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Abstract

Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during
development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE)
movements. Wnt5a was previously reported to promote differentiation of A9–10 dopaminergic (DA) precursors in vitro.
However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains
unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-
induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a
known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was
restricted to the VM floor and basal plate by E11.5–E13.5. Analysis of Wnt5a2/2 mice revealed a transient increase in
progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+
precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a2/2
mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded
ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-
expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA
progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary,
we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions
of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of
NR4A2+ DA precursors.
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Introduction

Wnts comprise a family of 19 lipid-modified secreted glycopro-

teins that signal via different pathways and regulate multiple

aspects of development [1,2]. These pathways include the

canonical Wnt/b-catenin, noncanonical Wnt/Ca2+ and noncano-

nical Wnt/planar cell polarity (PCP) pathways.

Wnt5a has been reported to activate both canonical and

noncanonical signaling depending on receptor, cellular and tissue

context [3–5]. However, Wnt5a is generally considered a

noncanonical Wnt that activates PCP or Ca2+ signaling [6]. Most

PCP genes were initially identified in Drosophila or Xenopus and

their homologues were subsequently found in mammals. These

include genes for transmembrane proteins, such as frizzled (fz/Fz)

[7–9], Van Gogh/Strabismus (Vang/Vangl/stbm) [10,11], and starry

night/flamingo/Celsr (stan/fmi/Celsr) [12,13]. Some cytoplasmic

components of this pathway are shared with the Wnt/b-catenin

pathway, such as Dishevelled (dsh/Dvl) [14,15] and Casein kinase 1

(Ck1) [16–18]. Specific Wnt/PCP cytoplasmic components include

Daam, small GTPases of the Rho family: Cdc42, Rac1, RhoA, the

Rho kinase and JNK [19–22].

Mutations in PCP genes produce specific and distinctive

phenotypes. These include the general convergent extension

(CE) defects seen in the overall shortened and broadened

morphology of mutants and in Keller explants of the Xenopus

dorsal marginal zone [23,24], the Drosophila wing with misdirected

bristles and disorganization of the compound eye [2,25], the

murine cochlea with misdirected hair cells [4,26], and the murine
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neural tube with a broadened Shh-expressing floor plate (FP) and

neural tube closure defects [9,27,28]. PCP is defined as the

organization of cells within a single layered sheet of cells. CE

however, is a morphological process regulated by PCP signaling

and involving the coordinated movement of cells within a 3-

dimensional structure, leading to an overall elongation and

narrowing of the structure [24]. Moreover, a role for PCP genes

in the development of region-specific neuronal cell types outside of

an epithelial plane is becoming increasingly apparent. For

instance, PCP genes Celsr3 and Frizzled3 are involved in axon

growth and guidance, while Celsr1 and Dvl1 also regulate dendritic

arborization (for review see [29]).

In zebrafish, the Wnt5 and Wnt11 mutants, pipetail and silberblick

respectively, display CE defects but their roles have been suggested

to be more permissive than instructive [30,31]. However, Wnt5a

has been found to be required for stereocilia orientation in the

cochlea, indicating that Wnt5a can play an instructive role in PCP

during development [4]. We hypothesized that Wnt5a may be

able to activate PCP signaling and contribute to patterning and

subsequent neural differentiation in specific brain regions.

We have previously reported that Wnt5a promotes DA

differentiation of NR4A2 precursors in primary mesencephalic

cultures [32]. However, the function of Wnt5a in the developing

VM in vivo is unknown. A9–A10 dopaminergic neurons of the

substantia nigra (SN) and ventral tegmental area (VTA) respec-

tively, are born between E10.5 and E13.5. We therefore set out to

investigate whether deletion of Wnt5a results in a Wnt/PCP

phenotype and/or deficits in NR4A2 precursor differentiation in

vivo at these and later stages up to E18.5. We provide evidence that

Wnt5a is required for adequate morphogenesis of the midbrain by

controlling the proper polarity and proliferation of VM progen-

itors, and for the differentiation of postmitotic NR4A2+ precursors

into DA neurons.

Results

Wnt5a is expressed in a restricted temporal and spatial
pattern during midbrain development

We have previously reported that Wnt5a is highly expressed in

the VM at the time of birth of DA neurons [32]. To examine the

spatial and temporal expression of Wnt5a more closely we

performed in situ hybridization on E9.5–E13.5, E18.5 and P56

CD1 mice. Interestingly, in situ hybridization showed a gradient of

Wnt5a expression, with higher expression of Wnt5a at E9.5 and

10.5 in rostral levels of VM as compared to caudal levels

(Figure 1A). From E11.5 to E13.5, the expression of Wnt5a became

progressively restricted to the FP and basal plate (BP). Until E11.5

Wnt5a was only expressed in the ventricular zone (VZ)/

subventricular zone (SVZ), but from E12.5, and mainly in caudal

levels, Wnt5a was found in the intermediate and marginal zones,

extending laterally (Figure 1A). We next examined the expression

of Wnt5a in relation to tyrosine hydroxylase (TH - the rate-limiting

enzyme in the synthesis of dopamine and a marker of DA neurons)

expression. Double immunohistochemistry for TH and NR4A2 (a

marker of DA neurons and precursors) on sections probed for

Wnt5a revealed extensive overlap of expression, particularly in the

caudal midbrain at E12.5 (Figure 1B and data not shown for other

stages). From E13.5 on, the expression of Wnt5a in the ventricular

zone (VZ) was reduced, and at E18.5, it became mostly restricted

to DA neurons of the ventral tegmental area (VTA) (Figure 1C). In

the postnatal VM, expression of Wnt5a was not detected in

substantia nigra compacta (SNc) neurons, was faintly detectable in

VTA neurons, and was mainly confined to the red nucleus

(Figure 1C).

Wnt5a activates Rac1, and inhibition of Rac1 blocks
Wnt5a-induced DA neurogenesis

We have previously shown that Wnt5a promotes the differenti-

ation of dopaminergic (DA) neurons in primary midbrain cultures

[32] and that Wnt5a signals via Dishevelled and Casein Kinase 1 in a

dopaminergic cell line [17,33]. Wnt5a is known to activate the PCP

pathway and to signal via small GTPases in different systems [34],

but it is unknown which of the small GTPases transduces the Wnt5a

signal in cells of the DA lineage. We therefore first investigated

whether Wnt5a could activate Rac1, RhoA or Cdc42 in a DA cell

line, SN4741, a validated model for studying Wnt signaling [33,35–

37]. We found that treatment with recombinant mouse Wnt5a

induced the activation of Rac1 (Figure 2A), while RhoA and cdc42

activity were unchanged. In order to verify whether Rac1 mediates

the pro-differentiation effects of Wnt5a, we used an in vitro assay in

which Wnt5a induces the differentiation of primary DA precursors

into DA neurons [32]. A dose-response curve for NSC 23766, a Rac

inhibitor, showed that 10 mM had no effect on TH+ cell number. At

higher doses, from 50 mM and up, cell death was seen (data not

shown). Interestingly, treatment of these cultures with 10 mM of the

Rac1 inhibitor NSC 23766 blocked the increase in the number of

TH+ neurons otherwise induced by Wnt5a after 3 days in vitro

(Figure 2 B, C), suggesting that the pro-differentiation effects of

Wnt5a are mediated by Rac1. Note that the morphology of the TH+
cells is unchanged, and that the cells appear healthy in all conditions

(Figure 2C).

In the next part of our study we analyzed the VM phenotype of

Wnt5a2/2 mice generated previously [38]. We have previously

reported that Wnt5a does not activate canonical signaling in a

dopaminergic neuron cell line [33]. Data in the literature suggests

that Wnt/b-catenin signaling could be decreased in Wnt5a2/2

mice, since Wnt5a has been reported as capable of activating

Wnt/b-catenin signaling [3], or increased since non-canonical

signaling has also been reported to inhibit Wnt/b-catenin

signaling [39]. To address possible regulation of canonical

signaling in the Wnt5a2/2 VM, we first examined the expression

of Wnt1, a Wnt expressed in the VM that activates the Wnt/b-

catenin pathway and is required for VM DA neuron development

[40]. In situ hybridization did not show any increase in signal, but

rather a wider spacing of the two ventral stripes of Wnt1

expression in the FP (Figure S1A). This was confirmed by QPCR

analysis of E12.5 WT and Wnt5a2/2 VMs tissue (Figure S1B), a

finding that argues against a significant imbalance between Wnt1

and Wnt5a. To examine canonical signaling at the effector level,

we investigated the levels of active b-catenin by Western blot in the

VM of E10.5 and E12.5 Wnt5a2/2 mice, where no difference

was detected (Figure S1C and data not shown). In sum, Wnt5a

activated the small GTPase Rac1 and promoted DA differentia-

tion via Rac1, but loss of Wnt5a had no effect on Wnt1 expression

or canonical Wnt-signaling via b-catenin, suggesting that Wnt5a

may regulate Wnt/PCP signaling in the ventral midbrain in vivo.

Differentiation of dopaminergic neurons is altered in
Wnt5a2/2 mice

To assess the role of Wnt5a in vivo, we examined the A9–A10

DA neuron populations in Wnt5a knockout mice at E11.5, E12.5,

E14.5, E17.5 and E18.5. Surprisingly, at E11.5 and E12.5, the

number of TH+ DA neurons in the Wnt5a2/2 mice was not

statistically different from wild-type (WT) littermate controls

(Figure 3A, D). This was confirmed by quantitative PCR (QPCR)

for TH and for Pitx3 (Figure S 2A,B), a homeobox transcription

factor required for DA neuron survival [41–43]. A transient 25%

increase in the number of Th+ DA neurons was detected at E14.5

Wnt5a and PCP/Neurogenesis
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Figure 1. Temporal and spatial expression of Wnt5a in the mouse. (A) In situ hybridization for Wnt5a on coronal midbrain sections of E9.5–
E13.5 CD1 mice shows a dynamic regulation of Wnt5a expression domains throughout development in both rostrocaudal distribution and
developmental stages. Schemes with sagittal sections of the brain and dashed lines show the levels at which rostral (r) or caudal (c) expression
analysis was performed. The expression of Wnt5a occupies the entire neuroepithelium of the ventral midbrain at E9.5 and 10.5, and becomes
progressively restricted to the floor plate and basal plate ventricular zone from E11.5–E13.5, extending to the marginal zone at caudal levels (Scale
bars at E9.5 = 100 mm, at E10.5 and E11.5 = 200 mm, at E12.5 and E13.5 = 175 mm). (B) At E12.5, the expression of Wnt5a comprises the FP extending
from the ventricular zone through the intermediate zone and into the marginal zone, overlapping with NR4A2+ and TH+ cells. This extension into the
marginal zone is most pronounced in the caudal midbrain. (C) The expression of Wnt5a is down-regulated by E18.5, where it still overlaps with TH+
cells, but 8 weeks after birth, at P56, this overlap is lost as seen in sagittal and coronal sections. (Scale bars in brightfield E18.5, coronal P56 and
darkfield sagital p56 = 500 mm, scale bar in brightfield sagital P56 = 2.5 mm). Abbreviations: r = rostral, c = caudal, F = forebrain, D = diencephalon,
M = midbrain, H = hindbrain.
doi:10.1371/journal.pone.0003517.g001
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(Figure 3A, D) but not at earlier or later stages (Figure 3B, D and

data not shown). TH+ cells displayed normal morphology and

relatively normal density at E12.5 (Figure 3C). Although the

number of DA neurons normal at all ages except E14.5, the

morphology of the midbrain and distribution of the DA neurons

was altered in Wnt5a2/2 mice from E10.5, note the broader

lateral and dorsoventral distribution of TH+ cells at E12.5, E14.5

and E17.5 (Figure 4A, B). We also examined the number of

cleaved caspase 3+ cells (a marker of cells in apoptosis), but found

no difference at E14.5 or E17.5 (data not shown).

Increased proliferation and DA precursor pool in
Wnt5a2/2 mice

In vitro, Wnt5a promotes DA precursor differentiation, reducing

the number of proliferating (in S-phase) bromodeoxyuridine

positive (BrdU+) cells [32]. To assess the role of Wnt5a in

proliferation in vivo and the reason for the transient 25% increase

in Th+ cells in the Wnt5a2/2 embryos, the density of BrdU+
cells/area in the FP and the alar plate (AP) of E11.5 Wnt5a2/2

and WT embryos were compared (black squares in Figure 4A).

While the density of BrdU+ cells in the AP of WT and Wnt5a2/2

embryos was not different (after a 2 hour pulse), a 35% increase in

BrdU+ cells/area was detected in the FP of Wnt5a2/2 mice

(Figure 4A, B). Furthermore, BrdU+ cells accumulated in the

ventral midline of the Wnt5a2/2 midbrain at E11.5 (Figure 4A).

The increase of proliferating cells within the FP was first evident at

E11.5. This was confirmed by a 45% increase in Ki67+ cells (a

marker of cells in the cell cycle) detected in Wnt5a2/2 mice

(Figure 4A, B). Similarly, the number of cells that are dividing

(mitotic cells, arrowheads, Figure 4A) increased by 25% in

Wnt5a2/2 mice at E11.5 (Figure 4A, C). Interestingly, the

increase of cells in S-phase and M-phase was maintained along the

entire antero-posterior axis of the VM.

Neurogenesis in the VM is controlled by a code of homeodo-

main and proneural bHLH transcriptional regulators [44].

Expression of the members of the bHLH superfamily Ngn1, Ngn2

and Mash1 can be subdivided into three distinct domains within

the VZ of the mouse VM [45]. Ngn2 is essential for proper DA

neurogenesis, and Mash1 is required for the generation of VM

GABAergic neurons [45–47]. The expression of Ngn2 (and the low

levels of Mash1) in the midbrain FP therefore define the DA

progenitor domain, whereas the high expression levels of Ngn2 and

Ngn1 in the adjacent basal plate (BP) demarcates the oculomotor

(OM) and red nucleus (RN) progenitor domains [45,46,48]. In the

Wnt5a2/2 embryos, the Ngn1-positive domain within the BP and

the Ngn2-positive domain comprising the FP and BP were

broadened in the mutant midbrain at E11.5 (Figure 5A), whereas

the expression domains of these two proneural factors remained

unchanged in the dorsal midbrain. We next examined whether the

increase in cell division and broadened neurogenic domain had

generated more postmitotic cells, and found a 47% increase in

the number of NR4A2+ postmitotic cells compared to control at

E12.5, suggesting that the neurogenic process is indeed

enhanced in the Wnt5a2/2 mice (Figure 5B, C). Furthermore,

the 47% increase in NR4A2+ cells is consistent with a 45%

increase in proliferating cells. However, a 25% excess of TH+ at

E14.5 indicates that not all of the excess NR4A2+ cells

differentiate into Th+ neurons at this point. Moreover, we

found that the domain occupied by NR4A2+ cells was wider in

Wnt5a2/2 than in wild type mice (Figure 5B). An increase in

the amount of NR4A2 mRNA was also detected at E12.5 by

QPCR (Figure S2C).

We have previously reported that one of the functions of

Wnt5a is to promote the differentiation of NR4A2+ DA

precursors into DA neurons in vitro. This has been shown in

diverse in vitro preparations, including rat E14.5 VM primary

cultures [32], VM neurospheres derived from E10.5 mice or

E12.5 rat [49] and mouse ES cells (unpublished observation). In

order to investigate whether Wnt5a also promotes this differen-

tiation step in vivo, we examined the proportion of TH+ cells out

of NR4A2+ cells in the VM of Wnt5a2/2 mice at E12.5. In

agreement with our previous in vitro results, we found that the

proportion of NR4A2+ cells differentiating into Th+ cells was

reduced by 23% at this stage (Figure 5C). However since the

number of TH+ cells increased at E14.5, and subsequently

normalized, our results suggest that differentiation is rescued by

an alternative mechanism. We thus conclude that Wnt5a is only

partially and transiently required for the differentiation of

NR4A2+ precursors into DA neurons in vivo.

Figure 2. Rac1 is activated by Wnt5a and is required for Wnt5a-
induced dopaminergic neuron differentiation. (A) Stimulation of
SN4741 cells, a midbrain dopaminergic neuron cell line, with 200 ng/ml
Wnt5a for 2 hrs activates Rac1, but not RhoA or Cdc42. (B) As previously
reported, Wnt5a upregulates the number of TH+ dopaminergic neurons
in E11.5 primary ventral midbrain cultures grown for three days in vitro.
This differentiation is completely inhibited in the presence of 10 mM
NSC23766, a Rac1 inhibitor (ANOVA for Wnt5a vs Wnt5a&NSC23766,
P,0.05, N = 3 experiments, each normalized to the control conditions)
(C) TH+ cells in all conditions have normal morphology, with increased
numbers in the Wnt5a-treated, but not Rac-inhibited, wells.
doi:10.1371/journal.pone.0003517.g002

Wnt5a and PCP/Neurogenesis
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Figure 3. The number of dopaminergic neurons is normal at most stages but transiently increases at E14.5 in Wnt5a2/2 mice. (A) At
E11.5 and E12.5 no differences in the number of TH+ cells could be detected. At E12.5 and E14.5 the region occupied by TH+ cells in the Wnt5a2/
2midbrain appears larger, extending both laterally and dorsally. (B) At E17.5 the distribution of cells is broader dorsoventrally in rostral and caudal
sections in the Wnt5a2/2 VM. Importantly, at rostral levels the ventral tegmental area was more lateral (leaving a TH-poor midline domain) and the
substantia nigra more medial, making it difficult to differentiate between them. (C) Enlarged image of TH+ cells at E12.5 shows normal DA neuron
morphology in the Wnt5a2/2 mice. (D) Quantification of the number of TH+ cells in E11.5, E12.5, E14.5, and E17.5 mice shows a transient 25%
increase at E14.5 in Wnt5a2/2 embryos, which was no longer seen at E17.5. (At E14.5, unpaired t-test, p = 0.0492, N = 4).
doi:10.1371/journal.pone.0003517.g003

Wnt5a and PCP/Neurogenesis
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Mediolateral/PCP and apicobasal morphogenetic defects
in the VM of Wnt5a2/2 mice

Several of the defects described in previous sections are

reminiscent of PCP developmental defects, including the accumu-

lation of BrdU+ cells in the midline, the lateral expansion of the

Ki67+, Ngn2+, NR4A2+ and TH+ domains in the VM as well as

a flattening of the midbrain ventricle (Figures 3, 4, 5). Previous

reports of animals lacking PCP components have shown that the

invagination of the VZ in the ventral midline is flattened and that

the Shh domain, that defines the FP and BP in the midbrain, is

broadened [50–52]. In the Wnt5a2/2 mice, a lateral expansion of

the Shh and Foxa2 expression domains was first detected at E11.5

(Figure 6A, Figure S2D,E). This was associated with a lateral

expansion of the Lmx1a+ DA progenitor domain (Figure 6A).

Expression of the Shh-target genes (Ptch1 and Gli1) was not

expanded in the midbrain AP (Figure S3). The expression of class I

(Dbx1) and class II (Nkx2-2, Nkx6-1) genes was not changed in the

midbrain of the Wnt5a2/2 embryos compared to WT although

the aberrant morphology of the Wnt5a2/2 midbrain noted

previously led to a wider separation of the Nkx6-1-positive domains

in the BP of the mutant midbrain (Figure S3 and data not shown).

To characterize this defect in more detail, the analysis of the angle

formed between the invagination of the ventricular epithelia and

the midline in the VM revealed that this angle appeared greater in

Wnt5a2/2 mice (59.4u62.8u), than in WT mice (49.1u64.3u)
(Figure 6B). This resulted in the midbrain ventricle adopting a

‘‘U’’-shape in the Wnt5a2/2 mice instead of the typical ‘‘V’’-

shape in controls (Figure 6A, B). A similar phenotype, including a

broadened Shh domain, has been observed in the neural tube of

the PCP mutants Scribble and Vangl2 [50–52].

It has previously been shown that cadherins regulate intercel-

lular adhesion in neural progenitors and that a disruption of the

complex formed with a- and b-catenin leads to increased Shh

signaling and proliferation [53]. We therefore examined the levels

of N-cadherin in Wnt5a2/2 mice by Western blot and found a

reduction at E9.5, prior to the expansion of the FP (Figure 6C).

Moreover, since apico-basal polarity depends on PCP and

adhesion, we examined apico-basal polarity of cells in the

ventricular zone. Interestingly, the change in the general

morphology of the VM neuroepithelia was accompanied by an

alteration in the orientation of the cells, as shown by the non-

uniform orientation of propidium iodide stained nuclei in the

Wnt5a2/2 mice, compared to WT at E12.5 (Figure 7A). To

assess this quantitatively, the angle formed by the longest axis of

each nuclei with the ventral midline was measured for 10 cells

(starting from the midline and counting laterally) at different

Figure 4. Increased proliferation and accumulation of progenitor cells in Wnt5a2/2 mice. (A). Representative coronal sections at the level
of the midbrain of 2 hr BrdU-pulsed WT and Wnt5a2/2 embryos at E11.5 immunostained for BrdU or Ki67, markers of cells in mitosis. The black
squares in (A) depict the area within the alar plate (AP) and floor plate (FP) used for the quantification of BrdU+ cells in (B) (Squares in (A) are not
drawn to scale). Note the accumulation of BrdU+ cells in the Wnt5a2/2 VM in the adjacent magnified box. Increased Ki67 staining and mitotic figures
(arrowheads) in the ventricular zone. (B) The density of BrdU+ proliferating cells was significantly increased within the FP, but no significant change
was found within the AP of Wnt5a2/2 embryos compared to their wt littermates (C) The number of Ki67+ cells was significantly increased at E12.5
(paired t-test, p = 0.003, N = 3). (D) Mitotic nuclei (arrowheads in (A)) were counted in the midline domain to asses the number of cells in M-phase, and
this was also found to be significantly increased in the Wnt5a2/2 mutant (paired t-test, p = 0.037, N = 3).
doi:10.1371/journal.pone.0003517.g004

Wnt5a and PCP/Neurogenesis
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anteroposterior levels of the VM. This angle changed from very

acute to less acute as the cells were positioned further away from

the midline in the wild type. This angle reached almost 50u in wild

type, but did not exceed 30u degrees in Wnt5a2/2 mice

(Figure 7B). These results reflect the fact that, in Wnt5a2/2

mice, the nuclei of apical FP cells are oriented ventrally, while the

nuclei of control mice are oriented more ventro-laterally

(Figure 7A, B). Furthermore, when the frequency of nuclei

aberrantly oriented towards the contralateral side was examined,

Wnt5a2/2 mice showed a 7-fold increase compared to WT

(Figure 7A, C). Note that while cells in the midline of both WT

and Wnt5a2/2 mice exhibited nuclei oriented contralaterally,

only Wnt5a2/2 mice showed nuclei with contralateral orientation

in lateral positions of the FP (Figure 7A).

Several neuronal populations in the VM are redistributed
following the PCP defect

A more detailed analysis of the distribution of A9–A10 DA

neurons, in the very same animals that did not show any change in

total DA cell number at E12.5, revealed changes in the

mediolateral, rostro-caudal, and dorsoventral axis (Figure 8A).

Sections at regular intervals throughout the A9–A10 nucleus were

examined. The three levels analyzed in WT and Wnt5a2/2 mice

(rostral, intermediate and caudal) are shown at E12.5 in (Figure

S4). In the mediolateral axis, TH+ cells extend more laterally in

the Wnt5a2/2 mice than in WT mice, especially in the rostral

portion of the A9–A10 nuclei (Figure 8A–D). This phenotype

persisted until E17.5, and followed the earlier morphological

defects in the distribution of progenitor (Shh, Foxa2, Lmx1a, Ngn2)

and precursor (NR4A2) markers, all of which were expanded

already at E11.5.

In the rostro-caudal axis, the distribution of TH+ cells was

unchanged at E11.5 (Figure 8E). However, at E12.5 and E14.5,

the A9–A10 nuclei were shortened in Wnt5a2/2 mice, seemingly

at the expense of the most anterior portion of the nuclei (Figure 8F,

G). Finally, by E17.5 the distribution of VM DA neurons in the

anteroposterior axis tended to normalize but remained broad in

the dorsoventral axis (Figure 3B). This shortening of the anterior

neural tube at E12.5 was also apparent when the length of the En1

expression domain was measured in sagittal sections through the

VM of Wnt5a2/2 mice, and compared to WT (390 mm

compared to 540 mm, Figure S5).

To distinguish between a deregulation of TH and a true

misplacement of the DA neurons, we examined the spatio-temporal

expression pattern of other DA neuron markers such as Pitx3 and

Slc6a3/Dat. Both marker genes were expressed within the marginal

zone (MZ) of the Wnt5a2/2 ventral midbrain at E12.5 (Figure 8H).

A mediolateral expansion of the Th, Pitx3 and Slc6a3/DAT expression

domains was detected in the Wnt5a2/2 mice, confirming the

redistribution of DA neurons within the VM (Figure 8H).

Since Wnt5a regulates PCP in several structures and the Shh,

Foxa2 and Ngn1 domains were also broadened in the BP, we

examined whether deletion of Wnt5a altered the distribution of

other mature ventral neuronal populations in coronal midbrain

sections at E18.5, when no difference in number of DA neurons

was detected (data not shown). Interestingly, the area occupied by

Th2, Islet12 or Brn3a2 expressing cells was increased in

Wnt5a2/2 mutants (30–40%, Table 1). These results indicate

that while the absolute numbers of midbrain neuron populations

such as DA neurons are unchanged, the cells are re-distributed

and positioned in a laterally and dorsoventrally enlarged domain

in the Wnt5a2/2 VM (Table 1 and Figure 3).

Discussion

The impact of deletions of Wnt/PCP signaling components

[2,29], including ligands such as Wnt5a [4], have been studied in

very specific structures that have become standard Wnt/PCP

functional assays. These include studying the orientation of bristles

on the Drosophila wing, and in mammals the orientation of hair

cells in the inner ear, convergent extension movements during

embryo elongation, or neural tube closure. However, Wnt/PCP

signaling components and ligands are expressed in very diverse

tissues and at multiple developmental stages, where no previous

PCP phenotypes have been described. In our study we investigated

the function of Wnt5a in one such structure and developmental

time, the VM during neurogenesis. We report that Wnt5a

regulates VM morphogenesis, limits DA progenitor proliferation

and enhances DA precursor differentiation.

Regulation of DA precursor differentiation by Wnt5a
Despite the clear effects of Wnt5a on DA differentiation in both

gain and loss of function experiments in vitro [32,54], Wnt5a2/2

mice exhibited only a mild and transient DA differentiation

phenotype in vivo. Moreover, in addition to a decrease in the

proportion of NR4A2+ precursors differentiating into TH+ DA

neurons (25% decrease in the Wnt5a mutants compared to WT),

Figure 5. The ventral midbrain progenitor domains are
expanded in Wnt5a2/2 embryos. (A) Detection of Th, Ngn1, and
Ngn2 on representative serial coronal sections at the level of the
midbrain of WT and Wnt5a2/2 embryos at E11.5. Red brackets delimit
the ventral Ngn1 and Ngn2 domain in the WT embryo, respectively.
(Scale bar in A: 500 mm.). (B) Increase in NR4A2+ cells in the VM of
Wnt5a2/2 mice, which occupy a broader region laterally and
dorsoventrally. (C) A 47% increase in the number of NR4A2+ cells was
detected in the Wnt5a2/2 mice at E12.5 (unpaired t-test, p = 0.044, WT
N = 3, Wnt5a2/2 N = 4). (D) Analysis of the proportion of NR4A2+ cells
differentiating into TH+ DA neurons revealed that the differentiation of
NR4A2+ precursors into TH+ cells was impaired in the Wnt5a2/2 mice
at E12.5 (paired t-test, p = 0.0098, N = 3).
doi:10.1371/journal.pone.0003517.g005
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we found that NR4A2+ DA precursors were generated in excess

by E12.5 (47% in the Wnt5a mutants compared to 39% in WT).

These results suggest that both progenitor proliferation and the

differentiation of NR4A2+ precursors were affected in the Wnt5a

mutants. These alterations were transient and were not detected at

E14.5, when the number of TH+ cells increased by 25%, then

returned to control level at E17.5 and E18.5. Thus, our results

show that Wnt5a is only transiently required for the differentiation

of endogenous midbrain NR4A2+ precursors in vivo, and is

sufficient for their differentiation in vitro, via Rac1 activation.

Interestingly, the surprising alteration in the kinetics of DA

neurogenesis in the Wnt5a2/2 mice suggests that other

phenomena such as increased neurogenesis (increased number of

DA postmitotic precursors) and a compensatory mechanism at

E14.5, may prevent a stronger DA differentiation phenotype.

Indeed, several non-canonical Wnts are expressed in the VM [37],

and a functional redundancy between wnt5 and wnt11 has been

described in double zebrafish pipetail (ppt)/wnt5 and silberblick (slb)/

wnt11 mutants [30], suggesting that another non-canonical Wnt

may compensate for the loss of Wnt5a.

A role for Wnt5a in midbrain morphogenesis
The involvement of non-canonical Wnt-signaling in CE

movements and neural tube morphogenesis has been widely

documented [29,55,56]. Moreover, Wnt5a has recently been

clearly implicated in the regulation of CE movements and PCP

during cochlear development and neurulation in the mouse [4].

Interestingly, the mesencephalon undergoes unique morphogenic

movements to form the cephalic flexure proper, a process that is

coupled to CE movements in the ventral domain and outgrowth in

the dorsal domain of the mesencephalon [57]. Moreover, Wnt5a is

expressed exclusively in the VM and not dorsal midbrain

throughout mouse embryonic development. Our analysis of the

Wnt5a2/2 mice has revealed a large variety of subtle but clear

alterations in the morphogenesis and the cytoarchitecture of the

VM. Overall the VM was broader and shorter as demonstrated

by: a lateral expansion of the Shh-expressing FP/BP at E11.5,

accompanied by broader lateral expression of Foxa2, Lmx1a,

NR4A2, Th, Pitx3 and DAT. Other markers examined were also

more laterally placed such as Wnt1 and Nkx6.1. The shortened

midbrain phenotype was manifested in the number of levels with

TH+ cells and their distribution, and suggested by a reduced

length of En1 expression in sagittal sections. In coronal sections,

the mesencephalon did not acquire its distinct heartlike morphol-

ogy and the ventricle in the ventral midline adopted a wide ‘‘U’’

shape instead of the typical ‘‘V’’ shape at E10.5. Thus, our findings

suggest diminished CE and an involvement of Wnt/PCP signaling

in the VM, as described for other structures [4,22,24,28,58].

Figure 6. Lateral expansion of Sonic hedgehog expression and flattening of midbrain ventricle, associated with loss of N-cadherin in
Wnt5a2/2 embryos. (A) Shh, Foxa2 and Lmx1a are laterally expanded by E11.5 in Wnt5a2/2 mice. The invagination at the medial hinge-point is
markedly reduced/flattened in the mutants. Red bars delimit the alar plate (AP), basal plate (BP), floor plate (FP) and roof plate (RP). Scale bar 250 mm.
(B) The flattened VM invagination was quantified by measuring the angle formed between the midline and the ventricular wall at several levels
throughout the VM of E10.5 mice, when this morphological change first became obvious. A significant difference was found in the Wnt5a2/2 mice
forming a U-shaped ventricle, with an angle of 59.4u62.8u from the midline as compared to 49.1u64.3u in WT mice. (C) Western blot of E9.5 whole
brain of WT and Wnt5a2/2 mice revealed a marked reduction of N-cadherin in Wnt5a2/2 mice.
doi:10.1371/journal.pone.0003517.g006
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Interestingly, we also found a change in the apico-basal

orientation of midbrain VZ cells in Wnt5a2/2 mice compared

to WT. The axis of individual WT FP apical ventricular cells and

the midline formed an average 36u angle and did not cross the

midline ventrally. However, cells in the Wnt5a2/2 mice formed

an average 20u angle with the midline and in some instances

individual cells showed a negative angle (i.e. their axis pointed

contralaterally). A possible interpretation of these results is that the

increase in proliferation allows nuclei to be oriented aberrantly in

Wnt5a2/2 mice during mitosis. However, misorientation was

never seen in WT mice in lateral positions, regardless of cell cycle

phase, but was seen in Wnt5a2/2 mice. This could also reflect a

consequence of the flattened VM morphology, allowing greater

deviations towards the contralateral side. A more intriguing

possibility is that the alteration in PCP directly regulates or causes

secondary changes in the geometry of the cells and in apicobasal

polarity. PCP and apicobasal polarity require cell attachment, a

process that both pathways also regulate [59,60]. In line with this,

we found a decrease in the levels of N-cadherin in the Wnt5a2/2

mice at E9.5, which could contribute to decreased attachment and

altered polarity. These results suggest PCP and apico-basal

polarity may be coordinately regulated in certain structures by

adhesion proteins.

Triple slb;ppt;wnt4-morphant zebrafish embryos phenocopy the

neurulation defect of trilobite (tri)/Van Gogh-like 2 (Vangl2) PCP

mutants [61]. Interestingly, the defects in the Wnt5a2/2 VM

resemble the tri neurulation defects with an increase in

proliferation, a broadening of the Shh domain/expansion of the

FP, and an ectopic accumulation of neural progenitors within the

midline [61]. These findings strongly suggest that Wnt5a also

regulates cell intercalation after cell division and VM morpho-

genesis. Our analysis of the VM phenotype of Wnt5a2/2 mice

suggests a model in which Wnt5a regulates morphogenesis by a

mechanism involving cell adhesion and altered PCP signaling.

This is accompanied by an alteration in apico-basal polarity, and a

broader distribution of VM cell populations, but no alteration in

the final number of neurons, all of which is compatible with a PCP

phenotype.

Proliferation: a link between differentiation and
morphogenesis

Our results indicate that the loss of Wnt5a directly or indirectly

regulates cell division in VZ progenitors. Indeed, we found that

deletion of Wnt5a increased the number of both BrdU+ and Ki67+
cells in the apical VZ, and the number of NR4A2+ postmitotic

cells in the IZ, which suggested a regulation of both proliferative

and neurogenic divisions. Interestingly, Wnt/PCP signaling has

been previously reported to regulate oriented cell division during

gastrulation, allowing axis elongation [61,62], and to regulate

asymmetric cell division [63], which is the predominant mode of

division used by VM progenitors during DA neurogenesis.

Another mechanism that could also result in the regulation of

proliferation and neurogenesis is cell adhesion. Our results

indicate that Wnt5a may regulate cell adhesion in the neuroep-

ithelia by regulating the levels of N-cadherin as early as E9.5.

Interestingly, it has been described that a reduction in a-catenin

Figure 7. Apical-basal polarity/cell orientation are affected in Wnt5a2/2 mice. (A) At E12.5, propidium iodide staining on coronal sections
through the VM revealed that cell nuclei in the neuroepithelium were rounded and their orientation was more variable with some cells pointing
contralaterally (red asterisks/arrows). (B) The orientation of each cell nucleus was plotted versus its distance from the ventral midline. The angle
between the nucleus and the midline was measured from cell 1 (the most medial) to cell 10 (the most lateral). Cell nuclei in Wnt5a2/2 mice are
oriented more ventrally compared to the more lateral orientation of cells in WT mice (two way-ANOVA for genotype and level, p = 0.0029, N = 3). (C)
The frequency of cell nuclei oriented towards the contralateral ventral side (red arrows in A) was significantly increased in Wnt5a2/2 mice (paired t-
test, p = 0.0198, N = 3, 10 nuclei at 3 levels/animal).
doi:10.1371/journal.pone.0003517.g007
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binding to N-cadherin leads to decreased cell adhesion, increased

Shh signaling and proliferation [53]. We therefore suggest that the

increase in Shh signaling (first detected at E11.5 by the regulation

of Foxa2 and Lmx1a), may be induced by a decrease in the levels of

N-cadherin protein and cell adhesion at earlier stages, when no

other phenotype is apparent. In agreement with a role for Shh in

regulating proliferation, we found an increase in the number of

proliferating apical VZ progenitors and a lateral expansion of the

Figure 8. The distribution of TH+ cells in the rostrocaudal and mediolateral axis is altered in Wnt5a2/2 mice. (A) At E12.5, there is a
redistribution of TH+ cells in the VM, both in the rostrocaudal and mediolateral axis. (B) Three representative levels throughout the VM were
measured for lateral spread of TH+ cells: rostral, medial and caudal. ImageJ was used to measure the distance between the two TH+ cells furthest
apart in (D). (C) TH+ cells were quantified at regular intervals from rostral to caudal midbrain in (E–F). (D) TH+ cells are distributed much more broadly
in anterior midbrain of E12.5 Wnt5a2/2 mice compared to WT (ANOVA, N = 3, p,0.001). (ANOVA with Bonferroni’s post test, Rostral WT vs Rostral
Wnt5a2/2 p,0.001). (E–F) Rostrocaudal distribution of TH+ cells. (E) At E11.5 no difference could be seen between the distribution of TH+ cells in
the anteroposterior axis of WT or Wnt5a2/2 mice. However, at E12.5 (F) and E14.5 (G) an altered distribution with a decrease in the number of TH+
cells in anterior levels and an increase in medial levels was seen (Two way ANOVA, for level and genotype, P = 0.0016 at E12.5, P,0.0001 at E14.5,
N = 4). (H) The lateral expansion of TH+ cells at E12.5 was confirmed by in situ hybridization for Th, Pitx3 and DAT, two other markers of maturing
dopaminergic neurons.
doi:10.1371/journal.pone.0003517.g008
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Shh, Foxa2 and Lmx1a domains in the Wnt5a2/2 mice. Thus,

taken together, these data suggest that Wnt5a can affect both the

extent and the type of cell division in VZ progenitor cells by

different mechanisms.

In sum, our results show that CE defects and lowered cadherin

expression were the first detected phenotype at E9.5 in the

Wnt5a2/2 mice. This was followed by an alteration in

morphogenesis and DA differentiation, and at E12.5 by defects

in cell polarization and adhesion, a shortening and a broadening

of the A9–A10 nucleus and other ventral domains of the

mesencephalon. We suggest that the broadening of the Shh

domain may lead to an increase in Shh-signaling, increased

proliferation in the FP/BP, accumulation of NR4A2+ precursors

and a transient expansion of the Th+ cell population at E14.5.

These defects were most pronounced in the FP, thus affecting the

morphology and development of cells in the DA lineage in the

Wnt5a2/2 mice.

In conclusion, we show for the first time that, in the VM, Wnt5a

regulates CE movements required for axial elongation, polar

growth and morphogenesis as well as proliferation, neurogenesis,

some aspects of differentiation, and the actual positioning of

neurons in the VM.

Materials and Methods

Animals, Immunohistochemistry and in situ Hybridization
(ISH)

Wnt5atm1Amc (referred to as Wnt5a2/2 in this article) transgenic

mice [38] and CD1 mice (Charles River) were housed, bred and

treated in accordance with the approval of the local ethics

committee (Stockholms Norra Djurförsöketiska Nämnd). Wnt5a+/

2 mice were kept on a C57BL/6 background. In all experiments,

the Wnt5a2/2 embryos were compared to their wild-type

(Wnt5a+/+ and Wnt5a+/2, heterozygotes have wild-type pheno-

type) littermates, n$4 for each genotype, if not otherwise stated in

the text. Mice of the relevant genotype were mated overnight and

noon of day of plug was taken as E0.5. Embryos were dissected in

ice-cold PBS, fixed in 4%PFA 4 hrs to overnight, cryoprotected in

20% sucrose and frozen in OCT compound on dry ice. Serial

coronal 7, 14 or 16 mm sections of the brain were obtained on a

cryostat. Immunohistochemistry (IHC) and in situ hybridization

(ISH) were carried out as previously described [32,64]. IHC and

ISH for Wnt5a were visualized with a Zeiss HBO100 microscope;

images were collected with a C4742-95 Hamamatsu camera and

processed with OpenLab software and/or ImageJ.

Antibodies
Rabbit anti-Nurr1 (NR4A2) (1:200, Santa Cruz Biotech.),

rabbit anti-TH (1:500, Pel-Freeze), mouse anti-Ki67 (1:800,

Abcam), anti-BrdU, Cy2-, Cy3- or Rhodamine-coupled secondary

antibodies (1:250, Jackson ImmunoResearch, West Grove, PA/

USA), or biotin-conjugated goat anti-rabbit IgG (1:300) were used.

Some sections were counterstained with 49, 6-Diamino-2-pheny-

lindole (DAPI) (500 ng/ml, Sigma, Missouri/USA), or propidium

iodide (Invitrogen). Anti-active-b-catenin (1:500, Clone 8E7 from

Upstate Biotechnology/Millipore), anti Rac1 (1:1000, Upstate),

anti RhoA (1:1000, sc418 Santa Cruz), anti CDC42 (1:1000,

Trans Lab) and anti-b-actin (1:5000, Abcam) were used for

Western blot.

Radioactive in situ hybridization
Paraffin sections (8 mm) of mouse embryos (E11.5/E12.5) or

brains (E18.5, P56) were processed for radioactive in situ

hybridization as previously described [65]. The probes used were

as follows: Wnt5a [38], Shh, En1, Wnt1 [66], Th, Pitx3, Slc6a3/Dat

[65], Foxa2 (bp 743–1314, Acc. Nr. NM_010446), Dbx1, Isl1,

Pou4f1, Nkx2-2, Nkx6-1 [67], Ngn1, Ngn2 [68], Lmx1a (bp 412–

1211, Acc. Nr. NM_033652) Ptch1 [69] and Gli1[70]. Images were

taken using darkfield optics on a stereo microscope Stemi SV6,

AxioCam MRc camera and Axiovision 4.6 software (Zeiss, Jena/

Germany).

BrdU treatments
Pregnant females were injected intra-peritoneally with 5-bromo-

2-deoxyuridine (BrdU, 10 mg/g body weight) two hours before

they were sacrificed and processed as described [71]. The number

of BrdU-positive cells in a square area (2500 mm2) was counted on

at least four serial sections from the midbrain of stage-matched

littermates (n = 4) using the Neurolucida 6 software (MBF

Bioscience, Williston, VT/USA).

TH+ Cell Counts and Distribution
For counts of total number or distribution of TH+ cells in the

ventral midbrain, alternate 14 mm sections from coronal series of

the entire A9–A10 population were counted and plotted versus

position at E11.5 and E12.5 for distribution analysis. At E14.5 and

E17.5, every sixth section was counted and plotted in the

distribution analysis. The lateral spread of TH+ cells was

measured in coronal sections through the VM, in three

consecutive levels, where level 1 corresponds to the rostral

midbrain-P1 boundary, level 2 corresponds to the intermediate

midbrain and level 3 corresponds to the caudal midbrain (see

Figure S 5). Pictures were taken with identical acquisition settings

and magnification and the lateral spread was measured by

drawing a horizontal line between the outermost TH+ cells. This

distance was measured in pixels using ImageJ and then normalized

to littermate controls.

The volumes of the Th2, Brn3a2 and Isl1-expression domains

at E18.5 were measured by the Cavalieri method using the Stereo

Investigator 5.05.4 software (MBF Bioscience) as described [65].

Cell numbers were averaged for each genotype and subjected to a

Student’s t-test for the estimation of statistical significance.

Table 1. The area occupied by the Islet1+, Brn3a+ or Th+ domain in coronal sections is 30–40% greater in Wnt5a2/2 mice at
E18.5.

Genotype Isl1+ domain (mm36105) n = 4 Brn3a+ domain (mm36105) n = 3 Th+ domain (mm36105) n = 3

Wildtype 62,469,79 s.e.m. 347,2620,8 s.e.m. 805,87613,11 s.e.m.

Wnt5a2/2 89,364,05 s.e.m. 443,2618,41 s.e.m. 1140,2769,34 s.e.m.

Student’s T-test 0.044195531 * 0.025901993 * 3.17277E-05 ***

The more ventral Th+ population shows the greatest difference.
doi:10.1371/journal.pone.0003517.t001
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Calculation of slope of ventricular invagination and
analysis of nuclei orientation

E10.5 and E12.5 mice were stained with Hoechst or propidium

iodide respectively. The slope of the wall of the VM at E10.5 was

measured by drawing a cross bisecting the FP, where the origin

coincided with the ventricular invagination. A tangent to the

ventricular wall was drawn and the angle between the tangent and

the midline was measured in 4 embryos of each genotype. To

measure the nucleus orientation, confocal pictures of serial sections

of E12.5 midbrains were taken with an optical slice of 1 mm. Ten

nuclei along the ventricle were analyzed per image from the

midline outwards, 3 images per mouse (rostro-caudally distribut-

ed), and 3 mice per genotype were analyzed. The nucleus was

outlined in Image J and the angle of the longest axis was measured

compared to the vertical parallel to the midline. This gave an

angle that was plotted against its position from the midline

(nucleus number position). Certain nuclei were abnormally

oriented towards the contralateral side, these gave a negative

angle. The number of nuclei with abnormal orientation (negative

angle), was compared to the total number of cells and this ratio

was used for analysis of contralateral orientation.

Primary ventral mesencephalic cultures and
immunocytochemistry

Ventral midbrains of E11.5 CD1 mice were dissected out in ice-

cold PBS supplemented with 0.2%glucose, mechanically dissoci-

ated in serum-free N2 through flame-narrowed Pasteur pipettes

and plated at a final density of 125,000 cells/well in poly-D-lysine-

coated 48-well plates as described previously [32]. Cultures were

treated with recombinant mouse Wnt5a (200 ng/ml, RnD),

0.05% CHAPS (Wnt5a control, Sigma), and/or 10 mM Rac1

inhibitor (NSC 23766, Calbiochem). Treatment of cultures was

initiated 1 hour after plating and cultures were incubated for 3

days in N2 at 37uC in 5%CO2. Cells were then fixed for

15 minutes with 4% paraformaldehyde, washed in PBS, and used

for immunocytochemical analysis.

Real-time Quantitative PCR
cDNA was generated as described previously [32]. In brief,

RNA from E8.5-P0 VMs of CD1 (for developmental stages) or

wildtype and Wnt5a2/2 mice was extracted using RNeasy Mini

Kit (Qiagen). 1 mg of RNA was reverse-transcribed using

SuperScript II Reverse Transcriptase (Invitrogen) and random

primers (Invitrogen). Quantitative PCR and the primers used in

this study have been described previously [32] with the exception

of NR4A2 primers; Forward: 59CAGCTCCGATTTCTTA

ACTCCAG39 and Reverse: 59GGTGAGGTCCATGC-

TAAACTTGA39.

Activated GTPase assay
Immunoblotting and sample preparation were performed as

described [17]. SN4741cells were cultured as described previously

[17]. Cells were serum starved overnight and stimulated with

recombinant Wnt5a (200 ng/ml, R&D) for 2 hours. Cells were

washed with ice-cold PBS and lysed in GTPase lysis buffer

(10 mM Tris-HCl, pH = 7.5; 110 mM NaCl; 1 mM EDTA;

10 mM MgCl2; /well, 1% Triton – 6100; 0.1% SDS, 1 mM

DTT, protease inhibitor cocktail (Roche)) for 5 minutes at 4uC.

Cell lysates were cleared by centrifugation at 14 000 rpm/4uC/

5 min and incubated for 15 min/4uC on a rotator with 25 ml of

GST-PAK-CRIB beads (25% slurry) for Rac1-gtp pulldown,

GST-Rhotekin for RhoA-gtp pulldown and GST-WASP for

cdc42-gtp pulldown. Beads were subsequently washed 3 times with

0.5 ml GTPase lysis buffer (without 0.1% SDS), mixed with 26
Laemmli buffer and analyzed on SDS-PAGE for the amount of

activated RhoA/Rac1/cdc42. 5% of total cell lysate was used as

input control.

Statistics
Data were analysed using Graphpad Prism version 4.01 for

Windows, GraphPad Software, San Diego California USA, www.

graphpad.com. For analyses comparing WT and Wnt5a2/2

mice, t-tests were used. A paired t-test was used if 1WT/Wnt5a

littermate pair was used from individual litters. If several pairs

were taken from the same litter then an unpaired t-test was used.

At least 3 litters were used for each analysis. Each graph value is

the mean6SEM. For analyses of distribution of Rac inhibition of

dopaminergic neuron differentiation and for dopaminergic neuron

distribution in vivo, One-way and Two-way ANOVA were used,

with Bonferroni’s post-hoc test.

Supporting Information

Figure S1 Canonical Wnt signaling is unaffected by loss of

Wnt5a. (A) In situ hybridization at E12.5 for Wnt1 shows wider

spacing between the two ventral stripes of Wnt1 expression in the

Wnt5a2/2 mice (red brackets), but no enlargement of the Wnt1

domain (Scale bar is 500 mm). (B) QPCR for Wnt1 shows no

difference in levels of Wnt1 in the VM of Wnt5a2/2 mice at

E12.5. (C) Western blot for active (dephosphorylated) b-catenin

shows little difference at E12.5 in the Wnt5a2/2 VM.

Found at: doi:10.1371/journal.pone.0003517.s001 (4.57 MB TIF)

Figure S2 QPCR of E12.5 WT and Wnt5a2/2 VM. No

difference in Th (A) and Pitx3 (B) mRNA levels. Increase in the

amount of Nr4a2 mRNA (C). Small or no increase in Shh mRNA

(D) and a greater difference in Foxa2 levels (E).

Found at: doi:10.1371/journal.pone.0003517.s002 (0.71 MB TIF)

Figure S3 No change in dorsoventral patterning of the

Wnt5a2/2 midbrain. Expression of Shh-target genes Ptch1 and

Gli1 was not altered in Wnt5a2/2 mice. The expression of class I

(Dbx1) and class II (Nkx6-1) genes was not changed in the midbrain

of the Wnt5a2/2 embryos compared to WT.

Found at: doi:10.1371/journal.pone.0003517.s003 (5.40 MB TIF)

Figure S4 Anteroposterior levels used to analyze the lateral

distribution of TH+ cells. Levels 1, 2 and 3 corresponding to

rostral, intermediate and caudal levels are depicted on sagittal

sections of WT and Wnt5a2/2 mice, probed for Th.

Found at: doi:10.1371/journal.pone.0003517.s004 (3.81 MB TIF)

Figure S5 The En1-expressing domain is shortened in Wnt5a2/

2 VM (A) Bright field and dark field images of the midbrain

cephalic flexure hybridized for Engrailed1 (En1) show a shorter

anteroposterior extension of En1 in the Wnt5a2/2 midbrain. Red

line shows the length measured from isthmus to anterior-most En1

expression. (B) Quantification of En1 expression length shows a

shorter domain in Wnt5a2/2 embryos (paired t-test p = 0.0203,

WT N = 3, Wnt5a2/2 N = 2).

Found at: doi:10.1371/journal.pone.0003517.s005 (7.93 MB TIF)
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