

[Aittokallio, Schwikowski 2006] T. Aittokallio, V. Schwikowski: Graph-based methods for analysing networks

 in cell biology. Briefings in Bioinformatics, 2006, 7, 243-255

[Albert, Wang 2009] R. Albert, R.-S. Wang: Discrete dynamic modeling of cellular signaling networks.

 Methods in Enzymology, 2009, 467, 281-306

[Albert et al. 2013] R. Albert, J.J. Collins, L. Glass: Introduction to Focus Issue: Quantitative approaches to

 genetic networks. Chaos, 2013, 23, 025001

[Aldana et al. 2003] M. Aldana, S. Coppersmith, L.P. Kadanoff: Boolean dynamics with random couplings.

 Perspectives and Problems in Nonlinear Science, 2003, 23-89

[Aldridge et al. 2009] B.B. Aldridge, J. Saez-Rodriguez, J.L. Muhlich, P.K. Sorger, D.A. Lauffenburger:

 Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced

 Signaling. PLoS Computational Biology, 5 (4) e1000340

[Alla, David 2005] H. Alla, R. David: Discrete, Continuous and Hybrid Petri nets. 2005, 1
st
 ed., Springer

[Alon 2007] U. Alon: An introduction to systems biology: Design principles of biological circuits.

 2007, 1
st
 ed., Chapman & Hall/CRC

[Alvarez-Buylla et al. 2008] E.R. Alvarez-Buylla, A. Chaos, M. Aldana, M. Benitez, Y. Cortes-Poza,

 C. Espinosa-Soto, D.A. Hartasánchez, R.B. Lotto, D. Malkin, G.J. Escalera Santos,

 P. Padilla-Longoria. Floral Morphogenesis: Stochastic Explorations of a Gene

 Network Epigenetic Landscape. PLoS One, 2008, 3 (11) e3626

[Aracena et al. 2009] J. Aracena, E. Goles, A. Moreira, L. Salinas: On the robustness of update schedules in

 Boolean networks. BioSystems, 2009, 97, 1-8

[Arkin et al. 1998] A. Arkin, J. Ross, H.H. McAdams: Stochastic kinetic analysis of developmental pathway

 bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 1998, 149, 1633-1648

[Ashyraliyev et al. 2009] M. Ashyraliyev, Y. Fomekong-Nanfack, J.A. Kaandorp, J.G. Blom:

 Systems biology: parameter estimation for biochemical models.

 FEBS Journal, 2009, 276, 886-902

[Bajikar et al. 2014] S.S. Bajikar, C. Fuchs, A. Roller, F.J. Theis, K.A. Janes: Parameterizing cell-to-cell

 regulatory heterogeneities via stochastic transcriptional profiles.

 PNAS, 2014, Published online before print January 21 2014, doi: 10.1073

[Barkai, Shilo 2007] N. Barkai, B.-Z. Shilo: Variability and Robustness in Biomolecular Systems.

 Molecular Cell, 2007, 28, 755-760

[Bause 2002] F. Bause: Stochastic Petri nets. 2002, 2
nd

 ed., Vieweg + Teubner

167

[Bernot et al. 2004] G. Bernot, J.-P. Comet, A. Richard, J. Guespin: Application of formal methods to biological

 regulatory networks: extending Thomas’ asynchronous logical approach with temporal

 logic. Journal of Theoretical Biology, 2004, 229, 339-347

[Bintu et al. 2005a] L. Bintu, N.E. Buchler, H.G. Garcia, U. Gerland, T. Hwa, J. Kondev, R. Philips:

 Transcriptional regulation by the numbers: models.

 Current Opinions in Genetics and Development, 2005, 15 (2) 116-124

[Bintu et al. 2005b] L. Bintu, N.E. Buchler, H.G. Garcia, U. Gerland, T. Hwa, J. Kondev, T. Kuhlman,

 R. Philips: Transcriptional regulation by the numbers: applications.

 Current Opinions in Genetics and Development, 2005, 15 (2) 125-135

[Bishop 2006] C.M. Bishop: Pattern Recognition and Machine Learning. 2006, 1
st
 ed., Springer

[Blom, Lygeros (eds.) 2006] H.A.P. Blom, J. Lygeros: Stochastic Hybrid Systems: Theory and Safety Critical

 Applications. 2006, 1
st
 ed., Springer

[Bujorianu, Lygeros 2008] M.L. Bojurianu, J. Lygeros: Toward a General Theory of Stochastic Hybrid Systems.

 Chapter 1 in [Blom, Lygeros (eds.) 2006]

[Bolouri 2008] H. Bolouri: Compuational Modeling of Gene Regulatory Networks. A Primer.

 2008, 1
st
 ed., World Scientific

[Bornholdt 2008] S. Bornholdt: Boolean network models of cellular regulation: prospects and limitations.

 Journal of the Royal Society Interface, 2008, 5, S85-S94

[Boys et al. 2008] R.J. Boys, D.J. Wilkinson, T.B.L. Kirkwood: Bayesian inference for a discretely observed

 stochastic kinetic model. Statistical Computing, 2008, 18, 125-135

[Bulyk, Walhout 2013] M.L. Bulyk, A.J.M. Walhout: Gene Regulatory Networks.

 Chapter 4 in [Walhout et al. (ed.) 2013]

[Casey et al. 2006] R. Casey, H. de Jong, J.-L. Gouzé:

 Piecewise-linear models of genetic regulatory networks: Equilibria and their stability.

 Journal of Mathematical Biology, 2006, 52 (1) 27-56

[Cassandras, Lygeros (eds.) 2007] C.G. Cassandras, J. Lygeros: Stochastic Hybrid Systems.

 2007, 1
st
 ed., CRC Taylor & Francis

[CellSignalingTechnology 2014]: http://www.cellsignal.com/common/content/content.jsp?id=science-pathways

 [22.08.2014]

[CellSignalingTechnology NF-B 2014]:

http://www.cellsignal.com/common/content/content.jsp?id=pathways-nfkb [22.08.2014]

[CellSignalingTechnology Warburg 2014]:

http://www.cellsignal.com/common/content/content.jsp?id=pathways-warburg [23.08.2014]

[Chaouiya 2007] C. Chaouiya: Petri net modeling of biological networks.

 Briefings in Bioinformatics, 8 (4) 210-219

[Chaouyia et al. 2008] C. Chaouiya, E. Remy, D. Thieffry: Petri net modeling of biological regulatory networks.

 Journal of Discrete Algorithms, 2008, 6, 165-177

[Chaouyia, Remy 2013] C. Chaouyia, E. Remy: Logical Modelling of Regulatory Networks, Methods and

 Applications. Bulletin of Mathematical Biology, 2013, 75, 891-895

http://www.cellsignal.com/common/content/content.jsp?id=science-pathways
http://www.cellsignal.com/common/content/content.jsp?id=pathways-nfkb
http://www.cellsignal.com/common/content/content.jsp?id=pathways-warburg

168

[Chaves et al. 2005] M. Chaves, R. Albert, E. Sontag: Robustness and fragility of Boolean models for genetic

 regulatory networks. Journal of Theoretical Biology, 2005, 235, 431-449

[Chaves et al. 2009] M. Chaves, T. Eissing, F. Allgöwer: Regulation of apoptosis via the NFB pathway:

 Modeling and Analysis. In: N. Ganuly, A. Deutsch, A. Mukherjee (eds.): Dynamics on and

 of complex networks. Applications to biology, computer science, and the social sciences.

 2009, Birkhäuser

[Chaves et al. 2010] M. Chaves, L. Tournier, J.-L. Gouzé: Comparing Boolean and Piecewise Affine Differential

 Models for Genetic Networks. Acta Biotheoretica, 2010, 58, 217-232

[Chaves, Gouzé 2010] M. Chaves, J.-L. Gouzé: Piecewise affine models of regulatory genetic networks: review

 and probabilistic interpretation. pp. 241-253 in Advances in the Theory of Control,

 Signals and Systems, with Physical Modelling. (L. Lévine, P. Müllhaupt (eds.))

[Chaves et al. 2013] M. Chaves, E. Farcot, J.-L. Gouzé: Probabilistic Approach for Predicting Periodic Orbits in

 Piecewise Affine Differential Models. Bulletin of Mathematical Biology, 2013, 75, 967-987

[Cinquemani et al. 2007] E. Cinquemani, R. Porreca, G. Ferrari-Trecate, J. Lygeros: Subtilin Production by

 Bacillus Subtilis: Stochastic Hybrid Models and Parameter Identification.

 IEEE Transactions On Automatic Control, 2007, 53, 38-50

[Conrad, Tyson 2006] E.D. Conrad, J.J. Tyson: Modeling Molecular Interaction Networks with Nonlinear

 Ordinary Differential Equations.

 Chapter 6 in [Szallasi et al. (ed.) 2006]

[Cornish-Bowden 2012] A. Cornish-Bowden: Fundamental of Enzyme Kinetics. 2012, 4
th

 ed., Wiley-VHC

[Covert et al. 2008] M.W. Covert, N.Xiao, T.J. Chen, J.R. Karr:

 Integrating metabolic, transcriptional regulatory and signal transduction models in

 Escherichia coli. Bioinformatics, 2008, 24 (18) 2044-2050

[Crudu et al. 2009] A. Crudu, A. Debussche, O. Radulesu: Hybrid stochastic simplifications for multiscale gene

 networks. BMC Systems Biology, 2009, 3:89

[Crudu et al. 2011] A. Crudu, A. Debussche, A. Muller, O. Radulescu: Convergence of stochastic gene networks

 to hybrid piecewise deterministic processes. arXiv:1101.1431

[Czado, Schmidt 2011] C. Czado, T. Schmidt: Mathematische Statistik. 2011, 1
st
 ed., Springer

[Danial, Korsmeyer 2004] N.N. Danial, S.J. Korsmeyer: Cell Death: Critical Control Points.

 Cell, 2004, 116, 205-219

[Davidich, Bornholdt 2008a] M. Davidich, S. Bornholdt: Boolean network model predicts cell cycle sequence

 of fission yeast. PLoS One, 2008, 3 (2) e1672

[Davidich, Bornholdt 2008b] M. Davidich, S. Bornholdt: The transition from differential equations to Boolean

 networks: A case study in simplifying a regulatory network model.

 Journal of Theoretical Biology, 2008, 255, 269-277

[Davidson 2006] E.H. Davidson: The Regulatory Genome. Gene Regulatory Networks in Development and

 Evolution. 2006, 1
st
 ed., Academic Press

[Davis 1993] M.H.A. Davis: Markov processes and optimization. 1993, 1
st
 ed., Springer

[Dee, Ghil 1984] D. Dee, M. Ghil: Boolean difference equations, I: formulation and dynamics behavior.

 SIAM Journal of Applied Mathematics, 1984, 44 (1) 111-126

http://arxiv.org/abs/1101.1431

169

[Dee, Mullhaupt 1985] D. Dee, A. Mullhaupt: Boolean delay equations. II. Periodic and aperiodic solutions.

 Journal of Statistical Physics, 1985, 41 (1,2) 125-173

[Deevlo et al. 2003] V. Deevlo, P. Hansen, M. Labbé: Identification of all steady states in large networks by

 logical analysis. Bulletin of Mathematical Biology, 2003, 65, 1025-1051

[Dekker, van Steensel 2013] J. Dekker, B. van Steensel: The spatial architecture of chromosomes.

 Chapter 7 in [Walhout et al. (eds) 2013]

[De Jong 2002] H. de Jong: Modeling and simulation of genetic regulatory networks: A literature review.

 Journal of Computational Biology, 2002, 9 (1) 67-103

[De Jong et al. 2004a] H. de Jong, J.-L. Gouzé, C. Hernandez, M. Page, T. Sari, J. Geiselmann:

 Qualitative Simulation of Genetic Regulatory Networks Using Piecewise-Linear Models.

 Bulletin of Mathematical Biology, 2004, 66, 301-340

[De Jong et al. 2004b] H. de Jong, J. Geiselmann, G. Batt, C. Hernandez, M. Page:

 Qualitative Simulation of the Initiation of Sporulation in Bacillus subtilis.

 Bulletin of Mathematical Biology, 2004, 66, 261-299

[Deng et al. 2007] X. Deng, H. Geng, M.T. Matache: Dynamics of asynchronous random Boolean networks with

 asynchrony generated by stochastic processes. Biosystems, 2007, 88, 16-34

[Deuflhard, Bornemann 2008] P. Deuflhard, F. Bornemann: Numerische Mathematik 2: Gewöhnliche

 Differentialgleichungen. 2008, 3. Aufl., de Gruyter

[Di Cara et al. 2007] A. Di Cara, A. Garg, B. De Micheli, I. Xenarios, L. Mendoza: Dynamic simulation of

 regulatory networks using SQUAD. BMC Bioinformatics, 2007, 8:462

[Dong, Golden 2008] G. Dong, S.S. Golden: How a cyanobacterium tells time.

 Current Opinion in Microbiology, 2008, 11 541-546

[Dümcke et al. 2014] S. Dümcke, J. Bräuer, B. Anchang, R. Spang, N. Beerenwinkel, A. Tresch:

 Exact likelihood computation in Boolean networks with probabilistic time delays, and ist

 application in signal network reconstruction. Bioinformatics, 2014, 30 (3) 414-419

[Eaton 2006] D. Eaton: ars.m. 2006, pmtk3

 https://code.google.com/p/pmtk3/source/browse/trunk/toolbox/Algorithms/mcmc/ars.m?r=2678

[Edelstein-Keshet 2005] L. Edelstein-Keshet: Mathematical Models in Biology. 2005, 1
st
 ed., SIAM

[Edwards 2000] R. Edwards: Analysis of continuous-time switching networks.

 Physica D, 2000, 146 (1-4) 165-199

[Edwards et al. 2001] R. Edwards, H.T. Siegelmann, K. Aziza, L. Glass: Symbolic dynamics and computation in

 model gene networks. Chaos, 2001, 11 (1) 160-169

[Elowitz, Leibler 2000] M.B. Elowitz, S. Leibler: A synthetic oscillatory network of transcriptional regulators.

 Nature, 2000, 403 (20) 335-338

[Elowitz et al. 2002] M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain: Stochastic Gene Expression in a Single

 Cell. Science, 2002, 297, 1183-1186

[Engblom 2009] S. Engblom: Spectral approximation of solutions to the chemical master equation.

 Journal of Computational and Applied Mathematics, 2009, 229, 208-221

[en.wikipedia DoubleHelix 2014] http://en.wikipedia.org/wiki/Double_helix [22.08.2014]

https://code.google.com/p/pmtk3/source/browse/trunk/toolbox/Algorithms/mcmc/ars.m?r=2678
http://en.wikipedia.org/wiki/Double_helix

170

[en.wikipedia Entner-Doudoroff 2014] http://en.wikipedia.org/wiki/Entner%E2%80%93Doudoroff_pathway

 [22.08.2014]

[en. Wikipedia EssentialAA 2014] http://en.wikipedia.org/wiki/Essential_amino_acid [23.08.2014]

[en.wikipedia Glycolysis 2014] http://en.wikipedia.org/wiki/Glycolysis [22.08.2014]

[en.wikipedia List of biodatabases 2014] http://en.wikipedia.org/wiki/List_of_biological_databases [22.08.2014]

[en.wikipedia NFB 2014] http://en.wikipedia.org/wiki/NF-%CE%BAB [22. 08. 2014]

[en.wikipedia OHWarburg 2014] http://en.wikipedia.org/wiki/Otto_Heinrich_Warburg [23.08.2014]

[Farcot 2006] E. Farcot: Geometric properties of a class of piecewise affine biological network models.

 Journal of Mathematical Biology, 2006, 52, 373-418

[Fauré, Thieffry 2009] A. Fauré, D. Thieffry: Logical modeling of cell cycle control in eukaryotes: A

 comparative study. Molecular BioSystems, 2009, 5, 1569-1581

[Fell 1997] D. Fell: Understanding the Control of Metabolism. 1997, 1
st
 ed., Portland Press

[Fillipov 1988] A.F. Fillipov: Differential equations with discontinuous right-hand sides. 1988, 1
st
 ed., Springer

[Friedman et al. 2000] N. Friedman, M. Linial, I. Nachman, D. Pe’er: Using Bayesian networks to analyze

 expression data. Journal of Computational Biology, 2000, 7 (3) 601-620

[Friedman, Koller 2003] N. Friedman, D. Koller: Being Bayesian about Network Structure: A Bayesian

 Approach to Structure Discovery in Bayesian Networks.

 Machine Learning, 2003, 50, 95-126

[Fuchs 2013] C. Fuchs: Inference for Diffusion Processes. With Applications in Life Sciences.

 2013, 1
st
 ed., Springer

[Garg et al. 2009] A. Garg, K. Mohanram, A. Di Cara, G. De Micheli, I. Xenarios: Modeling stochasticity and

 robustness in gene regulatory networks. Bioinformatics, 2009, 25, i101-i109

[Gasca, Sauer 2000] M. Gasca, T. Sauer: On the history of multivariate polynomial interpolation.

 Journal of Computational and Applied Mathematics, 2000, 122 (1,2) 23-35

[Gershenson 2002] C. Gershenson: Classification of random Boolean networks.

 Proceedings of the Eighth International Conference on Artificial Life, 2002, 1-8

[Gershenson 2004] C. Gershenson: Introduction to Random Boolean Networks. arXiv:nlin/0408006v3

[Ghosh et al. 1997] M.K. Ghosh, A. Arapostathis, S.I. Marcus: Ergodic control of switching diffusions.

 SIAM Journal on Control Optimization, 1997, 35 (6) 1952-1988

[Gibson, Bruck 2000] M.A. Gibson, J. Bruck: Efficient exact stochastic simulation of chemical systems with

 many species and many channels. Journal of Physical Chemistry A, 2000, 104, 1876-1889

[Gilks, Wild 1992] W.R. Gilks, P. Wild: Adaptive rejection sampling for Gibbs sampling.

 Journal of the Royal Statistical Society, Series C, 1992, 42, 337-348

[Gillespie 1977] D.T. Gillespie: Exact stochastic simulation of coupled chemical reactions.

 Journal of Physical Chemistry, 1977, 81, 2340-2361

[Gillespie 1992] D.T. Gillespie: A rigorous derivation of the chemical master equation.

 Physica A, 1992, 188, 404-425

http://en.wikipedia.org/wiki/Entner%E2%80%93Doudoroff_pathway
http://en.wikipedia.org/wiki/Essential_amino_acid
http://en.wikipedia.org/wiki/Glycolysis
http://en.wikipedia.org/wiki/List_of_biological_databases
http://en.wikipedia.org/wiki/NF-%CE%BAB
http://en.wikipedia.org/wiki/Otto_Heinrich_Warburg
http://arxiv.org/abs/nlin/0408006v3

171

[Gillespie 2000] D.T. Gillespie: The chemical Langevin equation.

 Journal of Chemical Physics, 2000, 113, 297-306

[Gillespie 2001] D.T. Gillespie: Approximate accelerated stochastic simulation of chemically reacting systems.

 Journal of Chemical Physics, 2001, 115, 1716-1733

[Gillespie, Petzold 2003] D.T. Gillespie, L. Petzold: Improved leap-size selection for accelerated stochastic

 simulation. Journal of Chemical Physics, 2003, 119, 8229-8234

[Gillespie, Petzold 2006] D.T. Gillespie, L. Petzold: Numerical Simulation for Biochemical Kinetics.

 Chapter 16 in [Szallasi et al. (ed.) 2006]

[Glass, Kauffman 1973] L. Glass, S. Kauffman: The logical analysis of continuous, non-linear biochemical

 control networks. Journal of Theoretical Biology, 1973, 39, 103-129

[Glass, Siegelmann 2010] L. Glass, H.T. Siegelmann: Logical and symbolic analysis of robust biological

 dynamics. Current Opinion in Genetics and Development, 2010, 20, 644-649

[Golightly, Wilkinson 2005] A. Golightly, D.J. Wilkinson: Bayesian inference for stochastic kinetic models

 using a diffusion approximation. Biometrics, 2005, 61, 781-788

[Goncalves et al. 2013] E. Goncalves, J. Bucher, A. Ryll, J. Niklas, K. Mauch, S. Klamt, M. Rocha, J. Saez-

 Rodriguez: Bridging the layers: towards integration of signal transduction, regulation

 and metabolism into mathematical models.

 Molecular Systems Biology, 2013, 9, 1576-1583

[Gouzé, Sari 2002] J.-L. Gouzé, T. Sari: A class of piecewise linear differential equations arising in biological

 models. Dynamical Systems, 2002, 17 (4) 299-316

[Guckenheimer, Holmes 2002] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems, and

 Bifurcations of Vector Fields. 2002, corrected 7
th

 printing, Springer

[Haas 2002] P.J. Haas: Stochastic Petri nets: Modeling, Stability, Simulation. 2002, 1
st
 ed., Springer

[Harris et al. 2002] S.E. Harris, B.K. Sawhill, A. Wuensche, S. Kauffman: A model of transcriptional regulatory

 networks based on biases in the observed regulation rules.

 Complexity, 2002, 7 (4) 23-40

[Harvey, Bossomaier 1997] I. Harvey, T. Bossomaier: Time out of joint: attractors in asynchronous random

 Boolean networks.

 Proceedings of the Fourth European Conference on Artifical Life, 1997, 67-75

[Hasenauer et al. 2014] J. Hasenauer, V. Wolf, A. Kazeroonian, F.J. Theis: Method of conditional moments

 (MCM) for the Chemical Master Equation. A unified framework for the method of

 moments and hybrid stochastic-deterministic models.

 Journal of Mathematical Biology, 2014, 69 (3) 687-735

[Haggart et al. 2011] C.R. Haggart, J.A. Bartlett, J.J. Saucerman, J.A. Papin: Whole-genome metabolic network

 reconstruction and constraint-based modeling.

 Methods in Enzymology, 2011, 500, 411-433

[Hardy, Robillard 2004] S. Hardy, P.N. Robillard: Modeling and simulation of molecular biology systems using

 Petri nets: Modeling goals of various approaches.

 Journal of Bioinformatics and Computational Biology, 2 (4) 595-613

[Hefzi et al. 2013] H. Hefzi, B.O. Palsson, N.E. Lewis: Reconstruction of genome-scale metabolic networks.

 Chapter 12 in [Walhout et al. (ed.) 2013]

172

[Heiner et al. 2004] M. Heiner, I. Koch, J. Will: Model validation of biological pathways using Petri nets –

 demonstrated for apoptosis. Biosystems, 2004, 75, 15-28

[Heinrich, Schuster 1996] R. Heinrich, S. Schuster: The Regulation of Cellular Systems. 1996, 1
st
 ed., Springer

[Henzinger et al. 2010] T.A. Henzinger, L. Mikeev, M. Mateescu, V. Wolf:

 Hybrid numerical solution of the chemical master equation.

 Proceedings of the 8th International Conference on

 Computational Methods in Systems Biology, 55-65

[Hock 2010] S. Hock: Spatial modeling of differentiation of mid- and hindbrain. 2010, Diplomarbeit, München

 http://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=28684&la=en

[Hofstädt, Thelen 1998] R. Hofstädt, S. Thelen: Quantitative modeling of biochemical networks.

 In Silicio Biology, 1998, 1, 39-53

[Hu et al. 2000] J. Hu, J. Lygeros, S. Sastry: Towards a theory of stochastic hybrid systems.

 In: N. Lynch, B.H. Krogh (eds.): Hybrid Systems: Computation and Control.

 2000, 1
st
 ed., Springer LNCS 1790

[Huang, Hahn 2009] Z. Huang, J. Hahn: Fuzzy modeling of signal transduction networks.

 Chemical Engineering Science, 2009, 64, 2044-2056

[Huang et al. 2009] Y. Huang, I.M. Tienda-Luna, Y. Wang: Reverse Engineering Gene Regulatory Networks.

 IEEE Signal Processing Magazine, January 2009, 76-97

[Ivanov, Dougherty 2006] I. Ivanov, E.R. Dougherty: Modeling genetic regulatory networks: continuous or

 discrete? Journal of Biological Systems, 2006, 14 (2) 219-229

[Jaeger 2009] J. Jaeger: Modeling the Drosophila embryo. Molecular BioSystems, 5 (12) 1549-1568

[Jamshidi 2012] S. Jamshidi: Comparing discrete, continuous and hybrid modeling approaches of gene

 regulatory networks. PhD thesis, 2012 Berlin

 http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000094522

[Jamshidi et al. 2013] S. Jamshidi, H. Siebert, A. Bockmayr: Preservation of Dynamic Properties in Qualitative

 Modeling Frameworks for Gene Regulatory Networks.

 Biosystems, 2013, 112 (2) 171-179

[Joshi-Tope et al. 2004] G. Joshi-Tope, M. Gillespie, I. Vastrik, P. d'Eustachio, E. Schmidt, B. De Bono,

 B. Jassal, G. Gopinath, G. Wu, L. Matthews, S. Lewis, E. Birney, L. Stein:

 Reactome: A knowledgebase of biological pathways.

 Nucleic Acids Research, 2004, 33 D428-D432

[Jaqaman, Danuser 2006] K. Jaqaman, G. Danuser: Linking data to models: data regression.

 Nature Reviews Molecular Cell Biology, 2006, 7, 813-819

[Kaplan et al. 2008] S. Kaplan, A. Bren, A. Zaslaver, E. Dekel, U. Alon:

 Diverse two-dimensional input functions control bacterial sugar genes.

 Molecular Cell, 2008, 29, 786-792

[Karpfinger, Meyberg 2010] C. Karpfinger, K. Meyberg: Algebra: Gruppen – Ringe – Körper.

 2010, 2. Aufl., Spektrum Akademischer Verlag

[Kauffman 1969] S. Kauffman: Metabolic stability and epigenesist in randomly connected nets.

 Journal of Theoretical Biology, 1969, 22, 437-467

http://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=28684&la=en
http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000094522
http://dx.doi.org/10.1016/j.biosystems.2013.03.001
http://dx.doi.org/10.1016/j.biosystems.2013.03.001

173

[Kauffman 2000] S. Kauffman: A proposal for using the ensemble approach to understand genetic regulatory

 networks. Journal of Theoretical Biology, 2000, 230, 581-590

[Kauffman 2004] S. Kauffman: A proposal for using the ensemble approach to understand genetic regulatory

 networks. Journal of Theoretical Biology, 2004, 230, 581-590

[Kauffman et al. 2003] S. Kauffman, C. Peterson, B. Samuelsson, C. Troein: Random Boolean network models

 and the yeast transcriptional network. PNAS, 2003, 100 (25) 14796-14799

[Kauffman et al. 2004] S. Kauffman, C. Peterson, B. Samuelsson, C. Troein: Genetic networks with canalyzing

 Boolean rules are always stable. PNAS, 2004, 101 (49) 17102-17107

[Kazemzadeh et al. 2012] L. Kazemzadeh, M. Cvijovic, D. Petranovic: Boolean model of yeast apoptosis as a

 tool to study yeast and human apoptotic regulations.

 Frontiers in Physiology, 2012, 3, Article 446

[Keener, Sneyd 2009] J. Keener, J. Sneyd: Mathematical Physiology. I: Cellular Physiology.

 2009, 2
nd

 ed., Springer

[Kell, Knowles 2006] D.B. Kell, J.D. Knowles: The role of modeling is systems biology.

 Chapter 1 in [Szallasi et al. (ed.) 2006]

[Kerr et al. 1972] J.F. Kerr, A.H. Wyllie, A.R. Currie: Apoptosis: a basic biological phenomenon with wide-

 ranging implications in tissue kinetics. British Journal of Cancer, 1972, 26 (4) 239-257

[Kim et al. 2002] S. Kim, H. Li, E.R. Dougherty, N. Cao, Y. Chen, M. Bittner, E.B. Suh: Can Markov chain

 models mimic biological regulation?. Journal of Biological Systems, 2002, 10 (4) 337-357

[Kitano 2004] H. Kitano: Biological Robustness. Nature Reviews Genetics, 2004, 5, 826-837

[Kitano 2007] H. Kitano: Towards a theory of biological robustness.

 Molecular Systems Biology, 2007, 3:137

[Klamt et al. 2006] S. Klamt, J. Saez-Rodriguez, J.A. Lindquist, L. Simeoni, E.D. Gilles: A methodology for

 the structural and functional analysis of signaling and regulatory networks.

 BMC Bioinformatics, 2006, 7:56

[Klamt et al. 2007] S. Klamt, J. Saez-Rodriguez, E.D. Gilles: Structural and functional analysis od cellular

 networks with CellNetAnalyzer. BMC Systems Biology, 2007, 1:2

[Klamt et al. 2009] S. Klamt, UU. Haus, F. Theis: Hypergraphs and Cellular Networks.

 PLoS Computational Biology, 2009, 5 (5) e1000385

[Klamt, Stelling 2006] S. Klamt, J. Stelling: Stochiometric and Constraint-based Modeling.

 Chapter 5 in [Szallasi et al. (ed.) 2006]

[Klenke 2008] A. Klenke: Wahrscheinlichkeitstheorie. 2008, 2. Aufl., Springer

[Klipp et al. 2009] E. Klipp, W. Liebermeister, C. Wierling, A. Kowald, H. Lehrach, R. Herwig:

 Systems Biology: A textbook. 2009, 1
st
 ed., Wiley-VHC

[Koch et al. (eds.) 2004] I. Koch, W. Reisig, F. Schreiber (eds.): Modeling in systems biology: the Petri net

 approach. 2004, 1
st
 ed., Springer

[Kouretas et al. 2006] P. Kouretas, K. Koutroumpas, J. Lygeros, Z. Lygerou: Stochastic Hybrid Modeling of

 Biochemical Processes. Chapter 9 in [Cassandras, Lygeros (eds.) 2007]

174

[Kremling 2012] A. Kremling: Kompendium Systembiologie. Mathematische Modellierung und Modellanalyse.

 2012, 1. Aufl., Vieweg + Teubner

[Krumsiek et al. 2010] J. Krumsiek, S. Pölsterl, D.M. Wittmann, F.J. Theis: Odefy – From discrete to continuous

 models. BMC Bioinformatics, 2010, 11:233

[Kruse, Elf 2006] K. Kruse, J. Elf: Kinetics in Spatially Extended Systems.

 Chapter 9 in [Szallasi et al. (eds.) 2006]

[Kulkarni, Perrimon 2013] M.M. Kulkarni, N. Perrimon: Analyzing the Structure, Function and Information

 Flow in Signaling Networks using Quantitative Cellular Signatures.

 Chapter 5 in [Walhout et al. (ed.) 2013]

[Kwiatkowska et al. 2000] M. Kwiatowska, G. Norman, R. Segala, J. Sprosto: Verifying quantitative properties

 of continuous probabilistic timed automata. 2000, 1
st
 ed., Springer LNCS 1877

[Lähdesmäki et al. 2006] H. Lähdesmäki, S. Hautaniemi, I. Shmulevich, O. Yli-Harja: Relationships between

 probabilistic Boolean networks and dynamic Bayesian networks as models of gene

 regulatory networks. Signal Processing, 2006, 86, 814-834

[Lewin 2008] B. Lewin: Genes IX. 2008, 9
th

 ed., Jones and Bartlett

[Li et al. 2007] C. Li, Q.W. Ge, M. Nakata, H. Matsuno, S. Miyano: Modelling and simulation of signal

 transductions in an apoptosis pathway by using timed Petri nets.

 Journal of Biosciences, 2007, 32 (1) 113-127

[Liang et al. 1998] S. Liang, S. Fuhrman, R. Somogyi: REVEAL, a general reverse engineering algorithm for

 inference of genetic network architectures.

 Pacific Symposium on Biocomputing, 1998, 3, 18-29

[Lunze, Lamnabhi-Lagarrigue (eds.) 2009] J. Lunze, F. Lamnabhi-Lagarrigue: Handbook of Hybrid Systems

 Control: Theory, Tools, Applications.

 2009, 1
st
 ed., Cambridge University Press

[Lygeros et al. 2003] J. Lygeros, K.H. Johansson, S.N. Simic, J. Zhang, S. Sastry: Dynamical properties of

 hybrid automata. IEEE Transactions on Automatic Control, 2003, 48 (1) 2-17

[Lygeros 2004] J. Lygeros: Lecture Notes on Hybrid Systems.

 http://robotics.eecs.berkeley.edu/~sastry/ee291e/lygeros.pdf

[Maamar et al. 2007] H. Maamar, A. Raj, D. Dubnau: Noise in gene expression determines cell fate in Bacillus

 subtilis. Science, 2007, 317, 526-529

[Macía et al. 2009] J. Macía, S. Widder, R. Solé: Why are cellular switches Boolean? General conditions for

 multistable genetic circuits. Journal of Theoretical Biology, 2009, 261, 126-135

[Mai, Liu 2009] Z. Mai, H. Liu: Boolean network-based analysis of the apoptosis network: Irreversible

 apoptosis and stable surviving. Journal of Theoretical Biology, 259, 760-769

[Markowetz, Spang 2007] F. Markowetz, R. Spang: Inferring cellular networks – a review.

 BMC Bioinformatics, 8 (Suppl 6):S5

[Mariottini, Iyengar 2013] C. Mariottini, R. Iynegar: System Biology of Cell Signaling.

 Chapter 16 in [Walhout et al. (ed.) 2013]

[Marsan et al. 1995] M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis: Modeling with

 generalized stochastic Petri nets. 1995, 1
st
 ed., Wiley

http://robotics.eecs.berkeley.edu/~sastry/ee291e/lygeros.pdf

175

[Matsuno et al. 2000] H. Matsuno, A. Doi, M. Nagasaki, S. Miyano: Hybrid Petri net representation of gene

 regulatory networks. Proceedings Pacific Symposium Biocomputing 2000, 341-352

[Mbodj et al. 2013] A. Mbodj, G. Junion, C. Brun, E.E.M. Furlong, D. Thieffry: Logical modeling of Drosophila

 signaling pathways. Molecular BioSystems, 2013, 9, 2248

[Mendoza et al. 1999] L. Mendoza, D. Thieffry, E.R. Álvarez-Buylla: Genetic control of flower morphogenesis

 in Arabidopsis thaliana: A logical analysis. Bioinformatics, 1999, 15 (7,8) 593-606

[Mendoza, Xenarios 2006] L. Mendoza, I. Xenarios: A method for the generation of standardized qualitative

 dynamical systems of regulatory networks.

 Theoretical Biology and Medical Modelling, 2006, 3:13

[Mesot, Teuscher 2003] B. Mesot, C. Teuscher: Critical Values in Asynchronous Random Boolean Networks.

 In: W. Banzafh, J. Ziegler, T. Christaller, P. Dittrich, J.T. Kim

 (eds.) Advances in Artifical Life.

 2003, 1
st
 ed., Springer LNCS 2801

[Michaelis, Menten 1913] L. Michaelis, M.L. Menten: Die Kinetik der Invertinwirkung.

 Biochemische Zeitschrift 1913, 49, 333-369

[Michal, Schomburg 2012] G. Michal, D. Schomburg: Biochemical Pathways: An Atlas of Biochemistry and

 Molecular Biology. 2012, 2
nd

 ed., John Wiley & Sons

 see also http://biochemical-pathways.com/#/map/1

[Miranda-Saavedra, Göttgens 2008] D. Miranda-Saavedra, B. Göttgens:

 Transcriptional regulatory networks in haematopoiesis.

 Current Opinions in Genetics & Development, 2008, 18 (6) 530-535
[Morris et al. 2010] M.K. Morris, J. Saez-Rodriguez, P.K. Sorger, D.A. Lauffenburger: Logic-Based Models for

 the Analysis of Cell Signaling Networks. Biochemistry, 2010, 49, 3216-3224

[Mugler et al. 2009] A. Mugler, A.M. Walczak, C.H. Wiggins: Spectral solutions to stochastic models of gene

 expression with bursts and regulation. Physical Review E, 2009, 80, 041921

[Munk et al. 2008] herausgegeben von K. Munk: Biochemie-Zellbiologie. 2008, 1. Aufl., Thieme Verlag

[Munsky, Kammash 2006] B. Munsky, M. Kammash: The finite state projection algorithm for the solution of the

 chemical master equation. Journal of Chemical Physics, 124, 044104

[Murata 1989] T. Murata: Petri nets: Properties, analysis and applications.

 Proceedings IEEE, 1989, 77, 541-580

[Murphy 2012] K.P. Murphy: Machine Learning. A Probabilistic Perspective. 2012, 1
st
 ed., MIT Press

[Murphy, Mian 1999] K. Murphy, S. Mian: Modeling gene expression data using dynamics Bayesian networks.

 Technical Report, Computer Science Division, University of California, Berkeley

[Murray 2004] J.D. Murray: Mathematical Biology I: An Introduction. 2004, 3
rd

 ed., Springer

[Murray 2008] J.D. Murray: Mathematical Biology II: Spatial Models and Biomedical Applications.

 2008, 3
rd

 ed., Springer

[Murrugarra et al. 2012] D. Murrugarra, A. Veliz-Cuba, B. Aguilar, S. Arat, R. Laubenbacher:

 Modeling stochasticity and variability in gene regulatory networks.

 Journal on Bioinformatics and Systems Biology, 2012, 2012:5

http://biochemical-pathways.com/#/map/1

176

[Nakajima et al. 2005] M. Nakajima, K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, H. Iwasaki, T. Oyama ,

 T. Kondo: Reconstitution of circadian oscillation of cyanobacterial KaiC phosphor-

 rylation in vitro. Science, 2005, 308 (5720) 414–415

[Nikolajewa et al. 2007] S. Nikolajewa, M. Friedel, T. Wilhelm: Boolean networks with biologically relevant

 rules show ordered behavior. Biosystems, 2007, 90, 40-47

[Norris 1998] J.R. Norris: Markov chains. 1998, 1
st
 ed., Cambridge University Press

[Novak et al. 2001] B. Novak, Z. Pataki, A. Ciliberto, J.J. Tyson: Mathematical model of the cell division cycle

 of fission yeast. Chaos, 2001, 11 (1) 277-286

[Oksendal 2010] B. Oksendal: Stochastic Differential Equations. An Introduction with Applications.

 2010, 6
th

 ed., Springer

[Öktem et al. 2002] H. Öktem, R. Pearson, O. Yli-Harja, D. Nicorici, K. Egiazarian, J. Astola:

 A computational model for simulating continuous time Boolean networks.

 Proceedings of IEEE international Workshop on Genomic Signal Processing and Statistics

 2002

[Öktem et al. 2003] H. Öktem, R. Pearson, K. Egiazarian: An adjustable aperiodic model class of genomic

 interactions using continuous time Boolean networks (Boolean delay equations).

 Chaos, 2003, 13 (4) 1167-1174

[Oppenheim et al. 2005] A.B. Oppenheim, O. Kobiler, J. Stavans, D.L. Court, S. Adhya:

 Switches in Bacteriophage Lambda Development.

 Annual Review of Genetics, 2005, 39, 409-429

[Orphanides, Reiberg 2002] G. Orphanides, D. Reinberg: A unified theory of gene expression.

 Cell, 2002, 108 (4) 439-451

[Pedraza, van Oudengaarden 2005] J.M. Pedraza, A. van Oudengaarden: Noise Propagation in Gene Networks.

 Science, 2005, 307, 1965-1969

[Petri 1962] C.A. Petri: Kommunikation mit Automaten.

 Institut für Instrumentelle Mathematik Bonn, Schriften des IIM 3, 1962

[Petri 1963] C.A. Petri: Fundamental of a theory of asynchronous information flow.

 Proceedings, International Federation for Information Processing 62, 1962, 386-390

[Plathe et al. 1998] E. Plathe, T. Mestl, S.W. Omholt: A methodological basis for description and analysis os

 systems with complex switch-like interactions.

 Journal of Mathematical Biology, 1998, 36, 321-348

[Pola et al.] G. Pola, M.L. Bujorianu, J. Lygeros, M.D. Di Benedetto: Stochastic hybrid models: An overview.

 In: S. Engell, H. Gueguen, J. Zaytoon (eds.): Analysis and Design of Hybrid Systems 2003.

 2003, 1
st
 ed., Elsevier IFAC

[Ptashne 2004] M. Ptashne: A genetic switch: Phage lambda revisited. 2004, 3
rd

 ed., CSH Press

[Purves et al. 2006] W. K. Purves, D. Sadava, G. H. Orians, H. C. Heller, herausgegeben von J. Markl:

 Biologie. 2006, 7. Aufl., Elsevier Spektrum Akademischer Verlag

[Quateroni et al. 2002] A. Quateroni, R. Sacco, F. Saleri: Numerische Mathematik 2. 2002, 2. Aufl., Springer

[Raeymaekers 2002] L. Raeymaekers: Dynamics of Boolean networks controlled by biologically meaningful

 functions. Journal of Theoretical Biology, 2002, 218 (3) 331-341

http://scitation.aip.org.eaccess.ub.tum.de/content/aip/journal/chaos/13/4/10.1063/1.1608671
http://scitation.aip.org.eaccess.ub.tum.de/content/aip/journal/chaos/13/4/10.1063/1.1608671

177

[Raj, van Oudengaarden 2008] A. Raj, A. van Oudengaarden: Nature, Nurture, or Chance: Stochastic Gene

 Expression and its Consequences. Cell, 2008, 135, 216-226

[Raue et al. 2009] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M.Schilling, U. Klingmüller, J. Timmer:

 Structural and practical identifiability analysis of partially observed dynamical models by

 exploiting the profile likelihood. Bioinformatics, 2009, 25 (15) 1923-1929

[Raue et al. 2014] A. Raue, J. Karlsson, M.P. Saccomani, M. Jirstrand, J. Timmer: Comparison of approaches

 for parameter identifiability of biological systems. Bioinformatics, 2014, 30 (10) 1440-1448

[Reed, Zwart 2011] J. Reed, B. Zwart: A piecewise linear stochastic differential equation driven by a Lévy

 process. Journal of Applied Probability, 2011, Special Volume 48A, 109-119

[Reinsch 1967] C. Reinsch: Smoothing by Spline Functions. Numerische Mathematik, 1967, 10, 177-183

[Rizzo 2008] M.L. Rizzo: Statistical Computing with R. 2008, 1
st
 ed., Chapman & Hall/CRC

[Robert, Casella 2000] C.P. Robert, G. Casella: Monte Carlo Statistical Methods. 2000, 1
st
 ed., Springer

[Rohlf, Bornholdt 2002] T. Rohlf, S. Bornholdt: Criticality in random Boolean threshold networks: annealed

 approximation and beyond. Physica A, 2002, 310 (1,2) 245-259

[Saadatpour et al. 2011] A. Saadatpour, R.-S. Wang, A. Liao, X. Liu, T.P. Loughran, I. Albert, R. Albert:

 Dynamical and structural analysis of a T cell survival network identifies novel candidate

 therapeutic targets for large granular lymphocyte leukemia.

 PLoS Computational Biology, 2011, 7 (11) e1002267

[Saadatpour et al. 2010] A. Saadatpour, I. Albert, R. Albert: Attractor analysis of asynchronous Boolean models

 of signal transduction networks. Journal of Theoretical Biology, 2010, 266, 641-656

[Sackmann et al. 2006] A. Sackmann, M. Heiner, I. Koch: Application of Petri net based analysis techniques to

 signal transduction pathways. BMC Bioinformatics, 2006, 7:482

[Saeed et al. 2012] M. Saeed, M. Ijaz, K. Javed, H.A. Babri: Reverse Engineering Boolean Networks: From

 Bernoulli Mixture Models to Rule Based Systems. PLoS One, 2012, 7 (12) e51006

[Saez-Rodriguez et al. 2004] J. Saez-Rodriguez, A. Kremling, H. Conzelmann, K. Bettenbrock, E.D. Gilles:

 Modular analysis of signal transduction networks.

 Control Systems IEEE, 2004, 24 (4) 35-52

[Saez-Rodriguez et al. 2007] J. Saez-Rodriguez, L. Simeoni, J.A. Lindquist, R. Hemenway, U. Bommhardt,

 B. Arndt, U.-U. Haus, R. Weismantel, E.D. Gilles, S. Klamt, B. Schraven:

 A logical model provides insights into T cell receptor signaling.

 PLoS Computational Biology, 2007, 3 (8) e163

[Samaga, Klamt 2013] R. Samaga, S. Klamt: Modeling approaches for qualitative and semi-quantitative

 analysis of cellular signaling networks. Cell Communication and Signaling, 2013, 11:43

[Sánchez, Thieffry 2001] L. Sánchez, D. Thieffry: A logical analysis of the Drosophila gap-gene system.

 Journal of Theoretical Biology, 2001, 211, 115-141

[Sánchez, Thieffry 2003] L. Sánchez, D. Thieffry: Segmenting the fly embryo: a logical analysis of the pair-rule

 cross-regulatory module. Journal of Theoretical Biology, 2003, 224, 517-537

[Sánchez et al. 2008] L. Sánchez, C. Chaouyia, D. Thieffry: Segmenting the fly embryo: a logical analysis of the

 segment polarity cross-regulatory module.

 International Journal of Developmental Biology, 2008, 52 (8) 1059-1075

http://dx.plos.org/10.1371/journal.pcbi.1002267.g008
http://dx.plos.org/10.1371/journal.pcbi.1002267.g008

178

[Savageau 2009] M. A. Savageau: Biochemical Systems Analysis. A study of function and design in

 molecular biology. 2009, 40
th
 anniversary ed., M. A. Savageau

[Schlatter et al. 2009] R. Schlatter, K. Schmich, I.A. Vizcarra, P. Scheurich, T. Sauter, C. Borner, M. Ederer, I.

 Merfort, O. Sawodny: ON/OFF and beyond – A Boolean model of apoptosis.

 PLoS Computational Biology, 2009, 5 (12) e1000595

[Setty et al. 2003] Y. Setty, A.E. Mayo, M.G. Surette, U. Alon: Detailed map of a cis-regulatory input function.

 PNAS, 2003, 100 (13) 7702-7707

[Shmulevich et al. 2002a] I. Shmulevich, E.R. Dougherty, W. Zhang: From Boolean to probabilistic Boolean

 networks as models of genetic regulatory networks.

 Proceedings IEEE, 2002, 90, 1778-1792

[Shmulevich et al. 2002b] I. Shmulevich, E.R. Dougherty, S. Kim, W. Zhang: Probabilistic Boolean networks: A

 rule-based uncertainty modelf for gene regulatory networks.

 Bioinformatics, 2002, 18, 261-274

[Shmulevich, Dougherty 2010] I. Shmulevich, E.R. Dougherty: Probabilistic Boolean Networks. The Modeling

 and Control of Gene Regulatory Networks. 2010, 1
st
 ed., SIAM

[Siebert, Bockmayr 2009] H. Siebert, A. Bockmayr: Temporal constraints in the logical analysis of regulatory

 networks. Theoretical Computer Science, 2009, 391, 258-275

[Simpson, Kuske 2012] D.J.W. Simpson, R. Kuske:

 Stochastically Perturbed Sliding Motion in Piecewise-Smooth Systems.

 arXiv:1204.5792v1

[Singh, Hespanha 2010] A. Singh, J.P. Hespanha: Stochastic hybrid systems for studying biochemical processes.

 Philosophical Transactions of the Royal Society A, 2010, 368, 4995-5011

[Singh, Weinberger 2009] A. Singh, L.S. Weinberger: Stochastic gene expression as a molecular switch for viral

 latency. Current Opinions in Microbiology, 2009, 12 (4) 460-466

[Snoussi 1989] E.H. Snoussi: Qualitative dynamics of piecewise-linear differential equations: a discrete

 mapping approach. Dynamics and Stability of Systems, 1989, 4 (3,4) 189-207

[Snoussi, Thomas 1993] E.H. Snoussi, R. Thomas: Logical identification of all steady states: The concept of

 feedback loop characteristic states.

 Bulletin of Mathematical Biology, 1993, 55 (5) 973-991

[St. Pierre, Endy 2008] F. St. Pierre, D. Endy: Determination of cell fate selection during phage lambda

 infection. PNAS, 2008, 105 (52) 20705-20710

[Steggles et al. 2006] L.J. Steggles, R. Banks, O. Shaw, A. Wipat: Qualitatively modeling and analyzing genetic

 regulatory networks: A Petri net approach. Bioinformatics, 23, 336-343

[Stelling et al. 2004] J. Stelling, U. Sauer, Z. Szallasi, F.J. Doyle III, J. Doyle: Robustness of Cellular Functions.

 Cell, 2004, 118, 675-685

[Stewart 1990] D. Stewart: A high accuracy method for solving ODEs with discontinuous right-hand sides.

 Numerische Mathematik, 1990, 58, 299-328

[Stoll et al. 2012] G. Stoll, E. Viara, E. Barillot, L. Calzone: Continuous time Boolean modeling for biological

 signaling: application of the Gillespie algorithm. BMC Systems Biology, 6:116

http://arxiv.org/abs/1204.5792v1

179

[Sugeno, Yasukawa 1993] M. Sugeno, T. Yasukawa: A fuzzy-logic-based approach to qualitative modeling.

 IEEE Transactions in Fuzzy Systems, 1993, 1 (1) 7-31

[Szallasi et al. (ed.) 2006] Z. Szallasi, J. Stelling, V. Periwal (editors): System Modeling in Cellular Biology.

 2006, 1
st
 ed., MIT press

[Szallasi et al. 2006] Z. Szallasi, V. Periwal, J. Stelling: On modules and modularity.

 Chapter 3 in [Szallasi et al. (ed.) 2006]

[Szejka et al. 2008] A. Szejka, T. Mihaljev, B. Drossel: The phase diagram of random threshold networks.

 New Journal of Physics, 2008, 10, 063009

[Teraguchi et al. 2011] S. Teraguchi, Y. Kumagai, A. Vandenbon, S. Akira, D.M. Standley: Stochastic binary

 modeling of cells in continuous time as an alternative to biochemical reaction equations.

 Phyiscal Review E, 2011, 84, 062903

[Thakar et al. 2007] J. Thakar, M. Pilione, G. Kirimanjeswara, E.T. Harvill, R. Albert: Modeling systems-level

 regulation of host-immune responses. PLoS Computational Biology, 2007, 3, e109

[Thieffry, Thomas 1995] D. Thieffry, R. Thomas: Dynamical behavior of biological regulatory networks -II.

 Immunity control in bacteriophage lambda.

 Bulletin of Mathematical Biology, 1995, 57 (2) 277-297

[Thomas, D’Ari 1990] R. Thomas, R. D’Ari: Biological feedback. 1990, 1
st
 ed., CRC Press

[Thomas 1973] R. Thomas: Boolean formalization of genetic control circuits.

 Journal of Theoretical Biology, 1973, 42, 565-583

[Thomas (ed.) 1979]: R. Thomas (ed.): Kinetic Logic: A Boolean Approach to the Analysis of Complex

 Regulatory Systems. 1979, 1
st
 ed., Springer

[Thomas 1979] R. Thomas: Integration-excision in lambdoid phages: its relation with immunity.

 In [Thomas (ed.) 1979], 366-379

[Thomas 1991] R. Thomas: Regulatory networks seen as asynchronous automata: A logical description.

 Journal of Theoretical Biology, 1991, 153, 1-23

[Thomas et al. 1995] R.Thomas, D. Thieffry, M. Kaufman: Dynamical behavior of biological regulatory

 networks-I. Biological role of feedback loops and practical use of the concept of the loop-

 characteristic state. Bulletin of Mathematical Biology, 1995, 57 (2) 247-276

[Thomas 2013] R. Thomas: Remarks on the respective roles of Logical Parameters and Time Delays in

 asynchronous logic: An homage to El Houssine Snoussi.

 Bulletin of Mathematical Biology, 2013, 75, 896-904

[Torres, Voit 2002] N.V. Torres, E.O. Voit: Pathway Analysis and Optimization in Metabolic Engineering.

 2002, 1
st
 ed., Cambridge University Press

[Tournier, Chaves 2009] L. Tournier, M. Chaves: Uncovering operational interactions in genetic networks using

 asynchronous Boolean dynamics. Journal of Theoretical Biology, 2009, 260, 196-209

[Tyson et al. 2003] J.J. Tyson, K.C. Chen, B. Novak: Sniffers, buzzers, toggles and blinkers: dynamics of

 regulatory and signaling pathways in the cell.

 Current Opinion in Cell Biology, 2003, 15, 221-231

[Ullah, Wolkenhauer 2011] M. Ullah, O. Wolkenhauer: Stochastic Approaches for Systems Biology.

 2011, 1
st
 ed., Springer

180

[Van Ham 1973] P. Van Ham: How to deal with variables with more than two levels.

 In [Thomas (ed.) 1979], 326-343

[Veliz-Cuba et al. 2012] A. Veliz-Cuba, J. Arthur, L. Hochstetler, V. Klomps, E. Korpi: On the relationship of

 steady states of continuous and discrete models arising from biology.

 Bulletin of Mathematical Biology, 2012, 74, 2779-2792

[Vilar, Leibler 2003] J.M.G. Vilar, S. Leibler: DNA looping and physical constraints on transcription regulation.

 Journal of Molecular Biology, 2003, 331, 981-989

[Wagner 2005] A. Wagner: Robustness and Evolvability in Living Systems.

 2005, 1
st
 ed., Princeton Universtiy Press

[Walhout et al. (ed.) 2013] M. Walhout, M. Vidal, J. Dekker (editors):

 Handbook of systems biology: Concepts and insights. 2013, 1
st
 ed., Academic Press

[Walpole et al. 2013] J. Walpole, J.A. Papin, S.M. Pierce: Multiscale Computational Models of Complex

 Biological Systems. Annual Reviews of Biomedical Engineering, 2013, 15, 137-154

[Walter 2000] W. Walter: Gewöhnliche Differentialgleichungen. 2000, 7. Aufl., Springer

[Wang et al. 2012] R.-S. Wang, A. Saadatpour, R. Albert: Boolean modeling in systems biology: an overview of

 methodology and applications. Physical Biology, 2012, 9, 055001

[Wilkinson 2009] D.J. Wilkinson: Stochastic modelling for quantitative description of heterogeneous biological

 systems. Nature Reviews Genetics, 2009, 10, 122-133

[Willadsen, Wiles 2007] K. Willadsen, J. Wiles: Robustness and state space structure of Boolean gene

 regulatory networks. Journal of Theoretical Biology, 2007, 249, 749-765

[Wittmann et al. 2009a] D.M. Wittmann, J. Krumsiek, J. Saez-Rodriguez, D.A. Lauffenburger, S. Klamt,

 F.J. Theis: Transforming Boolean models to continuous models: methodology and

 applications to T-cell receptor signaling. BMC Systems Biology, 2009, 3:98

[Wittmann et al. 2009b] D.M. Wittmann, F. Blöchl, D. Trümbach, W. Wurst, N. Prakash, F.J. Theis:

 Spatial analysis of expression patterns predicts genetic interactions at the mid-

 hindbrain boundary. PLoS Computational Biology, 5 (11) e1000569

[Wittmann 2010] D.M. Wittmann: Beyond Boolean Modeling in Systems Biology. 2010, PhD thesis, München

 http://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=25942&la=en

[Wittmann et al. 2010] D.M. Wittmann, C. Marr, F.J. Theis: Biologically meaningful update rules increase the

 critical connectivity of generalized Kauffman networks.

 Journal of Theoretical Biology, 2010, 266, 436-448

[Wittmann, Theis 2011]: D.M. Wittmann, F.J. Theis: Dynamic regimes of random fuzzy logic networks.

 New Journal of Physics, 2011, 13, 013041

[Wolpert et al. 2011] L. Wolpert, C. Tickle, P. Lawrence, E. Meyerowitz, E. Robertson, J. Smith, T. Jessell:

 Principles of Development. 2011, 4
th

 ed., Oxford University Press

[Wolf et al. 2010] V. Wolf, R. Goel, M. Mateescu, T. Henzinger: Solving the chemical master equation using

 sliding windows. BMC Systems Biology, 4:42

[Yin, Zhu 2010] G.G. Yin, C. Zhu: Hybrid Switching Diffusions: Properties and Applications.

 2010, 1
st
 ed., Springer

[Zadeh 1965] L.A. Zadeh: Fuzzy sets. Information and Control, 1965, 8 (3) 338-353

http://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=25942&la=en

181

[Zadeh 1995] L.A. Zadeh: Fuzzy logic = Computing with Words.

 IEEE Transactions on Fuzzy Systems, 1995, 4 (2) 103-111

[Zaslaver et al. 2004] A. Zaslaver, A.E. Mayo, R. Rosenberg, P. Bashkin, H. Sberro, M. Tsalyuk, M.G. Surette,

 U. Alon: Just-in-time transcription program in metabolic pathways.

 Nature Genetics, 2004, 36 (5) 486-491

[Zeng et al. 2010] L. Zeng, S.O. Skinner, C. Zong, J. Sippy, M. Feiss, I. Golding: Decision making at a

 subcellular level determines the outcome of bacteriophage infection.

 Cell, 2010, 141 (4) 682-691

[Zevedei-Oancea, Schuster 2003] I. Zevedei-Oancea, S. Schuster: Topological analysis of metabolic networks

 based in Petri net theory. In Silicio Biology, 2003, 3, 0029

[Zhang et al. 2008] R. Zhang, M.V. Shah, J. Yang, S.B. Nyland, X. Liu, J.K. Yun, R. Albert, T.P. Loughran, Jr.:

 Network model of survival signaling in large granular lymphocyte leukemia.

 PNAS, 2008, 105 (42) 16308-16313

[Zielinski et al. 2008] R. Zielinski, P.F. Przytycki, J. Zheng, D. Zhang, T.M. Przytycka, J. Capala:

 The crosstalk between EGF, IGF, and insulin cell signaling pathways: Computations and

 and experimental analysis. BMC Systems Biology, 2008, 3:88

