

# Occurrence of the JAK2 V617F mutation in patients with peripheral arterial disease

Axel Muendlein,<sup>1</sup>\* Elena Kinz,<sup>1,2</sup> Klaus Gasser,<sup>1,2,3</sup> Andreas Leiherer,<sup>1,2,4</sup> Philipp Rein,<sup>1,3</sup> Christoph H. Saely,<sup>1,2,3</sup> Harald Grallert,<sup>5</sup> Annette Peters,<sup>5,6,7</sup> Peter Fraunberger,<sup>4</sup> Heinz Drexel,<sup>1,2,3,8</sup> and Alois H. Lang<sup>3</sup>



The acquired JAK2 V617F mutation is common in patients with myeloproliferative neoplasms. We previously showed that JAK2 V617F is also found in coronary patients, most of them affected by coronary atherosclerosis. Peripheral arterial disease (PAD) is another important manifestation of atherosclerosis. However, prevalence of the JAK2 V617F mutation and its effect on clinical or hematologic characteristics is unknown in PAD patients. In the present study we determined the prevalence of JAK2 V617F in a cohort of 287 patients with sonographically proven PAD and compared mutation frequency with mutational status of 997 healthy people from the KORA F4 study. JAK2 V617F screening and quantification of allele burden in both cohorts was performed with same allele-specific quantitative real-time PCR method. From a total of 287 PAD patients, 9 individuals were tested positive for the JAK2 V617F mutation. One patient showed elevated hemoglobin values, indicating polycythemia vera. Observed JAK2 V617F frequency (3.1%) in PAD patients showed a 5-fold, highly significant increase compared with healthy people (P < 0.001). Furthermore, occurrence of the mutation in PAD patients was significantly decreased in patients using aspirin (P = 0.003). We conclude that the prevalence of JAK2 V617F mutation is significantly increased in PAD patients compared to the general population. Future studies are warranted to confirm our observations and to define the underlying mechanisms behind our findings.

Am. J. Hematol. 90:E17-E21, 2015. © 2014 Wiley Periodicals, Inc.

# Introduction

Peripheral artery disease (PAD) is one of the most common manifestations of atherosclerosis and PAD patients are at exceptionally high risk for cardiovascular morbidity and mortality [1], showing a worse prognosis than that of patients with coronary artery disease (CAD) [2].

Inflammation plays a crucial role in the initiation and progression of PAD and the inflammatory mediators involved in this process are similar to those contributing to the development of CAD [3-7]. Smoking and type 2 diabetes mellitus are the strongest predictors of developing PAD and promote oxidative stress, which directly or indirectly enhances inflammatory pathways [3,8].

The Janus kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) pathway is a critical regulator of inflammatory processes, transmitting extracellular signals from cytokines and growth factors to the nucleus, thus activating or repressing transcription of target genes [9,10]. Once activated, the JAK/STAT pathway stimulates cell proliferation, differentiation, migration, and apoptosis critically involved in growth control, and therefore, represents a crucial pathway implicated in promoting tumorigenesis [9-11]. Due to the close relation between inflammation and atherosclerosis [3,6,7], the JAK/STAT pathway has also been linked to atherogenesis and the manifestation of vascular disease [12-14].

An acquired mutation within the JAK2 gene, an amino acid substitution of valine-to-phenylalanine at position 617 (V617F), disrupts the autoinhibition of JAK2 and results in constitutive activation of the JAK2/STAT signalling pathway [15-17]. The mutation is common in patients with Philadelphia-negative myeloproliferative neoplasms (MPNs), a group of rare clonal hematopoietic stem cell disorders, including polycythemia vera (PV) and essential thrombocythemia (ET). Here, the JAK2 V617F mutation is detected in more than 95% of PV patients and in approximately 50% of patients with ET [18,19]. The presence of the JAK2 V617F mutation clearly identifies the process as neoplastic [15–17,20] and, thus screening for JAK2 V617F mutational status has been included in the diagnostic criteria of the World Health Organization (WHO) classification for PV and ET [21].

<sup>1</sup>Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; <sup>2</sup>Private University of the Principality of Liechtenstein, Triesen, Liechtenstein; <sup>3</sup>Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria; <sup>4</sup>Medical Central Laboratories, Feldkirch, Austria; <sup>5</sup>Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany; <sup>6</sup>Institute of Epidemiology II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany; <sup>7</sup>German Research Center for Cardiovascular Disease (DZHK-Munich partner site), Munich, Germany; 8Drexel College University of Medicine, Philadelphia, Pennsylvania

Conflict of interest: Nothing to report.

A.M. and E.K. contributed equally to this work.

\*Correspondence to: Axel Muendlein; Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, Feldkirch A-6800, Austria.

E-mail: axel.muendlein@vivit.at

Contract grant sponsor: Land Vorarlberg..

Received for publication: 20 October 2014; Accepted: 21 October 2014

Am. J. Hematol. 90:E17-E21, 2015.

Published online: 26 October 2014 in Wiley Online Library (wileyonlinelibrary.com).

DOI: 10.1002/ajh.23874

© 2014 Wiley Periodicals, Inc.

Muendlein et al. RESEARCH ARTICLE

TABLE I. Peripheral Arterial Disease Patients' Characteristics with Respect to JAK2 V617F Mutation Status

|                                                | JAK2 V61              | 17F status       |                 |
|------------------------------------------------|-----------------------|------------------|-----------------|
|                                                | Negative<br>(n = 278) | Positive (n = 9) | <i>P</i> -value |
| Male sex                                       | 202 (72.7%)           | 8 (88.9%)        | 0.280           |
| Age (years)                                    | $66.7 \pm 9.9$        | $70.4 \pm 8.1$   | 0.278           |
| BMI (kg/m²)                                    | $27.0 \pm 4.4$        | $25.5 \pm 3.8$   | 0.299           |
| History of smoking, n                          | 238 (85.6%)           | 8 (85.9%)        | 0.782           |
| Hypertension, n                                | 227 (84.4%)           | 8 (88.9%)        | 0.713           |
| T2DM, n                                        | 91 (32.7%)            | 4 (44.4%)        | 0.462           |
| Coronary artery disease, n                     | 93 (34.1%)            | 4 (50.0%)        | 0.350           |
| Prior myocardial infarction, n                 | 55 (19.8%)            | 4 (44.4%)        | 0.072           |
| Prior cerebrovascular events, n                | 38 (13.8%)            | 0 (0.0%)         | 0.243           |
| Prior surgical coronary intervention, <i>n</i> | 133 (48.5%)           | 6 (66.7%)        | 0.284           |
| Aspirin, n                                     | 191 (68.7%)           | 2 (22.2%)        | 0.003           |
| Clopidogrel, n                                 | 78 (28.1%)            | 2 (22.2%)        | 0.701           |
| ACE inhibitors or AT2 antagonists, <i>n</i>    | 164 (59.0%)           | 4 (44.4%)        | 0.383           |
| Statins, n                                     | 192 (69.1%)           | 4 (44.4%)        | 0.118           |
| WBC (10 <sup>9</sup> /L)                       | $7.4 \pm 2.2$         | $7.7 \pm 2.3$    | 0.695           |
| RBC (10 <sup>12</sup> /L)                      | $4.6 \pm 0.6$         | $4.9 \pm 0.4$    | 0.161           |
| HGB (g/L)                                      | $140 \pm 18$          | $145 \pm 20$     | 0.410           |
| HCT (%)                                        | $42 \pm 5$            | $44 \pm 6$       | 0.362           |
| PLT (10 <sup>9</sup> /L)                       | $254 \pm 123$         | $277 \pm 65$     | 0.264           |
| CRP (mg/dl)                                    | $1.00\pm1.87$         | $0.56 \pm 0.55$  | 0.944           |

T2DM, type 2 diabetes mellitus; ACE, angiotensin converting enzyme; AT2, angiotensin-2; WBC, white blood cells; RBC, red blood cells; HGB, hemoglobin; HCT, hematocrit; PLT, platelets.

Differences in continuous variables and categorical study variables were tested for statistical significance with the *t*-test and with the Chi-square test, respectively.

Occurrence of the *JAK2 V617F* mutation has also been reported in individuals from the general population [22–25] or hospitalized patients [26,27] in the absence of signs of MPN with variable frequencies ranging between 0.2% and 15%. This discrepancy between various studies mostly depends on the sensitivity of used screening methods to detect the mutation [26,28]. Interestingly, in a cohort of hospitalized smokers and nonsmokers, *JAK2 V617F* mutation was found to be more prevalent among smokers than nonsmokers [26]. Furthermore, we reported recently a prevalence of 1.32% (21/1,589) of the JAK2 V617F mutation in coronary patients, including a high proportion of patients with angiographically proven CAD [28]. Frequency of the mutation was more than two-times increased in coronary patients compared with sex- and age-matched healthy controls, but difference did not reach statistical significance.

The JAK2 V617F mutation may be accumulated in PAD patients as well, potentially contributing to the manifestation of the disease via constitutive activation of the JAK2/STAT signalling pathway extending inflammatory response or, vice versa, induced by risk factors of PAD, leading to an increased rate of inflammation and oxidative stress [3,26,29,30]. So far, frequency of JAK2 V617F in PAD patients and a possible correlation between characteristics of PAD patients and JAK2 V617F mutational status is unknown. Therefore, we aimed to investigate JAK2 V617F mutation status in a cohort of PAD patients and its impact on blood cell counts and other clinical or biochemical characteristics. Furthermore, we compared JAK2 V617F mutation frequency between PAD patients and subjects from the general population with a negative medical history of atherothrombotic disease, to elucidate a possible correlation of JAK2 V617F mutation prevalence with PAD.

### Methods

Study subjects. This study includes 287 PAD patients, who were referred for the evaluation of established or suspected PAD to the Angiology Clinic at the Academic Teaching Hospital Feldkirch, a tertiary care centre in Western Austria (state of Vorarlberg). PAD was defined as any sonographically detectable atherosclerosis in peripheral arteries [31]. For ultrasound examination, we used a Philips iU22 ultrasound system. PAD was diagnosed by direct visualization of atherosclerotic plaques in peripheral arteries of the lower limbs. The scanning protocol included a completed lower limb sonography. All patients in the PAD group had at least one stenosis of more than 50% of at least one of these arteries. Collection of clinical and biochemical characteristics of these patients were described in detail previously [32].

DNA samples of 997 subjects from the general population and with a negative medical history of PAD and CAD served as controls and were obtained from participants of the "Cooperative Health Research in the Region Augsburg" (KORA) F4 study. The KORA study is an independent population-based sample from the general population living in the region of Augsburg, Germany. Details about the KORA study were already described elsewhere [33,34].

Diagnosis of MPN. Diagnosis of PV and ET, respectively, was made according to WHO criteria [21], based on JAK2 V617F mutation status and peripheral blood counts: Diagnosis of PV was made in the presence of JAK2 V617F mutation and elevated hemoglobin > 185 g/L in men or > 165 g/L in women. Diagnosis of ET was done in the presence of JAK2 V617F mutation and elevated platelets  $\geq 450 \times 10^9 / L$ .

Genotyping. Genomic DNA was extracted from EDTA blood using the peqGOLD® Blood DNA Mini kit (PEQLAB Biotechnologie, Erlangen, Germany) for the PAD patients and using the PuregeneTM DNA Isolation Kit (Gentra Systems, MN 55441) for the KORA F4 study. Screening for the JAK2 V617F mutation was carried out by allele-specific real-time PCR as described previously [28]. Samples found positive for the JAK2 V617F mutation, copy numbers of mutant and wild-type alleles were quantified using the JAK2 MutaQuant<sup>TM</sup> assay (Ipsogen, Marseille, France) according to the manufacture's protocol. Percentage of mutant JAK2 V617F alleles was calculated as the ratio of copy number of mutant JAK2 V617 alleles to total copy number of JAK2 alleles (wild-type and mutant). All allele-specific real-time PCRs were carried out on a LightCycler® 480 Real-Time PCR System (F. Hoffmann-La Roche, Basle, Switzerland).

Statistics. Differences in categorical study variables were tested for statistical significance with the Chi-square test and multivariate regression analysis. Differences in continuous variables (age and blood counts) between patients with and without  $JAK2\ V617F$  mutation were tested for statistical significance with the t-test. The Kolmogorov-Smirnov test was used as a test for normality. Non-normally distributed variables (i.e., WBC, hemoglobin, hematocrit, and platelets as well as  $JAK2\ V617F$  mutant percentage) were log-transformed prior to statistical analysis. The distribution of continuous variables is given as mean  $\pm$  SD (of non log-transformed values). Statistical analyses were performed with the software package SPSS 11.0 for Windows (SPSS, Chicago, IL). Statistical significance was defined as a two-tailed P value < 0.05.

Ethic issues. This study was carried out in accordance with the principles of the Declaration of Helsinki; all participants gave written informed consent. The Ethics Committee of the Medical University of Innsbruck, Austria, approved this study.

#### Results

Overall, among our 287 PAD patients, there was a preponderance of male gender (73.2%), and a high prevalence of a history of smoking (85.7%), T2DM (33.1%), and hypertension (84.5%). Nine patients were found positive for the *JAK2 V617F* mutation (3.1%). Patients' characteristics with respect to *JAK2 V617F* mutation status are given in Table I. PAD patients on aspirin therapy showed a significantly declined *JAK2 V617F* mutation rate (P = 0.003). Further clinical and biochemical characteristics (including blood cell counts) of our patients were not significantly associated with *JAK2 V617F* mutational status.

Individual patients' blood values from JAK2~V617F positive patients are given in Table II. Median mutant allele burden was 0.75%, ranging between 0.2% and 96.2. The patient with the highest mutant allele burden ( $n^{\circ}140$ ) showed elevated hemoglobin values, indicating PV.

Selected participants from the KORA study showed a mean age of  $66.8~(\pm 6.5)$  years and a preponderance of male gender (66.1%). Frequency of the *JAK2 V617F* mutation of included participants of the KORA F4 study was 0.61% (6/997), with a median mutant allele load

RESEARCH ARTICLE JAK2 V617F mutation in PAD patients

TABLE II. Individual Patients' Blood Values and Diagnosis of MPN

| Patient-ID | Sex | Age (years) | WBC (10 <sup>9</sup> /L) | RBC (10 <sup>12</sup> /L) | HGB (g/L) | HCT (%) | PLT (10 <sup>9</sup> /L) | JAK2 V617F (%MA) | Diagnosis of MPN |
|------------|-----|-------------|--------------------------|---------------------------|-----------|---------|--------------------------|------------------|------------------|
| 26         | m   | 60.1        | 9.2                      | 4.87                      | 152       | 45      | 255                      | 0.84             | -                |
| 39         | m   | 59.3        | 8.8                      | 5.25                      | 148       | 44      | 347                      | 0.48             | -                |
| 41         | m   | 72.8        | 6.0                      | 4.52                      | 152       | 44      | 182                      | 0.19             | -                |
| 109        | m   | 78.0        | 3.6                      | 4.89                      | 158       | 45      | 220                      | 0.83             | -                |
| 130        | m   | 81.1        | 9.4                      | 4.49                      | 126       | 39      | 307                      | 0.39             | -                |
| 134        | m   | 69.9        | 6.9                      | 5.25                      | 155       | 45      | 292                      | 22.38            | -                |
| 140        | f   | 79.3        | 11.1                     | 5.67                      | 167       | 52      | 393                      | 96.85            | PV               |
| 142        | m   | 65.6        | 7.8                      | 4.69                      | 151       | 47      | 267                      | 0.75             | -                |
| 181        | m   | 67.2        | 6.5                      | 4.54                      | 100       | 32      | 233                      | 0.34             | -                |
|            |     |             |                          |                           |           |         |                          |                  |                  |

WBC indicates white blood cells; RBC, red blood cells; HGB, hemoglobin; HCT, hematocrit; PLT, platelets; MA, mutant allele; MPN, myeloproliferative neoplasms; PV, polycythemia vera.

Diagnosis of PV was made according to actual WHO criteria, based on JAK2 V617F mutational status and elevated hemoglobin (>185 g/L in men or >165 g/L in women).

of 1.5%, ranging from 0.3% to 5.6% [28]. JAK2 V617F mutation frequency in PAD patients was significantly increased compared with healthy subjects from the KORA F4 study [OR = 5.35 (1.89-15.15); P < 0.001]. Difference between the two groups remained significant after adjustment for age and gender in multivariate regression analysis [OR = 4.40 (1.52–12.78); P = 0.006]. Even after exclusion of the patient with PV, association between the JAK2 V617F mutation and PAD remained significant [adjusted OR = 4.00 (1.34-11.92); P =0.013].

# Discussion

To the best of our knowledge, this study is the first to examine JAK2 V617F mutational status in PAD patients. Here, we identified nine PAD patients positive for the JAK2 V617F mutation (3.1%). Among these, one patient showed elevated hemoglobin values indicat-

Presence of the JAK2 V617F mutation has been closely linked to MPN [15-20] and included in the WHO classification and diagnostic algorithms for these diseases [21]. The fact that the JAK2 V617F mutation is more common than the anticipated number of MPN has also been realized by other studies, including subjects without overt signs of MPN [22-27]. It has been suggested, that the JAK2 V617F mutation per se is probably neither sufficient to induce a MPN nor associated with disease progression, but may represent an early molecular event in the development of blood disorders [24,27].

It should be noted, that most of our JAK2 V617F positive patients without overt signs of MPN showed a very low mutant allele burden compared with the patient with PV. Therefore, a sufficient allele load of JAK2 V617F appears necessary for the manifestation of MPN. However, in JAK2 V617F positive patients with ET, mutant allele burden has been reported to start from 1% [35,36] indicating that allele burden at a low level may be sufficient to induce MPN. In contrast, one of our patients (n° 134) showed a mutant allele load over 20%, but no hematologic signs of MPN. Thus, besides the JAK2 V617F mutation, additional genetic or environmental factors appear to be necessary for the progression into an overt MPN phenotype.

Observed JAK2 V617F mutation frequency in PAD patients was significantly increased compared with mutation frequency of healthy subjects without a medical history of vascular disease and may be potentially involved in the manifestation of the disease. Indeed, the JAK/STAT pathway is a critical regulator of inflammatory processes in various cells and is involved in the production and signal transduction of several pro-inflammatory cytokines, such as interleukin-6 (IL-6) [12,37-39]. IL-6 acts in an autocrine, paracrine as well endocrine manner and contributes to various atherogenic processes such as proliferation of vascular smooth muscle cells [40], B-cell differentiation [41], T-cell activation [41] and the induction of several acute phase proteins, including C-reactive protein (CRP) [4,42]. Although its function is not fully defined, it is probable that CRP itself plays a significant role in the progression of atherosclerosis [4] and predicts future risk of developing PAD [43]. The JAK2 V617F mutation results in a constitutive activation of the JAK2/STAT signalling pathway [15-17] and may enhance cytokine signalling, resulting, e.g., in an increased synthesis of CRP. Indeed, JAK2 V617F allele burden has been significantly associated with increased CRP levels in patients with ET or PV [44]. Therefore, one can speculate that the JAK2 V617F mutation contributes to a pro-atherogenic phenotype, which is supported by the link between inflammation, JAK/STAT pathway and atherosclerosis [12,14].

However, JAK2 V617F mutant load is low in most of our patients and CRP values did not differ significantly between PAD patients with or without the JAK2 V617F mutation. Thus, it can be assumed that most subjects included in our study did not reach the threshold value of JAK2 V617F allele burden, necessary to affect systemic inflammation. Indeed, only a JAK2 V617F allele burden greater than 50% has been significantly correlated with increased CRP levels in patients with MPN [44]. Therefore, due to the observed low allele burden in most of our JAK2 V617F positive patients, a causal effect of the JAK2 V617F mutation on inflammation and consequently on the development of PAD remains questionable.

Vice versa, it appears more likely that factors promoting atherogenesis also promote JAK2 V617F mutagenesis and that the increased prevalence of the JAK2 V617F mutation in PAD patients is caused by risk factors of the disease. Smoking, e.g., is one of the strongest risk factors of PAD [8] and is further associated with an increased rate of mutagenesis and cancer [29,30,45]. Indeed, in regard to the JAK2 V617F mutation, a recent study on hospitalized smokers and nonsmokers found the mutation in higher frequencies among smokers than nonsmokers [26]. The authors suggested that accelerated erythropoiesis in smokers lead to more DNA repair errors and thus to an increased susceptibility to the JAK2 V617F mutation. Smoking, therefore, may contribute to increased JAK2 V617F mutagenesis and the high smoking rate within our PAD patients may have contributed to the observed accumulation of the JAK2 V617F mutation in these patients.

Furthermore, smoking as well as other PAD risk factors including T2DM, obesity, and dyslipidemia are related to chronic inflammation [46-48] and PAD patients are characterized by a low-grade systemic chronic inflammatory state [3,4]. Chronic inflammation is associated with an increase in cytokines and oxidative stress, promoting epigenetic changes, and mutagenesis [13,49-51]. Consequently, chronic inflammation has been strongly linked with the development of several cancers, including certain hematologic neoplasms [13,49-52]. Muendlein et al. RESEARCH ARTICLE

However, chronic inflammation as a potential initiating event and driver of clonal evolution in MPN has been barely studied [13]. Notably, a link between chronic inflammation, cytokines, and clonal evolution has been recently demonstrated by the finding of Fleischman et al. [53] that tumor necrosis factor-alpha facilitates clonal expansion of *JAK2 V617F* positive cells in MPNs. Therefore, it may be assumed that, compared with healthy people, PAD patients are more susceptible to the *JAK2 V617F* mutation due exposure to a certain state of systemic chronic inflammation, caused by PAD risk factors or the disease itself.

Interestingly, aspirin use was distinctly decreased in patients with the mutation compared with JAK2 V617F negative subjects. In PAD patients, aspirin is normally used as an anti-thrombotic agent. Its anti-thrombotic as well as its well known anti-inflammatory effects occur through the inhibition of cyclooxygenases [54]. Notably, numerous studies have shown that regular use of aspirin is associated with a reduced risk for colorectal, oesophageal, breast, lung, prostate, liver, and skin cancers (as recently reviewed by Alfonso et al. [55]). The precise mechanisms leading to its anticancer effects are not clearly established, although multiple mechanisms affecting enzyme activity, transcription factors, cellular signalling and mitochondrial functions have been proposed [55]. Aspirin shows anti-oxidant properties and is a direct quencher of the genotoxic hydroxyl radical, exhibiting a protective effect against oxidative stress and DNA damage [56]. Therefore, due its anti-oxidant properties, aspirin use may have protected PAD patients against JAK2 V617F mutagenesis. This hypothesizes is in line with our second assumption that increased JAK2 V617F mutation incidence in PAD patients is due to increased exposure to a certain state of systemic chronic inflammation and oxi-

Our study has several limitations: First, it should be noted, that number of *JAK2 V617F* positive patients is small and further studies are warranted to confirm our observations, particularly the close asso-

ciation between aspirin use and lowered prevalence of the JAK2 V671F mutation in PAD patients. Also, we cannot exclude that some associations may have reached statistical significance within a larger population. Nethertheless, our study represents the first study concerning the JAK2 V617F mutation in PAD patients so far. Our PAD population is well characterized and meticulously monitored. Provided data, therefore, allow clinical interpretations regarding the JAK2 V617F mutational status in PAD patients and represent a valuable basis for subsequent studies. Furthermore, characteristics of control subjects are limited to age and gender. A more detailed comparison between characteristics of PAD patients and control subjects may have pointed to individual risk factors leading to increased JAK2 V617F prevalence in PAD patients. Thus, our observations remain descriptive and the underlying mechanisms remain to be elucidated.

We conclude that the prevalence of the JAK2 V617F mutation is increased in PAD patients compared with healthy subjects, although the absolute frequency of the mutation is generally low. It appears likely that the mutation is induced by risk factors of PAD causing chronic inflammation and oxidative stress. This assumption is supported by our observation that the frequency of the mutation in PAD patients is modulated by the anti-inflammatory drug aspirin. Therefore, we hypothesize that the JAK2 V617F mutation is not a risk factor for PAD but vice versa the mutation may be induced by the pathophysiological conditions prevalent in PAD patients. Future studies are warranted to confirm our observations and to define the underlying mechanisms behind our findings.

# Acknowledgments

The authors are grateful to Nicole Stark and Simone Geller-Rhomberg (Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria) for technical assistance in *JAK2 V617F* genotyping.

# References

- 1. Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/ AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease [(PAD) lower extremity, renal, mesenteric, and abdominal aortic]: A collaborative report from the American Association for Vascular Surgery/ Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 2006;113:e463-e654.
- Welten GM, Schouten O, Hoeks SE, et al. Longterm prognosis of patients with peripheral arterial disease: A comparison in patients with coronary artery disease. J Am Coll Cardiol 2008;51: 1588–1596.
- Brevetti G, Giugliano G, Brevetti L, Hiatt WR. Inflammation in peripheral artery disease. Circulation 2010;122:1862–1875.
- Signorelli SS, Fiore V, Malaponte G. Inflammation and peripheral arterial disease: The value of circulating biomarkers (Review). Int J Mol Med 2014;33:777-783.
- Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (\*). Annu Rev Immunol 2009; 27:165–197.
- Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol 2011;12: 204–212.
- Ross R. Atherosclerosis—An inflammatory disease. N Engl J Med 1999; 340:115–126.

- Lu L, Mackay DF, Pell JP. Meta-analysis of the association between cigarette smoking and peripheral arterial disease. Heart 2014;100:414– 423.
- Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004; 117:1281–1283.
- Sansone P, Bromberg J. Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol 2012;30:1005–1014.
- O'Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: New surprises in the Jak/Stat pathway. Cell 2002;109 Suppl:S121–S131.
  Grote K, Luchtefeld M, Schieffer B. JANUS
- Grote K, Luchtefeld M, Schiefter B. JANUS under stress—Role of JAK/STAT signaling pathway in vascular diseases. Vascul Pharmacol 2005;43:357–363.
- Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: Is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood 2012;119: 3219–3225.
- Marrero MB. Introduction to JAK/STAT signaling and the vasculature. Vascul Pharmacol 2005; 43:307–309.
- Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005;365:1054–1061.
- James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434:1144–1148.
- Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352: 1779–1790.
- 18. Campbell PJ, Green AR. The myeloproliferative disorders. N Engl J Med 2006;355:2452–2466.

- Rumi E, Elena C, Passamonti F. Mutational status of myeloproliferative neoplasms. Crit Rev Eukaryot Gene Expr 2010;20:61–76.
- Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7:387–397.
- Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 2009;114:937–951.
- Martinaud C, Brisou P, Mozziconacci MJ. Is the JAK2(V617F) mutation detectable in healthy volunteers? Am J Hematol 2010; 85:287–288.
- Nielsen C, Birgens HS, Nordestgaard BG, Kjaer L, Bojesen SE. The JAK2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica 2011;96:450–453.
- Sidon P, El Housni H, Dessars B, Heimann P. The JAK2V617F mutation is detectable at very low level in peripheral blood of healthy donors. Leukemia 2006;20:1622.
- Rapado I, Albizua E, Ayala R, et al. Validity test study of JAK2 V617F and allele burden quantification in the diagnosis of myeloproliferative diseases. Ann Hematol 2008;87:741–749.
- Weinberg I, Borohovitz A, Krichevsky S, et al. Janus Kinase V617F mutation in cigarette smokers. Am J Hematol 2012;87:5–8.
- Xu X, Zhang Q, Luo J, et al. JAK2(V617F): Prevalence in a large Chinese hospital population. Blood 2007;109:339–342.
- Muendlein A, Gasser K, Kinz E, et al. Evaluation of the prevalence and prospective clinical impact of the JAK2 V617F mutation in coronary patients. Am J Hematol 2014;89:295–301.
- 29. Pfeifer GP, Denissenko MF, Olivier M, et al. Tobacco smoke carcinogens, DNA damage and

- p53 mutations in smoking-associated cancers. Oncogene 2002;21:7435–7451.
- 30. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999;91:1194-1210.
- 31. Azam SM, Carman TL. Diagnostic approach to peripheral arterial disease. Cardiol Clin 2011;29: 319-329.
- 32. Vonbank A, Saely CH, Rein P, Drexel H. Insulin resistance is significantly associated with the metabolic syndrome, but not with sonographically proven peripheral arterial disease. Cardiovasc Diabetol 2013;12:106.
- 33. Holle R, Happich M, Lowel H, Wichmann HE. KORA-A research platform for population based health research. Gesundheitswesen 2005; 67 Suppl 1:S19-S25.
- 34. Wichmann HE, Gieger C, Illig T. KORA-gen-resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 2005;67 Suppl 1:S26-S30.
- 35. Kittur J, Knudson RA, Lasho TL, et al. Clinical correlates of JAK2V617F allele burden in essential thrombocythemia. Cancer 2007;109:2279-2284.
- 36. Antonioli E, Guglielmelli P, Poli G, et al. Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica 2008;93:41-48.
- 37. Brasier AR, Recinos A III, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002;22:1257-1266.
- 38. Mehta PK, Griendling KK. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007;292:C82-C97.
- Schieffer B, Luchtefeld M, Braun S, Hilfiker A, Hilfiker-Kleiner D, Drexler H. Role of

- NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 2000;87:1195–1201.
- 40. Johnson JL. Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis. Cardiovasc Res 2014;103:452-460.
- 41. Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res 2014;114:1640-1660.
- 42. Koenig W. High-sensitivity C-reactive protein and atherosclerotic disease: From improved risk prediction to risk-guided therapy. Int J Cardiol 2013;168:5126-5134.
- 43. Ridker PM, Cushman M, Stampfer MJ, et al. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 1998;97:425-428.
- 44. Barbui T, Carobbio A, Finazzi G, et al. Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: Different role of C-reactive protein and pentraxin 3. Haematologica 2011;96:315-318.
- Stone WL, Krishnan K, Campbell SE, Palau VE. The role of antioxidants and pro-oxidants in colon cancer. World J Gastrointest Oncol 2014;
- 46. Jude EB, Eleftheriadou I, Tentolouris N. Peripheral arterial disease in diabetes-A review. Diabet Med 2010;27:4-14.
- 47. Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients 2013;5:1218-1240.
- Siasos G, Tousoulis D, Michalea S, et al. Smoking and atherosclerosis: Mechanisms of disease and new therapeutic approaches. Curr Med Chem, 2014; in press.

- 49. Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: Role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg 2006; 391:499-510.
- 50. Hasselbalch HC. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res 2013;37:214-220.
- 51. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J 2003;17:1195-1214.
- 52. Kristinsson SY, Bjorkholm M, Hultcrantz M, et al. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol 2011;29:2897–2903.
- 53. Fleischman AG, Aichberger KJ, Luty SB, et al. TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood 2011;118:6392–6398.
- 54. Amann R, Peskar BA. Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol 2002;447:1-9.
- Alfonso L, Ai G, Spitale RC, Bhat GJ. Molecular targets of aspirin and cancer prevention. Br J Cancer 2014;111:61-67.
- 56. Shi X, Ding M, Dong Z, et al. Antioxidant properties of aspirin: Characterization of the ability of aspirin to inhibit silica-induced lipid peroxidation, DNA damage, NF-kappaB activation, and TNF-alpha production. Mol Cell Biochem 1999:199:93-102

